in

Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum

  • 1.

    Hansson, B. S. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Breer, H., Fleischer, J., Pregitzer, P. & Krieger, J. Molecular mechanism of insect olfaction: olfactory receptors. in Olfactory Concepts of Insect Control-Alternative to insecticides 93–114 (Springer, 2019).

  • 3.

    Robertson, H. M. Molecular evolution of the major arthropod chemoreceptor gene families. Annu. Rev. Entomol. 64, 227–242 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Yan, H. et al. Evolution, developmental expression and function of odorant receptors in insects. J. Exp. Biol. 223, jeb20821 (2020).

    Article 

    Google Scholar 

  • 5.

    Zhu, J., Iovinella, I., Dani, F. R., Pelosi, P. & Wang, G.  Chemosensory proteins: a versatile binding family. in Olfactory Concepts of Insect Control-Alternative to insecticides 147–169 (Springer, 2019).

  • 6.

    Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Vosshall, L. B. & Hansson, B. S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses 36, 497–498 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Stengl, M. & Funk, N. W. The role of the coreceptor Orco in insect olfactory transduction. J. Comp. Physiol. A. 199, 897–909 (2013).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Rogers, M. E., Sun, M., Lerner, M. R. & Vogt, R. G. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J. Biol. Chem. 272, 14792–14799 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Jin, X., Ha, T. S. & Smith, D. P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. 105, 10996–11001 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Gao, Q. & Chess, A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60, 31–39 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Montagné, N., de Fouchier, A., Newcomb, R. D. & Jacquin-Joly, E. Advances in the identification and characterization of olfactory receptors in insects. in Progress in molecular biology and translational science, Vol. 130 55–80 (Elsevier, 2015).

  • 18.

    Liu, Y., Gu, S., Zhang, Y., Guo, Y. & Wang, G. Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS ONE 7, e48260 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Bengtsson, J. M. et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS ONE 7, e31620 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Gonzalez, F., Witzgall, P. & Walker, W. B. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues. Sci. Rep. 7, 41829 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Cao, D. et al. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis. Int. J. Biol. Sci. 10, 846 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Andersson, M. N. et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14, 1–16 (2013).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Liu, S. et al. Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. D: Genomics Proteomics 13, 44–51 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Hu, P., Wang, J., Cui, M., Tao, J. & Luo, Y. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis. Sci. Rep. 6, 1–12 (2016).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Engsontia, P. et al. The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 387–397 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Mitchell, R. F. et al. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem. Mol. Biol. 42, 499–505 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Bin, S.-Y., Qu, M.-Q., Pu, X.-H., Wu, Z.-Z. & Lin, J.-T. Antennal transcriptome and expression analyses of olfactory genes in the sweetpotato weevil Cylas formicarius. Sci. Rep. 7, 1–14 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Antony, B. et al. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics 17, 69. https://doi.org/10.1186/s12864-016-2362-6 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Tang, Q. F. et al. Antennal transcriptome analysis of the maize weevil Sitophilus zeamais: Identification and tissue expression profiling of candidate odorant-binding protein genes. Arch. Insect Biochem. Physiol. 101, e21542 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 30.

    Hallett, R. et al. Aggregation pheromones of two Asian palm weevils, Rhynchophorus ferrugineus and R. vulneratus. Naturwissenschaften 80, 328–331 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Peri, E. et al. Rhynchophorus ferrugineus: behavior, ecology, and communication. in Handbook of Major Palm Pests: Biology and Management, 105–130 (2017).

  • 32.

    Oehlschlager, A., Chinchilla, C. & Gonzalez, L. Optimization of a pheromone-baited trap for the American palm weevil Rhynchophorus palmarum (L.). in Proceedings of International Oil Palm Congress 645–660 (Kuala Lumpur, September, 1993).

  • 33.

    Gonzalez, F., Kharrat, S., Rodríguez, C., Calvo, C. & Oehlschlager, A. Research paper (integrated management: insects) red palm weevil (Rhynchophorus ferrugineus Olivier): recent advances. Arab J. Pl. Prot. 37, 178–187 (2019).

    Google Scholar 

  • 34.

    Hagley, E. A. The role of the palm weevil, Rhynchophorus palmarum, as a vector of red ring disease of coconuts. I. Results of preliminary investigations. J. Econ. Entomol. 56, 375–380 (1963).

    Article 

    Google Scholar 

  • 35.

    Chinchilla, C. M. The red ring-little leaf syndrome in oil palm and coconut. Bol. Tec Opo-CB 2, 113–136 (1988).

    Google Scholar 

  • 36.

    Gerber, K. & Giblin-Davis, R. M. Association of the red ring nematode and other nematode species with the palm weevil, Rhynchophorus palmarum. J. Nematol. 22, 143 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Oehlschlager, A. C., Chinchilla, C., Castillo, G. & Gonzalez, L. Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Florida Entomol. 85, 507–513 (2002).

    Article 

    Google Scholar 

  • 38.

    Rodríguez, C., Oehlschlager, A. & Chinchilla, C. Examination of critical components of Rhynchophorus palmarum pheromone traps. ASD Oil Palm Papers 46, 15 (2016).

    Google Scholar 

  • 39.

    Oehlschlager, C. Optimizing trapping of palm weevils and beetles. Acta Hortic. 736, 347–368. https://doi.org/10.17660/ActaHortic.2007.736.33 (2007).

  • 40.

    Rochat, D. et al. Rhynchophorus ferrugineus: Taxonomy, distribution, biology, and life cycle. in Handbook of Major Palm Pests: Biology and Management, 69–104 (2017).

  • 41.

    Antony, B. et al. Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genomics 20, 1–23 (2019).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Antony, B., Johny, J. & Aldosari, S. A. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 9, 252 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Antony, B. et al. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Mol. Ecol. 30, 1–15. https://doi.org/10.1111/mec.15874 (2021).

  • 44.

    Nagnan-Le Meillour, P., François, M.-C. & Jacquin-Joly, E. Identification and molecular cloning of putative odorant-binding proteins from the American palm weevil, Rhynchophorus palmarum L.. J. Chem. Ecol. 30, 1213–1223 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 47.

    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Boil. Evolut. 30, 2725–2729 (2013).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. BioRxiv, 800912 (2019).

  • 51.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Wojtasek, H., Hansson, B. S. & Leal, W. S. Attracted or repelled?—A matter of two neurons, one pheromone binding protein, and a chiral center. Biochem. Biophys. Res. Commun. 250, 217–222 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Diakite, M. M., Wang, J., Ali, S. & Wang, M.-Q. Identification of chemosensory gene families in Rhyzopertha dominica (Coleoptera: Bostrichidae). Can. Entomol. 148, 8–21 (2016).

    Article 

    Google Scholar 

  • 54.

    Vogt, R. G. et al. The insect SNMP gene family. Insect Biochem. Mol. Biol. 39, 448–456 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Mitchell, R. F., Schneider, T. M., Schwartz, A. M., Andersson, M. N. & McKenna, D. D. The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Mol. Biol. 29, 77–91 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Oehlschlager, A. C. et al. Development of a pheromone-based trapping system for Rhynchophorus palmarum (Coleoptera: Curculionidae). J. Econ. Entomol. 86, 1381–1392 (1993).

    Article 

    Google Scholar 

  • 57.

    Rochat, D. et al. Ecologie chimique des charançons des palmiers, Rhynchophorus spp.(Coleoptera). Oléagineux 48, 225–236 (1993).

  • 58.

    Hoddle, M. & Hoddle, C. Palmageddon: the invasion of California by the South American palm weevil is underway. CAPCA Advis 20, 40–44 (2017).

    Google Scholar 

  • 59.

    Witzgall, P., Kirsch, P. & Cork, A. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36, 80–100 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Venthur, H. & Zhou, J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 9, 1163 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Andersson, M. N., Keeling, C. I. & Mitchell, R. F. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genomics 20, 1–17 (2019).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Yang, H. et al. Molecular characterization, expression pattern and ligand-binding properties of the pheromone-binding protein gene from Cyrtotrachelus buqueti. Physiol. Entomol. 42, 369–378 (2017).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Jacquin-Joly, E., Vogt, R. G., François, M.-C. & Nagnan-Le Meillour, P. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem. Senses 26, 833–844 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Gu, S.-H. et al. Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS ONE 7, e42871 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Liu, Y.-L., Guo, H., Huang, L.-Q., Pelosi, P. & Wang, C.-Z. Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. J. Exp. Biol. 217, 1821–1826 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Peng, Y. et al. Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3. PLoS ONE 12, e0180775 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Nomura, A., Kawasaki, K., Kubo, T. & Natori, S. Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int. J. Dev. Biol. 36, 391–398 (2002).

    Google Scholar 

  • 68.

    Maleszka, J., Foret, S., Saint, R. & Maleszka, R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev. Genes. Evol. 217, 189–196 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Benton, R., Vannice, K. S. & Vosshall, L. B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289–293 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Zhang, H.-J. et al. A phylogenomics approach to characterizing sensory neuron membrane proteins (SNMPs) in Lepidoptera. Insect Biochem. Mol. Biol. 118, 103313 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Liu, S. et al. Molecular characterization of two sensory neuron membrane proteins from Chilo suppressalis (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 106, 378–384 (2013).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Liu, S. et al. Identification and characterization of two sensory neuron membrane proteins from Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 82, 29–42 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Zhang, J., Liu, Y., Walker, W. B., Dong, S. L. & Wang, G. R. Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 22, 399–408 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 74.

    Giblin-Davis, R. M., Weissling, T. J., Oehlschlager, A. & Gonzalez, L. M. Field response of Rhynchophorus cruentatus (Coleoptera: Curculionidae) to its aggregation pheromone and fermenting plant volatiles. Florida Entomol. 77, 164–177 (1994).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Jaffé, K. et al. Chemical ecology of the palm weevil Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae): Attraction to host plants and to a male-produced aggregation pheromone. J. Chem. Ecol. 19, 1703–1720 (1993).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Saïd, I., Renou, M., Morin, J.-P., Ferreira, J. M. & Rochat, D. Interactions between acetoin, a plant volatile, and pheromone in Rhynchophorus palmarum: Behavioral and olfactory neuron responses. J. Chem. Ecol. 31, 1789–1805 (2005).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 77.

    Mansourian, S. & Stensmyr, M. C. The chemical ecology of the fly. Curr. Opin. Neurobiol. 34, 95–102 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Andersson, M. N., Löfstedt, C. & Newcomb, R. D. Insect olfaction and the evolution of receptor tuning. Front. Ecol. Evol. 3, 53 (2015).

    Google Scholar 

  • 79.

    Caballero-Vidal, G. et al. Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Sci. Rep. 10, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • 80.

    Yuvaraj, J. K. et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 19, 16 (2021).


  • Source: Ecology - nature.com

    Legacies of Indigenous land use shaped past wildfire regimes in the Basin-Plateau Region, USA

    Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish