Biard, C., Monceau, K., Motreuil, S. & Moreau, J. Interpreting immunological indices: the importance of taking parasite community into account. An example in blackbirds Turdus merula. Methods Ecol. Evol. 6, 960–972. https://doi.org/10.1111/2041-210x.12371 (2015).
Google Scholar
Boughton, R. K., Joop, G. & Armitage, S. A. O. Outdoor immunology: methodological considerations for ecologists. Funct. Ecol. 25, 81–100. https://doi.org/10.1111/j.1365-2435.2010.01817.x (2011).
Google Scholar
Maizels, R. M. & Nussey, D. H. Into the wild: digging at immunology’s evolutionary roots. Nat. Immunol. 14, 879–883. https://doi.org/10.1038/ni.2643 (2013).
Google Scholar
Martin, L. B., Weil, Z. M. & Nelson, R. J. Refining approaches and diversifying directions in ecoimmunology. Integr. Comp. Biol. 46, 1030–1039. https://doi.org/10.1093/icb/icl039 (2006).
Google Scholar
Johnson, W. et al. Pathogenic and humoral immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) are related to viral load in acute infection. Vet. Immunol. Immunopathol. 102, 233–247. https://doi.org/10.1016/j.vetimm.2004.09.010 (2004).
Google Scholar
Ortiz, R. H. et al. Differences in virulence and immune response induced in a murine model by isolates of Mycobacterium ulcerans from different geographic areas. Clin. Exp. Immunol. 157, 271–281. https://doi.org/10.1111/j.1365-2249.2009.03941.x (2009).
Google Scholar
Sela, U., Euler, C. W., da Rosa, J. C. & Fischetti, V. A. Strains of bacterial species induce a greatly varied acute adaptive immune response: the contribution of the accessory genome. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1006726 (2018).
Google Scholar
Skjesol, A. et al. IPNV with high and low virulence: host immune responses and viral mutations during infection. Virol. J. https://doi.org/10.1186/1743-422x-8-396 (2011).
Google Scholar
Hornef, M. W., Wick, M. J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat. Immunol. 3, 1033–1040. https://doi.org/10.1038/ni1102-1033 (2002).
Google Scholar
Fassbinder-Orth, C. A. et al. Immunoglobulin detection inwild birds: effectiveness of three secondary anti-avian IgY antibodies in direct ELISAs in 41 avian species. Methods Ecol. Evol. 7, 1174–1181. https://doi.org/10.1111/2041-210x.12583 (2016).
Google Scholar
Janeway, C. Immunobiology: The Immune System in Health and Disease (Garland Science, 2005).
Coltman, D. W., Pilkington, J., Kruuk, L. E. B., Wilson, K. & Pemberton, J. M. Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution 55, 2116–2125 (2001).
Google Scholar
Hayward, A. D. et al. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS. Biol. https://doi.org/10.1371/journal.pbio.1001917 (2014).
Google Scholar
Johnson, J. S. et al. Antibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome. Ecol. Evol. 5, 2203–2214. https://doi.org/10.1002/ece3.1502 (2015).
Google Scholar
Fischer, J. R., Stallknecht, D. E., Luttrell, M. P., Dhondt, A. A. & Converse, K. A. Mycoplasmal conjunctivitis in wild songbirds: the spread of a new contagious disease in a mobile host population. Emerg. Infect. Dis. 3, 69–72. https://doi.org/10.3201/eid0301.970110 (1997).
Google Scholar
Luttrell, M. P., Fischer, J. R., Stallknecht, D. E. & Kleven, S. H. Field investigation of Mycoplasma gallisepticum infections in house finches (Carpodacus mexicanus) from Maryland and Georgia. Avian Dis. 40, 335–341 (1996).
Google Scholar
Delaney, N. F. et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. Plos Genet. https://doi.org/10.1371/journal.pgen.1002511 (2012).
Google Scholar
Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).
Google Scholar
Nolan, P. M., Hill, G. E. & Stoehr, A. M. Sex, size, and plumage redness predict house finch survival in an epidemic. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 961–965 (1998).
Google Scholar
Bonneaud, C. et al. Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. Proc. Natl. Acad. Sci. U.S.A. 108, 7866–7871 (2011).
Google Scholar
Bonneaud, C. et al. Rapid antagonistic coevolution in an emerging pathogen and its vertebrate host. Curr. Biol. 28, 2978–2983 (2018).
Google Scholar
Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in House Finches (Haemorhous mexicanus) from Arizona. Avian Dis. 62, 14–17 (2018).
Google Scholar
Tardy, L., Giraudeau, M., Hill, G. E., McGraw, K. J. & Bonneaud, C. Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen. Proc. Natl. Acad. Sci. U.S.A. 116, 16927–16932. https://doi.org/10.1073/pnas.1901556116 (2019).
Google Scholar
Grodio, J. L., Buckles, E. L. & Schat, K. A. Production of house finch (Carpodacus mexicanus) IgA specific anti-sera and its application in immunohistochemistry and in ELISA for detection of Mycoplasma gallisepticum-specific IgA. Vet. Immunol. Immunopathol. 132, 288–294 (2009).
Google Scholar
Warr, G. W., Magor, K. E. & Higgins, D. A. IgY—clues to the origins of modern antibodies. Immunol. Today 16, 392–398. https://doi.org/10.1016/0167-5699(95)80008-5 (1995).
Google Scholar
Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263. https://doi.org/10.1126/science.1248943 (2014).
Google Scholar
Bonneaud, C. et al. Evolution of both host resistance and tolerance to an emerging bacterial pathogen. Evol. Lett. 3, 544–554. https://doi.org/10.1002/evl3.133 (2019).
Google Scholar
Staley, M., Hill, G. E., Josefson, C. C., Armbruster, J. W. & Bonneaud, C. Bacterial pathogen emergence requires more than direct contact with a novel passerine host. Infect. Immun. 86, 9. https://doi.org/10.1128/iai.00863-17 (2018).
Google Scholar
Grodio, J. L. et al. Pathogenicity and immunogenicity of three Mycoplasma gallisepticum isolates in house finches (Carpodacus mexicanus). Vet. Microbiol. 155, 53–61. https://doi.org/10.1016/j.vetmic.2011.08.003 (2012).
Google Scholar
Javed, M. A. et al. Correlates of immune protection in chickens vaccinated with Mycoplasma gallisepticum strain GT5 following challenge with pathogenic M-gallisepticum strain R-low. Infect. Immun. 73, 5410–5419 (2005).
Google Scholar
Dumke, R. & Jacobs, E. Antibody response to Mycoplasma pneumoniae: Protection of host and influence on outbreaks?. Front. Microbiol. 7, 7. https://doi.org/10.3389/fmicb.2016.00039 (2016).
Google Scholar
Avakian, A. P. & Ley, D. H. Protective immune-response to Mycoplasma-gallisepticum demonstrated in respiratory-tract washings from M-gallisepticum-infected chickens. Avian Dis. 37, 697–705. https://doi.org/10.2307/1592017 (1993).
Google Scholar
Yagihashi, T. & Tajima, M. Antibody-responses in sera and respiratory secretions from chickens infected with Mycoplasma gallisepticum. Avian Dis. 30, 543–550. https://doi.org/10.2307/1590419 (1986).
Google Scholar
Glatman-Freedman, A. & Casadevall, A. Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin. Microbiol. Rev. 11, 514. https://doi.org/10.1128/cmr.11.3.514 (1998).
Google Scholar
Vogl, G. et al. Mycoplasma gallisepticum invades chicken erythrocytes during infection. Infect. Immun. 76, 71–77. https://doi.org/10.1128/iai.00871-07 (2008).
Google Scholar
Dowling, A. J., Hill, G. E. & Bonneaud, C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci. Rep. 10, 6779 (2020).
Google Scholar
Arfi, Y. et al. MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G. Proc. Natl. Acad. Sci. U.S.A. 113, 5406–5411. https://doi.org/10.1073/pnas.1600546113 (2016).
Google Scholar
Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in House Finches (Haemorhous mexicanus) from Arizona. Avian Dis. https://doi.org/10.1637/11610-021317-RegR (2018).
Google Scholar
Roberts, S. R., Nolan, P. M., Lauerman, L. H., Li, L. Q. & Hill, G. E. Characterization of the mycoplasmal conjunctivitis epizootic in a house finch population in the southeastern USA. J. Wildl. Dis. 37, 82–88 (2001).
Google Scholar
Papazisi, L. et al. GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect. Immun. 70, 6839–6845 (2002).
Google Scholar
Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37, 12. https://doi.org/10.1093/nar/gkp045 (2009).
Google Scholar
Tuomi, J. M., Voorbraak, F., Jones, D. L. & Ruijter, J. M. Bias in the C-q value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 50, 313–322. https://doi.org/10.1016/j.ymeth.2010.02.003 (2010).
Google Scholar
Ruijter, J., Villalba, A., Hellemans, J., Untergasser, A. & van den Hoff, M. Removal of between-run variation in a multi-plate qPCR experiment. Biomol. Detect. Quantif. 5, 10–14 (2015).
Google Scholar
Grodio, J. L., Dhondt, K. V., O’Connell, P. H. & Schat, K. A. Detection and quantification of Mycoplasma gallisepticum genome load in conjunctival samples of experimentally infected house finches (Carpodacus mexicanus) using real-time polymerase chain reaction. Avian Pathol. 37, 385–391. https://doi.org/10.1080/03079450802216629 (2008).
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2016).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Repeatability Estimation for Gaussian and Non-Gaussian Data v. 0.9.21 (2018).
Source: Ecology - nature.com