Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities
1.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. P Natl Acad. Sci. USA 103, 12115–12120 (2006).CAS
ADS
Google Scholar
2.Pedros-Alio, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).PubMed
Google Scholar
3.Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).CAS
PubMed
Google Scholar
4.Campbell, B. J., Yu, L. Y., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. P Natl Acad. Sci. USA 108, 12776–12781 (2011).CAS
ADS
Google Scholar
5.Gobet, A. et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. Isme J. 6, 542–553 (2012).PubMed
Google Scholar
6.Wilhelm, L. et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ. Microbiol. 16, 2514–2524 (2014).CAS
PubMed
Google Scholar
7.Lawson, C. E. et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17, 4979–4993 (2015).CAS
PubMed
Google Scholar
8.Newton, R. J. & Shade, A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Micro. Ecol. 78, 51–63 (2016).
Google Scholar
9.Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. P Natl Acad. Sci. USA 106, 15527–15533 (2009).CAS
ADS
Google Scholar
10.Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. RRNA operon copy number reflects ecological strategies of bacteria. Appl Environ. Micro. 66, 1328–1333 (2000).CAS
ADS
Google Scholar
11.Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).CAS
PubMed
PubMed Central
Google Scholar
12.Polz, M. F. & Cordero, O. X. Bacterial evolution: genomics of metabolic trade-offs. Nat. Microbiol. 1, 16181 (2016).CAS
PubMed
Google Scholar
13.Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).PubMed
Google Scholar
14.Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).
Google Scholar
15.Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: an elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).CAS
ADS
Google Scholar
16.Acharya, K., Kyle, M. & Elser, J. J. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 49, 656–665 (2004).CAS
ADS
Google Scholar
17.Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).
Google Scholar
18.Matzek, V. & Vitousek, P. M. N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol. Lett. 12, 765–771 (2009).PubMed
Google Scholar
19.Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol 24, 833–845 (2016).CAS
PubMed
Google Scholar
20.Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).PubMed
PubMed Central
Google Scholar
21.Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed
Google Scholar
22.Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Plos ONE 8, e57923 (2013).PubMed
PubMed Central
ADS
Google Scholar
23.Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323–323 (2009).PubMed
PubMed Central
Google Scholar
24.Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. Isme J. 10, 1147–1156 (2016).CAS
PubMed
Google Scholar
25.Wu, L. W. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. Isme J. 11, 2874–2878 (2017).CAS
PubMed
PubMed Central
Google Scholar
26.Wu, L. W. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 2579–2579 (2019).PubMed
Google Scholar
27.Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).CAS
PubMed
Google Scholar
28.Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).CAS
PubMed
Google Scholar
29.Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. Mbio 2, e00122–00111 (2011).PubMed
PubMed Central
Google Scholar
30.Vellend, M. Conceptual Synthesis in Community Ecology. Q Rev. Biol. 85, 183–206 (2010).PubMed
Google Scholar
31.Frey, E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A 389, 4265–4298 (2010).MathSciNet
CAS
MATH
Google Scholar
32.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. P Natl Acad. Sci. USA 116, 11824 (2019).CAS
Google Scholar
33.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS
PubMed
PubMed Central
ADS
Google Scholar
34.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic Interactions and the Drivers of Microbial Community Assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS
PubMed
Google Scholar
35.Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).CAS
PubMed
PubMed Central
Google Scholar
36.Gandhi, S. R., Korolev, K. S. & Gore, J. Cooperation mitigates diversity loss in a spatially expanding microbial population. P Natl Acad. Sci. USA 116, 23582–23587 (2019).CAS
Google Scholar
37.Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).PubMed
Google Scholar
38.Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS
PubMed
PubMed Central
ADS
Google Scholar
39.Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity. Env. Microbiol. Rep. 6, 173–183 (2014).CAS
Google Scholar
40.Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).CAS
PubMed
ADS
Google Scholar
41.Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).PubMed
Google Scholar
42.Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).CAS
PubMed
PubMed Central
Google Scholar
43.Chatzinikolaou, E. et al. Spatio-temporal benthic biodiversity patterns and pollution pressure in three Mediterranean touristic ports. Sci. Total Environ. 624, 648–660 (2018).CAS
PubMed
ADS
Google Scholar
44.Filippini, G. et al. Sediment bacterial communities associated with environmental factors in Intermittently Closed and Open Lakes and Lagoons (ICOLLs). Sci. Total Environ. 693, 133462 (2019).CAS
PubMed
ADS
Google Scholar
45.Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS
PubMed
PubMed Central
Google Scholar
46.Huse, S. M. et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. Plos Genet. 4, e1000255 (2008).PubMed
PubMed Central
Google Scholar
47.Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).PubMed
Google Scholar
48.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad. Sci. USA 108, 4516 (2011).CAS
ADS
Google Scholar
49.Wear, E. K., Wilbanks, E. G., Nelson, C. E. & Carlson, C. A. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environ. Microbiol. 20, 2709–2726 (2018).CAS
PubMed
PubMed Central
Google Scholar
50.Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS
PubMed
Google Scholar
51.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu Rev. Ecol. Syst. 33, 475–505 (2002).
Google Scholar
52.Wu, L. W. et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 104, 1–10 (2016).PubMed
Google Scholar
53.Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. P Natl Acad. Sci. USA 106, 22427–22432 (2009).CAS
ADS
Google Scholar
54.Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. Isme J. 9, 683–695 (2015).CAS
PubMed
ADS
Google Scholar More