Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nat. Rev. Genet. 8, 921–931 (2007).
Google Scholar
Wagner, G. P. & Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).
Google Scholar
Draghi, J. A. & Whitlock, M. C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66, 2891–2902 (2012).
Google Scholar
Cheverud, J. M. Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110, 155–171 (1984).
Google Scholar
Phillips, P. C. & Arnold, S. J. Visualizing multivariate selection. Evolution 43, 1209–1266 (1989).
Google Scholar
Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 16, 948–955 (2002).
Blows, M. W. & Brooks, R. Measuring nonlinear selection. Am. Nat. 162, 815–820 (2003).
Google Scholar
Blows, M. W., Brooks, R. & Kraft, P. G. Exploring complex fitness surfaces: multiple ornamentation and polymorphism in male guppies. Evolution 57, 1622–1630 (2003).
Google Scholar
Jones, A. G., Arnold, S. J. & Bürger, R. Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution 57, 1747–1760 (2003).
Google Scholar
Jones, A. G., Arnold, S. J. & Bürger, R. Evolution and stability of the G-matrix on a landscape with a moving optimum. Evolution 58, 1639–1654 (2004).
Google Scholar
Jones, A. G., Arnold, S. J. & Bürger, R. The mutation matrix and the evolution of evolvability. Evolution 61, 727–745 (2007).
Google Scholar
Jones, A. G., Bürger, R. & Arnold, S. J. Epistasis and natural selection shape the mutational architecture of complex traits. Nat. Commun. 5, 3709 (2014).
Google Scholar
Lande, R. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94, 203–215 (1980).
Google Scholar
Armbruster, W. S., Pélabon, C., Hansen, T. F. & Mulder, C. P. H. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 23–49 (Oxford Univ. Press, 2004).
Bell, A. M. & Sih, A. Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol. Lett. 10, 828–834 (2007).
Google Scholar
Dingemanse, N. J., Barber, I. & Dochtermann, N. A. Non-consumptive effects of predation: does perceived risk strengthen the genetic integration of behaviour and morphology in stickleback? Ecol. Lett. 23, 107–118 (2020).
Google Scholar
Hansen Wheat, C., Fitzpatrick, J. L., Rogell, B. & Temrin, H. Behavioural correlations of the domestication syndrome are decoupled in modern dog breeds. Nat. Commun. 10, 2422 (2019).
Hurst, L. D., Pál, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5, 299–310 (2004).
Google Scholar
Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
Google Scholar
Schluter, D. & Nychka, D. Exploring fitness surfaces. Am. Nat. 143, 597–616 (1994).
Google Scholar
Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
Google Scholar
Roff, D. A. & Fairbairn, D. J. A test of the hypothesis that correlational selection generates genetic correlations. Evolution 66, 2953–2960 (2012).
Google Scholar
Svensson, E. I., McAdam, A. G. & Sinervo, B. Intralocus sexual conflict over immune defense, gender load, and sex-specific signaling in a natural lizard population. Evolution 63, 3124–3135 (2009).
Google Scholar
McGlothlin, J. W., Parker, P. G., Nolan, V. & Ketterson, E. D. Correlational selection leads to genetic integration of body size and an attractive plumage trait in dark-eyed juncos. Evolution 59, 658–671 (2005).
Google Scholar
Duckworth, R. A. & Kruuk, L. E. B. Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution 63, 968–977 (2009).
Google Scholar
Brodie, E. D. III Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46, 1284–1298 (1992).
Google Scholar
Wise, M. J. & Rausher, M. D. Costs of resistance and correlational selection in the multiple-herbivore community of Solanum carolinense. Evolution 70, 2411–2420 (2016).
Google Scholar
Fenster, C. B., Reynolds, R. J., Williams, C. W., Makowsky, R. & Dudash, M. R. Quantifying hummingbird preference for floral trait combinations: the role of selection on trait interactions in the evolution of pollination syndromes. Evolution 69, 1113–1127 (2015).
Google Scholar
Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).
Google Scholar
Martin, C. H. & Wainwright, P. C. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339, 208–211 (2013).
Google Scholar
Phillips, P. C. Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008).
Google Scholar
Steppan, S. J., Phillips, P. C. & Houle, D. Comparative quantitative genetics: evolution of the G matrix. Trends Ecol. Evol. 17, 320–327 (2002).
Google Scholar
Blows, M. W. & McGuigan, K. The distribution of genetic variance across phenotypic space and the response to selection. Mol. Ecol. 24, 2056–2072 (2015).
Google Scholar
Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).
Google Scholar
Lande, R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26, 221–235 (1976).
Google Scholar
Lande, R. The genetic correlation between characters maintained by selection, linkage and inbreeding. Genet. Res. 44, 309–320 (1984).
Google Scholar
Bulmer, M. G. The effect of selection on genetic variability: a simulation study. Genet. Res. 28, 101–117 (1976).
Google Scholar
Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).
Guillaume, F. & Whitlock, M. C. Effects of migration on the genetic covariance matrix. Evolution 61, 2398–2409 (2007).
Google Scholar
Noble, D. W. A., Radersma, R. & Uller, T. Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc. Natl Acad. Sci. USA 116, 13452–13461 (2019).
Google Scholar
Houle, D., Bolstad, G. H., van der Linde, K. & Hansen, T. F. Mutation predicts 40 million years of fly wing evolution. Nature 548, 447–450 (2017).
Google Scholar
Svensson, E. I. & Berger, D. The role of mutation bias in adaptive evolution. Trends Ecol. Evol. 34, 422–434 (2019).
Google Scholar
Schweizer, G. & Wagner, A. Genotype networks of 80 quantitative Arabidopsis thaliana phenotypes reveal phenotypic evolvability despite pervasive epistasis. PLoS Comput. Biol. 16, e1008082 (2020).
Google Scholar
Delph, L. F., Steven, J. C., Anderson, I. A., Herlihy, C. R. & Brodie, E. D. III Elimination of a genetic correlation between the sexes via artificial correlational selection. Evolution 65, 2872–2880 (2011).
Google Scholar
Conner, J. K. Genetic mechanisms of floral trait correlations in a natural population. Nature 420, 407–410 (2002).
Google Scholar
Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12, 204–213 (2011).
Google Scholar
Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).
Google Scholar
Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52, 935–948 (1998).
Google Scholar
Flint, J. & Mackay, T. F. C. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19, 723–733 (2009).
Google Scholar
Stinchcombe, J. R., Weinig, C., Heath, K. D., Brock, M. T. & Schmitt, J. Polymorphic genes of major effect: consequences for variation, selection and evolution in Arabidopsis thaliana. Genetics 182, 911–922 (2009).
Google Scholar
Orr, H. A. The genetics of species differences. Trends Ecol. Evol. 16, 343–350 (2001).
Google Scholar
Nadeau, N. J. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).
Google Scholar
Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).
Google Scholar
Pitchers, W. et al. A multivariate genome-wide association study of wing shape in Drosophila melanogaster. Genetics 211, 1429–1447 (2019).
Google Scholar
Mackay, T. F. C. Epistasis and quantitative traits: using model organisms to study gene–gene interactions. Nat. Rev. Genet. 15, 22–33 (2014).
Google Scholar
Sailer, Z. R. & Harms, M. J. Detecting high-order epistasis in nonlinear genotype–phenotype maps. Genetics 205, 1079–1088 (2017).
Google Scholar
Hill, W. G. “Conversion” of epistatic into additive genetic variance in finite populations and possible impact on long-term selection response. J. Anim. Breed. Genet. 134, 196–201 (2017).
Google Scholar
Gienapp, P. et al. Genomic quantitative genetics to study evolution in the wild. Trends Ecol. Evol. 32, 897–908 (2017).
Google Scholar
Nosil, P. et al. Ecology shapes epistasis in a genotype–phenotype–fitness map for stick insect colour. Nat. Ecol. Evol. 4, 1673–1684 (2020).
Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).
Google Scholar
Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).
Google Scholar
Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).
Google Scholar
Stern, D. L. & Orgogozo, V. Is genetic evolution predictable? Science 323, 746–751 (2009).
Google Scholar
Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307, 1928–1933 (2005).
Google Scholar
Archambeault, S. L., Bärtschi, L. R., Merminod, A. D. & Peichel, C. L. Adaptation via pleiotropy and linkage: association mapping reveals a complex genetic architecture within the stickleback Eda locus. Evol. Lett. 4, 282–301 (2020).
Google Scholar
van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. 20, 567–581 (2019).
Google Scholar
Stapley, J., Feulner, P. G. D., Johnston, S. E., Santure, A. W. & Smadja, C. M. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Phil. Trans. R. Soc. B 372, 20160455 (2017).
Google Scholar
Choudhury, R. R., Rogivue, A., Gugerli, F. & Parisod, C. Impact of polymorphic transposable elements on linkage disequilibrium along chromosomes. Mol. Ecol. 28, 1550–1562 (2019).
Google Scholar
Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity 113, 1–8 (2014).
Google Scholar
Yeaman, S. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc. Natl Acad. Sci. USA 110, E1743–E1751 (2013).
Google Scholar
Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).
Google Scholar
Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).
Google Scholar
Kupper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).
Google Scholar
Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).
Google Scholar
Huu, C. N., Keller, B., Conti, E., Kappel, C. & Lenhard, M. Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene. Proc. Natl Acad. Sci. USA 117, 23148–23157 (2020).
Google Scholar
Merrill, R. M. et al. Genetic dissection of assortative mating behavior. PLoS Biol. 17, e2005902 (2019).
Google Scholar
Whitlock, M. C., Phillips, P. C., Moore, F. B.-G. & Tonsor, S. J. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26, 601–629 (1995).
Google Scholar
Dudley, S. A. The response to selection on plant physiological traits: evidence for local adaptation. Evolution 50, 103–110 (1996).
Google Scholar
Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159, S22–S35 (2002).
Google Scholar
Hohenlohe, P. A., Bassham, S., Currey, M. & Cresko, W. A. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Phil. Trans. R. Soc. B 367, 395–408 (2012).
Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).
Google Scholar
Gienapp, P., Calus, M. P. L., Laine, V. N. & Visser, M. E. Genomic selection on breeding time in a wild bird population. Evol. Lett. 3, 142–151 (2019).
Google Scholar
McGuigan, K., Collet, J. M., Allen, S. L., Chenoweth, S. F. & Blows, M. W. Pleiotropic mutations are subject to strong stabilizing selection. Genetics 197, 1051–105 (2014).
Google Scholar
McGuigan, K. et al. The nature and extent of mutational pleiotropy in gene expression of male Drosophila serrata. Genetics 196, 911–921 (2014).
Google Scholar
Hine, E., Runcie, D. E., McGuigan, K. & Blows, M. W. Uneven distribution of mutational variance across the transcriptome of Drosophila serrata revealed by high-dimensional analysis of gene expression. Genetics https://doi.org/10.1534/genetics.118.300757 (2018).
Estes, S., Ajie, B. C., Lynch, M. & Phillips, P. C. Spontaneous mutational correlations for life-history, morphological and behavioral characters in Caenorhabditis elegans. Genetics 170, 645–653 (2005).
Google Scholar
Houle, D. & Fierst, J. Properties of spontaneous mutational variance and covariance for wing size and shape in Drosophila melanogaster. Evolution 67, 1116–1130 (2013).
Google Scholar
Ovaskainen, O., Karhunen, M., Zheng, C., Arias, J. M. C. & Merilä, J. A new method to uncover signatures of divergent and stabilizing selection in quantitative traits. Genetics 189, 621–632 (2011).
Google Scholar
Csilléry, K. et al. Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity 124, 77–92 (2020).
Google Scholar
Berg, J. J. & Coop, G. A population genetic signal of polygenic adaptation. PLoS Genet. 10, e1004412 (2014).
Google Scholar
Orr, H. A. Adaptation and the cost of complexity. Evolution 54, 13–20 (2000).
Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, 1930).
Pavlicev, M. & Hansen, T. F. Genotype–phenotype maps maximizing evolvability: modularity revisited. Evol. Biol. 38, 371–389 (2011).
Google Scholar
Hine, E., McGuigan, K. & Blows, M. W. Evolutionary constraints in high-dimensional trait sets. Am. Nat. 184, 119–131 (2014).
Google Scholar
Melo, D. & Marroig, G. Directional selection can drive the evolution of modularity in complex traits. Proc. Natl Acad. Sci. USA 112, 470–475 (2015).
Google Scholar
Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).
Google Scholar
Espinosa-Soto, C. & Wagner, A. Specialization can drive the evolution of modularity. PLoS Comput. Biol. 6, e1000719 (2010).
Google Scholar
Ancel, L. W. & Fontana, W. in Modularity: Understanding the Development and Evolution of Natural Complex Systems (eds Callebaut, W. & Rasskin-Gutman, D.) 129–141 (MIT Press, 2009).
Wagner, G. P. & Mezey, J. G. in Modularity in Development and Evolution (eds Schlosser, G. & Wagner, G. P.) 338–358 (Univ. Chicago Press, 2004).
Fokkens, L. & Snel, B. Cohesive versus flexible evolution of functional modules in eukaryotes. PLoS Comput. Biol. 5, e1000276 (2009).
Google Scholar
Huang, W. et al. Genetic basis of transcriptome diversity in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 112, E6010–E6019 (2015).
Google Scholar
Schweizer, R. M. et al. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLoS Genet. 15, e1008420 (2019).
Google Scholar
Hämälä, T. et al. Gene expression modularity reveals footprints of polygenic adaptation in Theobroma cacao. Mol. Biol. Evol. 37, 110–123 (2020).
Google Scholar
Collet, J. M., McGuigan, K., Allen, S. L., Chenoweth, S. F. & Blows, M. W. Mutational pleiotropy and the strength of stabilizing selection within and between functional modules of gene expression. Genetics 208, 1601–1616 (2018).
Google Scholar
Jiménez, A., Cotterell, J., Munteanu, A. & Sharpe, J. A spectrum of modularity in multi‐functional gene circuits. Mol. Syst. Biol. 13, 925 (2017).
Google Scholar
Verd, B., Monk, N. A. & Jaeger, J. Modularity, criticality, and evolvability of a developmental gene regulatory network. eLife 8, e42832 (2019).
Google Scholar
Pallares, L. F. et al. Mapping of craniofacial traits in outbred mice identifies major developmental genes involved in shape determination. PLoS Genet. 11, e1005607 (2015).
Google Scholar
Arnold, S. J., Pfrender, M. E. & Jones, A. G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113, 9–32 (2001).
Google Scholar
Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17 (2012).
Google Scholar
Shikov, A. E., Skitchenko, R. K., Predeus, A. V. & Barbitoff, Y. A. Phenome-wide functional dissection of pleiotropic effects highlights key molecular pathways for human complex traits. Sci. Rep. 10, 1037 (2020).
Google Scholar
Sella, G. & Barton, N. H. Thinking about the evolution of complex traits in the era of genome-wide association studies. Annu. Rev. Genom. Hum. Genet. 20, 461–493 (2019).
Google Scholar
Walsh, B. & Blows, M. W. Abundant genetic variation plus strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40, 41–59 (2009).
Google Scholar
Teplitsky, C. et al. Assessing multivariate constraints to evolution across ten long-term avian studies. PLoS ONE 9, e90444 (2014).
Google Scholar
Pavlicev, M. & Cheverud, J. M. Constraints evolve: context dependency of gene effects allows evolution of pleiotropy. Annu. Rev. Ecol. Evol. Syst. 46, 413–434 (2015).
Wei, X. & Zhang, J. Environment-dependent pleiotropic effects of mutations on the maximum growth rate r and carrying capacity K of population growth. PLoS Biol. 17, e3000121 (2019).
Google Scholar
Parter, M., Kashtan, N. & Alon, U. Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comput. Biol. 4, e1000206 (2008).
Google Scholar
Lande, R. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33, 402–416 (1979).
Google Scholar
Bolstad, G. H. et al. Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 112, 13284–13289 (2015).
Google Scholar
Tsuboi, M. et al. Breakdown of brain–body allometry and the encephalization of birds and mammals. Nat. Ecol. Evol. 2, 1492–1500 (2018).
Google Scholar
White, C. R. et al. The origin and maintenance of metabolic allometry in animals. Nat. Ecol. Evol. 3, 598–603 (2019).
Google Scholar
Mullon, C., Keller, L. & Lehmann, L. Social polymorphism is favoured by the co-evolution of dispersal with social behaviour. Nat. Ecol. Evol. 2, 132–140 (2018).
Google Scholar
Schweizer, R. M. et al. Natural selection and origin of a melanistic allele in North American gray wolves. Mol. Biol. Evol. 35, 1190–1209 (2018).
Google Scholar
Hämälä, T., Gorton, A. J., Moeller, D. A. & Tiffin, P. Pleiotropy facilitates local adaptation to distant optima in common ragweed (Ambrosia artemisiifolia). PLoS Genet. 16, e1008707 (2020).
Google Scholar
Roda, F., Walter, G. M., Nipper, R. & Ortiz-Barrientos, D. Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower. Mol. Ecol. 26, 3687–3699 (2017).
Google Scholar
Sinervo, B. & Lively, C. M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).
Google Scholar
Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).
Google Scholar
Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M. & Reimchen, T. E. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).
Google Scholar
Brodie, E. D. III Genetic correlations between morphology and antipredator behaviour in natural populations of the garter snake Thamnophis ordinoides. Nature 342, 542–543 (1989).
Google Scholar
Auinger, H.-J. et al. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor. Appl. Genet. 129, 2043–2053 (2016).
Google Scholar
Xie, K. T. et al. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363, 81–84 (2019).
Google Scholar
Slate, J. Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol. Ecol. 14, 363–379 (2005).
Google Scholar
Brieuc, M. S. O., Waters, C. D., Drinan, D. P. & Naish, K. A. A practical introduction to random forest for genetic association studies in ecology and evolution. Mol. Ecol. Resour. 18, 755–766 (2018).
Google Scholar
Nielsen, R. Molecular signatures of natural selection. Annu. Rev. Genet. 39, 197–218 (2005).
Google Scholar
Barghi, N., Hermisson, J. & Schlötterer, C. Polygenic adaptation: a unifying framework to understand positive selection. Nat. Rev. Genet. 21, 769–781 (2020).
Lemos, B., Araripe, L. O. & Hartl, D. L. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319, 91–93 (2008).
Google Scholar
Haddad, R., Meter, B. & Ross, J. A. The genetic architecture of intra-species hybrid mito-nuclear epistasis. Front. Genet. 9, 481 (2018).
Google Scholar
Long, A., Liti, G., Luptak, A. & Tenaillon, O. Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat. Rev. Genet. 16, 567–582 (2015).
Google Scholar
Bollback, J. P., York, T. L. & Nielsen, R. Estimation of 2Nes from temporal allele frequency data. Genetics 179, 497–502 (2008).
Google Scholar
Svensson, E. I. & Calsbeek, R. The Adaptive Landscape in Evolutionary Biology (Oxford Univ. Press, 2012).
Source: Ecology - nature.com