Hansson, B. S. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).
Google Scholar
Breer, H., Fleischer, J., Pregitzer, P. & Krieger, J. Molecular mechanism of insect olfaction: olfactory receptors. in Olfactory Concepts of Insect Control-Alternative to insecticides 93–114 (Springer, 2019).
Robertson, H. M. Molecular evolution of the major arthropod chemoreceptor gene families. Annu. Rev. Entomol. 64, 227–242 (2019).
Google Scholar
Yan, H. et al. Evolution, developmental expression and function of odorant receptors in insects. J. Exp. Biol. 223, jeb20821 (2020).
Google Scholar
Zhu, J., Iovinella, I., Dani, F. R., Pelosi, P. & Wang, G. Chemosensory proteins: a versatile binding family. in Olfactory Concepts of Insect Control-Alternative to insecticides 147–169 (Springer, 2019).
Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).
Google Scholar
Vosshall, L. B. & Hansson, B. S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses 36, 497–498 (2011).
Google Scholar
Stengl, M. & Funk, N. W. The role of the coreceptor Orco in insect olfactory transduction. J. Comp. Physiol. A. 199, 897–909 (2013).
Google Scholar
Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391 (2013).
Google Scholar
Rogers, M. E., Sun, M., Lerner, M. R. & Vogt, R. G. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J. Biol. Chem. 272, 14792–14799 (1997).
Google Scholar
Jin, X., Ha, T. S. & Smith, D. P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. 105, 10996–11001 (2008).
Google Scholar
Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).
Google Scholar
Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).
Google Scholar
Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).
Google Scholar
Gao, Q. & Chess, A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60, 31–39 (1999).
Google Scholar
Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).
Google Scholar
Montagné, N., de Fouchier, A., Newcomb, R. D. & Jacquin-Joly, E. Advances in the identification and characterization of olfactory receptors in insects. in Progress in molecular biology and translational science, Vol. 130 55–80 (Elsevier, 2015).
Liu, Y., Gu, S., Zhang, Y., Guo, Y. & Wang, G. Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS ONE 7, e48260 (2012).
Google Scholar
Bengtsson, J. M. et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS ONE 7, e31620 (2012).
Google Scholar
Gonzalez, F., Witzgall, P. & Walker, W. B. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues. Sci. Rep. 7, 41829 (2017).
Google Scholar
Cao, D. et al. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis. Int. J. Biol. Sci. 10, 846 (2014).
Google Scholar
Andersson, M. N. et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14, 1–16 (2013).
Google Scholar
Liu, S. et al. Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. D: Genomics Proteomics 13, 44–51 (2015).
Google Scholar
Hu, P., Wang, J., Cui, M., Tao, J. & Luo, Y. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis. Sci. Rep. 6, 1–12 (2016).
Google Scholar
Engsontia, P. et al. The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 387–397 (2008).
Google Scholar
Mitchell, R. F. et al. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem. Mol. Biol. 42, 499–505 (2012).
Google Scholar
Bin, S.-Y., Qu, M.-Q., Pu, X.-H., Wu, Z.-Z. & Lin, J.-T. Antennal transcriptome and expression analyses of olfactory genes in the sweetpotato weevil Cylas formicarius. Sci. Rep. 7, 1–14 (2017).
Google Scholar
Antony, B. et al. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics 17, 69. https://doi.org/10.1186/s12864-016-2362-6 (2016).
Google Scholar
Tang, Q. F. et al. Antennal transcriptome analysis of the maize weevil Sitophilus zeamais: Identification and tissue expression profiling of candidate odorant-binding protein genes. Arch. Insect Biochem. Physiol. 101, e21542 (2019).
Google Scholar
Hallett, R. et al. Aggregation pheromones of two Asian palm weevils, Rhynchophorus ferrugineus and R. vulneratus. Naturwissenschaften 80, 328–331 (1993).
Google Scholar
Peri, E. et al. Rhynchophorus ferrugineus: behavior, ecology, and communication. in Handbook of Major Palm Pests: Biology and Management, 105–130 (2017).
Oehlschlager, A., Chinchilla, C. & Gonzalez, L. Optimization of a pheromone-baited trap for the American palm weevil Rhynchophorus palmarum (L.). in Proceedings of International Oil Palm Congress 645–660 (Kuala Lumpur, September, 1993).
Gonzalez, F., Kharrat, S., Rodríguez, C., Calvo, C. & Oehlschlager, A. Research paper (integrated management: insects) red palm weevil (Rhynchophorus ferrugineus Olivier): recent advances. Arab J. Pl. Prot. 37, 178–187 (2019).
Hagley, E. A. The role of the palm weevil, Rhynchophorus palmarum, as a vector of red ring disease of coconuts. I. Results of preliminary investigations. J. Econ. Entomol. 56, 375–380 (1963).
Google Scholar
Chinchilla, C. M. The red ring-little leaf syndrome in oil palm and coconut. Bol. Tec Opo-CB 2, 113–136 (1988).
Gerber, K. & Giblin-Davis, R. M. Association of the red ring nematode and other nematode species with the palm weevil, Rhynchophorus palmarum. J. Nematol. 22, 143 (1990).
Google Scholar
Oehlschlager, A. C., Chinchilla, C., Castillo, G. & Gonzalez, L. Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Florida Entomol. 85, 507–513 (2002).
Google Scholar
Rodríguez, C., Oehlschlager, A. & Chinchilla, C. Examination of critical components of Rhynchophorus palmarum pheromone traps. ASD Oil Palm Papers 46, 15 (2016).
Oehlschlager, C. Optimizing trapping of palm weevils and beetles. Acta Hortic. 736, 347–368. https://doi.org/10.17660/ActaHortic.2007.736.33 (2007).
Rochat, D. et al. Rhynchophorus ferrugineus: Taxonomy, distribution, biology, and life cycle. in Handbook of Major Palm Pests: Biology and Management, 69–104 (2017).
Antony, B. et al. Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genomics 20, 1–23 (2019).
Google Scholar
Antony, B., Johny, J. & Aldosari, S. A. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 9, 252 (2018).
Google Scholar
Antony, B. et al. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Mol. Ecol. 30, 1–15. https://doi.org/10.1111/mec.15874 (2021).
Nagnan-Le Meillour, P., François, M.-C. & Jacquin-Joly, E. Identification and molecular cloning of putative odorant-binding proteins from the American palm weevil, Rhynchophorus palmarum L.. J. Chem. Ecol. 30, 1213–1223 (2004).
Google Scholar
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Google Scholar
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
Google Scholar
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).
Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Boil. Evolut. 30, 2725–2729 (2013).
Google Scholar
Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. BioRxiv, 800912 (2019).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).
Google Scholar
Wojtasek, H., Hansson, B. S. & Leal, W. S. Attracted or repelled?—A matter of two neurons, one pheromone binding protein, and a chiral center. Biochem. Biophys. Res. Commun. 250, 217–222 (1998).
Google Scholar
Diakite, M. M., Wang, J., Ali, S. & Wang, M.-Q. Identification of chemosensory gene families in Rhyzopertha dominica (Coleoptera: Bostrichidae). Can. Entomol. 148, 8–21 (2016).
Google Scholar
Vogt, R. G. et al. The insect SNMP gene family. Insect Biochem. Mol. Biol. 39, 448–456 (2009).
Google Scholar
Mitchell, R. F., Schneider, T. M., Schwartz, A. M., Andersson, M. N. & McKenna, D. D. The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Mol. Biol. 29, 77–91 (2020).
Google Scholar
Oehlschlager, A. C. et al. Development of a pheromone-based trapping system for Rhynchophorus palmarum (Coleoptera: Curculionidae). J. Econ. Entomol. 86, 1381–1392 (1993).
Google Scholar
Rochat, D. et al. Ecologie chimique des charançons des palmiers, Rhynchophorus spp.(Coleoptera). Oléagineux 48, 225–236 (1993).
Hoddle, M. & Hoddle, C. Palmageddon: the invasion of California by the South American palm weevil is underway. CAPCA Advis 20, 40–44 (2017).
Witzgall, P., Kirsch, P. & Cork, A. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36, 80–100 (2010).
Google Scholar
Venthur, H. & Zhou, J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 9, 1163 (2018).
Google Scholar
Andersson, M. N., Keeling, C. I. & Mitchell, R. F. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genomics 20, 1–17 (2019).
Google Scholar
Yang, H. et al. Molecular characterization, expression pattern and ligand-binding properties of the pheromone-binding protein gene from Cyrtotrachelus buqueti. Physiol. Entomol. 42, 369–378 (2017).
Google Scholar
Jacquin-Joly, E., Vogt, R. G., François, M.-C. & Nagnan-Le Meillour, P. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem. Senses 26, 833–844 (2001).
Google Scholar
Gu, S.-H. et al. Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS ONE 7, e42871 (2012).
Google Scholar
Liu, Y.-L., Guo, H., Huang, L.-Q., Pelosi, P. & Wang, C.-Z. Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. J. Exp. Biol. 217, 1821–1826 (2014).
Google Scholar
Peng, Y. et al. Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3. PLoS ONE 12, e0180775 (2017).
Google Scholar
Nomura, A., Kawasaki, K., Kubo, T. & Natori, S. Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int. J. Dev. Biol. 36, 391–398 (2002).
Maleszka, J., Foret, S., Saint, R. & Maleszka, R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev. Genes. Evol. 217, 189–196 (2007).
Google Scholar
Benton, R., Vannice, K. S. & Vosshall, L. B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289–293 (2007).
Google Scholar
Zhang, H.-J. et al. A phylogenomics approach to characterizing sensory neuron membrane proteins (SNMPs) in Lepidoptera. Insect Biochem. Mol. Biol. 118, 103313 (2020).
Google Scholar
Liu, S. et al. Molecular characterization of two sensory neuron membrane proteins from Chilo suppressalis (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 106, 378–384 (2013).
Google Scholar
Liu, S. et al. Identification and characterization of two sensory neuron membrane proteins from Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 82, 29–42 (2013).
Google Scholar
Zhang, J., Liu, Y., Walker, W. B., Dong, S. L. & Wang, G. R. Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 22, 399–408 (2015).
Google Scholar
Giblin-Davis, R. M., Weissling, T. J., Oehlschlager, A. & Gonzalez, L. M. Field response of Rhynchophorus cruentatus (Coleoptera: Curculionidae) to its aggregation pheromone and fermenting plant volatiles. Florida Entomol. 77, 164–177 (1994).
Google Scholar
Jaffé, K. et al. Chemical ecology of the palm weevil Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae): Attraction to host plants and to a male-produced aggregation pheromone. J. Chem. Ecol. 19, 1703–1720 (1993).
Google Scholar
Saïd, I., Renou, M., Morin, J.-P., Ferreira, J. M. & Rochat, D. Interactions between acetoin, a plant volatile, and pheromone in Rhynchophorus palmarum: Behavioral and olfactory neuron responses. J. Chem. Ecol. 31, 1789–1805 (2005).
Google Scholar
Mansourian, S. & Stensmyr, M. C. The chemical ecology of the fly. Curr. Opin. Neurobiol. 34, 95–102 (2015).
Google Scholar
Andersson, M. N., Löfstedt, C. & Newcomb, R. D. Insect olfaction and the evolution of receptor tuning. Front. Ecol. Evol. 3, 53 (2015).
Caballero-Vidal, G. et al. Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Sci. Rep. 10, 1–9 (2020).
Google Scholar
Yuvaraj, J. K. et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 19, 16 (2021).
Source: Ecology - nature.com