in

Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions

  • 1.

    Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–185 (2007).

    Article 

    Google Scholar 

  • 2.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article 

    Google Scholar 

  • 3.

    Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2/.10055 (2017).

  • 4.

    Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Global Biogeochem. Cycles 29, 534–554 (2015).

    Article 

    Google Scholar 

  • 5.

    Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8, 637–642 (2015).

    Article 

    Google Scholar 

  • 6.

    Sawakuchi, H. O. et al. Carbon dioxide emissions along the lower Amazon River. Front. Mar. Sci. 4, 76 (2017).

  • 7.

    Hastie, A., Lauerwald, R., Ciais, P. & Regnier, P. Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon basin: an analysis of the interannual variability in the boundless carbon cycle. Glob. Change Biol. 25, 2094–2111 (2019).

    Article 

    Google Scholar 

  • 8.

    Horgby, Å. et al. Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains. Nat. Commun. 10, 4888 (2019).

  • 9.

    Peter, H. et al. Scales and drivers of temporal (p_{{mathrm{CO}}_2}) dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 119, 1078–1091 (2014).

    Article 

    Google Scholar 

  • 10.

    Rocher-Ros, G., Sponseller, R. A., Bergstr, A., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. Glob. Change Biol. https://doi.org/10.1111/gcb.14895 (2020).

  • 11.

    Wallin, M. B., Audet, J., Peacock, M., Sahlée, E. & Winterdahl, M. Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production. Biogeosciences 17, 2487–2498 (2020).

  • 12.

    Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time series patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2017).

    Article 

    Google Scholar 

  • 13.

    Reiman, J. & Xu, Y. J. Diel variability of (p_{{mathrm{CO}}_2}) and CO2 outgassing from the lower Mississippi River: implications for riverine CO2 outgassing estimation. Water 11, 43 (2018).

    Article 

    Google Scholar 

  • 14.

    Hensley, R. T. & Cohen, M. J. On the emergence of diel solute signals in flowing waters. Water Resour. Res. 52, 759–772 (2016).

    Article 

    Google Scholar 

  • 15.

    Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1955).

    Article 

    Google Scholar 

  • 16.

    Johnson, M. S. et al. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology 3, 68–78 (2010).

    Google Scholar 

  • 17.

    Stets, E. G. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochem. Cycles 31, 663–677 (2017).

    Article 

    Google Scholar 

  • 18.

    Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in Arctic fresh waters. Science 345, 925–928 (2014).

    Article 

    Google Scholar 

  • 19.

    Riml, J., Campeau, A., Bishop, K. & Wallin, M. B. Spectral decomposition reveals new perspectives on CO2 concentration patterns and soil–stream linkages. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004981 (2019).

  • 20.

    Hartmann, J., Lauerwald, R. & Moosdorf, N. A brief overview of the GLObal RIver CHemistry Database, GLORICH. Procedia Earth Planet. Sci. 10, 23–27 (2014).

    Article 

    Google Scholar 

  • 21.

    Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

    Article 

    Google Scholar 

  • 22.

    Demars, B. O. L. & Manson, J. R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: a critical review. Water Res. 47, 1–15 (2013).

    Article 

    Google Scholar 

  • 23.

    Koenig, L. E. et al. Emergent productivity regimes of river networks. Limnol. Oceanogr. 4, 173–181 (2019).

    Article 

    Google Scholar 

  • 24.

    Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).

    Article 

    Google Scholar 

  • 25.

    Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012).

    Article 

    Google Scholar 

  • 26.

    Mulholland, P. J. et al. Inter-biome comparison of factors controlling stream metabolism. Freshw. Biol. 46, 1503–1517 (2001).

    Article 

    Google Scholar 

  • 27.

    Roberts, B. J., Mulholland, P. J. & Hill, W. R. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).

    Article 

    Google Scholar 

  • 28.

    Vanote, R. L., Minshall, W. G., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article 

    Google Scholar 

  • 29.

    Finlay, J. C. Stream size and human influences on ecosystem production in river networks. Ecosphere 2, art87 (2011).

    Article 

    Google Scholar 

  • 30.

    Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating benthic light regimes improves predictions of primary production and constrains light-use efficiency in streams and rivers. Ecosystems https://doi.org/10.1007/s10021-020-00552-1 (2020).

  • 31.

    Julian, J. P., Doyle, M. W., Powers, S. M., Stanley, E. H. & Riggsbee, J. A. Optical water quality in rivers. Water Resour. Res. 44, W10411 (2008).

  • 32.

    Aitkenhead, J. A. & McDowell, W. H. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem. Cycles 14, 127–138 (2000).

    Article 

    Google Scholar 

  • 33.

    Harrison, J. A., Caraco, N. & Seitzinger, S. P. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem. Cycles 19, GB4S04 (2005).

  • 34.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article 

    Google Scholar 

  • 35.

    Liu, S., Butman, D. E. & Raymond, P. A. Evaluating CO2 calculation error from organic alkalinity and pH measurement error in low ionic strength freshwaters. Limnol. Oceanogr. Methods 18, 606–622 (2020).

  • 36.

    Abril, G. et al. Technical Note: Large overestimation of (p_{{mathrm{CO}}_2}) calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).

    Article 

    Google Scholar 

  • 37.

    Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion along streams driven by groundwater inputs and geomorphic controls. Nat. Geosci. 11, 813–818 (2018).

    Article 

    Google Scholar 

  • 38.

    Rocher‐Ros, G., Sponseller, R. A., Lidberg, W., Mörth, C. & Giesler, R. Landscape process domains drive patterns of CO2 evasion from river networks. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10108 (2019).

  • 39.

    Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).

    Article 

    Google Scholar 

  • 40.

    Guth, P. L. Drainage basin morphometry: a global snapshot from the shuttle radar topography mission. Hydrol. Earth Syst. Sci. 15, 2091–2099 (2011).

    Article 

    Google Scholar 

  • 41.

    Schneider, C. L. et al. Carbon dioxide (CO2) fluxes from terrestrial and aquatic environments in a high-altitude tropical catchment. J. Geophys. Res. Biogeosci. 125, e2020JG005844 (2020).

    Article 

    Google Scholar 

  • 42.

    Rocher‐Ros, G. et al. Metabolism overrides photo-oxidation in CO2 dynamics of Arctic permafrost streams. Limnol. Oceanogr. https://doi.org/10.1002/lno.11564 (2020).

  • 43.

    Dinsmore, K. J., Billett, M. F. & Dyson, K. E. Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Glob. Change Biol. 19, 2133–2148 (2013).

    Article 

    Google Scholar 

  • 44.

    Lynch, J. K., Beatty, C. M., Seidel, M. P., Jungst, L. J. & DeGrandpre, M. D. Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution (p_{{mathrm{CO}}_2}) measurements. J. Geophys. Res. Biogeosci. 115, G03016 (2010).

  • 45.

    Teodoru, C. R. et al. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12, 2431–2453 (2015).

    Article 

    Google Scholar 

  • 46.

    Borges, A. V. et al. Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial–wetland connectivity. Biogeosciences 16, 3801–3834 (2019).

    Article 

    Google Scholar 

  • 47.

    Le, T. P. Q. et al. CO2 partial pressure and CO2 emission along the lower Red River (Vietnam). Biogeosciences 15, 4799–4814 (2018).

    Article 

    Google Scholar 

  • 48.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 49.

    Ulseth, A. J. et al. Distinct air–water gas exchange regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).

    Article 

    Google Scholar 

  • 50.

    Lapierre, J.-F., Guillemette, F., Berggren, M. & del Giorgio, P. A. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Legacies of Indigenous land use shaped past wildfire regimes in the Basin-Plateau Region, USA

    Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish