Unintended consequences of climate change mitigation for African river basins
1.Lamontagne, J., Reed, P., Marangoni, G., Keller, K. & Garner, G. Robust abatement pathways to tolerable climate futures require immediate global action. Nat. Clim. Change 9, 290–294 (2019).
Google Scholar
2.Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).CAS
Google Scholar
3.van Vuuren, D., Hof, A., van Sluisveld, M. & Riahi, K. Open discussion of negative emissions is urgently needed. Nat. Energy 2, 902–904 (2017).
Google Scholar
4.Santos Da Silva, S. et al. The Paris pledges and the energy–water–land nexus in Latin America: exploring implications of greenhouse gas emission reductions. PLoS ONE 14, e0215013 (2019).5.Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).
Google Scholar
6.Rogelj, J., McCollum, D., O’Neill, B. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nat. Clim. Change 3, 405–412 (2013).CAS
Google Scholar
7.Tavoni, M. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Change 5, 119–126 (2015).
Google Scholar
8.Garner, G., Reed, P. & Keller, K. Climate risk management requires explicit representation of societal trade-offs. Climatic Change 134, 713–723 (2016).
Google Scholar
9.Dearing, J. et al. Safe and just operating spaces for regional social–ecological systems. Glob. Environ. Change 28, 227–238 (2014).
Google Scholar
10.Kling, H., Stanzel, P. & Preishuber, M. Impact modelling of water resources development and climate scenarios on Zambezi River discharge. J. Hydrol. Reg. Stud. 1, 17–43 (2014).
Google Scholar
11.Payet-Burin, R., Kromann, M., Pereira-Cardenal, S., Strzepek, K. & Bauer-Gottwein, P. WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food–climate nexus. Hydrol. Earth Syst. Sci. 23, 4129–4152 (2019).
Google Scholar
12.Fant, C., Gebretsadik, Y., McCluskey, A. & Strzepek, K. An uncertainty approach to assessment of climate change impacts on the Zambezi River basin. Clim. Change 130, 35–48 (2015).CAS
Google Scholar
13.Spalding-Fechera, R., Joyceb, B. & Winklerc, H. Climate change and hydropower in the Southern African Power Pool and Zambezi River basin: system-wide impacts and policy implications. Energy Policy 103, 84–97 (2017).
Google Scholar
14.GCAM v4.3 Documentation: Global Change Assessment Model (GCAM) (JGCRI, 2017).15.Thomson, A. et al. RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).CAS
Google Scholar
16.Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (Cambridge Univ. Press, 2014).17.Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).
Google Scholar
18.van Vuuren, D. et al. The shared socio-economic pathways: trajectories for human development and global environmental change. Glob. Environ. Change 42, 148–152 (2017).
Google Scholar
19.Kriegler, E., Edmonds, J. & Hallegatte, S. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Climatic Change 122, 401–414 (2014).
Google Scholar
20.Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).
Google Scholar
21.Lamontagne, J. et al. Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. Earth’s Future 6, 488–504, (2018).22.Li, X. et al. Tethys–a Python package for spatial and temporal downscaling of global water withdrawals. J. Open Res. Softw. 6, 9 (2018).23.Huang, Z. et al. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 574, 242–256 (2019).
Google Scholar
24.van Vuuren, D. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).25.Sadoff, C., Whittington, D. & Grey, D. Africa’s International Rivers: An Economic Perspective (World Bank, 2003).26.Beilfuss, R. in The Wetland Book (ed. Finlayson, C.) 1–9 (Springer, 2016).27.The Zambezi River Basin. A Multi-Sector Investment Opportunities Analysis (World Bank, 2010).28.Jeuland, M. & Whittington, D. Water resources planning under climate change: assessing the robustness of real options for the Blue Nile. Water Resour. Res. 50, 2086–2107 (2014).
Google Scholar
29.Warner, J. J. S., Jones, E., Ansari, M. & De Vries, L. The fantasy of the Grand Inga hydroelectric project on the River Congo. Water 11, 407 (2019).
Google Scholar
30.Winemiller, K. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).CAS
Google Scholar
31.Conway, D. et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Change 5, 837–846 (2015).
Google Scholar
32.Strategic Plan for the Zambezi Watercourse 2018–2040 (ZAMCOM, 2019).33.Cervigni, R., Liden, R., Neumann, J. & Strzepek, K. Enhancing the Climate Resilience of Africa’s Infrastructure: The Power and Water Sectors (World Bank, 2015).34.World Database of Key Biodiversity Areas (BirdLife International, 2018); www.keybiodiversityareas.org35.Beilfuss, R. & dos Santos, D. Program for the Sustainable Management of Cahora Bassa Dam and the Lower Zambezi Valley. Working Paper http://www.xitizap.com/zambeze-hydrochanges.pdf (2001).36.Coello Coello, C., Lamont, G. & Veldhuizen, D. V. Evolutionary Algorithms for Solving Multi-Objective Problems (Springer, 2007).37.Tilmant, A., Beevers, L. & Muyunda, B. Restoring a flow regime through the coordinated operation of a multireservoir system: the case of the Zambezi River basin. Water Resour. Res. 46, W07533 (2010).38.Rulli, M., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).CAS
Google Scholar
39.Zarfl, C., Lumsdon, A., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
Google Scholar
40.Graham, N. et al. Humans drive future water scarcity changes across all shared socioeconomic pathways. Environ. Res. Lett. 15, 014007 (2020).41.Liu, L., Hejazi, M., Iyer, G. & Forman, B. Implications of water constraints on electricity capacity expansion in the United States. Nat. Sustain. 2, 206–213 (2019).
Google Scholar
42.McCollum, D., Gambhir, A., Rogelj, J. & Wilson, C. Energy modellers should explore extremes more systematically in scenarios. Nat. Energy 5, 104–107 (2020).
Google Scholar
43.Schlosberg, D. & Collins, L. From environmental to climate justice: climate change and the discourse of environmental justice. Wiley Interdiscip. Rev. Clim. Change 5, 359–374 (2014).
Google Scholar
44.Taconet, N., Méjean, A. & Guivarch, C. Influence of climate change impacts and mitigation costs on inequality between countries. Climatic Change 160, 15–34 (2020).45.Lindström, G., Johansson, B., Persson, M., Gardelin, M. & Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 201, 272–288 (1997).
Google Scholar
46.Akhtar, M., Ahmad, N. & Booij, M. Use of regional climate model simulations as input for hydrological models for the Hindukush–Karakorum–Himalaya region. Hydrol. Earth Syst. Sci. 13, 1075–1089 (2009).
Google Scholar
47.Bergström, S. et al. in Climate Change and Energy Systems Impacts, Risks and Adaptation in the Nordic and Baltic Countries (eds Thorsteinsson, T. & Björnsson, H.) 13–146 (Nordic Council of Ministers, 2012).48.Vrochidou, A., Tsanis, I., Grillakis, M. & Koutroulis, A. The impact of climate change on hydrometeorological droughts at a basin scale. J. Hydrol. 476, 290–301 (2013).
Google Scholar
49.Hamududu, B. & Killingtveit, A. Hydropower production in future climate scenarios; the case for the Zambezi River. Energies 9, 502 (2016).50.Funk, C., Peterson, P. & Landsfeld, M. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes Sci. Data 2, 150066 (2015).51.Chaney, N., Sheffield, J., Villarini, G. & Wood, E. Development of a high-resolution gridded daily meteorological dataset over sub-Saharan Africa: spatial analysis of trends in climate extremes. J. Clim. 27, 5815–5835 (2014).
Google Scholar
52.Soncini-Sessa, R., Castelletti, A. & Weber, E. Integrated and Participatory Water Resources Management: Theory (Elsevier, 2007).53.Celeste, A. & Billib, M. Evaluation of stochastic reservoir operation optimization models. Adv. Water Res. 32, 1429–1443 (2009).
Google Scholar
54.AQUASTAT – FAO’s Global Information System on Water and Agriculture. FAO https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/map-quality55.Castelletti, A., Pianosi, F. & Soncini-Sessa, R. Water reservoir control under economic, social and environmental constraints. Automatica 44, 1595–1607 (2008).
Google Scholar
56.Bertoni, F., Castelletti, A., Giuliani, M. & Reed, P. Discovering dependencies, trade-offs, and robustness in joint dam design and operation: an ex-post assessment of the Kariba dam. Earth’s Future 7, 1367–1390 (2019).
Google Scholar
57.Giuliani, M., Castelletti, A., Pianosi, F., Mason, E. & Reed, P. Curses, tradeoffs, and scalable management: advancing evolutionary multi-objective direct policy search to improve water reservoir operations. J. Water Resour. Plan. Manage. 142, 04015050 (2016).58.Busoniu, L., Ernst, D., De Schutter, B. & Babuska, R. Cross-entropy optimization of control policies with adaptive basis functions. IEEE Trans. Syst. Man Cybern. B 41, 196–209 (2011).
Google Scholar
59.Hadka, D. & Reed, P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21, 231–259 (2013).
Google Scholar
60.Giuliani, M., Quinn, J., Herman, J., Castelletti, A. & Reed, P. Scalable multiobjective control for large-scale water resources systems under uncertainty. IEEE Trans. Control Syst. Technol. 26, 1492–1499 (2018).
Google Scholar
61.Blöschl, G. et al. Twenty-three unsolved problems in hydrology (UPH)—a community perspective. Hydrol. Sci. J. 64, 1141–1158 (2019).
Google Scholar
62.Elsawah, S. et al. Eight grand challenges in socio-environmental systems modeling. Socioenviron. Syst. Model. 2, 16226–16226 (2020).
Google Scholar
63.Giorgi, F., Jones, C. & Asrar, G. R. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol. Org. Bull. 58, 175–183 (2009).64.Dosio, A. et al. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 53, 5833–5858 (2019).
Google Scholar
65.Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).66.Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2, 851–870 (2011).
Google Scholar
67.Mosnier, A. et al. Modeling impact of development trajectories and a global agreement on reducing emissions from deforestation on Congo basin forests by 2030. Environ. Resour. Econ. 57, 505–525 (2014).
Google Scholar
68.Hattermann, F. et al. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006 (2018).
Google Scholar
69.Giuliani, M. & Lamontagne, J. R. First release of ZambeziWatercourse_GCAM code (v1.0-alpha). Zenodo https://doi.org/10.5281/zenodo.5726941 (2021). More