in

Cooperation among unrelated ant queens provides persistent growth and survival benefits during colony ontogeny

  • 1.

    Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, Oxford, 2002).

    Google Scholar 

  • 2.

    Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, Berlin, 2016).

    Google Scholar 

  • 3.

    Costa, J. T. & Ross, K. G. Fitness effects of group merging in a social insect. Proc. R. Soc. B 270, 1697–1702 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Nicieza, A. G. Interacting effects of predation risk and food availability on larval anuran behaviour and development. Oecologia 123, 497–505 (2000).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Dugatkin, L. A. Animal cooperation among unrelated individuals. Naturwissenschaften 89, 533–541 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Clutton-Brock, T. Breeding together: Kin selection and mutualism in cooperative vertebrates. Science 69, 69–72 (2002).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Haney, B. R. & Fewell, J. H. Ecological drivers and reproductive consequences of non-kin cooperation by ant queens. Oecologia 187, 643–655 (2018).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Tschinkel, W. R. Brood raiding and the population dynamics of founding and incipient colonies of the fire ant, Solenopsis invicta. Ecol. Entomol. 17, 179–188 (1992).

    Article 

    Google Scholar 

  • 9.

    Clark, R. M. & Fewell, J. H. Transitioning from unstable to stable colony growth in the desert leafcutter ant Acromyrmex versicolor. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-013-1632-4 (2013).

    Article 

    Google Scholar 

  • 10.

    Cole, B. The ecological setting of social evolution: the demography of ant populations. In Organization of Insect Societies: From Genome to Sociocomplexity (eds Gadau, J. & Fewell, J.) 74–104 (Harvard University Press, Cambridge, 2009).

    Google Scholar 

  • 11.

    Kang, Y., Clark, R., Makiyama, M. & Fewell, J. Mathematical modeling on obligate mutualism: Interactions between leaf-cutter ants and their fungus garden. J. Theor. Biol. 289, 116–127 (2011).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Karsai, I. & Wenzel, J. Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. J. Theor. Biol. 289, 116–127 (1998).

    Google Scholar 

  • 13.

    Tibbetts, E. A. & Reeve, H. K. Benefits of foundress associations in the paper wasp Polistes dominulus : increased productivity and survival, but no assurance of fitness returns. Behav. Ecol. 14, 510–514 (2003).

    Article 

    Google Scholar 

  • 14.

    Cahan, S. & Julian, G. E. Fitness consequences of cooperative colony founding in the desert leaf-cutter ant Acromyrmex versicolor. Behav. Ecol. 10, 585–591 (1999).

    Article 

    Google Scholar 

  • 15.

    Tschinkel, W. R. Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behav. Ecol. Sociobiol. 22, 103–115 (1988).

    Article 

    Google Scholar 

  • 16.

    Choe, J. & Perlman, D. Social conflict and cooperation among founding queens in ants (Hymenoptera: Formicidae). In Social Behavior in Insects and Arachnids 392–406 (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  • 17.

    Bernasconi, G. & Strassmann, J. E. Cooperation among unrelated individuals: The ant foundress case. Trends Ecol. Evol. 14, 477–482 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Hartke, T. R. & Rosengaus, R. B. Costs of pleometrosis in a polygamous termite. Proc. R. Soc. B 280, 20122563 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Gamboa, G. J. Intraspecific defense: Advantage of social cooperation among paper wasp foundresses. Science 199, 1463–1466 (1978).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Kolmer, K. & Heinze, J. Rank orders and division of labour among unrelated cofounding ant queens. Proc. R. Soc. B 267, 1729–1734 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Clark, R. M. & Fewell, J. H. Social dynamics drive selection in cooperative associations of ant queens. Behav. Ecol. 25, 117–123 (2014).

    Article 

    Google Scholar 

  • 22.

    Johnson, R. A. Colony founding by pleometrosis in the semiclaustral seed-harvester ant Pogonomyrmex californicus (Hymenoptera: Formicidae ). Anim. Behav. 68, 1189–1200 (2004).

    Article 

    Google Scholar 

  • 23.

    Tschinkel, W. R. & Howard, D. F. Colony founding by pleometrosis in the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 12, 103–113 (1983).

    Article 

    Google Scholar 

  • 24.

    Rissing, S. W. & Pollock, G. B. Queen aggression, pleometrotic advantage and brood raiding in the ant Veromessor pergandei (Hymenoptera: Formicidae). Anim. Behav. 35, 975–981 (1987).

    Article 

    Google Scholar 

  • 25.

    Deslippe, R. J. & Savolainen, R. Colony Foundation and Polygyny in the Ant Formica podzolic. Behav. Ecol. Sociobiol. 37, 1–6 (1995).

    Article 

    Google Scholar 

  • 26.

    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, Princeton, 1995).

    Google Scholar 

  • 27.

    Hölldobler, B. & Wilson, E. The Ants (Harvard University Press, Cambridge, 1990).

    Google Scholar 

  • 28.

    Mintzer, A. Primary polygyny in the ant Atta texana: number and weight of females nad colony foundation success in the laboratory. Insect Soc 34, 108–117 (1987).

    Article 

    Google Scholar 

  • 29.

    Heinze, J. & Hölldobler, B. Ants in the cold. Memorab. Zool. 48, 99–108 (1994).

    Google Scholar 

  • 30.

    Helms Cahan, S. Cooperation and conflict in ant foundress associations: Insights from geographical variation. Anim. Behav. 61, 819–825 (2001).

    Article 

    Google Scholar 

  • 31.

    Heinze, J. & Rüppel, O. The frequency of multi-queen colonies increases in a Nearctic ant. Ecol Entomol 39, 527–529 (2014).

    Article 

    Google Scholar 

  • 32.

    Brown, M. Semi-claustral founding and worker behaviour in gynes of Messor andrei. Insect Soc. 46, 194–195 (1999).

    Article 

    Google Scholar 

  • 33.

    Oster, G. & Wilson, E. Caste and Ecology in the Social Insects (Princeton University Press, Princeton, 1978).

    Google Scholar 

  • 34.

    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (W.W. Norton & Company, New York, 2009).

    Google Scholar 

  • 35.

    Holbrook, C. T., Eriksson, T. H., Overson, R. P., Gadau, J. & Fewell, J. H. Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insectes Soc. 60, 191–201 (2013).

    Article 

    Google Scholar 

  • 36.

    Thomas, M. L. & Elgar, M. A. Colony size affects division of labour in the ponerine ant Rhytidoponera metallica. Naturwissenschaften 90, 88–92 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Jeanson, R., Fewell, J. H., Gorelick, R. & Bertram, S. M. Emergence of increased division of labor as a function of group size. Behav. Ecol. Sociobiol. 62, 289–298 (2007).

    Article 

    Google Scholar 

  • 38.

    Holbrook, C. T., Barden, P. M. & Fewell, J. H. Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus. Behav. Ecol. 22, 960–966 (2011).

    Article 

    Google Scholar 

  • 39.

    Dornhaus, A., Powell, S. & Bengston, S. Group size and its effects on collective organization. Ann. Rev. Entomol. 57, 123–141 (2012).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Wilson, E. Colony ontogeny of Atta cephalotes. Behav. Ecol. Sociobiol. 7, 143–156 (1983).

    Article 

    Google Scholar 

  • 41.

    Jeanne, R. Social complexity in the Hymenoptera, with special attention to the wasps. In Genes, Behaviors, and Evolution of Social Insects (eds Kikuchi, T. et al.) 81–130 (Hokkaido University Press, Sapporo, 2003).

    Google Scholar 

  • 42.

    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Mailleux, A., Deneubourg, J. & Detrain, C. How does colony growth influence communication in ants?. Insectes Soc. 50, 24–31 (2003).

    Article 

    Google Scholar 

  • 44.

    Overson, R., Fewell, J. & Gadau, J. Distribution and origin of intraspecific social variation in the California harvester ant Pogonomyrmex californicus. Insectes Soc. 63, 531–541 (2016).

    Article 

    Google Scholar 

  • 45.

    Haney, B. R. et al. Ecological Drivers and Reproductive Consequences of Queen Cooperation in the California Harvester Ant Pogonomyrmex Californicus (Arizona State University, Tempe, 2017).

    Google Scholar 

  • 46.

    Bhatkar, A. & Whitcomb, W. H. Artificial diet for rearing various species of ants. Fla. Entomol. 53, 229–232 (1970).

    Article 

    Google Scholar 

  • 47.

    Cahan, S. H. & Fewell, J. H. Division of labor and the evolution of task sharing in queen associations of the harvester ant Pogonomyrmex californicus. Behav. Ecol. Sociobiol. 56, 9–17 (2004).

    Article 

    Google Scholar 

  • 48.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).

    Google Scholar 

  • 49.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 50.

    Therneau, T. A Package for Survival Analysis in R. R Package Version 3.2-7. (2020).

  • 51.

    Therneau, T. coxme: Mixed Effects Cox Models. R Package Version 2.2-16.

  • 52.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).

  • 54.

    Riehl, C. & Riehl, C. Evolutionary routes to non-kin cooperative breeding in birds. Proc. R. Soc. B 278, 20132242 (2013).

    Google Scholar 

  • 55.

    Clutton-Brock, T. Cooperation between non-kin in animal societies. Nature 461, 51–57 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Emlen, S. T. The evolution of helping. I. An Ecological Constraints Model. Am. Nat. 119, 29–39 (1982).

    Article 

    Google Scholar 

  • 57.

    Heg, D., Bachar, Z., Brouwer, L. & Taborsky, M. Predation risk is an ecological constraint for helper dispersal in a cooperatively breeding cichlid. Proc. R. Soc. B 271, 2367–2374 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Kennedy, P., Higginson, A. D., Radford, A. N. & Sumner, S. Altruism in a volatile world. Nature 555, 359–362 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Gasperin, O. D., Blacher, P., Grasso, G. & Chapuisat, M. Winter is coming: Harsh environments limit independent reproduction of cooperative-breeding queens in a socially polymorphic ant. Biol. Lett. 16, 20190730 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Lukas, D. & Clutton-Brock, T. Climate and the distribution of cooperative breeding in mammals. R. Soc. Open Sci. 4, 160897 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 1–10 (2017).

    Article 

    Google Scholar 

  • 63.

    Heinze, J. Queen-queen interactions in polygynous ants. In Queen Number and Sociality in Insects (ed. Keller, L.) 262–293 (Oxford University Press, Oxford, 1993).

    Google Scholar 

  • 64.

    Schmid-Hempel, P. & Crozier, R. H. Polyandry versus polygyny versus parasites. Phil. Trans. R. Soc. B 354, 507–515 (1999).

    Article 

    Google Scholar 

  • 65.

    Hughes, W. O. H. & Boomsma, J. J. Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58, 1251–1260 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Mattila, H. R. & Seeley, T. D. Genetic diversity in honey productivity and fitness. Science 317, 362–365 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Seeley, T. D. & Tarpy, D. R. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. B 274, 67–72 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Whitehorn, P. R., Tinsley, M. C., Brown, M. J. F., Darvill, B. & Goulson, D. Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc. R. Soc. B 278, 1195–1202. https://doi.org/10.1098/rspb.2010.1550 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Johnson, R. A. Water loss in desert ants: Caste variation and the effect of cuticle abrasion. Physiol. Entomol. 25, 48–53 (2000).

    Article 

    Google Scholar 

  • 70.

    Reber, A., Purcell, J., Buechel, S. D., Buri, P. & Chapuisat, M. The expression and impact of antifungal grooming in ants. J. Evol. Biol. 24, 954–964 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Wilson, S. N. et al. How emergent social patterns in allogrooming combat parasitic infections. Front. Ecol. Evol. 8, 54 (2020).

    Article 

    Google Scholar 

  • 72.

    Hutchins, M. & Barash, D. Grooming in primates: Implications for its utilitarian function. Primates 17, 145–150 (1976).

    Article 

    Google Scholar 

  • 73.

    Lobo, J., Bettencourt, L. M. A., Strumsky, D. & West, G. B. Urban scaling and the production function for cities. PLoS ONE 8, e58407–e58407 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Bettencourt, L., Lobo, J., Helbing, D., Kuhnert, C. & West, G. Growth, innovation, scaling and the pace of life in cities. PNAS 104, 7301–7306 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Bondi, A. Characteristics of scalability and their impact on performance. 195–203 (2000).

  • 76.

    Duboc, L., Rosenblum, D. & Wicks, T. A framework for characterization and analysis of software system scalability. Proceedings of the European Software Engineering Conference 375–384 (2007).

  • 77.

    Johnson, R. A. Semi-claustral colony founding in the seed-harvester ant Pogonomyrmex californicus: A comparative analysis of colony founding strategies. Oecologia 132, 60–67 (2002).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Wilson, E. The Insect Societies (Harvard University Press, Cambridge, 1971).

    Google Scholar 

  • 79.

    Seid, M. A. & Traniello, J. F. A. Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): A new perspective on temporal polyethism and behavioral plasticity in ants. Behav. Ecol. Sociobiol. 60, 631–644 (2006).

    Article 

    Google Scholar 

  • 80.

    Seeley, T. Adaptive significance of the age polyethism schedule in honey bee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Legacies of Indigenous land use shaped past wildfire regimes in the Basin-Plateau Region, USA

    Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish