Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–185 (2007).
Google Scholar
Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).
Google Scholar
Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2/.10055 (2017).
Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Global Biogeochem. Cycles 29, 534–554 (2015).
Google Scholar
Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8, 637–642 (2015).
Google Scholar
Sawakuchi, H. O. et al. Carbon dioxide emissions along the lower Amazon River. Front. Mar. Sci. 4, 76 (2017).
Hastie, A., Lauerwald, R., Ciais, P. & Regnier, P. Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon basin: an analysis of the interannual variability in the boundless carbon cycle. Glob. Change Biol. 25, 2094–2111 (2019).
Google Scholar
Horgby, Å. et al. Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains. Nat. Commun. 10, 4888 (2019).
Peter, H. et al. Scales and drivers of temporal (p_{{mathrm{CO}}_2}) dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 119, 1078–1091 (2014).
Google Scholar
Rocher-Ros, G., Sponseller, R. A., Bergstr, A., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. Glob. Change Biol. https://doi.org/10.1111/gcb.14895 (2020).
Wallin, M. B., Audet, J., Peacock, M., Sahlée, E. & Winterdahl, M. Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production. Biogeosciences 17, 2487–2498 (2020).
Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time series patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2017).
Google Scholar
Reiman, J. & Xu, Y. J. Diel variability of (p_{{mathrm{CO}}_2}) and CO2 outgassing from the lower Mississippi River: implications for riverine CO2 outgassing estimation. Water 11, 43 (2018).
Google Scholar
Hensley, R. T. & Cohen, M. J. On the emergence of diel solute signals in flowing waters. Water Resour. Res. 52, 759–772 (2016).
Google Scholar
Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1955).
Google Scholar
Johnson, M. S. et al. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology 3, 68–78 (2010).
Stets, E. G. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochem. Cycles 31, 663–677 (2017).
Google Scholar
Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in Arctic fresh waters. Science 345, 925–928 (2014).
Google Scholar
Riml, J., Campeau, A., Bishop, K. & Wallin, M. B. Spectral decomposition reveals new perspectives on CO2 concentration patterns and soil–stream linkages. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004981 (2019).
Hartmann, J., Lauerwald, R. & Moosdorf, N. A brief overview of the GLObal RIver CHemistry Database, GLORICH. Procedia Earth Planet. Sci. 10, 23–27 (2014).
Google Scholar
Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).
Google Scholar
Demars, B. O. L. & Manson, J. R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: a critical review. Water Res. 47, 1–15 (2013).
Google Scholar
Koenig, L. E. et al. Emergent productivity regimes of river networks. Limnol. Oceanogr. 4, 173–181 (2019).
Google Scholar
Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).
Google Scholar
Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012).
Google Scholar
Mulholland, P. J. et al. Inter-biome comparison of factors controlling stream metabolism. Freshw. Biol. 46, 1503–1517 (2001).
Google Scholar
Roberts, B. J., Mulholland, P. J. & Hill, W. R. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).
Google Scholar
Vanote, R. L., Minshall, W. G., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
Google Scholar
Finlay, J. C. Stream size and human influences on ecosystem production in river networks. Ecosphere 2, art87 (2011).
Google Scholar
Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating benthic light regimes improves predictions of primary production and constrains light-use efficiency in streams and rivers. Ecosystems https://doi.org/10.1007/s10021-020-00552-1 (2020).
Julian, J. P., Doyle, M. W., Powers, S. M., Stanley, E. H. & Riggsbee, J. A. Optical water quality in rivers. Water Resour. Res. 44, W10411 (2008).
Aitkenhead, J. A. & McDowell, W. H. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem. Cycles 14, 127–138 (2000).
Google Scholar
Harrison, J. A., Caraco, N. & Seitzinger, S. P. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem. Cycles 19, GB4S04 (2005).
Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
Google Scholar
Liu, S., Butman, D. E. & Raymond, P. A. Evaluating CO2 calculation error from organic alkalinity and pH measurement error in low ionic strength freshwaters. Limnol. Oceanogr. Methods 18, 606–622 (2020).
Abril, G. et al. Technical Note: Large overestimation of (p_{{mathrm{CO}}_2}) calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).
Google Scholar
Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion along streams driven by groundwater inputs and geomorphic controls. Nat. Geosci. 11, 813–818 (2018).
Google Scholar
Rocher‐Ros, G., Sponseller, R. A., Lidberg, W., Mörth, C. & Giesler, R. Landscape process domains drive patterns of CO2 evasion from river networks. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10108 (2019).
Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).
Google Scholar
Guth, P. L. Drainage basin morphometry: a global snapshot from the shuttle radar topography mission. Hydrol. Earth Syst. Sci. 15, 2091–2099 (2011).
Google Scholar
Schneider, C. L. et al. Carbon dioxide (CO2) fluxes from terrestrial and aquatic environments in a high-altitude tropical catchment. J. Geophys. Res. Biogeosci. 125, e2020JG005844 (2020).
Google Scholar
Rocher‐Ros, G. et al. Metabolism overrides photo-oxidation in CO2 dynamics of Arctic permafrost streams. Limnol. Oceanogr. https://doi.org/10.1002/lno.11564 (2020).
Dinsmore, K. J., Billett, M. F. & Dyson, K. E. Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Glob. Change Biol. 19, 2133–2148 (2013).
Google Scholar
Lynch, J. K., Beatty, C. M., Seidel, M. P., Jungst, L. J. & DeGrandpre, M. D. Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution (p_{{mathrm{CO}}_2}) measurements. J. Geophys. Res. Biogeosci. 115, G03016 (2010).
Teodoru, C. R. et al. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12, 2431–2453 (2015).
Google Scholar
Borges, A. V. et al. Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial–wetland connectivity. Biogeosciences 16, 3801–3834 (2019).
Google Scholar
Le, T. P. Q. et al. CO2 partial pressure and CO2 emission along the lower Red River (Vietnam). Biogeosciences 15, 4799–4814 (2018).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
Google Scholar
Ulseth, A. J. et al. Distinct air–water gas exchange regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).
Google Scholar
Lapierre, J.-F., Guillemette, F., Berggren, M. & del Giorgio, P. A. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).
Google Scholar
Source: Ecology - nature.com