in

Universal scaling of robustness of ecosystem services to species loss

  • 1.

    Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosyst. Serv. 28, 1–16 (2017).

    Article 

    Google Scholar 

  • 2.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar 

  • 8.

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B. 287, 20200922 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article 

    Google Scholar 

  • 15.

    Kaiser‐Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B 282, 20151348 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Mastrángelo, M. E. et al. Key knowledge gaps to achieve global sustainability goals. Nat. Sustain. 2, 1115–1121 (2019).

    Article 

    Google Scholar 

  • 21.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Mace, G. M., Hails, R. S., Cryle, P., Harlow, J. & Clarke, S. J. Towards a risk register for natural capital. J. Appl. Ecol. 52, 641–653 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1072–1085 (2016).

    Article 

    Google Scholar 

  • 24.

    Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Pillar, V. D. et al. Functional redundancy and stability in plant communities. J. Veg. Sci. 24, 963–974 (2013).

    Article 

    Google Scholar 

  • 27.

    Feit, B., Blüthgen, N., Traugott, M. & Jonsson, M. Resilience of ecosystem processes: a new approach shows that functional redundancy of biological control services is reduced by landscape simplification. Ecol. Lett. 22, 1568–1577 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Salski, A. Ecological applications of fuzzy logic. Pages 3–14 in Ecological Informatics (ed. Recknagel, F.) (Springer, 2003).

  • 29.

    Ehrlich, P. R. & Mooney, H. A. Extinction, substitution, and ecosystem services. Bioscience 33, 248–254 (1983).

    Article 

    Google Scholar 

  • 30.

    Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B 276, 229–237 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. B 269, 1721–1727 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).

    Article 

    Google Scholar 

  • 34.

    Maseyk, F. J. F., Demeter, L., Csergő, A. M. & Buckley, Y. M. Effect of management on natural capital stocks underlying ecosystem service provision: a ‘provider group’ approach. Biodivers. Conserv. 26, 3289–3305 (2017).

    Article 

    Google Scholar 

  • 35.

    Schröter, M. et al. Assumptions in ecosystem service assessments: increasing transparency for conservation. Ambio 50, 289–300 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Lafuite, A.-S., de Mazancourt, C. & Loreau, M. Delayed behavioural shifts undermine the sustainability of social–ecological systems. Proc. R. Soc. B 284, 20171192 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article 

    Google Scholar 

  • 40.

    Wyborn, C. et al. Imagining transformative biodiversity futures. Nat. Sustain. 3, 670–672 (2020).

    Article 

    Google Scholar 

  • 41.

    Bodin, Ö. et al. Improving network approaches to the study of complex social–ecological interdependencies. Nat. Sustain. 2, 551–559 (2019).

    Article 

    Google Scholar 

  • 42.

    Palumbi, S. R. et al. Managing for ocean biodiversity to sustain marine ecosystem services. Front. Ecol. Environ. 7, 204–211 (2009).

    Article 

    Google Scholar 

  • 43.

    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    White, L., O’Connor, N. E., Yang, Q., Emmerson, M. C. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems. Nat. Ecol. Evol. 4, 1594–1601 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 46.

    Moreno-Mateos, D. et al. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol. 4, 676–685 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 47.

    Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Purvis, A., Agapow, P. M., Gittleman, J. L. & Mace, G. M. Nonrandom extinction and the loss of evolutionary history. Science 288, 328–330 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Gross, K. & Cardinale, B. J. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 8, 409–418 (2005).

    Article 

    Google Scholar 

  • 51.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Ross, S. R. P.-J. et al. Code from: Universal scaling of robustness of ecosystem services to species loss (Version V0.4.2-beta). zenodo https://doi.org/10.5281/zenodo.4749405 (2021).


  • Source: Ecology - nature.com

    UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System

    Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens