in

Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes

  • 1.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220 (2017).

    ADS  Google Scholar 

  • 2.

    Jia, G. et al. Land–Climate Interactions. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (Springer, Berlin, 2019).

    Google Scholar 

  • 3.

    Harper, A. B. et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 9(1), 2938 (2018).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • 4.

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882), 1444–1449 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Davin, E. L. & de Noblet-Ducoudre, N. Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Clim. 23(1), 97–112 (2010).

    ADS  Google Scholar 

  • 6.

    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 8 (2015).

    Google Scholar 

  • 7.

    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351(6273), 600–604 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296 (2017).

    ADS  Google Scholar 

  • 9.

    Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9(1), 679 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Augusto, L. et al. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 90(2), 444–466 (2015).

    PubMed  Google Scholar 

  • 11.

    Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351(6273), 597–600 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562(7726), 259–262 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Thom, D., Rammer, W. & Seidl, R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 87(4), 665–684 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Hans Pretzsch, D. I. F. J. B. Mixed-Species Forests (Springer, Berlin Heidelberg, 2017).

    Google Scholar 

  • 15.

    Astrup, R. et al. A sensible climate solution for the boreal forest. Nat. Clim. Change 8(1), 11–12 (2018).

    ADS  Google Scholar 

  • 16.

    Pukkala, T. Effect of species composition on ecosystem services in European boreal forest. J. For. Res. 29(2), 261–272 (2018).

    Google Scholar 

  • 17.

    Felton, A. et al. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. For. Ecol. Manage. 260(6), 939–947 (2010).

    Google Scholar 

  • 18.

    Renaud, V. & Rebetez, M. Comparison between open-site and below-canopy climatic conditions in Switzerland during the exceptionally hot summer of 2003. Agric. For. Meteorol. 149(5), 873–880 (2009).

    ADS  Google Scholar 

  • 19.

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058), 529–533 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Robine, J.-M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C.R. Biol. 331(2), 171–178 (2008).

    PubMed  Google Scholar 

  • 21.

    Wood, S. N. Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC Texts in Statistical Science (CRC Press/Taylor & Francis Group, Boca Raton, 2017).

    Google Scholar 

  • 22.

    Otto, J. et al. Forest summer albedo is sensitive to species and thinning: how should we account for this in Earth system models?. Biogeosciences 11(8), 2411–2427 (2014).

    ADS  Google Scholar 

  • 23.

    Rydsaa, J. H., Stordal, F. & Tallaksen, L. M. Sensitivity of the regional European boreal climate to changes in surface properties resulting from structural vegetation perturbations. Biogeosciences 12(10), 3071–3087 (2015).

    ADS  Google Scholar 

  • 24.

    Baldocchi, D. D. & Vogel, C. A. Energy and CO2 flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiol. 16(1–2), 5–16 (1996).

    PubMed  Google Scholar 

  • 25.

    Carnicer, J. et al. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 19 (2013).

    Google Scholar 

  • 26.

    Davin, E. L. et al. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 111(27), 9757–9761 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Baldocchi, D. D. & Xu, L. What limits evaporation from Mediterranean oak woodlands: the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?. Adv. Water Resour. 30(10), 2113–2122 (2007).

    ADS  Google Scholar 

  • 28.

    Grossiord, C. et al. Influence of species interactions on transpiration of Mediterranean tree species during a summer drought. Eur. J. For. Res. 134(2), 365–376 (2015).

    CAS  Google Scholar 

  • 29.

    Denissen, J. M. C. et al. Critical soil moisture derived from satellite observations over Europe. J. Geophys. Res. 125(6), e2019 (2020).

    Google Scholar 

  • 30.

    Dezsi, Ş et al. High-resolution projections of evapotranspiration and water availability for Europe under climate change. Int. J. Climatol. 38(10), 3832–3841 (2018).

    Google Scholar 

  • 31.

    Pita, G. et al. Carbon and water vapor fluxes over four forests in two contrasting climatic zones. Agric. For. Meteorol. 180, 211–224 (2013).

    ADS  Google Scholar 

  • 32.

    EEA. Europe’s Biodiversity: Biogeographical Regions and Seas. Biogeographical Regions in Europe. The Atlantic Region—MILD and Green, Fragmented and Close to the Rising Sea (EEA, Copenhagen, 2003).

    Google Scholar 

  • 33.

    Marshall, J. D. & Waring, R. H. Conifers and broadleaf species: stomatal sensitivity differs in western Oregon. Can. J. For. Res. 14(6), 905–908 (1984).

    Google Scholar 

  • 34.

    EEA. Climate Change, Impacts and Vulnerability in Europe 2016: An Indicator-Based Report, EEA Report No 1/2017 (EEA, Copenhagen, 2017).

    Google Scholar 

  • 35.

    Vilà-Cabrera, A. et al. Forest management for adaptation to climate change in the Mediterranean basin: a synthesis of evidence. For. Ecol. Manage. 407, 16–22 (2018).

    Google Scholar 

  • 36.

    Cardil, A. et al. Temporal interactions among throughfall, type of canopy and thinning drive radial growth in an Iberian mixed pine-beech forest. Agric. For. Meteorol. 252, 62–74 (2018).

    ADS  Google Scholar 

  • 37.

    Belyazid, S. & Giuliana, Z. Water limitation can negate the effect of higher temperatures on forest carbon sequestration. Eur. J. Forest Res. 138(2), 287–297 (2019).

    Google Scholar 

  • 38.

    Schume, H., Jost, G. & Hager, H. Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J. Hydrol. 289(1), 258–274 (2004).

    ADS  Google Scholar 

  • 39.

    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3(10), 722–727 (2010).

    ADS  CAS  Google Scholar 

  • 40.

    Gebhardt, T. et al. The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric. For. Meteorol. 197, 235–243 (2014).

    ADS  Google Scholar 

  • 41.

    Calev, A. et al. High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. Eur. J. For. Res. 135(3), 551–563 (2016).

    Google Scholar 

  • 42.

    Goisser, M. et al. Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies?. For. Ecol. Manage. 375, 268–278 (2016).

    Google Scholar 

  • 43.

    Brinkmann, N. et al. Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biol. 21(1), 71–81 (2019).

    CAS  PubMed  Google Scholar 

  • 44.

    McGloin, R. et al. Available energy partitioning during drought at two Norway spruce forests and a European Beech forest in Central Europe. J. Geophys. Res. 124(7), 3726–3742 (2019).

    Google Scholar 

  • 45.

    Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. Journal of Geophysical Research: Biogeosciences 122(4), 903–917 (2017).

    ADS  Google Scholar 

  • 46.

    Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 111(8), 2915–2919 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Zweifel, R., Rigling, A. & Dobbertin, M. Species-specific stomatal response of trees to drought: a link to vegetation dynamics?. J. Veg. Sci. 20(3), 442–454 (2009).

    Google Scholar 

  • 48.

    Renaud, V. et al. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theoret. Appl. Climatol. 105(1), 119–127 (2011).

    ADS  Google Scholar 

  • 49.

    Barr, A. G. et al. Intercomparison of BOREAS northern and southern study area surface fluxes in 1994. J. Geophys. Res. 106(D24), 33543–33550 (2001).

    ADS  Google Scholar 

  • 50.

    Rebetez, M. et al. Meteorological data series from Swiss long-term forest ecosystem research plots since 1997. Ann. For. Sci. 75(2), 41 (2018).

    Google Scholar 

  • 51.

    Good, E. J. An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures. J. Geophys. Res. 121(15), 8801–8819 (2016).

    Google Scholar 

  • 52.

    Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Change 10(2), 155–161 (2020).

    ADS  Google Scholar 

  • 53.

    Zabret, K., Rakovec, J. & Šraj, M. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. J. Hydrol. 558, 29–41 (2018).

    ADS  Google Scholar 

  • 54.

    Li, X. et al. Process-based rainfall interception by small trees in Northern China: the effect of rainfall traits and crown structure characteristics. Agric. For. Meteorol. 218–219, 65–73 (2016).

    ADS  Google Scholar 

  • 55.

    Xiao, Q. & McPherson, E. G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 45(1), 188–198 (2016).

    CAS  PubMed  Google Scholar 

  • 56.

    Leuschner, C. In Ecology of Central European Forests: Vegetation Ecology of Central Europe (ed. Ellenberg, H.) (Springer International Publishing, Cham, 2017).

    Google Scholar 

  • 57.

    Knoke, T. et al. Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur. J. For. Res. 127(2), 89–101 (2008).

    Google Scholar 

  • 58.

    Ellenberg, H. & Strutt, G. K. Vegetation Ecology of Central Europe 4th edn. (Cambridge University Press, Cambridge, 2009).

    Google Scholar 

  • 59.

    Schutz, J. P. et al. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur. J. For. Res. 125(3), 291–302 (2006).

    Google Scholar 

  • 60.

    Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Change Biol. 24(9), 4304–4315 (2018).

    ADS  Google Scholar 

  • 61.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395 (2017).

    ADS  Google Scholar 

  • 62.

    IPCC Climate Change 2014: Synthesis Report. In Contribution of Working Groups I II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri, R. K. & Meyer, L. A.) 151 (IPCC, Geneva, 2014).

    Google Scholar 

  • 63.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 106(37), 15594–15598 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Anderson, G. B. & Bell, M. L. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. Communities. Environ Health Perspect 119(2), 210–218 (2011).

    PubMed  Google Scholar 

  • 65.

    Zivin, J. G. & Neidell, M. Temperature and the allocation of time: implications for climate change. J. Labor Econ. 32(1), 1–26 (2014).

    Google Scholar 

  • 66.

    Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).

    ADS  Google Scholar 

  • 67.

    Trigo, I. F. et al. Thermal land surface emissivity retrieved from SEVIRI/meteosat. IEEE Trans. Geosci. Remote Sens. 46(2), 307–315 (2008).

    ADS  Google Scholar 

  • 68.

    Gottsche, F. M. et al. Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote Sens. 8, 27 (2016).

    Google Scholar 

  • 69.

    Freitas, S. C. et al. Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens. 48, 523–534 (2010).

    ADS  Google Scholar 

  • 70.

    Langanke, T. Copernicus Land Monitoring Service: High Resolution Layer Forest: Product Specification Document (Copernicus team at EEA, European Environment Agency, Copenhagen, 2018).

    Google Scholar 

  • 71.

    EEA, EU-DEM Statistical Validation (Copenhagen, Denmark, 2014).

  • 72.

    Kosztra, B. et al. Updated CLC Illustrated Nomenclature Guidelines (European Environment Agency, Vienna, 2017).

    Google Scholar 

  • 73.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    Google Scholar 

  • 74.

    Wood, S. N., Goude, Y. & Shaw, S. Generalized additive models for large data sets. J. R. Stat. Soc. C 64(1), 139–155 (2015).

    MathSciNet  Google Scholar 

  • 75.

    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111(516), 1548–1563 (2016).

    MathSciNet  CAS  Google Scholar 

  • 76.

    Götmark, F. et al. Broadleaved tree species in conifer-dominated forestry: Regeneration and limitation of saplings in southern Sweden. For. Ecol. Manage. 214(1), 142–157 (2005).

    Google Scholar 

  • 77.

    von Arx, G. et al. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J. Ecol. 101(5), 1201–1213 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    A geometric basis for surface habitat complexity and biodiversity

    The ecological and genomic basis of explosive adaptive radiation