in

2000 years of agriculture in the Atacama desert lead to changes in the distribution and concentration of iron in maize

  • 1.

    Marles, R. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 56, 93–103 (2017).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Davis, D. Declines in iron content of foods. Br. J. Nutr. 109, 2111 (2013).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Davis, D. Commentary on: “Historical variation in the mineral composition of edible horticultural products” (White, P. J and Broadley, M.R (2005) Journal of Horticultural Science & Biotechnology, 80, 660-667). J. Horticult. Sci. Biotechnol. 81(3), 553–554 (2006).

    Article 

    Google Scholar 

  • 4.

    Broadley, M. R., Mead, A. & White, P. J. Replay to Davis (2006) Commentary. J. Horticult. Sci. Technol. 81(3), 554–555 (2006).

    Google Scholar 

  • 5.

    Teklic, T., Loncaric, Z., Kovacevic, V. & Singh, B. R. Metallic trace elements in cereal grain—a review: How much metal do we eat?. Food Energy Secur. 2(2), 81–95 (2013).

    Article 

    Google Scholar 

  • 6.

    Ranum, P., Peña-Rosas, J. P. & Garcia-Casal, M. N. Global maize production, utilization and consumption. Ann N Y Acad Sci. 1312, 105–112 (2014).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Vidal Elgueta, A., Hinojosa, L. F., Pérez, M. F., Peralta, G. & Rodríguez, M. U. Genetic and phenotypic diversity in 2000 years old maize (Zea mays L.) samples from the Tarapacá region, Atacama Desert, Chile. PLoS ONE 14(1), e0210369. https://doi.org/10.1371/journal.pone.0210369 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Fan, M. S., Fairweather, S., Polton, P., Dunham, S. & Mcrath, S. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 22, 315–324 (2008).

    CAS 
    Article 

    Google Scholar 

  • 9.

    McGrath, S. The effects of increasing yields on the macro- and microelement concentrations and offtakes in the grain of winter wheat. J. Sci. Food Agric. 36, 1073–1083 (1985).

    CAS 
    Article 

    Google Scholar 

  • 10.

    De Fries, R., Fanzo, J., Remans, R., Palm, C. & Wood, S. Metrics for land-scarce agriculture Nutrient content must be better integrated into planning. Science 349(6245), 238–240 (2015).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Roschzttardtz, H., Conéjéro, G., Curie, C. & Mari, S. Identification of the endotermal vacuole as the iron storage compartment in the arabidopsis embryo. Plant Physiol. 151, 1329–1338 (2009).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Zang, J. et al. Maize YSL2 is required for iron distribution and development in kernels. J. Exp. Bot. 71, 5896–5910 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Roschzttardtz, H. et al. Plant cell nucleolus as a hot spot for iron. J. Biol. Chem. 286, 27863–27866 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Ibeas, M., Grant-Grant, S., Navarro, N., Perez, F. & Roschzttardtz, H. Dynamic subcellular localization of iron during embryo development in Brassicaceae seeds. Front. Plant Sci. 8, 2186 (2017).

    Article 

    Google Scholar 

  • 15.

    Santana-Sagredo, F. et al. ‘White gold’ guano fertilizer drove agricultural intensification in the Atacama Desert from AD 1000. Nat. Plants. 7, 152–158 (2021).

    CAS 
    Article 

    Google Scholar 

  • 16.

    García, M. et al. Alimentos, tecnologías vegetales y paleoambiente en las aldeas formativas de la pampa del Tamarugal (ca. 900 a.C.–800 d.C.). Estudios Atacameños. 47, 33–58 (2014).

    Article 

    Google Scholar 

  • 17.

    Santana-Sagredo, F., Uribe, M., Herrera, M. J., Retamal, R. & Flores, S. Brief communication: Dietary practices in ancient populations from northern chile during the transition to agriculture (Tarapaca Region, 1000 BC-AD 900). Am. J. Phys. Anthropol. 158(4), 751–758 (2014).

    Article 

    Google Scholar 

  • 18.

    Santoro, C. M. et al. Continuities and discontinuities in the socio-environmental systems of the Atacama Desert during the last 13,000 years. J. Anthropol. Archaeol. 46, 28–39 (2017).

    Article 

    Google Scholar 

  • 19.

    Roschzttardtz, H., Conejero, G., Curie, C. & Mari, S. Identification of the endodermal vacuole as the iron storage compartment in the arabidopsis embryo. Plant Physiol. 151, 1329–1338 (2009).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ibeas, M. et al. The diverse iron distribution in Eudicotyledoneae seeds: From Arabidopsis to Quinoa. Front. Plant Sci. 15, 1985 (2019).

    Article 

    Google Scholar 

  • 21.

    Davis, D., Epp, M. & Riordan, H. Changes in USDA food composition data for 43 Garden crops, 1950 to 1990. J. Am. Coll. Nutr. 23(6), 669–682 (2004).

    CAS 
    Article 

    Google Scholar 

  • 22.

    White, P. J. & Broadley, M. R. Historical variation in the mineral composition of edible horticultural products. J. Horticult. Sci. Biotrchnol. 80(6), 660–667 (2005).

    Article 

    Google Scholar 

  • 23.

    Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59(2), 1809–1833 (2017).

    Article 

    Google Scholar 

  • 24.

    Hogg, A. G. et al. SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4), 1889–1903 (2013).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Gao, F., Robe, K., Bettembourg, M., Navarro, N., Rofidal, V., Santoni, V., Gaymard, F., Vignols, F., Roschzttardtz, H., Izquierdo, E., & Dubos, C. The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in arabidopsis. Plant Cell, 32, 508–524 (2020).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System

    Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens