More stories

  • in

    The role of forest structure and composition in driving the distribution of bats in Mediterranean regions

    Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F. & Archaux, F. Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography (Cop.) 36, 1218–1226 (2013).
    Google Scholar 
    LeRoy, P. N. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc. 391–409 (1997).Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).
    Google Scholar 
    Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: Towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
    Google Scholar 
    Willis, K. J. & Whittaker, R. J. Species diversity – scale matters. Science (80-. ). 295, 1245–1247 (2002).Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning. Biodivers. Conserv. 26, 3005–3035 (2017).
    Google Scholar 
    Dolek, M. et al. Ants on oaks: effects of forest structure on species composition. J. Insect Conserv. 13, 367–375 (2009).
    Google Scholar 
    Díaz, I. A., Armesto, J. J., Reid, S., Sieving, K. E. & Willson, M. F. Linking forest structure and composition: Avian diversity in successional forests of Chiloé Island Chile. Biol. Conserv. 123, 91–101 (2005).
    Google Scholar 
    Fady-Welterlen, B. Is there really more biodiversity in Mediterranean forest ecosystems?. Taxon 54, 905–910 (2005).
    Google Scholar 
    Peñuelas, J. et al. Impacts of global change on Mediterranean forests and their services. Forests 8, 1–37 (2017).
    Google Scholar 
    Resco De Dios, V., Fischer, C. & Colinas, C. Climate change effects on mediterranean forests and preventive measures. New For. 33, 29–40 (2007).Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259, 698–709 (2010).
    Google Scholar 
    Cadieux, P. et al. Projected effects of climate change on boreal bird community accentuated by anthropogenic disturbances in western boreal forest Canada. Divers. Distrib. 26, 668–682 (2020).
    Google Scholar 
    Simmons, N. B. & Cirranello, A. L. Bat Species of the World: A taxonomic and geographic database. https://batnames.org/home.html (2020).Peixoto, F. P., Braga, P. H. P. & Mendes, P. A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecol. 18, 1–14 (2018).
    Google Scholar 
    Bats in forests: conservation and management. (The Johns Hopkins University Press, 2007).Barclay, R. M. R. & Kurta, A. Ecology and behavioyr of bats roosting in tree cavities and under bark. in Bats in forests: Conservation and management (eds. Lacki, M. J., Hayes, J. P. & Kurta, A.) (The Johns Hopkins University Press, 2007).Lacki, M. J., Amelon, S. K. & Baker, M. D. Foraging Ecology of Bats in Forests. in Bats in forests: Conservation and management (eds. Lacki, M. J., Hayes, J. P. & Kurta, A.) 329 (The Johns Hopkins University Press, 2007).Silvis, A., Ford, W. M. & Britzke, E. R. Day-roost tree selection by northern long-eared bats—What do non-roost tree comparisons and one year of data really tell us?. Glob. Ecol. Conserv. 3, 756–763 (2015).
    Google Scholar 
    Manual de conservación y seguimiento de los quirópteros forestales. in (eds. Guixe, D. & Camprodon, J.) 274 (Ministerio de Agricultura, Pesca y Alimentación y Ministerio para la Transición Ecológica., 2018).Patriquin, K. J. & Barclay, R. M. R. Foraging by bats in cleared, thinned and unharvested boreal forest. J. Appl. Ecol. 40, 646–657 (2003).
    Google Scholar 
    Carr, A., Weatherall, A. & Jones, G. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. For. Ecol. Manage. 457, 117682 (2020).Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. London. B, Biol. Sci. 316, 335–427 (1987).Aldridge, H. D. J. N. & Rautenbach, I. L. Morphology, echolocation and resource partitioning in insectivorous bats. J. Anim. Ecol. 56, 763 (1987).
    Google Scholar 
    Dodd, L. E. et al. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey. For. Ecol. Manage. 267, 262–270 (2012).
    Google Scholar 
    Lumsden, L. F. & Bennett, A. F. Scattered trees in rural landscapes: Foraging habitat for insectivorous bats in south-eastern Australia. Biol. Conserv. 122, 205–222 (2005).
    Google Scholar 
    Fahr, J. & Kalko, E. K. V. Biome transitions as centres of diversity: Habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography (Cop.) 34, 177–195 (2011).
    Google Scholar 
    Ferreira, D. F. et al. Season-modulated responses of Neotropical bats to forest fragmentation. Ecol. Evol. 7, 4059–4071 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Fragmented woodlands in agricultural landscapes: The influence of woodland character and landscape context on bats and their insect prey. Agric. Ecosyst. Environ. 172, 6–15 (2013).
    Google Scholar 
    Wood, H., Lindborg, R. & Jakobsson, S. European Union tree density limits do not reflect bat diversity in wood-pastures. Biol. Conserv. 210, 60–71 (2017).
    Google Scholar 
    Sagot, M. & Chaverri, G. Effects of roost specialization on extinction risk in bats. Conserv. Biol. 29, 1666–1673 (2015).PubMed 

    Google Scholar 
    Russo, D., Cistrone, L. & Jones, G. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography (Cop.) 28, 769–776 (2005).
    Google Scholar 
    Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission–fusion societies in an aerial-hawking, carnivorous bat. Anim. Behav. 75, 471–482 (2008).
    Google Scholar 
    Zambrana Pineda, J. F. & Ríos Jiménez, S. El sector primario andaluz en el siglo XX. Instituto de Estadística de Andalucía (2006).Nogueras, J., Garrido-García, J. A. & Fijo-León, A. Patrones de distribución del complejo “Myotis mystacinus” en la península Ibérica”. Barbastella 6, 24–30 (2013).
    Google Scholar 
    Boye, P. & Dietz, M. Development of good practice guidelines for woodland management for bats. English Nature Research Reports (2005) ISSN 0967-876X.Dietz, C. & Kiefer, A. Bats of Britain and Europe. (Bloomsbury Publishing, 2016).Estók, P., Gombkötő, P. & Cserkész, T. Roosting behaviour of the greater noctule Nyctalus lasiopterus Schreber, 1780 (Chiroptera, Vespertilionidae) in Hungary as revealed by radio-tracking. Mammalia 71, 1 (2007).
    Google Scholar 
    Walters, C. L. et al. A continental-scale tool for acoustic identification of European bats. J. Appl. Ecol. 49, 1064–1074 (2012).
    Google Scholar 
    Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: Lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).
    Google Scholar 
    Crome, F. H. J. & Richards, G. C. Bats and gaps : Microchiropteran community structure in a queensland rain forest. Ecology 69, 1960–1969 (1988).
    Google Scholar 
    R core team. R: A language and environment for statistical computing. (2021).Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).
    Google Scholar 
    Franklin, J. F. & Pelt, R. Van. Spatial spects of structural complexity in old-growth forests. J. For. 22–28 (2004).Ishii, H. T., Tanabe, S. & Hiura, T. Canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For. Sci. 50, (2004).Pebesma, E. & Bivand, R. sp: Classes and methods for spatial data. (2021).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library. (2021).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 6, 231–252 (2006).
    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. (2017).Muscarella, R. et al. ENMeval: Automated runs and evaluations of ecological niche models. (2018).Raes, N. & Ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography (Cop.) 30, 727–736 (2007).
    Google Scholar 
    Wittmann, M. E., Barnes, M. A., Jerde, C. L., Jones, L. A. & Lodge, D. M. Confronting species distribution model predictions with species functional traits. Ecol. Evol. 6, 873–879 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hanspach, J., Kühn, I., Pompe, S. & Klotz, S. Predictive performance of plant species distribution models depends on species traits. Perspect. Plant Ecol. Evol. Syst. 12, 219–225 (2010).
    Google Scholar 
    Pöyry, J., Luoto, M., Heikkinen, R. K. & Saarinen, K. Species traits are associated with the quality of bioclimatic models. Glob. Ecol. Biogeogr. 17, 403–414 (2008).
    Google Scholar 
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography (Cop.) 39, 542–552 (2016).
    Google Scholar 
    Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: Shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).ADS 

    Google Scholar 
    Edenius, L. & Elmberg, J. Landscape level effects of modern forestry on bird communities in North Swedish boreal forests. Landsc. Ecol. 11, 325–338 (1996).
    Google Scholar 
    Drapeau, P. et al. Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol. Monogr. 70, 423–444 (2000).
    Google Scholar 
    McGarigal, K. & McComb, W. C. Relationships between landscape structure and breeding birds in the Oregon coast range. Ecol. Monogr. 65, 235–260 (1995).
    Google Scholar 
    Gil-Tena, A., Brotons, L. & Saura, S. Effects of forest landscape change and management on the range expansion of forest bird species in the Mediterranean region. For. Ecol. Manage. 259, 1338–1346 (2010).
    Google Scholar 
    Gil-tena, A., Brotons, L. & Saura, S. Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob. Chang. Biol. 15, 474–485 (2009).ADS 

    Google Scholar 
    Goiti, U., Garin, I., Almenar, D., Salsamendi, E. & Aihartza, J. Foraging by mediterranean horshoe bats (Rhinolophus euryale) in relation to prey distribution and edge habitat. J. Mammal. 89, 493–502 (2008).
    Google Scholar 
    Motte, G. & Libois, R. Conservation of the lesser horseshoe bat (Rhinolophus hipposideros Bechstein, 1800) (Mammalia: Chiroptera) in Belgium. A case study of feeding habitat requirements. Belgian J. Zool. 132, 49–54 (2002).Castro, E. B. Los bosques ibéricos: una interpretación geobotánica. (GeoPlaneta, Editorial, SA, 1997).Ozanne, C. M. P. A comparison of the canopy arthropod communities of coniferous and broad-leaved trees in the United Kingdom. Selbyana 20, 290–298 (1999).Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117, 935–943 (2008).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    Lisón, F. & Sánchez-Fernández, D. Low effectiveness of the Natura 2000 network in preventing land-use change in bat hotspots. Biodivers. Conserv. 26, 1989–2006 (2017).
    Google Scholar 
    Gillespie, T. W. & Walter, H. Distribution of bird species richness at a regional scale in tropical dry forest of central America. J. Biogeogr. 28, 651–662 (2001).
    Google Scholar 
    O’Brien, M. J. et al. Tree diversity drives diversity of arthropod herbivores, but successional stage mediates detritivores. Ecol. Evol. 7, 8753–8760 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment. Oecologia 183, 455–467 (2017).ADS 
    PubMed 

    Google Scholar 
    Naďo, L. et al. Highly selective roosting of the giant noctule bat and its astonishing foraging activity by GPS tracking in a mountain environment. Mammal Res. 64, 587–594 (2019).
    Google Scholar 
    Begehold, H., Rzanny, M. & Flade, M. Forest development phases as an integrating tool to describe habitat preferences of breeding birds in lowland beech forests. J. Ornithol. 156, 19–29 (2015).
    Google Scholar 
    Hayes, J. P. Presence, relative abundance, and resource selection of bats in managed forest landscapes in western Oregon. vol. 53 (Oregon State University, 2007).Mortimer, G. Foraging, roosting and survival of natterer’s bats, Myotis nattereri, in a commercial coniferous plantation. (University of St Andrews, 2006).Kirkpatrick, L. et al. Bat use of commercial coniferous plantations at multiple spatial scales: Management and conservation implications. Biol. Conserv. 206, 1–10 (2017).
    Google Scholar 
    Napal, M. & Ibanez, C. Murcielagos y Bosques. in Manual de conservación y seguimiento de los quirópteros forestales (eds. Guixé, D. & Camprodon, J.) (Organismo Autónomo Parques Nacionales. Ministerio para la Transición Ecológica, 2018).Sleep, D. J. H. & Brigham, R. M. An experimental test of clutter tolerance in bats. J. Mammal. 84, 216–224 (2003).
    Google Scholar 
    Fukui, D., Murakami, M., Nakano, S. & Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 75, 1252–1258 (2006).PubMed 

    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).
    Google Scholar 
    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. 108, 1474–1478 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rebelo, H., Tarroso, P. & Jones, G. Predicted impact of climate change on european bats in relation to their biogeographic patterns. Glob. Chang. Biol. 16, 561–576 (2010).ADS 

    Google Scholar 
    Amorim, F., Carvalho, S. B., Honrado, J. & Rebelo, H. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: A case study with bats in the North of Portugal. PLoS ONE 9, 1 (2014).
    Google Scholar 
    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Google Scholar 
    Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change—is non-management an option?. Ann. For. Sci. 76, 1–13 (2019).
    Google Scholar 
    Morán-Ordóñez, A. et al. Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosyst. Serv. 45, 1 (2020).
    Google Scholar 
    Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics. (2020). More

  • in

    Global predictions of coral reef dissolution in the Anthropocene

    Albright, R. et al. Reversal of ocean acidification enhances net coral reef calcification. Nature 531, 362–365 (2016).CAS 
    Article 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).CAS 
    Article 

    Google Scholar 
    Davis, K. L., Colefax, A. P., Tucker, J. P., Kelaher, B. P. & Santos, I. R. Global coral reef ecosystems exhibit declining calcification and increasing primary productivity. Commun. Earth Environ. 2, 1–10 (2021).Article 

    Google Scholar 
    Silverman, J., Lazar, B., Cao, L., Caldeira, K. & Erez, J. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys. Res. Lett. 36, L05606 (2009).Anthony, K. R. N., Kleypas, J. A. & Gattuso, J. P. Coral reefs modify their seawater carbon chemistry – implications for impacts of ocean acidification. Global Change Biol. 17, 3655–3666 (2011).Article 

    Google Scholar 
    Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).CAS 
    Article 

    Google Scholar 
    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010).CAS 
    Article 

    Google Scholar 
    Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA=0.4-4.6) and temperature (10, 25˚C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Ac 192, 318–337 (2016).CAS 
    Article 

    Google Scholar 
    Kornder, N. A., Riegl, B. M. & Figueiredo, J. Thresholds and drivers of coral calcification responses to climate change. Global Change Biol. 24, 5084–5095 (2018).Article 

    Google Scholar 
    Cyronak, T., Schulz, K. G. & Jokiel, P. L. The Omega myth: what really drives lower calcification rates in an acidifying ocean. Ices J Mar Sci 73, 558–562 (2016).Article 

    Google Scholar 
    Davis, K. L., McMahon, A., Kelaher, B., Shaw, E. & Santos, I. R. Fifty years of sporadic coral reef calcification estimates at One Tree Island, Great Barrier Reef: is it enough to imply long term trends? Front Marine Sci 6, 00282 (2019).Cyronak, T. et al. Taking the metabolic pulse of the world’s coral reefs. PLoS One 13, e0190872 (2018).Article 

    Google Scholar 
    Kinsey, D. W. Carbon turnover and accumulation by coral reefs, (University of Hawaii, 1979).Barnes, D. J. Profiling coral reef productivity and calcification using pH and oxygen electrodes. J. Exp. Mar. Biol. Ecol. 66, 149–161 (1983).CAS 
    Article 

    Google Scholar 
    Albright, R., Langdon, C. & Anthony, K. R. N. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10, 6747–6758 (2013).CAS 
    Article 

    Google Scholar 
    Silverman, J. et al. Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective. Geochim. Cosmochim. Ac 144, 72–81 (2014).CAS 
    Article 

    Google Scholar 
    Pichon, M. & Morrissey, J. Benthic zonation and community structure of South Island Reef, Lizard Island (Great Barrier Reef). B. Mar. Sci. 31, 581–593 (1981).
    Google Scholar 
    SCU. Declining growth rates of global coral reef ecosystems, Southern Cross University, June 2021. https://www.scu.edu.au/engage/news/latest-news/2021/declining-growth-rates-of-global-coral-reef-ecosystems.php (2021).Andersson, A. J., Yeakel, K. L., Bates, N. R. & de Putron, S. J. Partial offsets in ocean acidification from changing coral reef biogeochemistry. Nat. Clim. Change 4, 56–61 (2014).CAS 
    Article 

    Google Scholar 
    Kapsenberg, L. & Cyronak, T. Ocean acidification refugia in variable environments. Global Change Biol. 25, 3201–3214 (2019).Article 

    Google Scholar 
    Cvitanovic, C. & Hobday, A. J. Building optimism at the environmental science-policy-practice interface through the study of bright spots. Nat. Commun. 9, 1–5 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine

    de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P. & Schjoerring, J. K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229, 2446–2469 (2021).PubMed 

    Google Scholar 
    White, P. J. & Brown, P. H. Plant nutrition for sustainable development and global health. Ann. Bot. 105, 1073–1080 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirschi, K. D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 136, 2438–2444 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hepler, P. K. Calcium: A central regulator of plant growth and development. Plant Cell 17, 2142–2155 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, 2011).
    Google Scholar 
    Jones, R. J. W. & Lunt, O. R. The function of calcium in plants. Bot. Rev. 33, 407–426 (1967).CAS 

    Google Scholar 
    White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spehar, C. R. & Galwey, N. W. Screening soya beans [Glycine max (L.) Merill] for calcium efficiency by root growth in low-Ca nutrient solution. Euphytica 94, 113–117 (1997).
    Google Scholar 
    Schulte-Baukloh, C. & Fromm, J. The effect of calcium starvation on assimilate partitioning and mineral distribution of the phloem. J. Exp. Bot. 44, 1703–1707 (1993).CAS 

    Google Scholar 
    Duan, S. et al. Differential regulation of enzyme activities and physio-anatomical aspects of calcium nutrition in grapevine. Sci. Hortic. 272, 109423 (2020).CAS 

    Google Scholar 
    Bondada, B. & Syvertsen, J. P. Leaf chlorophyll, net gas exchange, and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiol. 23, 553–559 (2003).CAS 
    PubMed 

    Google Scholar 
    Wind, C., Arend, M. & Fromm, J. Potassium-dependent cambial growth in poplar. Plant Biol. 6, 30–37 (2004).CAS 
    PubMed 

    Google Scholar 
    Kirkby, E. A. & Pilbeam, D. J. Calcium as a plant nutrient. Plant Cell Environ. 7, 397–405 (1984).CAS 

    Google Scholar 
    Song, W.-P., Chen, W., Yi, J.-W., Wang, H.-C. & Huang, X.-M. Ca distribution pattern in Litchi fruit and pedicel and impact of Ca channel inhibitor, La3+. Front. Plant Sci. 8, 2228. https://doi.org/10.3389/fpls.2017.02228 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conn, S. & Gilliham, M. Comparative physiology of elemental distributions in plants. Ann. Bot. 105, 1081–1102 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Broadley, M. R. et al. Variation in the shoot calcium content of angiosperms. J. Exp. Bot. 54, 1431–1446 (2003).CAS 
    PubMed 

    Google Scholar 
    Shikanai, Y. et al. Arabidopsis thaliana PRL1 is involved in low-calcium tolerance. Soil Sci. Plant Nutr. 61, 951–956 (2015).CAS 

    Google Scholar 
    Burstrom, H. G. Calcium and plant growth. Biol. Rev. 43, 287–316 (1968).CAS 

    Google Scholar 
    Hecht-Buchholz, Ch. Calcium deficiency and plant ultrastructure. Commun. Soil Sci. Plant Anal. 10, 67–81 (1979).CAS 

    Google Scholar 
    Fink, S. D. The micromorphological distribution of bound calcium in needles of Norway spruce [Picea abies (L.) Karst.]. New Phytol. 119, 33–40 (1991).CAS 
    PubMed 

    Google Scholar 
    Skok, J. Effect of the form of the available nitrogen on the calcium deficiency symptoms in the bean plant. Plant Physiol. 16, 145–157 (1941).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Aguiar Santiago, F. L., Santiago, F. E. M., Filho, J. F. L. & Ratke, R. F. Plant growth and symptomatology of macronutrient deficiencies in cowpea plants. Comun. Sci. 9, 503–508 (2018).
    Google Scholar 
    Gao, H., Wu, X., Zorrilla, C., Vega, S. E. & Palta, J. P. Fractionating of calcium in tuber and leaf tissues explains the calcium deficiency symptoms in potato plant overexpressing CAX1. Front. Plant Sci. 10, 1793. https://doi.org/10.3389/fpls.2019.01793 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapman, H. D. Calcium. In Diagnostic Criteria for Plants and Soil (ed. Chapman, H. D.) 65–93 (University of California Press, 1966).
    Google Scholar 
    Bondada, B., Harbertson, E., Shrestha, P. M. & Keller, M. Temporal extension of ripening beyond its physiological limits imposes physical and osmotic challenges perturbing metabolism in grape (Vitis vinifera L.) berries. Sci. Hortic. 219, 135–143 (2017).CAS 

    Google Scholar 
    Robertson, D. Modulating plant calcium for better nutrition and stress tolerance. ISRN Bot. 2013, 952043 (2013).
    Google Scholar 
    Martins, T. V., Evans, M. J., Woolfenden, H. C. & Morris, R. J. Towards the physics of calcium signaling in plants. Plants 2, 541–588 (2013).CAS 
    PubMed 

    Google Scholar 
    Gupta, B. L. & Hall, T. A. Electron probe X-ray analysis of calcium. Ann. N.Y. Acad. Sci. 307, 28–51 (1978).CAS 
    ADS 

    Google Scholar 
    Ramalho, J. C., Rebelo, M. C., Santos, M. E., Antunes, M. L. & Nunes, M. A. Effects of calcium deficiency on Coffea arabica. Nutrient changes and correlation of calcium levels with some photosynthetic parameters. Plant Soil 172, 87–96 (1995).
    Google Scholar 
    Liu, Y., Riaz, M., Yan, L., Zeng, Y. & Cuncang, J. Boron and calcium deficiency disturbing the growth of trifoliate rootstock seedlings (Poncirus trifoliate L.) by changing root architecture and cell wall. Plant Physiol. Biochem. 144, 345–354 (2019).CAS 
    PubMed 

    Google Scholar 
    Bondada, B., Oosterhuis, D. M., Wullschleger, S. D., Kim, K. S. & Harris, W. H. Anatomical considerations related to photosynthesis in cotton (Gossypium hirsutum L.) leaves, bracts, and the capsule wall. J. Exp. Bot. 270, 111–118 (1994).
    Google Scholar 
    Bondada, B. & Syvertsen, J. P. Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves. Environ. Exp. Bot. 54, 41–48 (2005).CAS 

    Google Scholar 
    Atkinson, C. J., Mansfield, T. A., Kean, A. M. & Davies, W. J. Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. New Phytol. 111, 9–17 (1989).CAS 

    Google Scholar 
    Martinez, H. E. P. et al. Leaf and stem anatomy of cherry tomato under calcium and magnesium deficiencies. Braz. Arch. Biol. Technol. 63, e20180670 (2020).CAS 

    Google Scholar 
    Bondada, B. Anomalies in structure, growth characteristics, and nutritional composition as induced by 2, 4-D drift phytotoxicity in grapevine (Vitis vinifera L.) leaves and clusters. J. Am. Soc. Hortic. Sci. 136, 165–176 (2011).CAS 

    Google Scholar 
    Bondada, B. Micromorpho-anatomical examination of 2, 4-D phytotoxicity in grapevine (Vitis vinifera L.) leaves. J. Plant Growth Regul. 30, 185–198 (2011).CAS 

    Google Scholar 
    Finger, A. T., de Bastos, A. A., Ferrarese-Filho, O. & Lucio, F. M. L. Role of calcium on phenolic compounds and enzymes related to lignification in soybean (Glycine max L.) root growth. Plant Growth Regul. 49, 69–76 (2006).
    Google Scholar 
    Davis, D. E. Some effects of calcium deficiency on the anatomy of Pinus taeda. Am. J. Bot. 36, 276–282 (1949).CAS 

    Google Scholar 
    Nightingale, G. T., Addoms, R. M., Robbins, W. R. & Schemerhorn, L. G. Effect of calcium deficiency on nitrate absorption and on metabolism in tomato. Plant Physiol. 6, 605–630 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Day, D. Some chemical aspects of calcium deficiency effects on Pisum sativum. Plant Physiol. 10, 811–816 (1935).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lautner, S. & Fromm, J. Calcium-dependent physiological processes in trees. Plant Biol. 12, 268–274 (2010).CAS 
    PubMed 

    Google Scholar 
    Fromm, J. Wood formation in trees in relation to calcium and potassium nutrition. Tree Physiol. 30, 1140–1147 (2010).CAS 
    PubMed 

    Google Scholar 
    Bondada, B. Technical Advance: Novel, simple, fast, and safe approaches to visualizing fine cellular structures in free-hand sections of stem, leaf, and fruit using optical microscopy. Curr. Bot. 3, 11–22 (2012).
    Google Scholar 
    Venning, F. D. The influence of major mineral nutrient deficiencies on growth and tissue differentiation in the hypocotyl of marglobe tomato. Phytomorphology 3, 315–326 (1953).CAS 

    Google Scholar 
    Garrison, R. The growth and development of internodes in Helianthus. Bot. Gaz. 134, 246–255 (1973).
    Google Scholar 
    Sai, J. & Johnson, C. H. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14, 1279–1291 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Dingenen, J., Blomme, J., Gonzalez, N. & Inzé, D. Plants grow with a little help from their organelle friends. J. Exp. Bot. 67, 6267–6281 (2016).PubMed 

    Google Scholar 
    Bondada, B. & Oosterhuis, D. M. Morphometric analysis of chloroplasts of cotton leaf and fruiting organs. Biol. Plant. 47, 281–284 (2003).
    Google Scholar 
    Hall, J. D., Barr, R., Al-Abbas, A. H. & Crane, F. L. The Ultrastructure of chloroplasts in mineral-deficient maize leaves. Plant Physiol. 50, 404–409 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larcher, W., Lütz, C., Nagele, M. & Bodner, M. Photosynthetic functioning and ultrastructure of chloroplasts in stem tissue of Fagus sylvatica. J. Plant Physiol. 132, 731–737 (1988).CAS 

    Google Scholar 
    Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C. & Loose, M. Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften 89, 147–162 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Day, D. Some effects of calcium deficiency on Pisum sativum. Plant Physiol. 4, 493–506 (1929).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rangnekar, P. Effect of calcium deficiency in the carbon metabolisms in photosynthesis and respiration in tomato leaf. Plant Soil 42, 565–583 (1975).CAS 

    Google Scholar 
    Rorison, I. H. & Robinson, D. Calcium as an environmental variable. Plant Cell Environ. 7, 381–390 (1984).CAS 

    Google Scholar 
    Epstein, E. Mineral Nutrition of Plants. Principles and Perspectives (Wiley, 1972).
    Google Scholar 
    Adhikari, T., Sarkar, D., Mashayekhi, H. & Xing, B. Growth and enzymatic activity of maize (Zea mays L.) plant: Solution culture test for copper dioxide nano particles. J. Plant Nutr. 39, 99–115 (2016).CAS 

    Google Scholar 
    Wu, X. et al. Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Front. Plant Sci. 8, 1882. https://doi.org/10.3389/fpls.2017.01882 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloret, P. G. & Casero, P. J. Lateral root initiation. In Plant Roots: The Hidden Half (eds Waisel, Y. et al.) 198–241 (Marcel Dekker Inc, 2002).
    Google Scholar 
    Lynch, J. P. & Brown, K. M. Topsoil foraging: An architectural adaptation of plants to low phosphorus availability. Plant Soil 237, 225–237 (2001).CAS 

    Google Scholar 
    Mazen, A. M. A., Zhang, D. & Franceschi, V. R. Calcium oxalate formation in Lemna minor L.: Physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol. 161, 435–448 (2003).
    Google Scholar 
    Xie, Z. S., Forney, C. F., Xu, W. P. & Wang, S. P. Effects of root restriction on ultrastructural variation of phloem and phloem parenchyma cells in grape berry. Hortic. Sci. 44, 1334–1339 (2009).
    Google Scholar 
    Franceschi, V. R. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148, 130–139 (1989).
    Google Scholar 
    Volk, G. M., Lynch-Holm, V. J., Kostman, T. A., Goss, L. J. & Francesch, V. R. The Role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol. 4, 34–45 (2002).CAS 

    Google Scholar 
    Cherel, I., Lefoulon, C., Boeglin, M. & Sentenac, H. Molecular mechanisms involved in plant adaptation to low K(+) availability. J. Exp. Bot. 65, 833–848 (2014).CAS 
    PubMed 

    Google Scholar 
    Poni, S. & Intrieri, C. Grapevine photosynthesis: effects linked to light radiation and leaf age. Adv. Hortic. Sci. 15, 5–15 (2001).
    Google Scholar 
    Zhu, L., Wang, S., Yang, T., Zhang, C. & Xu, W. Vine growth and nitrogen metabolism of ‘Fujiminori’ grapevines in response to root restriction. Sci. Hortic. 107, 143–149 (2006).
    Google Scholar 
    Schichnes, D., Nemson, J., Sohlberg, L. & Ruzin, S. E. Microwave protocols for paraffin microtechnique and in situ localization in plants. Microsc. Microanal. 4, 491–496 (1998).CAS 
    PubMed 
    ADS 

    Google Scholar  More

  • in

    Bifidobacterium castoris strains isolated from wild mice show evidence of frequent host switching and diverse carbohydrate metabolism potential

    Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol. 2011;149:37–44.CAS 
    PubMed 

    Google Scholar 
    O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7:925.PubMed 
    PubMed Central 

    Google Scholar 
    Ferrario C, Milani C, Mancabelli L, Lugli GA, Duranti S, Mangifesta M, et al. Modulation of the eps-ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiol Ecol. 2016;92:fiw056.PubMed 

    Google Scholar 
    Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020;48:D9–D16.CAS 
    PubMed 

    Google Scholar 
    Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, et al. Comparative genomics of the genus Bifidobacterium. Microbiology. 2010;156:3243–54.CAS 
    PubMed 

    Google Scholar 
    Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol. 2014;5:437.PubMed 
    PubMed Central 

    Google Scholar 
    Bottacini F, Motherway MO, Kuczynski J, O’Connell KJ, Serafini F, Duranti S, et al. Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics. 2014;15:170.PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol. 2014;80:6290–302.PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep. 2015;5:15782.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, et al. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol. 2016;82:980–91.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O’Dwyer JP, Sharpton TJ. Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota. mBio. 2018;9:e01348–18.PubMed 
    PubMed Central 

    Google Scholar 
    Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200.PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone CA, Hamady M, Cantarel BL, Coutinho PM, Henrissat B, Gordon JI, et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci USA. 2008;105:15076–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006;103:15611–6.PubMed 
    PubMed Central 

    Google Scholar 
    Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362:453–7.CAS 
    PubMed 

    Google Scholar 
    Browne HP, Almeida A, Kumar N, Vervier K, Adoum AT, Viciani E, et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered colonisation patterns. 2020. https://www.biorxiv.org/content/10.1101/2020.09.09.289504v1.Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki TA. Links between natural variation in the microbiome and host fitness in wild mammals. Integr Comp Biol. 2017;57:756–69.CAS 
    PubMed 

    Google Scholar 
    McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lugli GA, Alessandri G, Milani C, Mancabelli L, Ruiz L, Fontana F, et al. Evolutionary development and co-phylogeny of primate-associated bifidobacteria. Environ Microbiol. 2020;22:3375–93.PubMed 

    Google Scholar 
    Lugli GA, Mancino W, Milani C, Duranti S, Mancabelli L, Napoli S, et al. Dissecting the evolutionary development of the species Bifidobacterium animalis through comparative genomics analyses. Appl Environ Microbiol. 2019;85:e02806–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lugli GA, Duranti S, Albert K, Mancabelli L, Napoli S, Viappiani A, et al. Unveiling genomic diversity among members of the species Bifidobacterium pseudolongum, a widely distributed gut commensal of the animal kingdom. Appl Environ Microbiol. 2019;85:e03065–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Mangifesta M, Mancabelli L, Lugli GA, James K, Duranti S, et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 2017;11:2834–47.PubMed 
    PubMed Central 

    Google Scholar 
    Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Vliet S, Doebeli M. The role of multilevel selection in host microbiome evolution. Proc Natl Acad Sci USA. 2019;116:20591–7.PubMed 
    PubMed Central 

    Google Scholar 
    Groussin M, Mazel F, Alm EJ. Co-evolution and co-speciation of host-gut bacteria systems. Cell Host Microbe. 2020;28:12–22.CAS 
    PubMed 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Firek B, Baker R, Burstein D, et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 2017;27:601–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duranti S, Lugli GA, Napoli S, Anzalone R, Milani C, Mancabelli L, et al. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int J Syst Evol Microbiol. 2019;69:1288–98.CAS 
    PubMed 

    Google Scholar 
    Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M, Turroni F, et al. Tracking the taxonomy of the genus Bifidobacterium based on a phylogenomic approach. Appl Environ Microbiol. 2017;84:e02249–17.
    Google Scholar 
    Snel B, Bork P, Huynen MA. Genome phylogeny based on gene content. Nat Genet. 1999;21:108–10.CAS 
    PubMed 

    Google Scholar 
    Dutilh BE, Huynen MA, Bruno WJ, Snel B. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J Mol Evol. 2004;58:527–39.CAS 
    PubMed 

    Google Scholar 
    Legendre P, Desdevises Y, Bazin E. A statistical test for host-parasite coevolution. Syst Biol. 2002;51:217–34.PubMed 

    Google Scholar 
    Michaux JR, Chevret P, Filippucci MG, Macholan M. Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Mol Phylogenet Evol. 2002;23:123–36.CAS 
    PubMed 

    Google Scholar 
    Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.CAS 
    PubMed 

    Google Scholar 
    Van Den Broek LAM, Voragen AGJ. Bifidobacterium glycoside hydrolases and (potential) prebiotics. Innov Food Sci Emerg Technol 2008;9:401–7.
    Google Scholar 
    Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6:285–306.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez CI, Martiny JBH. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genomics. 2020;21:26.PubMed 
    PubMed Central 

    Google Scholar 
    Henrissat B, Davies GJ. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000;124:1515–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel. 2006;19:555–62.CAS 
    PubMed 

    Google Scholar 
    Miyazaki T, Ishizaki Y, Ichikawa M, Nishikawa A, Tonozuka T. Structural and biochemical characterization of novel bacterial alpha-galactosidases belonging to glycoside hydrolase family 31. Biochem J. 2015;469:145–58.CAS 
    PubMed 

    Google Scholar 
    Hachem MA, Fredslund F, Andersen JM, Jonsgaard Larsen R, Majumder A, Ejby M, et al. Raffinose family oligosaccharide utilisation by probiotic bacteria: insight into substrate recognition, molecular architecture and diversity of GH36 α-galactosidases. Biocatal Biotransform. 2012;30:316–25.CAS 

    Google Scholar 
    Kujawska M, La Rosa SL, Roger LC, Pope PB, Hoyles L, McCartney AL, et al. Succession of Bifidobacterium longum strains in response to a changing early life nutritional environment reveals dietary substrate adaptations. iScience. 2020;23:101368.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu H, Ren W, Ly M, Li H, Wang S. Characterization of an alkaline GH49 dextranase from marine bacterium Arthrobacter oxydans KQ11 and its application in the preparation of isomalto-oligosaccharide. Mar Drugs. 2019;17:479.CAS 
    PubMed Central 

    Google Scholar 
    Michlmayr H, Hell J, Lorenz C, Bohmdorfer S, Rosenau T, Kneifel W. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl Environ Microbiol. 2013;79:6747–54.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T. Characterization of a novel beta-l-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J Biol Chem. 2014;289:5240–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viens P, Lacombe-Harvey ME, Brzezinski R. Chitosanases from Family 46 of glycoside hydrolases: from proteins to phenotypes. Mar Drugs. 2015;13:6566–87.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, et al. Bifidobacterium longum subsp. infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol. 2012;78:795–803.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp longum SC596. Sci Rep-Uk. 2016;6:35045.CAS 

    Google Scholar 
    Kitaoka M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv Nutr. 2012;3:422S–9S.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H, Yamamoto K. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology. 2011;21:437–47.CAS 
    PubMed 

    Google Scholar 
    Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology. 2006;16:29R–37R.CAS 
    PubMed 

    Google Scholar 
    Hidalgo-Cantabrana C, Sanchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol. 2014;80:9–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.CAS 
    PubMed 

    Google Scholar 
    Lavrinienko A, Tukalenko E, Mousseau TA, Thompson LR, Knight R, Mappes T, et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. Sci Data. 2020;7:312.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baumler A, Fang FC. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med. 2013;3:a010041.PubMed 
    PubMed Central 

    Google Scholar 
    Glazko GV, Nei M. Estimation of divergence times for major lineages of primate species. Mol Biol Evol. 2003;20:424–34.CAS 
    PubMed 

    Google Scholar 
    Milton K. The critical role played by animal source foods in human (Homo) evolution. J Nutr. 2003;133:3886S–92S.CAS 
    PubMed 

    Google Scholar 
    Renaud S, Michaux J, Schmidt DN, Aguilar JP, Mein P, Auffray JC. Morphological evolution, ecological diversification and climate change in rodents. Proc Biol Sci. 2005;272:609–17.PubMed 
    PubMed Central 

    Google Scholar 
    Michaux JR, Libois R, Filipucci M-G. So close and so different: comparative phylogeography of two small mammal species, the Yellow-necked fieldmouse (Apodemus flavicollis) and the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity. 2005;94:52–63.CAS 
    PubMed 

    Google Scholar 
    Ge D, Feijó A, Cheng J, Lu L, Liu R, Abramov AV, et al. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool J Linn Soc. 2019;187:5188–534.
    Google Scholar 
    Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res. 2013;23:1715–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knowles SCL, Eccles RM, Baltrunaite L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.CAS 
    PubMed 

    Google Scholar 
    Watts CHS. The foods eaten by wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) in Wytham Woods, Berkshire. J Anim Ecol. 1968;37:25–41.
    Google Scholar 
    Abt KF, Bock WF. Seasonal variations of diet composition in farmland field mice Apodemus spp. and bank voles Clethrionomys glareolus. Acta Theriol. 1998;43:379–89.
    Google Scholar 
    Rogers LM, Gorman ML. The diet of the wood mouse Apodemus sylvaticus on set‐aside land. J Zool. 1995;235:77–83.
    Google Scholar 
    Van Laere KM, Beldman G, Voragen AG. A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Appl Microbiol Biotechnol. 1997;47:231–5.PubMed 

    Google Scholar 
    Margolles A, de los Reyes-Gavilan CG. Purification and functional characterization of a novel alpha-L-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol. 2003;69:5096–103.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. Substrate specificity of three recombinant alpha-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem Biophys Res Commun. 2010;402:644–50.CAS 
    PubMed 

    Google Scholar 
    Ito T, Saikawa K, Kim S, Fujita K, Ishiwata A, Kaeothip S, et al. Crystal structure of glycoside hydrolase family 127 beta-l-arabinofuranosidase from Bifidobacterium longum. Biochem Biophys Res Commun. 2014;447:32–7.CAS 
    PubMed 

    Google Scholar 
    Kataržytė M, Kutorga E. Small mammal mycophagy in hemiboreal forest communities of Lithuania. Central Eur J Biol. 2011;6:446–56.
    Google Scholar 
    Lee HW, Park YS, Jung JS, Shin WS. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe. 2002;8:319–24.PubMed 

    Google Scholar 
    Vernazza CL, Gibson GR, Rastall RA. In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohyd Polym. 2005;60:539–45.CAS 

    Google Scholar 
    Yang CM, Ferket PR, Hong QH, Zhou J, Cao GT, Zhou L, et al. Effect of chito-oligosaccharide on growth performance, intestinal barrier function, intestinal morphology and cecal microflora in weaned pigs. J Anim Sci. 2012;90:2671–6.CAS 
    PubMed 

    Google Scholar 
    Zhang C, Jiao S, Wang ZA, Du Y. Exploring effects of chitosan oligosaccharides on mice gut microbiota in in vitro fermentation and animal model. Front Microbiol. 2018;9:2388.PubMed 
    PubMed Central 

    Google Scholar 
    Wu J, Zhang L. Dissolution behavior and conformation change of chitosan in concentrated chitosan hydrochloric acid solution and comparison with dilute and semidilute solutions. Int J Biol Macromol. 2019;121:1101–8.CAS 
    PubMed 

    Google Scholar 
    Costa CN, Teixeira VG, Delpech MC, Souza JV, Costa MA. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr Polym. 2015;133:245–50.CAS 
    PubMed 

    Google Scholar 
    Kiu R, Treveil A, Harnisch LC, Caim S, Leclaire C, van Sinderen D, et al. Bifidobacterium breve UCC2003 induces a distinct global transcriptomic program in neonatal murine intestinal epithelial cells. iScience. 2020;23:101336.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes KR, Harnisch LC, Alcon-Giner C, Mitra S, Wright CJ, Ketskemety J, et al. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner. Open Biol. 2017;7:160155.Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA. 2012;109:2108–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roca C, Alves VD, Freitas F, Reis MA. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiol. 2015;6:288.PubMed 
    PubMed Central 

    Google Scholar 
    Balzaretti S, Taverniti V, Guglielmetti S, Fiore W, Minuzzo M, Ngo HN, et al. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl Environ Microbiol. 2017;83:e02702–16.PubMed 
    PubMed Central 

    Google Scholar 
    Stradiotto A, Cagnacci F, Delahay R, Tioli S, Nieder L, Rizzoli A. Spatial organization of the yellow-necked mouse: effects of density and resource availability. J Mammal. 2009;90:704–14.
    Google Scholar 
    Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.PubMed 
    PubMed Central 

    Google Scholar 
    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i90.PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 

    Google Scholar 
    Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18:691–9.CAS 
    PubMed 

    Google Scholar 
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.CAS 
    PubMed 

    Google Scholar 
    Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.
    Google Scholar 
    Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGillin D, et al. vegan: community ecology package. R package version 25-6. 2019. https://CRAN.R-project.org/package=vegan.De Caceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos. 2010;119:1674–84.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.PubMed 
    PubMed Central 

    Google Scholar 
    Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, et al. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics. 2006;7:142.PubMed 
    PubMed Central 

    Google Scholar 
    Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal

    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811. https://doi.org/10.1038/ncomms14811 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, F. E. G. Concomitant infections, parasites and immune responses. Parasitology 122, S23–S38. https://doi.org/10.1017/S003118200001698X (2001).Article 
    PubMed 

    Google Scholar 
    Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: Implications for vaccine design. Nat. Rev. Immunol. 8, 247–258. https://doi.org/10.1038/nri2274 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P. & French, S. S. Beyond phytohaemagglutinin: Assessing vertebrate immune function across ecological contexts. J. Anim. Ecol. 80, 710–730. https://doi.org/10.1111/j.1365-2656.2011.01813.x (2011).Article 
    PubMed 

    Google Scholar 
    Pedersen, A. B. & Babayan, S. A. Wild immunology. Mol. Ecol. 20, 872–880. https://doi.org/10.1111/j.1365-294X.2010.04938.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abolins, S. et al. The ecology of immune state in a wild mammal, Mus musculus domesticus. PLoS Biol. 16, e2003538. https://doi.org/10.1371/journal.pbio.2003538 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O. Helminth–microparasite co-infection in wildlife: Lessons from ruminants, rodents and rabbits. Parasite Immunol. 38, 527–534. https://doi.org/10.1111/pim.12348 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Craig, B. H., Tempest, L. J., Pilkington, J. G. & Pemberton, J. M. Metazoan-protozoan parasite co-infections and host body weight in St Kilda Soay sheep. Parasitology 135, 433–441. https://doi.org/10.1017/S0031182008004137 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Graham, A. L. et al. Exposure to viral and bacterial pathogens among Soay sheep (Ovis aries) of the St Kilda archipelago. Epidemiol. Infect. 144, 1879–1888. https://doi.org/10.1017/S0950268816000017 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Murphy, K., Travers, P., Walport, M. & Janeway, C. Janeway’s Immunobiology (Garland Science, 2012).
    Google Scholar 
    Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173. https://doi.org/10.1146/annurev.iy.07.040189.001045 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nakayamada, S., Takahashi, H., Kanno, Y. & O’Shea, J. J. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24, 297–302. https://doi.org/10.1016/j.coi.2012.01.014 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230. https://doi.org/10.1038/nature16527 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jain, A. & Pasare, C. Innate control of adaptive immunity: Beyond the three-signal paradigm. J. Immunol. (Baltimore, Md.: 1950) 198, 3791–3800. https://doi.org/10.4049/jimmunol.1602000 (2017).CAS 
    Article 

    Google Scholar 
    Schmitt, N. & Ueno, H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 34, 130–136. https://doi.org/10.1016/j.coi.2015.03.007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793. https://doi.org/10.1038/383787a0 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673. https://doi.org/10.1146/annurev.iy.12.040194.003223 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grencis, R. K. Immunity to helminths: Resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu. Rev. Immunol. 33, 201–225. https://doi.org/10.1146/annurev-immunol-032713-120218 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    O’Garra, A. & Robinson, D. In Advances in Immunology vol. 83 133–162 (Academic Press, 2004).Pereira, L. M. S., Gomes, S. T. M., Ishak, R. & Vallinoto, A. C. R. Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis. Front. Immunol. https://doi.org/10.3389/fimmu.2017.00605 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 85, 9–21. https://doi.org/10.1016/S1081-1206(10)62426-X (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sandquist, I. & Kolls, J. Update on regulation and effector functions of Th17 cells. F1000Res 7, 205–205. https://doi.org/10.12688/f1000research.13020.1 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544. https://doi.org/10.1038/nri.2017.50 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, K., Fenton, A. & Tompkins, D. Wildlife Disease Ecology: Linking Theory to Data and Application (Cambridge University Press, 2019).Book 

    Google Scholar 
    Graham, A. L. Ecological rules governing helminth–microparasite coinfection. PNAS 105, 566–570. https://doi.org/10.1073/pnas.0707221105 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. Hidden consequences of living in a wormy world: Nematode-induced immune suppression facilitates tuberculosis invasion in African Buffalo. Am. Nat. 176, 613–624. https://doi.org/10.1086/656496 (2010).Article 
    PubMed 

    Google Scholar 
    Ezenwa, V. O. & Jolles, A. E. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 347, 175–177. https://doi.org/10.1126/science.1261714%JScience (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Arriero, E. et al. From the animal house to the field: Are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?. PLoS One 12, e0183450. https://doi.org/10.1371/journal.pone.0183450 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, J. A. et al. An immunological marker of tolerance to infection in wild rodents. PLoS Biol. 12, e1001901. https://doi.org/10.1371/journal.pbio.1001901 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beirne, C., Delahay, R. & Young, A. Sex differences in senescence: The role of intra-sexual competition in early adulthood. Proc. R. Soc. B. 282, 20151086. https://doi.org/10.1098/rspb.2015.1086 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Young, S. et al. Relationships between immune gene expression and circulating cytokine levels in wild house mice. Ecol. Evol. 10, 13860–13871. https://doi.org/10.1002/ece3.6976 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turner, J. D. et al. Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection. J. Infect. Dis. 188, 1768–1775. https://doi.org/10.1086/379370 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Craig, B. H., Pilkington, J. G., Kruuk, L. E. B. & Pemberton, J. M. Epidemiology of parasitic protozoan infections in Soay sheep (Ovis aries L.) on St Kilda. Parasitology 134, 9–21. https://doi.org/10.1017/S0031182006001144 (2006).Article 
    PubMed 

    Google Scholar 
    Maizels, R. M., Hewitson, J. P. & Smith, K. A. Susceptibility and immunity to helminth parasites. Curr. Opin. Immunol. 24, 459–466. https://doi.org/10.1016/j.coi.2012.06.003 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ozmen, O., Adanir, R. & Haligur, M. Immunohistochemical detection of the cytokine and chemokine expression in the gut of lambs and kids with coccidiosis. Small Rumin. Res. 105, 345–350. https://doi.org/10.1016/j.smallrumres.2011.11.010 (2012).Article 

    Google Scholar 
    Woolhouse, M. E. J. Patterns in parasite epidemiology: The peak shift. Parasitol. Today 14, 428–434. https://doi.org/10.1016/S0169-4758(98)01318-0 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gibson, T. E. & Parfitt, J. W. The effect of age on the development by sheep of resistance to Trichostrongylus colubriformis. Res. Vet. Sci. 13, 529–535 (1972).CAS 
    Article 

    Google Scholar 
    Smith, W. D., Jackson, F., Jackson, E. & Williams, J. Age immunity to Ostertagia circumcincta: Comparison of the local immune responses of 4 1/2- and 10-month-old lambs. J. Comp. Pathol. 95, 235–245. https://doi.org/10.1016/0021-9975(85)90010-6 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: Meta-analysis and outlook. Ecol. Lett. 22, 1709–1722. https://doi.org/10.1111/ele.13343 (2019).Article 
    PubMed 

    Google Scholar 
    Sparks, A. M. et al. Natural selection on antihelminth antibodies in a wild mammal population. Am. Nat. 192, 745–760. https://doi.org/10.1086/700115 (2018).Article 
    PubMed 

    Google Scholar 
    Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298. https://doi.org/10.1126/science.aaw5822%JScience (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Watson, R. L. et al. Cellular and humoral immunity in a wild mammal: Variation with age & sex and association with overwinter survival. Ecol. Evol. 6, 8695–8705. https://doi.org/10.1002/ece3.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennock, N. D. et al. T cell responses: Naive to memory and everything in between. Adv. Physiol. Educ. 37, 273–283. https://doi.org/10.1152/advan.00066.2013 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chipeta, J. et al. CD4+and CD8+Cell cytokine profiles in neonates, older children, and adults: Increasing T helper type 1 and T cytotoxic type 1 cell populations with age. Cell. Immunol. 183, 149–156. https://doi.org/10.1006/cimm.1998.1244 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakata-Kaneko, S., Wakatsuki, Y., Matsunaga, Y., Usui, T. & Kita, T. Altered Th1/Th2 commitment in human CD4+ T cells with ageing. Clin. Exp. Immunol. 120, 267–273. https://doi.org/10.1046/j.1365-2249.2000.01224.x (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duddy, M. E., Alter, A. & Bar-Or, A. Distinct profiles of human B cell effector cytokines: A role in immune regulation?. J. Immunol. (Baltimore, Md.: 1950) 172, 3422–3427. https://doi.org/10.4049/jimmunol.172.6.3422 (2004).CAS 
    Article 

    Google Scholar 
    Varma, T. K., Lin, C. Y., Toliver-Kinsky, T. E. & Sherwood, E. R. Endotoxin-induced gamma interferon production: Contributing cell types and key regulatory factors. Clin. Diagn. Lab. Immunol. 9, 530–543. https://doi.org/10.1128/CDLI.9.3.530-543.2002 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNeilly, T. N. et al. Suppression of ovine lymphocyte activation by Teladorsagia circumcincta larval excretory-secretory products. Vet. Res. 44, 70. https://doi.org/10.1186/1297-9716-44-70 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Restif, O. & Amos, W. The evolution of sex-specific immune defences. Proc. R. Soc. B Biol. Sci. 277, 2247–2255. https://doi.org/10.1098/rspb.2010.0188 (2010).Article 

    Google Scholar 
    Hayward, A. D. et al. Heritable, heterogeneous, and costly resistance of sheep against nematodes and potential feedbacks to epidemiological dynamics. Am. Nat. 184, S58–S76. https://doi.org/10.1086/676929 (2014).Article 
    PubMed 

    Google Scholar 
    Sparks, A. M. et al. The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries). PLoS Genet. 15, e1008461. https://doi.org/10.1371/journal.pgen.1008461 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayward, A. D., Wilson, A. J., Pilkington, J. G., Pemberton, J. M. & Kruuk, L. E. B. Ageing in a variable habitat: Environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proc. R. Soc. B. 276, 3477–3485. https://doi.org/10.1098/rspb.2009.0906 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146. https://doi.org/10.1016/0167-5699(96)80606-2 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hassan, M., Hanrahan, J. P., Good, B., Mulcahy, G. & Sweeney, T. A differential interplay between the expression of Th1/Th2/Treg related cytokine genes in Teladorsagia circumcincta infected DRB1*1101 carrier lambs. Vet. Res. 42, 45. https://doi.org/10.1186/1297-9716-42-45 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noordwijk, A. J. V. & Jong, G. D. Acquisition and allocation of resources: Their influence on variation in life history tactics. Am. Nat. 128, 137–142. https://doi.org/10.1086/284547 (1986).Article 

    Google Scholar 
    Grainger, J. R. et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J. Exp. Med. 207, 2331–2341. https://doi.org/10.1084/jem.20101074 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, K. A. et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 9, 428–443. https://doi.org/10.1038/mi.2015.73 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beirne, C., Waring, L., McDonald, R. A., Delahay, R. & Young, A. Age-related declines in immune response in a wild mammal are unrelated to immune cell telomere length. Proc. R. Soc. B. 283, 20152949. https://doi.org/10.1098/rspb.2015.2949 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zaros, L. G. et al. Response of resistant and susceptible Brazilian Somalis crossbreed sheep naturally infected by Haemonchus contortus. Parasitol. Res. 113, 1155–1161. https://doi.org/10.1007/s00436-014-3753-8 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gossner, A., Wilkie, H., Joshi, A. & Hopkins, J. Exploring the abomasal lymph node transcriptome for genes associated with resistance to the sheep nematode Teladorsagia circumcincta. Vet. Res. 44, 68. https://doi.org/10.1186/1297-9716-44-68 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkie, H., Gossner, A., Bishop, S. & Hopkins, J. Variations in T cell transcription factor sequence and expression associated with resistance to the sheep nematode Teladorsagia circumcincta. PLoS One 11, e0149644. https://doi.org/10.1371/journal.pone.0149644 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J.-M. Measuring senescence in wild animal populations: Towards a longitudinal approach. Funct. Ecol. 22, 393–406. https://doi.org/10.1111/j.1365-2435.2008.01408.x (2008).Article 

    Google Scholar 
    Seguel, M. et al. Immune stability predicts tuberculosis infection risk in a wild mammal. Proc. Biol. Sci. 286, 20191401. https://doi.org/10.1098/rspb.2019.1401 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pemberton, J. M. & Clutton-Brock, T. H. Soay Sheep: Dynamics and Selection in an Island Population (Cambridge University Press, 2004).
    Google Scholar 
    Corripio-Miyar, Y. et al. Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity. Vet. Res. 46, 112. https://doi.org/10.1186/s13567-015-0246-4 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, L. S. et al. Development of an ELISA for bovine IL-10. Vet. Immunol. Immunopathol. 85, 213–223. https://doi.org/10.1016/S0165-2427(02)00007-7 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wattegedera, S. R. et al. Enhancing the toolbox to study IL-17A in cattle and sheep. Vet. Res. 48, 20–20. https://doi.org/10.1186/s13567-017-0426-5 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, F. New technique for obtaining nematode ova from sheep faeces. Lab. Pract. 23, 65–66 (1974).ADS 
    CAS 
    PubMed 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing. Accessed Feb 2020. https://www.R-project.org/ (2019).
    Venables, W. N. & Ripley, B. D. Random and Mixed Effects. In Modern Applied Statistics with S. Statistics and Computing. (2002).Package “corrplot”: visualization of a correlation matrix v. (Version 0.84) (2017).Jari Oksanen, F. et al. vegan: Community Ecology Package. R package version 2.5-6. Accessed Feb 2020. https://CRAN.R-project.org/package=vegan (2019). More

  • in

    Mycorrhizal fungi arbuscular in forage grasses cultivated in Cerrado soil

    Hunke, P., Mueller, E. N., Schröder, B. & Zeilhofer, P. The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8, 1154–1180 (2015).Article 

    Google Scholar 
    Klink, C. a. & Machado, R. B. A conservação do Cerrado brasileiro. Megadiversidade 1, 147–155 (2005).Dutra e Silva, S. Challenging the Environmental History of the Cerrado: Science, Biodiversity and Politics on the Brazilian Agricultural Frontier. LAHAC 1, (2020).Nehring, R. Yield of dreams: Marching west and the politics of scientific knowledge in the Brazilian Agricultural Research Corporation (Embrapa). Geoforum 77, 206–217 (2016).Article 

    Google Scholar 
    Taber, A., Navarro, G. & Arribas, M. A. A new park in the Bolivian Gran Chaco—an advance in tropical dry forest conservation and community-based management. Oryx 31, 189 (1997).Article 

    Google Scholar 
    Moura, de, J. B. & Cabral, J. S. R. Mycorrhiza in Central Savannahs: Cerrado and Caatinga. In Mycorrhizal Fungi in South America. vol. 1 (Springer International Publishing, 2019).de Brito Neves, B. B. & Cordani, U. G. Tectonic evolution of South America during the Late Proterozoic. Precambrian Res. 53, 23–40 (1991).ADS 
    Article 

    Google Scholar 
    Laux, J. H., Pimentel, M. M., Dantas, E. L., Armstrong, R. & Junges, S. L. Two neoproterozoic crustal accretion events in the Brasília belt, central Brazil. J. S. Am. Earth Sci. 18, 183–198 (2005).Article 

    Google Scholar 
    Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS 106, 20359–20364 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Guimarães Andrade, R. et al. Indicativo de pastagens plantadas em processo de degradação no bioma Cerrado. In XVII Simpósio Brasileiro de Sensoriamento Remot 1585–1592 (INPE, 2015).Arruda, A. B. et al. Resistance of soil to penetration as a parameter indicator of subsolation in crop areas of sugar cane. Sci. Rep. 11, 11780 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Bongiorno, G. et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Ind. 99, 38–50 (2019).CAS 
    Article 

    Google Scholar 
    Dias-Filho, M. B. Desafios da produção animal em pastagens na fronteira agrícola brasileira. Embrapa Amazônia Oriental-Documentos (INFOTECA-E) (2012).Andrade Júnior, J. A. D., Ribeiro De Souza, B., Souza, R. F. & de Moura, J. B. Fixação de carbono em sistemas agroecológicos na região do vale do são patrício, goiás carbon sequestration in agroecological systems in the region of the são patrício valley, goiás. Científic@ Multidiscip. J. ISSN 5, 85–98 (2018).Andrade de Souza Moraes, J. M. et al. Arbuscular mycorrhizal fungi in integrated crop livestock systems with intercropping in the pasture phase in the Cerrado. Rhizosphere 11 (2019).Ofstehage, A. & Nehring, R. No-till agriculture and the deception of sustainability in Brazil. Int. J. Agric. Sustain. 19, 335–348 (2021).Article 

    Google Scholar 
    Thomazini, L. I. Mycorrhiza in plants of the ‘Cerrado’. Plant Soil 41, 707–711 (1974).Article 

    Google Scholar 
    Porcel, R. & Ruiz-Lozano, J. M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55, 1743–1750 (2004).CAS 
    Article 

    Google Scholar 
    Moura, de, J. B., Valentim, N. M., Ventura, M. V. A. & Junior, W. G. V. Taxa de colonização micorrízica sob diferentes sistemas de cultivo no cerrado em cana-de-açúcar. 2, 60–66 (2017).Pirozynski, K. A. Interactions between fungi and plants through the ages. Can. J. Bot. 59, 1824–1827 (1981).Article 

    Google Scholar 
    Muthukumar, T., Udaiyan, K. & Shanmughavel, P. Mycorrhiza in sedges—an overview. Mycorrhiza 14, 65–77 (2004).CAS 
    Article 

    Google Scholar 
    Aliasgharzadeh, N., Rastin, S. N., Towfighi, H. & Alizadeh, A. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11, 119–122 (2001).CAS 
    Article 

    Google Scholar 
    Gehring, C. A. & Connell, J. H. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: Occurrence, colonization, and relationships with plant performance. Mycorrhiza 16, 89–98 (2006).Article 

    Google Scholar 
    Vestberg, M. Occurrence of some Glomales in Finland. Mycorrhiza 5, 329–336 (1995).Article 

    Google Scholar 
    Khan, A. G. Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3, 31–38 (1993).Article 

    Google Scholar 
    Braz, S. P., Urquiaga, S., Alves, B. J. R. & Boddey, R. M. Degradação de Pastagens, Matéria Orgânica do Solo e a Recuperação do Potencial Produtivo em Sistemas de Baixo “Input” Tecnológico na Região dos Cerrados (2004).
    Vieira Jr, W. G. et al. Seasonal variation in mycorrhizal community of different cerrado phytophysiomies. Front. Microbiol. 11 (2020).
    Gerdemann, J. W. & Nicolson, T. H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46, 235–244 (1963).Article 

    Google Scholar 
    INVAM. International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi | West Virginia University. (2018).SILVA, F. de A. ASSISTAT: Versão 7.7 beta. (DEAG-CTRN-Universidade Federal de Campina Grande, 2008).Hammer, Ø. Past 3.x—the Past of the Future. (Natural History Museum, University of Oslo, 2018).Cavalcanti, A. C. R., Cavallini, M. C. & Lima, N. R. C. de B. Estresse por Déficit Hídrico em Plantas Forrageiras. 50 https://www.infoteca.cnptia.embrapa.br/bitstream/doc/748148/1/doc89.pdf (2009).Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes, J. L. G. & Sparovek, G. Köppen’s climate classification map for Brazil. Metereol Z 22(6), 711–728 (2014).Article 

    Google Scholar 
    Nicolson, T. H. Vesicular-arbuscular mycorrhiza in the Gramineae. Nature 181, 718–719 (1958).ADS 
    Article 

    Google Scholar 
    Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. Evol. 55, 259–290 (2017).Article 

    Google Scholar 
    Teutscherova, N. et al. Differences in arbuscular mycorrhizal colonization and P acquisition between genotypes of the tropical Brachiaria grasses: Is there a relation with BNI activity?. Biol. Fertil. Soils 55, 325–337 (2019).CAS 
    Article 

    Google Scholar 
    de Miranda, J. C. C. Cerrado: Micorriza Arbuscular, Ocorrência e Manejo. (Embrapa, 2008).Souza, B. R., Moura, J. B., Oliveira, T. C., Ramos, M. L. G. & Lopes Filho, L. C. Arbuscular Mycorrhizal fungi as indicative of soil quality in conservation systems in the region of vale do São Patrício, Goiás. Int. J. Curr. Res. 8, 43307–43311 (2016).
    Google Scholar 
    de Oliveira, T. C. et al. Produtividade da soja em associação ao fungo micorrízico arbuscular Rhizophagus clarus cultivada em condições de campo. Rev. Ciênc. Agrovet. 18, 530–535 (2019).Article 

    Google Scholar 
    Moura, J. B. et al. Arbuscular mycorrhizal fungi associated with bamboo under Cerrado Brazilian vegetation. J. Soil Sci. Plant. Nutr https://doi.org/10.1007/s42729-019-00093-0 (2019).Article 

    Google Scholar 
    Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161 (1970).Article 

    Google Scholar 
    Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500 (1980).Article 

    Google Scholar 
    Promita, D. & Mohan, K. Arbuscular mycorrhizal fungal diversity in sugarcane rhizosphere in relation with soil properties. Notulae Scientia Biologicae 4(1), 66–74 (2012).Aquino, S. D. S. et al. Mycorrhizal colonization and diversity and corn genotype yield in soils of the Cerrado region, Brazil. Semin. Cienc. Agrar. 36, 4107–4117 (2015).Article 

    Google Scholar  More

  • in

    Unpacking the complexity of longitudinal movement and recruitment patterns of facultative amphidromous fish

    Beger, M. et al. Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biol. Cons. 143, 565–575 (2010).Article 

    Google Scholar 
    Roberts, J. H., Angermeier, P. L. & Hallerman, E. M. Distance, dams and drift: What structures populations of an endangered, benthic stream fish?. Freshw. Biol. 58, 2050–2064. https://doi.org/10.1111/fwb.12190 (2013).Article 

    Google Scholar 
    Berejikian, B. A., Campbell, L. A., Moore, M. E. & Grant, J. Large-scale freshwater habitat features influence the degree of anadromy in eight Hood Canal Oncorhynchus mykiss populations. Can. J. Fish. Aquat. Sci. 70, 756–765. https://doi.org/10.1139/cjfas-2012-0491 (2013).Article 

    Google Scholar 
    Falke, J. A. & Fausch, K. D. in American Fisheries Society Symposium. 207–233.Hanski, I. & Simberloff, D. in Metapopulation Biology (eds Ilkka Hanski & Michael E. Gilpin) 5–26 (Academic Press, 1997).Cadrin, S. X., Friedland, K. D. & Waldman, J. R. in Stock Identification Methods (eds Cadrin, S. X., Friedland, K. D. & Waldman, J. R.) 3–6 (Academic Press, 2005).Hughes, J. M., Schmidt, D. J. & Finn, D. S. Genes in streams: Using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59, 573–583 (2009).Article 

    Google Scholar 
    Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).ADS 
    CAS 
    Article 

    Google Scholar 
    McDowall, R. M. The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Rev. Fish Biol. Fish. 7, 443–462. https://doi.org/10.1023/A:1018404331601 (1997).Article 

    Google Scholar 
    Myers, G. S. Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia 89–97, 1949. https://doi.org/10.2307/1438482 (1949).Article 

    Google Scholar 
    Augspurger, J. M., Warburton, M. & Closs, G. P. Life-history plasticity in amphidromous and catadromous fishes: A continuum of strategies. Rev. Fish Biol. Fish. 27, 177–192. https://doi.org/10.1007/s11160-016-9463-9 (2017).Article 

    Google Scholar 
    McDowall, R. On amphidromy, a distinct form of diadromy in aquatic organisms. Fish Fish. 8, 1–13 (2007).Article 

    Google Scholar 
    David, B. O. et al. To sea or not to sea? Multiple lines of evidence reveal the contribution of non-diadromous recruitment for supporting endemic fish populations within New Zealand’s longest river. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1409–1423. https://doi.org/10.1002/aqc.3022 (2019).Article 

    Google Scholar 
    Delgado, L. et al. Genomic basis of the loss of diadromy in Galaxias maculatus: Insights from reciprocal transplant experiments. Mol. Ecol. 29, 4857–4870. https://doi.org/10.1111/mec.15686 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Closs, G. P., Hicks, A. S. & Jellyman, P. G. Life histories of closely related amphidromous and non-migratory fish species: A trade-off between egg size and fecundity. Freshw. Biol. 58, 1162–1177. https://doi.org/10.1111/fwb.12116 (2013).Article 

    Google Scholar 
    Górski, K., Habit, E. M., Pingram, M. A. & Manosalva, A. J. Variation of the use of marine resources by Galaxias maculatus in large Chilean rivers. Hydrobiologia 814, 61–73. https://doi.org/10.1007/s10750-015-2542-4 (2018).Article 

    Google Scholar 
    Vega Aguayo, R. et al. Bases biológicas para el cultivo del puye Galaxias maculatus (Jenyns, 1842): Una revisión (2014).Cussac, V. E. et al. New insights into the distribution, physiology and life histories of South American galaxiid fishes, and potential threats to this unique fauna. Diversity https://doi.org/10.3390/d12050178 (2020).Article 

    Google Scholar 
    Hicks, A. S. et al. Lake and species specific patterns of non-diadromous recruitment in amphidromous fish: The importance of local recruitment and habitat requirements. Mar. Freshw. Res. https://doi.org/10.1071/mf16387 (2017).Article 

    Google Scholar 
    Manosalva, A. J. et al. Variation of stomach content and isotopic niche of puye Galaxias maculatus (Jenyns, 1842) in large river systems of southern Chile. Freshw. Biol. 66, 1110–1122. https://doi.org/10.1111/fwb.13703 (2021).CAS 
    Article 

    Google Scholar 
    Milano, D., Aigo, J. C. & Macchi, P. J. Diel patterns in space use, food and metabolic activity of Galaxias maculatus (Pisces: Galaxiidae) in the littoral zone of a shallow Patagonian lake. Aquat. Ecol. 47, 277–290. https://doi.org/10.1007/s10452-013-9443-2 (2013).Article 

    Google Scholar 
    Chapman, A., Morgan, D. L., Beatty, S. J. & Gill, H. S. Variation in life history of land-locked lacustrine and riverine populations of Galaxias maculatus (Jenyns 1842) in Western Australia. Environ. Biol. Fishes 77, 21–37 (2006).Article 

    Google Scholar 
    Barriga, J. P. et al. Intraspecific variation in diet, growth, and morphology of landlocked Galaxias maculatus during its larval period: The role of food availability and predation risk. Hydrobiologia 679, 27–41 (2012).Article 

    Google Scholar 
    Campos, H. Population studies of Galaxias maculatus (Jenyns) (Osteichthys: Galaxiidae) in Chile with reference to the number of vertebrae. Stud. Neotrop. Fauna 9, 55–76. https://doi.org/10.1080/01650527409360470 (1974).Article 

    Google Scholar 
    Rojo, J. H., Fernandez, D. A., Figueroa, D. E. & Boy, C. C. Phenotypic and genetic differentiation between diadromous and landlocked puyen Galaxias maculatus. J. Fish Biol. 96, 956–967. https://doi.org/10.1111/jfb.14285 (2020).Article 
    PubMed 

    Google Scholar 
    Zemlak, T. S., Habit, E. M., Walde, S. J., Carrea, C. & Ruzzante, D. E. Surviving historical Patagonian landscapes and climate: Molecular insights from Galaxias maculatus. BMC Evol. Biol. 10, 1–18 (2010).Article 

    Google Scholar 
    Delgado, M. L., Gorski, K., Habit, E. & Ruzzante, D. E. The effects of diadromy and its loss on genomic divergence: The case of amphidromous Galaxias maculatus populations. Mol. Ecol. 28, 5217–5231. https://doi.org/10.1111/mec.15290 (2019).Article 
    PubMed 

    Google Scholar 
    Delgado, M. L. et al. Genomic basis of the loss of diadromy in Galaxias maculatus: Insights from reciprocal transplant experiments. Mol. Ecol. 29, 4857–4870. https://doi.org/10.1111/mec.15686 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alo, D., Correa, C., Samaniego, H., Krabbenhoft, C. A. & Turner, T. F. Otolith microchemistry and diadromy in Patagonian river fishes. PeerJ 7, e6149. https://doi.org/10.7717/peerj.6149 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Schulz-Mirbach, T., Ladich, F., Plath, M. & Heß, M. Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biol. Rev. 94, 457–482 (2019).Article 

    Google Scholar 
    Campana, S. E. Otolith science entering the 21st century. Mar. Freshw. Res. 56, 485–495 (2005).Article 

    Google Scholar 
    Ahn, H. et al. Effect of water temperature on embryonic development and hatching time of the Japanese eel Anguilla japonica. Aquaculture 330, 100–105 (2012).Article 

    Google Scholar 
    Avigliano, E., Velasco, G. & Volpedo, A. V. Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environ. Biol. Fishes 98, 1623–1632. https://doi.org/10.1007/s10641-015-0387-3 (2015).Article 

    Google Scholar 
    Whitledge, G. W. Otolith microchemistry and isotopic composition as potential indicators of fish movement between the Illinois River drainage and Lake Michigan. J. Great Lakes Res. 35, 101–106. https://doi.org/10.1016/j.jglr.2008.10.003 (2009).CAS 
    Article 

    Google Scholar 
    Kraus, R. T. & Secor, D. H. Incorporation of strontium into otoliths of an estuarine fish. J. Exp. Mar. Biol. Ecol. 302, 85–106. https://doi.org/10.1016/j.jembe.2003.10.004 (2004).CAS 
    Article 

    Google Scholar 
    Volk, E. C., Blakley, A., Schroder, S. L. & Kuehner, S. M. Otolith chemistry reflects migratory characteristics of Pacific salmonids: Using otolith core chemistry to distinguish maternal associations with sea and freshwaters. Fish. Res. 46, 251–266 (2000).Article 

    Google Scholar 
    Vignon, M. Extracting environmental histories from sclerochronological structures—Recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecol. Inform. 30, 159–169. https://doi.org/10.1016/j.ecoinf.2015.10.002 (2015).Article 

    Google Scholar 
    Teichert, N. et al. Site fidelity and movements of an amphidromous goby revealed by otolith multi-elemental signatures along a tropical watershed. Ecol. Freshw. Fish 27, 834–846. https://doi.org/10.1111/eff.12396 (2018).Article 

    Google Scholar 
    Elsdon, T. S. & Gillanders, B. M. Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313, 269–284. https://doi.org/10.1016/j.jembe.2004.08.010 (2004).CAS 
    Article 

    Google Scholar 
    Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J Fish Biol 98, 33–43. https://doi.org/10.1111/jfb.14554 (2021).Article 
    PubMed 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warburton, M. L., Reid, M. R., Stirling, C. H. & Closs, G. Validation of depth-profiling LA-ICP-MS in otolith applications. Can. J. Fish. Aquat. Sci. 74, 572–581 (2017).CAS 
    Article 

    Google Scholar 
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518. https://doi.org/10.1039/C1JA10172B (2011).CAS 
    Article 

    Google Scholar 
    Woodhead, J. et al. A guide to depth profiling and imaging applications of LA-ICP-MS. Laser Ablation ICP-MS Earth Sci. Curr. Pract. Outst. Issues 40, 135–145 (2008).CAS 

    Google Scholar 
    Veinott, G., Westley, P. A. H., Purchase, C. F., Warner, L. & Gillanders, B. Experimental evidence simultaneously confirms and contests assumptions implicit to otolith microchemistry research. Can. J. Fish. Aquat. Sci. 71, 356–365. https://doi.org/10.1139/cjfas-2013-0224 (2014).Article 

    Google Scholar 
    Brophy, D., Jeffries, T. E. & Danilowicz, B. S. Elevated manganese concentrations at the cores of clupeid otoliths: Possible environmental, physiological, or structural origins. Mar. Biol. 144, 779–786. https://doi.org/10.1007/s00227-003-1240-3 (2004).CAS 
    Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article 

    Google Scholar 
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).Article 

    Google Scholar 
    Brown, R. J., Campana, S. & Severin, K. P. Otolith chemistry analyses indicate that water Sr: Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Can. J. Fish. Aquat. Sci. 66, 1790–1808. https://doi.org/10.1139/f09-112 (2009).CAS 
    Article 

    Google Scholar 
    Humston, R. et al. Isotope geochemistry reveals ontogeny of dispersal and exchange between main-river and tributary habitats in smallmouth bass Micropterus dolomieu. J. Fish Biol. 90, 528–548. https://doi.org/10.1111/jfb.13073 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dingle, H. & Drake, V. A. What is migration?. Bioscience 57, 113–121 (2007).Article 

    Google Scholar 
    Hogan, J. D., Blum, M. J., Gilliam, J. F., Bickford, N. & McIntyre, P. B. Consequences of alternative dispersal strategies in a putatively amphidromous fish. Ecology 95, 2397–2408 (2014).Article 

    Google Scholar 
    Kelley, J. L., Grierson, P. F., Collin, S. P. & Davies, P. M. Habitat disruption and the identification and management of functional trait changes. Fish Fish. 19, 716–728. https://doi.org/10.1111/faf.12284 (2018).Article 

    Google Scholar 
    Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J. Fish Biol. 98, 33–43 (2020).Article 

    Google Scholar 
    Hicks, A. S., Closs, G. P. & Swearer, S. E. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: A multi-element approach for tracking diadromous migrations. J. Exp. Mar. Biol. Ecol. 394, 86–97 (2010).Article 

    Google Scholar 
    Miller, J. A. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: Implications for migratory reconstructions. J. Exp. Mar. Biol. Ecol. 405, 42–52. https://doi.org/10.1016/j.jembe.2011.05.017 (2011).CAS 
    Article 

    Google Scholar 
    Walsh, C. T. & Gillanders, B. M. Extrinsic factors affecting otolith chemistry—Implications for interpreting migration patterns in a diadromous fish. Environ. Biol. Fishes 101, 905–916. https://doi.org/10.1007/s10641-018-0746-y (2018).Article 

    Google Scholar 
    Walther, B. D. & Limburg, K. E. The use of otolith chemistry to characterize diadromous migrations. J. Fish Biol. 81, 796–825. https://doi.org/10.1111/j.1095-8649.2012.03371.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hicks, A. S. et al. Lake and species specific patterns of non-diadromous recruitment in amphidromous fish: The importance of local recruitment and habitat requirements. Mar. Freshw. Res. 68, 2315–2323 (2017).Article 

    Google Scholar 
    Hickford, M. J. & Schiel, D. R. Population sinks resulting from degraded habitats of an obligate life-history pathway. Oecologia 166, 131–140 (2011).ADS 
    Article 

    Google Scholar 
    Barriga, J., Battini, M. & Cussac, V. Annual dynamics variation of a landlocked Galaxias maculatus (Jenyns 1842) population in a Northern Patagonian river: Occurrence of juvenile upstream migration. J. Appl. Ichthyol. 23, 128–135 (2007).Article 

    Google Scholar 
    Huey, J. A. et al. Is variable connectivity among populations of a continental gobiid fish driven by local adaptation or passive dispersal?. Freshw. Biol. 59, 1672–1686 (2014).CAS 
    Article 

    Google Scholar 
    Catlin, A. K., Collier, K. J. & Duggan, I. C. Zooplankton generation following inundation of floodplain soils: Effects of vegetation type and riverine connectivity. Mar. Freshw. Res. https://doi.org/10.1071/mf15273 (2017).Article 

    Google Scholar 
    Górski, K., Collier, K. J., Duggan, I. C., Taylor, C. M. & Hamilton, D. P. Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshw. Biol. 58, 1458–1470. https://doi.org/10.1111/fwb.12144 (2013).Article 

    Google Scholar 
    Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Methods Ecol. Evol. 6, 806–816. https://doi.org/10.1111/2041-210x.12381 (2015).Article 

    Google Scholar 
    Doubleday, Z. A., Izzo, C., Woodcock, S. H. & Gillanders, B. M. Relative contribution of water and diet to otolith chemistry in freshwater fish. Aquat. Biol. 18, 271–280. https://doi.org/10.3354/ab00511 (2013).Article 

    Google Scholar 
    Elsdon, T. S. et al. Oceanography and Marine Biology 303–336 (CRC Press, 2008).
    Google Scholar 
    Izzo, C., Doubleday, Z. A., Schultz, A. G., Woodcock, S. H. & Gillanders, B. M. Contribution of water chemistry and fish condition to otolith chemistry: Comparisons across salinity environments. J Fish Biol 86, 1680–1698. https://doi.org/10.1111/jfb.12672 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walther, B. D. The art of otolith chemistry: interpreting patterns by integrating perspectives. Mar. Freshw. Res. 70, 1643–1658 (2019).CAS 
    Article 

    Google Scholar 
    Hüssy, K. et al. Trace element patterns in otoliths: The role of biomineralization. Rev. Fish. Sci. Aquacult. 29, 1–33 (2020).
    Google Scholar 
    Nazir, A. & Khan, M. A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshw. Fish 28, 499–511. https://doi.org/10.1111/eff.12471 (2019).Article 

    Google Scholar 
    Vera-Escalona, I., Habit, E. & Ruzzante, D. E. Invasive species and postglacial colonization: Their effects on the genetic diversity of a Patagonian fish. Proc. Biol. Sci. 286, 20182567. https://doi.org/10.1098/rspb.2018.2567 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes

    Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ, Ring D, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol. 2016;2:16215.CAS 
    PubMed 

    Google Scholar 
    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015;517:205–8.CAS 
    PubMed 

    Google Scholar 
    He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7:54.PubMed 
    PubMed Central 

    Google Scholar 
    Ma W, Mao Q, Xia W, Dong G, Yu C, Jiang F. Gut microbiota shapes the efficiency of cancer therapy. Front Microbiol. 2019;10:1050.PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Potgens SA, Leyrolle Q, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut 2020;69:1975–87.CAS 
    PubMed 

    Google Scholar 
    Schubert AM, Sinani H, Schloss PD. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. mBio 2015;6:e00974.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, et al. Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel). 2019;11:38.Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: Tools and biological insights. PLoS Comput Biol. 2016;12:e1004977.PubMed 
    PubMed Central 

    Google Scholar 
    Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–33.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rastelli M, Knauf C, Cani PD. Gut microbes and health: A focus on the mechanisms linking microbes, obesity, and related disorders. Obes (Silver Spring) 2018;26:792–800.
    Google Scholar 
    Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016;535:56–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science 2012;336:1255–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koskella B, Hall LJ, Metcalf CJE. The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol. 2017;1:1606–15.PubMed 

    Google Scholar 
    Walter J, Ley R. The human gut microbiome: Ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–29.CAS 
    PubMed 

    Google Scholar 
    Walter J, Maldonado-Gomez MX, Martinez I. To engraft or not to engraft: An ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol. 2018;49:129–39.CAS 
    PubMed 

    Google Scholar 
    Le Roy T, Debedat J, Marquet F, Da-Cunha C, Ichou F, Guerre-Millo M, et al. Comparative evaluation of microbiota engraftment following fecal microbiota transfer in mice models: Age, kinetic and microbial status matter. Front Microbiol. 2018;9:3289.PubMed 

    Google Scholar 
    Maldonado-Gomez MX, Martinez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe. 2016;20:515–26.CAS 
    PubMed 

    Google Scholar 
    Martinez I, Maldonado-Gomez MX, Gomes-Neto JC, Kittana H, Ding H, Schmaltz R, et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. Elife. 2018;7:e36521.Podlesny D, Durdevic M, Paramsothy S, Kaakoush NO, Högenauer C, Gorkiewicz G, et al. Intraspecies strain exclusion, antibiotic pretreatment, and donor selection control microbiota engraftment after fecal transplantation. medRxiv. 2021;08.18.21262200.Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 2016;352:586–89.CAS 
    PubMed 

    Google Scholar 
    Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, et al. Recovery of the gut microbiome following fecal microbiota transplantation. mBio 2014;5:e00893–00814.PubMed 
    PubMed Central 

    Google Scholar 
    Shahinas D, Silverman M, Sittler T, Chiu C, Kim P, Allen-Vercoe E, et al. Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA gene deep sequencing. mBio. 2012;3:e00338–12.Hardin G. The competitive exclusion principle. Science 1960;131:1292–7.CAS 
    PubMed 

    Google Scholar 
    Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010;6:e1000711.PubMed 
    PubMed Central 

    Google Scholar 
    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.
    Google Scholar 
    Grainger TN, Letten AD, Gilbert B, Fukami T. Applying modern coexistence theory to priority effects. Proc Natl Acad Sci USA. 2019;116:6205–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013;501:426–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Onderdonk A, Marshall B, Cisneros R, Levy SB. Competition between congenic Escherichia coli K-12 strains in vivo. Infect Immun. 1981;32:74–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014;63:727–35.CAS 

    Google Scholar 
    Dingemanse C, Belzer C, van Hijum SA, Gunthel M, Salvatori D, den Dunnen JT, et al. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis 2015;36:1388–96.CAS 
    PubMed 

    Google Scholar 
    Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–8.CAS 
    PubMed 

    Google Scholar 
    Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C. Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice. Front Cell Infect Microbiol. 2019;9:239.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9:e1001221.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pudlo NA, Urs K, Crawford R, Pirani A, Atherly T, Jimenez R, et al. Phenotypic and genomic diversification in complex carbohydrate-degrading human gut bacteria. mSystems. 2022;7:e0094721.Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.CAS 
    PubMed 

    Google Scholar 
    Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The gut microbiota of wild mice. PLoS One. 2015;10:e0134643.PubMed 
    PubMed Central 

    Google Scholar 
    Segura Munoz RR, Quach T, Gomes-Neto JC, Xian Y, Pena PA, Weier S, et al. Stearidonic-enriched soybean oil modulates obesity, glucose metabolism, and fatty acid profiles independently of Akkermansia muciniphila. Mol Nutr Food Res. 2020;64:e2000162.PubMed 
    PubMed Central 

    Google Scholar 
    Bindels LB, Segura Munoz RR, Gomes-Neto JC, Mutemberezi V, Martinez I, Salazar N, et al. Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome 2017;5:12.PubMed 
    PubMed Central 

    Google Scholar 
    Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D677.CAS 
    PubMed 

    Google Scholar 
    Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.CAS 
    PubMed 

    Google Scholar 
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Katta HY, Mojica A, et al. Genomes OnLine database (GOLD) v.7: Updates and new features. Nucleic Acids Res.2019;47:D649–D659.CAS 
    PubMed 

    Google Scholar 
    Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes-Neto JC, Mantz S, Held K, Sinha R, Segura Munoz RR, Schmaltz R, et al. A real-time PCR assay for accurate quantification of the individual members of the Altered Schaedler Flora microbiota in gnotobiotic mice. J Microbiol Methods. 2017;135:52–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes-Neto JC, Kittana H, Mantz S, Segura Munoz RR, Schmaltz RJ, Bindels LB, et al. A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself. Sci Rep. 2017;7:17707.PubMed 
    PubMed Central 

    Google Scholar 
    Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338.PubMed 
    PubMed Central 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012;28:2678–79.CAS 
    PubMed 

    Google Scholar 
    Thomsen MCF, Hasman H, Westh H, Kaya H, Lund O. RUCS: rapid identification of PCR primers for unique core sequences. Bioinformatics 2017;33:3917–21.PubMed 
    PubMed Central 

    Google Scholar 
    Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–1403.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Genome [Internet] (2004). National Library of Medicine (US), National Center for Biotechnology Information: Bethesda (MD). https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/1218/Genome [Internet] (2004). National Library of Medicine (US), National Center for Biotechnology Information: Bethesda (MD). https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/1598/Beghini F, McIver LJ, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021;10:e65088.Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 2015;3:e1029.PubMed 
    PubMed Central 

    Google Scholar 
    Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mavromatis K, Chu K, Ivanova N, Hooper SD, Markowitz VM, Kyrpides NC. Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS One 2009;4:e7979.PubMed 
    PubMed Central 

    Google Scholar 
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019;47:D427–D432.CAS 
    PubMed 

    Google Scholar 
    The UniProt Consortium. The universal protein resource (UniProt). Nucleic Acids Res 2008;36:D190–195.
    Google Scholar 
    Obadia B, Guvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, et al. Probabilistic invasion underlies natural gut microbiome stability. Curr Biol 2017;27:1999–2006 e1998.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meszena G, Gyllenberg M, Pasztor L, Metz JA. Competitive exclusion and limiting similarity: A unified theory. Theor Popul Biol. 2006;69:68–87.PubMed 

    Google Scholar 
    Cavender-Bares J, Kozak KH, Fine PV, Kembel SW. The merging of community ecology and phylogenetic biology. Ecol Lett. 2009;12:693–715.PubMed 

    Google Scholar 
    Tramontano M, Andrejev S, Pruteanu M, Klunemann M, Kuhn M, Galardini M, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol 2018;3:514–22.CAS 
    PubMed 

    Google Scholar 
    Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004;54:1469–1476.CAS 
    PubMed 

    Google Scholar 
    Walker AW, Lawley TD. Therapeutic modulation of intestinal dysbiosis. Pharm Res 2013;69:75–86.CAS 

    Google Scholar 
    Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 2016;1:16140.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, et al. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut 2013;62:1591–1601.CAS 
    PubMed 

    Google Scholar 
    Adler PB, Hillerislambers J, Levine JM. A niche for neutrality. Ecol Lett. 2007;10:95–104.PubMed 

    Google Scholar 
    Levine JM, HilleRisLambers J. The importance of niches for the maintenance of species diversity. Nature 2009;461:254–57.CAS 
    PubMed 

    Google Scholar 
    Forstner G. Signal transduction, packaging and secretion of mucins. Annu Rev Physiol. 1995;57:585–605.CAS 
    PubMed 

    Google Scholar 
    Ottman N, Davids M, Suarez-Diez M, Boeren S, Schaap PJ, Martins Dos Santos VAP, et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl Environ Microbiol. 2017;83:e01014-17.Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE, Tasseva G et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol. 2017;83:e00132–17.Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 2011;7:e1001314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 2017;171:1015–1028 e1013.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karcher N, Nigro E, Puncochar M, Blanco-Miguez A, Ciciani M, Manghi P, et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 2021;22:209.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365.Mark Welch JL, Hasegawa Y, McNulty NP, Gordon JI, Borisy GG. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc Natl Acad Sci USA. 2017;114:E9105–E9114.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whitaker WR, Shepherd ES, Sonnenburg JL. Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell 2017;169:538–546. e512.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becken B, Davey L, Middleton DR, Mueller KD, Sharma A, Holmes ZC, et al. Genotypic and phenotypic diversity among human isolates of Akkermansia muciniphila. mBio. 2021;12:e00478–21.Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 2017;27:626–38.
    Google Scholar 
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science 2013;341:1237439.PubMed 
    PubMed Central 

    Google Scholar 
    Mehta RS, Abu-Ali GS, Drew DA, Lloyd-Price J, Subramanian A, Lochhead P, et al. Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol. 2018;3:347–355.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45 e135.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018;28:561–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freitag TL, Hartikainen A, Jouhten H, Sahl C, Meri S, Anttila VJ, et al. Minor effect of antibiotic pre-treatment on the engraftment of donor microbiota in fecal transplantation in mice. Front Microbiol. 2019;10:2685.PubMed 
    PubMed Central 

    Google Scholar 
    Ji SK, Yan H, Jiang T, Guo CY, Liu JJ, Dong SZ, et al. Preparing the gut with antibiotics enhances gut microbiota reprogramming efficiency by promoting xenomicrobiota colonization. Front Microbiol. 2017;8:1208.PubMed 
    PubMed Central 

    Google Scholar 
    Divya Ganeshan S, Hosseinidoust Z. Phage therapy with a focus on the human microbiota. Antibiotics (Basel). 2019;8:131.Ramachandran G, Bikard D. Editing the microbiome the CRISPR way. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180103.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More