in

Diversification of terpenoid emissions proposes a geographic structure based on climate and pathogen composition in Japanese cedar

  • 1.

    Carslaw, K. S. et al. Atmospheric aerosols in the earth system: a review of interactions and feedbacks. Atmos. Chem. Phys. Discuss. 9, 11087–11183 (2009).

    ADS 

    Google Scholar 

  • 2.

    Müller, A., Miyazaki, Y., Tachibana, E., Kawamura, K. & Hiura, T. Evidence of a reduction in cloud condensation nuclei activity of submicron water-soluble aerosols caused by biogenic emissions in a cool-temperate forest. Sci. Rep. https://doi.org/10.1038/s41598-017-08112-9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Mentel, T. F. et al. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks. Atmos. Chem. Phys. 13, 8755–8770 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Celedon, J. M. & Bohlmann, J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytol. 224, 1444–1463 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Hammerbacher, A., Coutinho, T. A. & Gershenzon, J. Roles of plant volitiles in defence aganst microbial pathogens and microbial explotation of volatiles. Plant Cell Environ. 42, 2827–2843 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Ninkovic, V., Markovic, D. & Rensing, M. Plant volatiles as cues and signals in plant communication. Plant Cell Environ. https://doi.org/10.1111/pce.13910 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 8.

    Sharifi, R. & Ryu, C. M. Social networking in crop plants: wired and wireless cross-plant communications. Plant Cell Environ. https://doi.org/10.1111/pce.13966 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Garbeva, P. & Weisskopf, L. Airborne medicine: bacterial volatiles and their influence on plant health. New Phytol. 226, 32–43 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Thompson, J. N. The Geographic Mosaic of Coevolution (Univ of Chicago Press, 2005).

    Google Scholar 

  • 11.

    Hiura, T. & Nakamura, M. Different mechanisms explain feeding type-specific patterns of latitudinal variation in herbivore damage among diverse feeding types of herbivorous insects. Basic Appl. Ecol. 14, 480–488 (2013).

    Article 

    Google Scholar 

  • 12.

    Okuzaki, Y. & Sota, T. Predator size divergence depends on community context. Ecol. Lett. 21, 1097–1107 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Karban, R., Wetzel, W. C., Shiojiri, K., Pezzola, E. & Blande, J. D. Geographic dialects in volatile communication between sagebrush individuals. Ecology 97, 2917–2924 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Friberg, M., Schwind, C., Guimaraes, P. R. Jr., Raguso, R. A. & Thompson, J. N. Extreme diversification of floral volatiles within and among species of Lithophragma (Saxifragaceae). Proc. Natl. Acad. Sci. USA 116, 4406–4415 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Heilmann-Clausen, J. et al. Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe—reflecting substrate quality or shaped by climate and forest conditions?. J. Biogeogr. 41, 2269–2282 (2014).

    Article 

    Google Scholar 

  • 16.

    Fukasawa, Y. & Matsuoka, S. Communities of wood-inhabiting fungi in dead pine logs along geographical gradient in Japan. Fung. Ecol. 18, 75–82 (2015).

    Article 

    Google Scholar 

  • 17.

    Kubart, A., Vasaitis, R., Stenlid, J. & Dahlberg, A. Fungal communities in Norway spruce stumps along a latitudinal gradient in Sweden. For. Ecol. Manag. 371, 50–58 (2016).

    Article 

    Google Scholar 

  • 18.

    Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Manninnen, A. M., Tarhanen, S., Vuorinen, M. & Kainulainen, P. Comparing the variation of needle and wood terpenoids in Scots pine provenances. J. Chem. Ecol. 28, 211–228 (2002).

    Article 

    Google Scholar 

  • 20.

    Wallis, C. M., Reich, R. W., Lewis, K. J. & Huber, D. P. W. Lodgepole pine provenances differ in chemical defense capacities against foliage and stem diseases. Can. J. For. Res. 40, 2333–2344 (2010).

    Article 

    Google Scholar 

  • 21.

    López-Goldar, X. et al. Genetic variation in the constitutive defensive metabolome and its inducibility are geographically structured and largely determined by demographic processes in maritime pine. J. Ecol. 107, 2464–2477 (2019).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Fukuda, M., Iehara, T. & Matsumoto, M. Carbon stock estimates for sugi and hinoki forests in Japan. For. Ecol. Manag. 184, 1–16 (2003).

    Article 

    Google Scholar 

  • 23.

    Forestry Agency of Japan. 2011 Forestry Census (Forestry Agency, 2011).

    Google Scholar 

  • 24.

    Memari, H. R., Pazouski, L. & Niinemets, U. The biochemistry and molecular biology of volatile messengers in trees. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions (eds Niinemets, U. & Monson, R. K.) 47–93 (Springer, 2013).

    Google Scholar 

  • 25.

    Kimura, M. K. et al. Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica. Ann. Bot. 114, 1687–1700 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Nishizono, T., Kitahara, F., Iehara, T. & Mitsuda, Y. Geographical variation in age-height relationships for dominant trees in Japanese cedar (Cryptomeria japonica D. Don) forests in Japan. J. For. Res. 19, 305–316 (2014).

    Article 

    Google Scholar 

  • 27.

    Ohta, T., Niwa, S. & Hiura, T. Geographical variation in Japanese cedar shapes soil nutrient dynamics and invertebrate community. Plant Soil 437, 355–373 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Moreira, X. et al. Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecol. Lett. 17, 537–546 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Suzuki, K., Aihara, H. & Yamada, T. Diseases of Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) predisposed by weather conditions. Bull. Univ. Tokyo For. 77, 39–48 (1987).

    Google Scholar 

  • 30.

    Cheng, S. S., Lin, H. Y. & Chang, S. T. Chemical composition and antifungal activity of essential oils from different tissuee of Japanese Cedar (Cryptomeria japonica).. J. Agr. Food Chem. 53, 614–619 (2005).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Hirooka, Y., Masuya, H., Akiba, M. & Kubono, T. Sydowia japonica, a new name for Leptosphaerulina japonica based on morphological and molecular data. Mycol. Prog. 12, 173–183 (2013).

    Article 

    Google Scholar 

  • 32.

    Kobayashi, T. & Katsumoto, K. Illustrated Genera of Plant Pathogenic Fungi in Japan (Zenkoku-Noson-Kyoiku Kyokai Publishing, 1992).

    Google Scholar 

  • 33.

    Rizzo, D. M., Rentmeester, R. M. & Burdsall, H. H. Jr. Sexuality and somatic incompatibility in Phellinus gilvus. Mycologia 87, 805–820 (1995).

    Article 

    Google Scholar 

  • 34.

    Homma, H. et al. Lignin-degrading activitu of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buries sugi (Cryptomeria japonica) twigs. J. Wood Sci. 53, 80–84 (2007).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Ota, Y. et al. Taxonomy and phylogenetic position of Fomitiporia torreyae, a causal agent of trunk rot on Sanbu-sugi, a cultivar of Japanese cedar (Cryptomeria japonica) in Japan. Mycologia 106, 66–76 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Fukui, Y., Miyamoto, T., Tamai, Y., Koizumi, A. & Yajima, T. Use of DNA sequence data to identify wood-decay fungi likely associated with stem failure caused by windthrow in urban trees during a typhoon. Trees 32, 1147–1156 (2018).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Kusumoto, N. & Shibutani, S. Evaporation of volatiles from essential oils of Japanese conifers enhances antifungal activity. J. Essential Oil Res. 27, 380–394 (2015).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Yamamoto, H., Noguchi, Y. & Suzuki, J. Synthesis of antibacterial terpenes by photooxidation of terpenes obtained from Cryptomeria japonica D. Don. Bull. Edu. Ibaraki Univ. 46, 53–62 (1997).

    Google Scholar 

  • 39.

    Mukai, A., Takahashi, K., Kofujita, H. & Ashitani, T. Antitermite and antifungal activities of thujopsene natural autoxidation products. Eur. J. Wood Prod. 77, 311–317 (2018).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Lee, G. W. et al. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. Protoplasma 253, 683–690 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Rodriguez, A. et al. Engineering D-limonen synthase down regulation in orange fruit induces resistance against the fungus Phyllosticta citricarpa through enhanced accumulation of monoterpene alcohols and activation of defence. Mol. Plant Pathol. 19, 2077–2093 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Matsunaga, S. N. et al. Determination and potential importance of diterpene (kaur-16-ene) emitted from dominant coniferous trees in Japan. Chemosphere 87, 886–893 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Niinemets, Ü., Fares, S., Harley, P. & Jardine, K. J. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition. Plant Cell Environ. 37, 1790–1809 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Yáñez-Serrano, A. M. et al. Volatile diterpene emission by two Mediterranean Cistaceae shrubs. Sci. Rep. https://doi.org/10.1038/s41598-018-25056-w (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Miyama, T. et al. Seasonal changes in interclone variation following ozone exposure on three major gene pools: an analysis of Cryptomeria japonica clones. Atmosphere 10, 643. https://doi.org/10.3390/atmos10110643 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Ponzio, C., Gols, R., Pieterse, C. M. J. & Dicke, M. Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infeststions with herbivores and phytopathogens. Fuct. Ecol. 27, 587–598 (2013).

    Article 

    Google Scholar 

  • 47.

    Salazar, D. et al. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol. 2, 983–990 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Japan Meteorological Agency. Mesh Climate Data of Japan (Japan Meteorological Agency, 2014).

    Google Scholar 

  • 49.

    Kimura, M. K. et al. Effects of genetic and environmental factors on clonal reproduction in old-growth natural populations of Cryptomeria japonica. For. Ecol. Manag. 304, 10–19 (2013).

    Article 

    Google Scholar 

  • 50.

    Yasue, M. et al. Geographical differentiation of natural Cryptomeria stands analyzed by diterpene hydrocarbon constituents of individual trees. J. Jpn. For. Soc. 69, 152–156 (1987).

    Google Scholar 

  • 51.

    Tsumura, Y. et al. Genetic differentiation and evolutionary adaptation in Cryptomeria japonica. G3 4, 2389–2402 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • 53.

    Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Math. Geol. 35, 279–300 (2003).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 54.

    van den Boogaart, K. G. & Tolosana-Delgado, R. Analyzing Compositional Data in R (Springer, 2013).

    Google Scholar 

  • 55.

    Kobayashi, T. Index of fungi inhabiting woody plants in Japan–Host, Distribution and Literature (Zenkoku-Noson-Kyoiku Kyokai Publishing, 2007).

    Google Scholar 

  • 56.

    Oksanen, J. et al. Vegan: Community Ecology Package, Version 2.5-6. http://CRAN.R-project.org/package=vegan (2019).


  • Source: Ecology - nature.com

    Legacies of Indigenous land use shaped past wildfire regimes in the Basin-Plateau Region, USA

    Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish