More stories

  • in

    Ecosystems services at risk

    1.Tilman, D. et al. Science 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    2.Hughes, T. P. et al. Nature 556, 492–496 (2018).CAS 
    Article 

    Google Scholar 
    3.Eddy, T. D. et al. One Earth 4, 1278–1285 (2021).Article 

    Google Scholar 
    4.Stoeckl, N., Condie, S. & Anthony, K. Ecosyst. Serv. 51, 101352 (2021).Article 

    Google Scholar 
    5.Hoegh-Guldberg, O., Pendleton, L. & Kaup, A. Reg. Stud. Mar. Sci. 30, 100699 (2019).Article 

    Google Scholar 
    6.Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. PLoS ONE 8, e65397 (2013).CAS 
    Article 

    Google Scholar 
    7.Robinson, J. P. W. et al. Nat. Ecol. Evol. 3, 183–190 (2019).Article 

    Google Scholar 
    8.Crain, C. M., Kroeker, K. & Halpern, B. S. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    9.Schröter, M. et al. Conserv. Lett. 7, 514–523 (2014).Article 

    Google Scholar 
    10.Glanemann, N., Willner, S. N. & Levermann, A. Nat. Commun. 11, 110 (2020).CAS 
    Article 

    Google Scholar 
    11.Emissions Gap Report 2021: The Heat is On – A World of Climate Promises Not Yet Delivered (UNEP, 2021).12.Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Sci. Adv. 4, eaar5809 (2018).Article 

    Google Scholar 
    13.Berrang-Ford, L. et al. Nat. Clim. Change 11, 989–1000 (2021).Article 

    Google Scholar 
    14.Roberts, J. T. et al. Nat. Clim. Change 11, 180–182 (2021).Article 

    Google Scholar  More

  • in

    Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot

    1.Muellner-Riehl, A. N. et al. Origins of global mountain plant biodiversity: Testing the ‘mountain-geobiodiversity hypothesis’. J. Biogeogr. 46, 2826–2838 (2019).
    Google Scholar 
    2.Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).ADS 
    CAS 

    Google Scholar 
    3.Schrodt, F. et al. Opinion: To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proc. Natl. Acad. Sci. 116, 16155–16158 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Alahuhta, J. et al. The role of geodiversity in providing ecosystem services at broad scales. Ecol. Indic. 91, 47–56 (2018).
    Google Scholar 
    5.Read, Q. D. et al. Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Glob. Ecol. Biogeogr. 29, 696–710 (2020).
    Google Scholar 
    6.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 

    Google Scholar 
    7.Alahuhta, J., Toivanen, M. & Hjort, J. Geodiversity–biodiversity relationship needs more empirical evidence. Nat. Ecol. Evol. 4, 2–3 (2020).PubMed 

    Google Scholar 
    8.Boothroyd, A. & McHenry, M. Old processes, new movements: the inclusion of geodiversity in biological and ecological discourse. Diversity 11, 216 (2019).
    Google Scholar 
    9.Hunter, M. L., Jacobson, G. L. & Webb, T. Paleoecology and the coarse-filter approach to maintaining biological diversity. Conserv. Biol. 2, 375–385 (1988).
    Google Scholar 
    10.Hjort, J. & Luoto, M. Can geodiversity be predicted from space?. Geomorphology 153–154, 74–80 (2012).ADS 

    Google Scholar 
    11.Benito-Calvo, A., Pérez-González, A., Magri, O. & Meza, P. Assessing regional geodiversity: the Iberian Peninsula. Earth Surf. Process. Landf. 34, 1433–1445 (2009).ADS 

    Google Scholar 
    12.dos Santos, F. M., de La Corte Bacci, D., Saad, A. R. & da Silva Ferreira, A. T. Geodiversity index weighted by multivariate statistical analysis. Appl. Geomat. 12, 361–370 (2020).
    Google Scholar 
    13.Crisp, J. R., Ellison, J. C. & Fischer, A. Current trends and future directions in quantitative geodiversity assessment. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133320967219 (2020).Article 

    Google Scholar 
    14.Pereira, D. I., Pereira, P., Brilha, J. & Santos, L. Geodiversity assessment of Paraná State (Brazil): An innovative approach. Environ. Manag. 52, 541–552 (2013).ADS 

    Google Scholar 
    15.Gray, M. Geodiversity and geoconservation: What, why, and how?. George Wright Forum 22, 4–12 (2005).
    Google Scholar 
    16.Ruban, D. A. Quantification of geodiversity and its loss. Proc. Geol. Assoc. 121, 326–333 (2010).
    Google Scholar 
    17.Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage: Why geodiversity matters. Conserv. Biol. 29, 630–639 (2015).PubMed 

    Google Scholar 
    18.Beier, P. & Brost, B. Use of land facets to plan for climate change: Conserving the arenas, not the actors. Conserv. Biol. J. Soc. Conserv. Biol. 24, 701–710 (2010).
    Google Scholar 
    19.Anderson, M. G. & Ferree, C. E. Conserving the stage: Climate change and the geophysical underpinnings of species diversity. PLoS ONE 5, e11554 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Knudson, C., Kay, K. & Fisher, S. Appraising geodiversity and cultural diversity approaches to building resilience through conservation. Nat. Clim. Change 8, 678–685 (2018).ADS 

    Google Scholar 
    21.Turner, J. A. Geodiversity: The natural support system of ecosystems. In Landscape Planning with Ecosystem Services: Theories and Methods for Application in Europe 253–265 (eds von Haaren, C. et al.) (Springer, 2019). https://doi.org/10.1007/978-94-024-1681-7_16.Chapter 

    Google Scholar 
    22.Fox, N., Graham, L. J., Eigenbrod, F., Bullock, J. M. & Parks, K. E. Incorporating geodiversity in ecosystem service decisions. Ecosyst. People 16, 151–159 (2020).
    Google Scholar 
    23.Parks, K. E. & Mulligan, M. On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers. Conserv. 19, 2751–2766 (2010).
    Google Scholar 
    24.Comer, P. J. et al. Incorporating geodiversity into conservation decisions: Geodiversity and conservation decisions. Conserv. Biol. 29, 692–701 (2015).PubMed 

    Google Scholar 
    25.Chakraborty, A. & Gray, M. A call for mainstreaming geodiversity in nature conservation research and praxis. J. Nat. Conserv. 56, 125862 (2020).
    Google Scholar 
    26.Lawler, J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).PubMed 

    Google Scholar 
    27.Beier, P. et al. A review of selection-based tests of abiotic surrogates for species representation. Conserv. Biol. J. Soc. Conserv. Biol. 29, 668–679 (2015).
    Google Scholar 
    28.Purvis, A. & Hector, A. Getting the Measure of Biodiversity. Nature 405, 212–219 (2000).CAS 
    PubMed 

    Google Scholar 
    29.Moreno, C. et al. Measuring biodiversity in the Anthropocene: A simple guide to helpful methods. Biodivers. Conserv. 26, 2993–2998 (2017).
    Google Scholar 
    30.Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).
    Google Scholar 
    31.Chiarucci, A., Bacaro, G. & Scheiner, S. M. Old and new challenges in using species diversity for assessing biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 366, 2426–2437 (2011).
    Google Scholar 
    32.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    33.Hjort, J., Heikkinen, R. K. & Luoto, M. Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodivers. Conserv. 21, 3487–3506 (2012).
    Google Scholar 
    34.Bailey, J. J., Boyd, D. S., Hjort, J., Lavers, C. P. & Field, R. Modelling native and alien vascular plant species richness: At which scales is geodiversity most relevant?. Glob. Ecol. Biogeogr. 26, 763–776 (2017).
    Google Scholar 
    35.Zarnetske, P. L. et al. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Glob. Ecol. Biogeogr. 28, 548–556 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    36.Bétard, F. Patch-scale relationships between geodiversity and biodiversity in hard rock quarries: Case study from a disused quartzite quarry in NW France. Geoheritage 5, 59–71 (2013).
    Google Scholar 
    37.Tukiainen, H. et al. Spatial relationship between biodiversity and geodiversity across a gradient of land-use intensity in high-latitude landscapes. Landsc. Ecol. 32, 1049–1063 (2017).
    Google Scholar 
    38.Anderson, M. G. et al. Case studies of conservation plans that incorporate geodiversity. Conserv. Biol. 29, 680–691 (2015).CAS 
    PubMed 

    Google Scholar 
    39.Ren, Y., Lü, Y., Hu, J. & Yin, L. Geodiversity underpins biodiversity but the relations can be complex: Implications from two biodiversity proxies. Glob. Ecol. Conserv. 31, e01830 (2021).
    Google Scholar 
    40.Homeier, J., Breckle, S.-W., Günter, S., Rollenbeck, R. T. & Leuschner, C. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest: Ecuadorian Montane forest diversity and structure. Biotropica 42, 140–148 (2010).
    Google Scholar 
    41.Krashevska, V., Bonkowski, M., Maraun, M. & Scheu, S. Testate amoebae (protista) of an elevational gradient in the tropical mountain rain forest of Ecuador. Pedobiologia 51, 319–331 (2007).
    Google Scholar 
    42.Zhalnina, K. et al. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 69, 395–406 (2015).CAS 
    PubMed 

    Google Scholar 
    43.Fierer, N., Craine, J. M., McLauchlan, K. & Schimel, J. P. Litter quality and the temperature sensiticity of decomposition. Ecology 86, 320–326 (2005).
    Google Scholar 
    44.Gibb, H. et al. Climate mediates the effects of disturbance on ant assemblage structure. Proc. R. Soc. B Biol. Sci. 282, 20150418 (2015).
    Google Scholar 
    45.Sanders, N. J., Lessard, J.-P., Fitzpatrick, M. C. & Dunn, R. R. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob. Ecol. Biogeogr. 16, 640–649 (2007).
    Google Scholar 
    46.Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).ADS 

    Google Scholar 
    47.McCain, C. M. Global analysis of bird elevational diversity. Glob. Ecol. Biogeogr. 18, 346–360 (2009).
    Google Scholar 
    48.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures: Animal species diversity driven by habitat heterogeneity. J. Biogeogr. 31, 79–92 (2004).
    Google Scholar 
    49.Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Hofhansl, F. et al. Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Sci. Rep. 10, 5066 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 20142620 (2015).
    Google Scholar 
    53.Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. 112, 797–802 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).PubMed 

    Google Scholar 
    55.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).
    Google Scholar 
    56.Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).
    Google Scholar 
    57.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 

    Google Scholar 
    58.Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 

    Google Scholar 
    59.Lichstein, J. W. Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).
    Google Scholar 
    60.Tuomisto, H. & Ruokolainen, K. Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87, 2697–2708 (2006).PubMed 

    Google Scholar 
    61.Peres-Neto, P. R. & Jackson, D. A. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129, 169–178 (2001).ADS 
    PubMed 

    Google Scholar 
    62.Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 

    Google Scholar 
    63.Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: Consolidation and progress in functional biodiversity research: Consolidation and progress in BDEF research. Ecol. Lett. 12, 1405–1419 (2009).PubMed 

    Google Scholar 
    64.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Bendix, J. et al. A research framework for projecting ecosystem change in highly diverse tropical mountain ecosystems. Oecologia 195, 589–600 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. Gradients in a Tropical Mountain Ecosystem of Ecuador. ISBN: 978-3-540-73525-0
    (Springer, 2008).
    Google Scholar 
    67.Landscape Restoration, Sustainable Use and Cross-Scale Monitoring of Biodiversity and Ecosystem Functions – A Science-directed Approach for South Ecuador (PAK823–825 Platform for Biodiversity and Ecosystem Monitoring and Research in South Ecuador, 2017).68.Beck, E. et al. Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. ISBN: 978-3-642-38136-2 (Springer, 2013).
    Google Scholar 
    69.Homeier, J. & Leuschner, C. Factors controlling the productivity of tropical Andean forests: Climate and soil are more important than tree diversity. Biogeosciences 18, 1525–1541 (2021).ADS 
    CAS 

    Google Scholar 
    70.Krashevska, V., Sandmann, D., Maraun, M. & Scheu, S. Consequences of exclusion of precipitation on microorganisms and microbial consumers in montane tropical rainforests. Oecologia 170, 1067–1076 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Krashevska, V., Sandmann, D., Maraun, M. & Scheu, S. Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages. ISME J. 8, 1126–1134 (2014).CAS 
    PubMed 

    Google Scholar 
    72.Tiede, Y. et al. Ants as indicators of environmental change and ecosystem processes. Ecol. Indic. 83, 527–537 (2017).
    Google Scholar 
    73.Santillán, V. et al. Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS ONE 13, e0196179 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    74.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    75.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 2.0.20, http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2020).76.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Google Scholar 
    77.Wallis, C. I. B. et al. Modeling tropical montane forest biomass, productivity and canopy traits with multispectral remote sensing data. Remote Sens. Environ. 225, 77–92 (2019).ADS 

    Google Scholar 
    78.Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M. & Hefting, M. M. Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 4, 1070–1075 (2013).
    Google Scholar 
    79.Quitián, M. et al. Elevation-dependent effects of forest fragmentation on plant-bird interaction networks in the tropical Andes. Ecography 41, 1497–1506 (2018).
    Google Scholar 
    80.Fries, A. et al. Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. Erdkunde 63, 321–335 (2009).
    Google Scholar 
    81.Fries, A., Rollenbeck, R., Nauß, T., Peters, T. & Bendix, J. Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agric. For. Meteorol. 152, 17–30 (2012).ADS 

    Google Scholar 
    82.Zvoleff, A. glcm: calculate textures from grey-level co-occurrence matrices (GLCMs). R package version 1.6.1 (2016).83.Wallis, C. I. B. et al. Remote sensing improves prediction of tropical montane species diversity but performance differs among taxa. Ecol. Indic. 83, 538–549 (2017).
    Google Scholar 
    84.Wolf, K., Veldkamp, E., Homeier, J. & Martinson, G. O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador: N2 O + NO flux of tropical montane forests. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003876 (2011).Article 

    Google Scholar 
    85.Fisher, W. D. On Grouping for Maximum Homogeneity. J. Am. Stat. Assoc. 53, 789–798 (1958).MathSciNet 
    MATH 

    Google Scholar 
    86.Bivand, R. classInt: Choose Univariate Class Intervals (2020).87.Oksanen, J. et al. vegan: Community Ecology Package (2020).88.vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan.89.Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).MATH 

    Google Scholar 
    90.Barbosa, A. M., Real, R., Munoz, A. R. & Brown, J. A. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 19, 1333–1338 (2013).
    Google Scholar 
    91.Lotz, T., Nieschulze, J., Bendix, J., Dobbermann, M. & König-Ries, B. Diverse or uniform? Intercomparison of two major German project databases for interdisciplinary collaborative functional biodiversity research. Ecol. Inform. 8, 10–19 (2012).
    Google Scholar 
    92.Göttlicher, D. et al. Land-cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling. Int. J. Remote Sens. 30, 1867–1886 (2009).
    Google Scholar 
    93.Deng, Y., Wilson, J. P. & DEM Bauer, B. O. resolution dependencies of terrain attributes across a landscape. Int. J. Geogr. Inf. Sci. 21, 187–213 (2007).
    Google Scholar 
    94.Weiss, M. & Baret, F. S2ToolBox Level 2 products: LAI, FAPAR, FCOVER Version 1.1. in S2 Toolbox Level 2 Product algorithms v1.1 53.95.Unger, M., Homeier, J. & Leuschner, C. Relationships among leaf area index, below-canopy light availability and tree diversity along a transect from tropical lowland to montane forests in NE Ecuador. Trop. Ecol. 54, 33–45 (2013).
    Google Scholar 
    96.Krashevska, V., Maraun, M. & Scheu, S. Micro- and macroscale changes in density and diversity of Testate amoebae of tropical montane rain forests of southern Ecuador. Acta Protozool. 49, 17–28 (2010).
    Google Scholar  More

  • in

    Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century

    1.Frolking, S. et al. Peatlands in the earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).CAS 

    Google Scholar 
    2.Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24(9), 1028–1042 (2014).ADS 

    Google Scholar 
    3.Belyea, L. R. & Malmer, N. Carbon sequestration in peatland: Patterns and mechanisms of response to climate change. Glob. Change Biol. 10(7), 1043–1052 (2004).ADS 

    Google Scholar 
    4.Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8(10), 907–913 (2018).ADS 
    CAS 

    Google Scholar 
    5.Harden, J. W., Sundquist, E. T., Stallard, R. F. & Mark, R. K. Dynamics of soil carbon during deglaciation of the Laurentide ice-sheet. Science 258(5090), 1921–1924 (1992).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Gorham, E., Lehman, C., Dyke, A., Janssens, J. & Dyke, L. Temporal and spatial aspects of peatland initiation following deglaciation in North America. Quat. Sci. Rev. 26(3–4), 300–311 (2007).ADS 

    Google Scholar 
    7.Indermühle, A. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723), 121–126 (1999).ADS 

    Google Scholar 
    8.IPCC. In Climate Change (2013): The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker T.F. et al.) (Cambridge University Press, 2013).9.Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10(2), 929–944 (2013).ADS 

    Google Scholar 
    10.Loisel, J. & Yu, Z. Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska. J. Geophys. Res. Biogeosci. 118, 41–53 (2013).CAS 

    Google Scholar 
    11.Lund, M. et al. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob. Change Biol. https://doi.org/10.1111/j.1365-2486.2009.02104.x (2010).Article 

    Google Scholar 
    12.Yang, G. et al. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands. Atmos. Environ. 152, 323–329 (2017).ADS 
    CAS 

    Google Scholar 
    13.Laine, A. M. et al. Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Glob. Change Biol. 25(6), 1995–2008 (2019).ADS 

    Google Scholar 
    14.Pancotto, V., Holl, D., Escobar, J., Castagnani, M. F. & Kutzbach, L. Cushion bog plant community responses to passive warming in southern Patagonia. Biogeosciences 18(16), 4817–4839 (2020).ADS 

    Google Scholar 
    15.Gunnarsson, U. Global patterns of Sphagnum productivity. J. Bryol. 27, 269–279 (2005).
    Google Scholar 
    16.Limpens, J. & Berendse, F. How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103(3), 537–547 (2003).CAS 

    Google Scholar 
    17.Hajek, T., Ballance, S., Limpens, J., Zijlstra, M. & Verhoeven, J. T. A. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry 103, 45–57 (2011).CAS 

    Google Scholar 
    18.Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619. https://doi.org/10.1038/nature08216 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).ADS 

    Google Scholar 
    20.Van der Heijden, E., Verbeek, S. K. & Kuiper, P. J. C. Elevated atmospheric CO2 and increased nitrogen deposition: Effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. Var. mucronatum (Russ.) Warnst. Glob. Change Biol. 6(2), 201–212 (2000).ADS 

    Google Scholar 
    21.Berendse, F. et al. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob. Change Biol. 7(5), 591–598 (2001).ADS 

    Google Scholar 
    22.Heijmans, M. M. P. D. et al. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J. Ecol. 89(2), 268–279 (2001).CAS 

    Google Scholar 
    23.Heijmans, M. M. P. D., Klees, H., de Visser, W. & Berendse, F. Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecol. 162(1), 123–134 (2002).
    Google Scholar 
    24.Mitchell, E. A. D. et al. Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. J. Ecol. 90(3), 529–533 (2002).CAS 

    Google Scholar 
    25.Toet, S. et al. Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland. Plant Ecol. 182(1–2), 27–40 (2006).
    Google Scholar 
    26.Ehlers, I. et al. Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century. Proc. Natl. Acad. Sci. USA 112(51), 15585–15590 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Serk, H., Nilsson, M. B., Figueira, J., Wieloch, T. & Schleucher, J. CO2 fertilization of Sphagnum peat mosses is modulated by water table level and other environmental factors. Plant Cell Environ. https://doi.org/10.1111/pce.14043 (2021).Article 
    PubMed 

    Google Scholar 
    28.Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. https://doi.org/10.1111/nph.16866 (2020).Article 
    PubMed 

    Google Scholar 
    29.Schipperges, B. & Rydin, H. Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytol. 140(4), 677–684 (1998).CAS 
    PubMed 

    Google Scholar 
    30.Robroek, B. J. M., Schouten, M. G. C., Limpens, J., Berendse, F. & Poorter, H. Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Glob. Change Biol. 15, 680–691 (2009).ADS 

    Google Scholar 
    31.Weston, D. J. et al. Sphagnum physiology in the context of changing climate: Emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant Cell Environ. 38(9), 1737–1751 (2015).PubMed 

    Google Scholar 
    32.Bengtsson, F., Granath, G. & Rydin, H. Photosynthesis, growth, and decay traits in Sphagnum—A multispecies comparison. Ecol. Evol. 6(19), 3325–3341 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    33.Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    34.Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim. Dyn. 26, 387–405 (2006).
    Google Scholar 
    35.Willmot, C.J., & Matsuura, K. Terrestrial air temperature and precipitation: Gridded monthly time series (1900–2017), (V 5.01 added 6/1/18). http://climate.geog.udel.edu/~climate/html_pages/Global2017/README.GlobalTsT2017.html and README.GlobalTsP2017.html (2018).36.Loisel, J., Garneau, M. & Hélie, J.-F. Sphagnum δ13C values as indicators of palaeohydrological changes in a peat bog. Holocene 20(2), 285–291 (2010).ADS 

    Google Scholar 
    37.Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).ADS 
    CAS 

    Google Scholar 
    38.Pelletier, N. et al. Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon storage of a peatland complex in northwestern Canada. Holocene 27(9), 1391–1405 (2017).ADS 

    Google Scholar 
    39.Talbot, J., Richard, P. J. H., Roulet, N. T. & Booth, R. K. Assessing long-term hydrological and ecological responses to drainage in a raised bog using paleoecology and a hydrosequence. J. Veg. Sci. 21, 143–156 (2010).
    Google Scholar 
    40.Kopp, B. J. et al. Impact of long-term drainage on summer groundwater flow patterns in the Mer Bleue peatland, Ontario, Canada. Hydrol. Earth Sci. 17, 3485–3498 (2013).
    Google Scholar 
    41.Van Bellen, S. et al. Late-Holocene climate dynamics recorded in the peat bogs of Tierra del Fuego, South America. Holocene 26(3), 489–501 (2016).ADS 

    Google Scholar 
    42.De Jong, R., Schoning, K. & Björck, S. Increased aeolian acitivty during humidity shifts as recorded in a raised bog in south-west Sweden during the past 1700 years. Clim. Past 3, 411–422 (2007).
    Google Scholar 
    43.Kunshan, B. et al. A 100-year history of water level change and driving mechanism in Heilongjiang River basin wetlands. Quat. Sci. 38(4), 981–995 (2018).
    Google Scholar 
    44.Zheng, X. The reconstruction of moisture availability in south-eastern Australia during the Holocene. PhD thesis, University of New South Wales, Sydney (2018).45.Loader, N. J. et al. Measurements of hydrogen, oxygen and carbon isotope variability in Sphagnum moss along a micro-topographical gradient in a southern Patagonian peatland. J. Quat. Sci. 31(4), 426–435 (2016).
    Google Scholar 
    46.Xia, Z. et al. Environmental controls on the carbon and water (H and O) isotopes in peatland Sphagnum mosses. Geochim. Cosmochim. Acta 277, 265–284 (2020).ADS 
    CAS 

    Google Scholar 
    47.Sharkey, T. D. Estimating the rate of photorespiration in leaves. Physiol. Plant. 73, 147–152 (1988).CAS 

    Google Scholar 
    48.Flamholz, A. I. et al. Revisiting trade-offs between Rubisco kinetic properties. Biochemistry 58, 3365–3376 (2019).CAS 
    PubMed 

    Google Scholar 
    49.Wu, J. H. & Roulet, N. T. Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens. Glob. Biogeochem. Cycles https://doi.org/10.1002/2014GB004845 (2014).Article 

    Google Scholar 
    50.Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).ADS 
    CAS 

    Google Scholar 
    51.Lund, M., Chrsitensen, T. R., Lindroth, A. & Schubert, P. Effects of drought conditions on the carbon dioxide dynamics in a temperate peatland. Environ. Res. Lett. 7, 045704. https://doi.org/10.1088/1748-9326/7/4/045704 (2012).ADS 
    Article 

    Google Scholar 
    52.Chong, M., Humphreys, E. R. & Moore, T. R. Microclimatic response to increasing shrub cover and its effect on Sphagnum CO2 exchange in a bog. Ecoscience 19, 89–97 (2012).
    Google Scholar 
    53.Fritz, C. et al. Nutrient additions in pristine Patagonian Sphagnum bog vegetation: Can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biol. 14, 491–499 (2012).CAS 
    PubMed 

    Google Scholar 
    54.Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).CAS 

    Google Scholar 
    55.Bengtsson, F., Granath, G., Cronberg, N. & Rydin, H. Mechanisms behind species-specific water economy responses to water level drawdown in peat mosses. Ann. Bot. 126(2), 219–230 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Nijp, J. J. et al. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?. New Phytol. 203(1), 70–80 (2014).PubMed 

    Google Scholar 
    57.Limpens, J., Berendse, F. & Klees, H. How phosphorous availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7, 793–804 (2004).CAS 

    Google Scholar 
    58.Wu, J. H., Roulet, N. T., Nilsson, M., Lafleur, P. & Humphreys, E. Simulating the carbon cycling of Northern peat lands using a land surface scheme coupled to a Wetland Carbon Model (CLASS3W-MWM). Atmos. Ocean 50(4), 487–506 (2012).CAS 

    Google Scholar 
    59.Etheridge D. M., Steele L. P., Langenfelds R. L., Francey R. J., Barnola J. M., & Morgan V. I. Historical CO2 records from the law dome DE08, DE08-2, and DSS ice cores (1006 A.D.–1978 A.D). https://doi.org/10.3334/CDIAC/ATG.011 (Carbon Dioxide Information Analysis Center (CDIAC); Oak Ridge National Laboratory (ORNL), 1998).60.Laine, J. et al. The intrinsic beauty of Sphagnum Mosses—A Finnish guide to Identification. University of Helsinki. Dept. For. Sci. Publ. 2, 1–191 (2011).
    Google Scholar 
    61.Grover, S. P. P., Baldock, J. A. & Jacobsen, G. E. Accumulation and attrition of peat soils in the Australian Alps: Isotopic dating evidence. Austral. Ecol. 37, 510–517 (2012).
    Google Scholar 
    62.Kleinbecker, T., Hölzel, N. & Vogel, A. Gradients of continentality and moisture in south Patagonian ombrotrophic peatland vegetation. Folia Geobotanica 42, 363–382 (2007).
    Google Scholar 
    63.Hassel, K. et al. Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum Brid. J. Bryol. 40, 197–222 (2018).
    Google Scholar 
    64.Betson, T. R., Augusti, A. & Schleucher, J. Quantification of deuterium isotopomers of tree-ring cellulose using nuclear magnetic resonance. Anal. Chem. 78(24), 8406–8411 (2006).CAS 
    PubMed 

    Google Scholar 
    65.Schleucher, J., Vanderveer, P., Markley, J. L. & Sharkey, T. D. Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucose isomerase. Plant Cell Environ. 22(5), 525–533 (1999).CAS 

    Google Scholar 
    66.Werner, R. A., Bruch, B. A. & Brand, W. A. ConFlo III—An interface for high precision δ13C and δ15N analysis with an extended dynamic range. Rapid Commun. Mass Spectrom. 13(13), 1237–1241 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    67.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).
    Google Scholar 
    68.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    69.Gareth, J., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer Science+Business Media, 2013).MATH 

    Google Scholar 
    70.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).MATH 

    Google Scholar 
    71.Lüning, S., Galka, M., Bamonte, F. P., Rodríguez, F. G. & Vahrenholt, F. The medieval climate anomaly in South America. Quat. Int. 508, 70–87 (2019).
    Google Scholar 
    72.Schimpf, D. et al. The significance of chemical isotopic and detrital components in three coeval stalagmites from the superhumid southernmost Andes (53°S) as high-resolution paleo-climate proxies. Quat. Sci. Rev. 30, 443–459 (2011).ADS 

    Google Scholar  More

  • in

    No pervasive relationship between species size and local abundance trends

    Recent analyses have found that, despite high and increasing levels of community turnover, there is no clear overall trend in local-scale species richness1,2,3,4. However, it remains unclear how this result translates into functional changes. One of the most fundamental functional traits of a species is its size5,6 and there is an expectation that a warming climate will lead to a shift towards smaller species7,8,9,10,11, drawing upon metabolic theory12 and the observed distributional patterns described by Bergmann’s rule13,14. Temperature-driven shifts towards smaller species have been observed in tundra plant communities15 and some7,9,16, but not all11, aquatic systems. Furthermore, larger species have been more extinction prone during some previous mass extinctions17,18 and are more likely to show strong recent population declines19. Although relationships are threat dependent20,21, larger species tend to be assessed at a higher risk of extinction due to longer generational intervals and increased threat from habitat loss, fragmentation and hunting22.One might therefore expect a detectable signal of shifts in community trait values beneath the apparent underlying consistency in taxonomic diversity. To examine this, we tested whether the size of a species is correlated with the change in abundance through time using the publicly available BioTIME database23. This database is the largest collection of time series of ecological communities and, despite considerable biases that we discuss below, has wide geographic and taxonomic scope23. It consists of ‘studies’ defined by a consistent sampling methodology and taxonomic focus. After cleaning and standardizing the names associated with the records, we linked six fundamental ‘size’ traits from four openly accessible trait databases representing four broad guilds: adult body mass from a database of amniote life history traits24, adult body length and qualitative body size of marine species from the World Register of Marine Species (WoRMS) database25, plant maximum height and seed mass from the TRY database26 and maximum body length of fish from a compilation27 based on data in the FishBase repository28.Observations from single-location studies were combined, whilst widely dispersed studies were separately binned into a global grid of cells, each approximately 10 km wide, and data from each study and cell were treated as discrete assemblages, following previous analyses1,29. Selecting only assemblages with quantitative observations of ≥10 species, over ≥5 years and with ≥40% of the species having records for at least one size trait, we generated 12,956 assemblage time series from 144 studies (Fig. 1). This filtered dataset represented 2,109,593 observations of 10,286 species, of which 7,234 could be linked to at least one size trait (representing 84.02% of observations). Equally weighting studies, the average time series length was 18.2 years (range 5–71.8 years), and the average number of species per included assemblage was 65.4 (range 10–337). The log10 ratio between the largest and smallest species in each study averaged 2.49 (range 0.55–6.73) across the ‘mass’ traits and 1.06 (range 0.3–3.15) across the ‘length’ traits.Fig. 1: Global distribution of studies in our dataset, showing average τ for each study–trait combination and divided into aquatic and terrestrial realms.The aquatic realm is principally marine but includes three freshwater studies. Note that the locations are shown as the centre point of each study, which can cause oceanic studies to be ‘located’ on land. See Extended Data Fig. 1 for full details of study-level results.Full size imageFor each trait and community assemblage time series for which there were sufficient data, we first square-root transformed and standardized each time series following previous approaches3 and calculated βi, the slope of a regression of abundance of species i against time. We then calculated, for each assemblage, τ (the Kendall rank correlation coefficient between the trait in question) and β, across the species for which we had trait data. This gives a non-parametric measure of whether larger species are more or less likely than smaller species to have increased through time and, importantly, can be calculated where trait values for only a fraction of the observed species are available. To weight each study within BioTIME equally, where there were multiple assemblages per study, these were averaged to generate a τ value for each possible study–trait combination. To provide a reference distribution against which to evaluate the statistical significance of this multistage analysis, we repeated the procedure with 10,000 trait randomizations within each assemblage.Certain individual studies showed significant relationships between size traits and population trends (coloured dots in Fig. 2 and Extended Data Fig. 1). However, for five of the six tested size traits, the overall mean τ values did not differ significantly from the null model (Fig. 2). For one trait (amniote body mass, Fig. 2d) we found a marginally significant (unadjusted for multiple comparisons) overall average positive relationship between size and the slope of population trends (β). Alternative population data transformations gave highly concordant results (Extended Data Figs. 2 and 3). Possible confounding factors for the value of τ associated with each study, namely the total span of the time series, the number of sample points, the species richness, the range of traits in the assemblage, the average size trait completeness, the number of assemblages within the study, the grain of the study and the absolute latitude, did not consistently predict either τ or τ2 (Extended Data Figs. 4 and 5 and Supplementary Tables 1 and 2). Further, the likelihood of an individual species showing either a statistically significant positive or negative population trend was not linked to its relative size trait value within the assemblage (all P  > 0.05; Extended Data Fig. 6 and Supplementary Table 3).Fig. 2: Correlation between six body-size traits and changes in abundance through time (τ).a–f, Distribution of Kendall rank correlation coefficient between body-size traits for body length (a) and qualitative body size (b) of marine species, maximum length of fish (c), adult body mass of amniotes (d) and seed mass (e) and maximum height (f) of plants versus changes in abundance through time. Each dot represents one study, averaging across the constituent assembly time series for studies of large spatial extent. Study-level results are binned into classes 0.05 units of τ wide. Coloured dots highlight studies that were individually identified as showing a significant trend (yellow for negative, blue for positive; see Extended Data Fig. 1 for study-level intervals). The error bar below each plot displays the distribution (central 95% and 66%) of mean τ values over 10,000 permutations of the size trait data, whilst the red line indicates the observed mean τ value within that panel. Displayed P values are calculated from permutation tests. Equivalent results using alternative approaches to transforming the community data are given in Extended Data Fig. 3.Full size imageThese results indicate that there is not yet evidence for widely pervasive within-assemblage trends in a core functional trait, size. Importantly however, this study should not be seen as a refutation or diminishment of the heightened threats faced by the very largest apex species30,31, which constitute only a minor component of the BioTIME database. Rather, against a background of considerable turnover2,3 across whole observed community assemblages, on average, species positions in communities are being taken up by species of comparable size. Our results suggest that previously identified shifts towards smaller species found in some aquatic systems9,16 may not be as universal as currently expected7,11 and align with the divergent changes in global body-size abundance distributions observed between mammal guilds32 and the apparent stability of trait diversity in North American birds despite declines in abundance33.The tendency towards an overall positive association between body-size and population trends across the amniote studies could have a number of drivers that would benefit from further investigation. One putative explanation that has been put forward for positive size trends is that anthropogenic dispersal limitations (generally considered to act more strongly against smaller species) may be having a greater immediate impact than climate change34. There are also indications of differences between terrestrial and marine systems. Previous work with the same datasets1,29 has found greater species richness and abundance changes in marine than terrestrial systems, whilst here we see a signal of greater trait changes in the (largely terrestrial) amniotes.In our dataset, the fish length trait studies displayed a particularly skewed distribution of τ values (Fig. 2c), with a modal peak of studies showing small negative values then a tail of strongly positive relationships. This guild is also the most likely to have experienced sustained anthropogenic pressure35, and many of the ‘fish’ datasets in BioTIME include data from surveys of actively fished and managed areas. Accurately quantifying marine community trends is a challenge36,37, but this pattern could reflect the imposition or relaxation of anthropogenic pressure across marine systems38,39. Positive τ values could represent recoveries from past pressures on larger species, and positive τ values were associated with shorter study durations in the fish studies (Extended Data Fig. 4).Our analysis necessarily sacrifices fine resolution for global scale. Technically, BioTIME studies represent assemblages defined by taxonomy and sampling protocol rather than complete ecological communities. We must implicitly assume that the scope of each study within BioTIME strikes a reasonable balance between the need to include a sufficiently diverse set of species to be able to observe any potential impact of trait differences whilst maintaining meaningful comparability. Limitations to total time series lengths and the limited range of sizes recorded within each dataset inevitably constrain our capacity to detect gradual changes or subtle influences of size. Although the lack of consistent study-level drivers of τ suggests that the results are unlikely to be solely determined by the inevitable spatial and temporal limitations of the BioTIME database, future work should seek to improve the scope and resolution of available data to enable more strongly parametric analyses and examine additional measures of community change.Whilst available trait databases of amniotes and fish are carefully curated, checked and taxonomically tidy, the other databases pose more problems in terms of taxonomic matching and consistency of trait measurements. Without direct correspondence between the sources of dynamics and trait data, it is necessary to take traits as fixed values for each species, despite known differences in traits in time8,40,41,42 and space43 that may themselves represent responses to global change. However, in Celtic Sea fish, within-species shifts have been shown to contribute less to community-level size shifts than changes in species composition44. We also note that ‘size’ traits for indeterminately growing plants have a less clear meaning than for animals. However, both seed size and maximum height are linked to environmental variables45,46, plant size is linked to life history47,48 and changes in community height driven by species turnover have been observed in tundra plants15.Many of the criticisms and defences regarding earlier studies using the BioTIME dataset, and indeed other analyses of large collections of time series, also apply to this work49,50. The consistency between the alternative approaches we tested to determine population trends (Extended Data Fig. 3) demonstrates that our conclusions are not dependent on particular data transformation choices. However, a largely non-parametric statistical approach was necessitated by the unevenness of the available data, and it must be noted that it could lack the power and resolution to identify subtle changes. Biases in the underlying BioTIME database towards vertebrate taxa, particular biomes and temperate North American and European sites23 are further exaggerated when crossed with trait data availability (Fig. 1). One particularly concerning gap is the absence of any insect studies in our dataset due to a paucity of usable trait information. Observations suggest that there have been considerable changes in the structure of insect communities34,51,52. Developing comprehensive insect trait datasets, including using proxies and data imputation, will be crucial to address this deficit53,54,55.In conclusion, despite necessary reservations, this global analysis suggests that examples of relative increases of larger species11,34 may in fact be as frequent as shifts towards smaller-sized species16. Community responses appear to be considerably more nuanced and localized than previously considered based on theoretical macro-ecological expectations7. More

  • in

    Global warming decreases connectivity among coral populations

    1.Cesar, H., Burke, L. & Pet-Soede L. The Economics of Worldwide Coral Reef Degradation (Cesar Environmental Economics Consulting, 2003).2.Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).CAS 
    Article 

    Google Scholar 
    3.Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    4.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Science 359, 80–83 (2018).CAS 
    Article 

    Google Scholar 
    5.Grottoli, A. G., Rodrigues, L. J. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621–631 (2004).CAS 
    Article 

    Google Scholar 
    6.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Change Biol. 20, 3823–3833 (2014).Article 

    Google Scholar 
    7.Underwood, J. N., Smith, L. D., van Oppen, M. J. H. & Gilmour, J. P. Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).Article 

    Google Scholar 
    8.Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185 (2007).Article 

    Google Scholar 
    9.Heyward, A. J. & Negri, A. P. Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs 29, 631–636 (2010).Article 

    Google Scholar 
    10.Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Change 4, 498–502 (2014).Article 

    Google Scholar 
    11.Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395 (2009).Article 

    Google Scholar 
    12.van Gennip, S. J. et al. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23, 2602–2617 (2017).Article 

    Google Scholar 
    13.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).14.Nishikawa, A. & Sakai, K. Settlement-competency period of planulae and genetic differentiation of the scleractinian coral Acropora digitifera. Zool. Sci. 22, 391–399 (2005).Article 

    Google Scholar 
    15.Connolly, S. R. & Baird, A. H. Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91, 3572–3583 (2010).Article 

    Google Scholar 
    16.Figueiredo, J., Baird, A. H. & Connolly, S. R. Synthesizing larval competence dynamics and reef-scale retention reveals a high potential for self-recruitment in corals. Ecology 94, 650–659 (2013).Article 

    Google Scholar 
    17.Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article 

    Google Scholar 
    18.Randall, C. J. & Szmant, A. M. Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28, 537–545 (2009).Article 

    Google Scholar 
    19.Burgess, S. C. et al. Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected-area design. Ecol. Appl. 24, 257–270 (2014).Article 

    Google Scholar 
    20.Woolsey, E. S., Keith, S. A., Byrne, M., Schmidt-Roach, S. & Baird, A. H. Latitudinal variation in thermal tolerance thresholds of early life stages of corals. Coral Reefs 34, 471–478 (2015).Article 

    Google Scholar 
    21.Rodriguez-Lanetty, M., Harii, S. & Hoegh-Guldberg, O. Early molecular responses of coral larvae to hyperthermal stress. Mol. Ecol. 18, 5101–5114 (2009).CAS 
    Article 

    Google Scholar 
    22.Andutta, F. P., Kingsford, M. J. & Wolanski, E. ‘Sticky water’ enables the retention of larvae in a reef mosaic. Estuar. Coast. Shelf Sci. 54, 655–668 (2012).
    Google Scholar 
    23.Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355 (2017).Article 

    Google Scholar 
    24.Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).Article 

    Google Scholar 
    25.Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 

    Google Scholar 
    26.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).CAS 
    Article 

    Google Scholar 
    27.Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine populations. Bull. Mar. Sci. 70, 377–396 (2002).
    Google Scholar 
    28.Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).CAS 
    Article 

    Google Scholar 
    29.Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).Article 

    Google Scholar 
    30.Leis, J. M. Nearshore distributional gradients of larval fish (15 taxa) and planktonic crustaceans (6 taxa) in Hawaii. Mar. Biol. 72, 89–97 (1982).Article 

    Google Scholar 
    31.Kraines, S. B., Yanagi, T., Isobe, M. & Komiyama, H. Wind-wave driven circulation on the coral reef at Bora Bay, Miyako Island. Coral Reefs 17, 133–143 (1998).Article 

    Google Scholar 
    32.Paris, C. B. & Cowen, R. K. Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol. Oceanogr. 49, 1964–1979 (2004).Article 

    Google Scholar 
    33.Keshavmurthy, S., Fontana, S., Mezaki, T., Gonzalez, L. C. & Chen, C. A. Doors are closing on early development in corals facing climate change. Sci. Rep. 4, 5633 (2014).CAS 
    Article 

    Google Scholar 
    34.Thomas, C. J. et al. Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef. Ecol. Model. 272, 160–174 (2014).Article 

    Google Scholar 
    35.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).Article 

    Google Scholar 
    36.Hata, T. et al. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 7, 2249 (2017).Article 

    Google Scholar 
    37.Gleason, D. F. & Hofmann, D. K. Coral larvae: from gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42–57 (2011).Article 

    Google Scholar  More

  • in

    Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution

    1.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Nelson MB, Martiny AC, Martiny JBH. Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci USA. 2016;113:8033–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al. Comparative metagenomics of microbial communities. Science. 2005;308:554–7.CAS 
    PubMed 

    Google Scholar 
    4.Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, et al. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science. 2014;345:207–12.CAS 
    PubMed 

    Google Scholar 
    5.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 

    Google Scholar 
    6.Starnawski P, Bataillon T, Ettema TJG, Jochum LM, Schreiber L, Chen X, et al. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA. 2017;114:2940–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CAS 

    Google Scholar 
    8.Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA. 2009;106:1948–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol. 2005;6:229.PubMed 
    PubMed Central 

    Google Scholar 
    10.Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA. 2012;109:21390–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 2021;39:105–14.CAS 
    PubMed 

    Google Scholar 
    13.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Delmont TO, Quince C, Shaiber A, Esen OC, Lee STM, Lucker S, et al. Nitrogen-fixing populations of planctomycetes and proteobacteria are abundant in the surface ocean. bioRxiv. 2017. https://doi.org/10.1101/129791.15.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 

    Google Scholar 
    16.Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature. 2019;568:505–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.CAS 
    PubMed 

    Google Scholar 
    18.Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun. 2016;7:10476.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Schulz F, Eloe-Fadrosh EA, Bowers RM, Jarett J, Nielsen T, Ivanova NN, et al. Towards a balanced view of the bacterial tree of life. Microbiome. 2017;5:140.PubMed 
    PubMed Central 

    Google Scholar 
    20.Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523:208–11.CAS 
    PubMed 

    Google Scholar 
    21.Jay ZJ, Inskeep WP. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales. Biol Direct. 2015;10:1–10.CAS 

    Google Scholar 
    22.Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.CAS 
    PubMed 

    Google Scholar 
    23.Chen L-X, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res. 2020;30:315–33.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Tully BJ, Graham ED, Heidelberg JF. The Reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. bioRxiv. 2017. https://doi.org/10.1101/162503.25.Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods. 2017;14:1063–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Bowers RM, Doud DFR, Woyke T. Analysis of single-cell genome sequences of bacteria and archaea. Emerg Top Life Sci. 2017;1:249–55.CAS 
    PubMed 

    Google Scholar 
    28.Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed 
    PubMed Central 

    Google Scholar 
    29.Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife. 2014;3:e03125.PubMed 
    PubMed Central 

    Google Scholar 
    30.Jarett JK, Džunková M, Schulz F, Roux S, Paez-Espino D, Eloe-Fadrosh E, et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 2020;14:2527–41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Woyke T, Doud DFR, Schulz F. The trajectory of microbial single-cell sequencing. Nat Methods. 2017;14: 1045–54.32.Lasken RS. Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol. 2012;10:631–40.CAS 
    PubMed 

    Google Scholar 
    33.Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Zaremba-Niedzwiedzka K, Viklund J, Zhao W, Ast J, Sczyrba A, Woyke T, et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 2013;14:R130.PubMed 
    PubMed Central 

    Google Scholar 
    35.Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.CAS 
    PubMed 

    Google Scholar 
    36.Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, Biller SJ, et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell. 2019;179:1623–35.e11.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Ellegaard KM, Klasson L, Andersson SGE. Testing the reproducibility of multiple displacement amplification on genomes of clonal endosymbiont populations. PLoS ONE. 2013;8:e82319.PubMed 
    PubMed Central 

    Google Scholar 
    38.Luo C, Knight R, Siljander H, Knip M, Xavier RJ, Gevers D. ConStrains identifies microbial strains in metagenomic datasets. Nat Biotechnol. 2015;33:1045–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh HJ, Cuenca M, et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun. 2019;10:1–11.
    Google Scholar 
    40.Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016;26:1612–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45–50.PubMed 

    Google Scholar 
    42.Garud NR, Pollard KS. Population genetics in the human microbiome. Trends Genet. 2020;36:53–67.43.Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056.PubMed 
    PubMed Central 

    Google Scholar 
    44.Grasby SE, Hutcheon I. Controls on the distribution of thermal springs in the southern Canadian Cordillera. Can J Earth Sci. 2001;38:427–40.CAS 

    Google Scholar 
    45.Brady AL, Sharp CE, Grasby SE, Dunfield PF. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front Microbiol. 2015;6:897.PubMed 
    PubMed Central 

    Google Scholar 
    46.Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc. 2014;9:1038–48.CAS 
    PubMed 

    Google Scholar 
    47.Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, et al. Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol. 2015;6:771.PubMed 
    PubMed Central 

    Google Scholar 
    48.Bowers RM, Clum A, Tice H, Lim J, Singh K, Ciobanu D, et al. Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community. BMC Genomics. 2015;16:856.PubMed 
    PubMed Central 

    Google Scholar 
    49.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2:e00191–16.PubMed 
    PubMed Central 

    Google Scholar 
    51.Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:1–17.
    Google Scholar 
    52.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    53.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Kang DD, Froula J, Egan R, Wang Z. A robust statistical framework for reconstructing genomes from metagenomic data. bioRxiv. 2014. https://doi.org/10.1101/011460.55.Chen IMA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, et al. The IMG/M data management and analysis system v.6.0: New tools and advanced capabilities. Nucleic Acids Res. 2021;49:D751–63.CAS 
    PubMed 

    Google Scholar 
    56.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High-throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. bioRxiv. 2017. https://doi.org/10.1101/225342.57.Chen I-MA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–16.CAS 
    PubMed 

    Google Scholar 
    58.Eveleigh RJM, Meehan CJ, Archibald JM, Beiko RG. Being Aquifex aeolicus: untangling a hyperthermophile’s checkered past. Genome Biol Evol. 2013;5:2478.PubMed 
    PubMed Central 

    Google Scholar 
    59.Fuchsman CA, Collins RE, Rocap G, Brazelton WJ. Effect of the environment on horizontal gene transfer between bacteria and archaea. PeerJ. 2017;5:e3865.PubMed 
    PubMed Central 

    Google Scholar 
    60.Boussau B, Guéguen L, Gouy M. Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria. BMC Evol Biol. 2008;8:272.PubMed 
    PubMed Central 

    Google Scholar 
    61.Yu FB, Blainey PC, Schulz F, Woyke T, Horowitz MA, Quake SR. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. Elife. 2017;6:e26580.PubMed 
    PubMed Central 

    Google Scholar 
    62.Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.CAS 
    PubMed 

    Google Scholar 
    63.Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol. 2007;73:278–88.CAS 
    PubMed 

    Google Scholar 
    64.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.PubMed 
    PubMed Central 

    Google Scholar 
    65.Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46:e35.PubMed 
    PubMed Central 

    Google Scholar 
    66.Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Paez-Espino D, Chen I-MA, Palaniappan K, Ratner A, Chu K, Szeto E, et al. IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses. Nucleic Acids Res. 2017;45:D457–65.CAS 
    PubMed 

    Google Scholar 
    68.Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinforma. 2007;8:209.
    Google Scholar 
    69.Edgar RC. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinforma. 2007;8:18.
    Google Scholar 
    70.Sharp CE, Brady AL, Sharp GH, Grasby SE, Stott MB, Dunfield PF. Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J. 2014;8:1166–74.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Eloe-Fadrosh EA, Ivanova NN, Woyke T, Kyrpides NC. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat Microbiol. 2016;1:15032.CAS 
    PubMed 

    Google Scholar 
    72.Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T. Reconstructing each cell’s genome within complex microbial communities-dream or reality? Front Microbiol. 2014;5:771.PubMed 

    Google Scholar 
    73.Westoby M, Nielsen DA, Gillings MR, Litchman E, Madin JS, Paulsen IT, et al. Cell size, genome size, and maximum growth rate are near-independent dimensions of ecological variation across bacteria and archaea. Ecol Evol. 2021;11:3956–76.PubMed 
    PubMed Central 

    Google Scholar 
    74.Bendall ML, Stevens SL, Chan L-K, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.PubMed 
    PubMed Central 

    Google Scholar 
    75.Meziti A, Tsementzi D, Rodriguez-R LM, Hatt JK, Karayanni H, Kormas KA, et al. Quantifying the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal riverine gradient. ISME J. 2019;13:767–79.PubMed 

    Google Scholar 
    76.Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6:431–40.77.Reysenbach A-L. Aquificales ord. nov. Bergey’s manual of systematics of archaea and bacteria. Chichester: John Wiley & Sons, Ltd; 2015. p. 1.78.McKay LJ, Nigro OD, Dlakić M, Luttrell KM, Rusch DB, Fields MW, et al. Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone’s hottest ecosystems. ISME J. 2021;2021:1–14.
    Google Scholar 
    79.Hügler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol. 2007;9:81–92.PubMed 

    Google Scholar 
    80.Alneberg J, Karlsson CMG, Divne AM, Bergin C, Homa F, Lindh MV, et al. Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes. Microbiome. 2018;6:173.PubMed 
    PubMed Central 

    Google Scholar 
    81.Nelson WC, Tully BJ, Mobberley JM. Biases in genome reconstruction from metagenomic data. PeerJ. 2020;8:e10119.PubMed 
    PubMed Central 

    Google Scholar 
    82.Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet. 2020;36:132–45.83.Maguire F, Jia B, Gray KL, Lau WYV, Beiko RG, Brinkman FSL. Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic islands. Micro Genomics. 2020;6:1–12.CAS 

    Google Scholar 
    84.Shmakov SA, Sitnik V, Makarova KS, Wolf YI, Severinov KV, Koonin EV. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio. 2017;8:e01397–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Weinberger AD, Wolf YI, Lobkovsky AE, Gilmore MS, Koonin EV. Viral diversity threshold for adaptive immunity in prokaryotes. MBio. 2012;3:e00456–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Drake JW. Avoiding dangerous missense: thermophiles display especially low mutation rates. PLoS Genet. 2009;5:1000520.
    Google Scholar 
    87.Wozniak RA, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 2010;8:552–63.CAS 
    PubMed 

    Google Scholar 
    88.Soto-Perez P, Bisanz JE, Berry JD, Lam KN, Bondy-Denomy J, Turnbaugh PJ. CRISPR-Cas system of a prevalent human gut bacterium reveals hyper-targeting against phages in a human virome catalog. Cell Host Microbe. 2019;26:325–35.e5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 2010;26:335–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Nobrega FL, Walinga H, Dutilh BE, Brouns SJJ. Prophages are associated with extensive CRISPR-Cas auto-immunity. Nucleic Acids Res. 2020;48:12074–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Edgar R, Qimron U. The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J Bacteriol. 2010;192:6291–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 2013;9:e1003454.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.94.Cheng L, Connor TR, Siren J, Aanensen DM, Corander J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol. 2013;30:1224–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 2018;3:93.PubMed 
    PubMed Central 

    Google Scholar 
    96.Rosen MJ, Davison M, Bhaya D, Fisher DS. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science. 2015;348:1019–23.CAS 
    PubMed 

    Google Scholar 
    97.Bubendorfer S, Krebes J, Yang I, Hage E, Schulz TF, Bahlawane C, et al. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat Commun. 2016;7:1–12.
    Google Scholar 
    98.Hanage WP, Fraser C, Spratt BG. Fuzzy species among recombinogenic bacteria. BMC Biol. 2005;3:6.PubMed 
    PubMed Central 

    Google Scholar 
    99.Sakoparnig T, Field C, van Nimwegen E. Whole genome phylogenies reflect the distributions of recombination rates for many bacterial species. Elife. 2021;10:1–61.
    Google Scholar 
    100.Koonin EV, Makarova KS, Wolf YI, Krupovic M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat Rev Genet. 2020;21:119–31.CAS 
    PubMed 

    Google Scholar 
    101.Iranzo J, Cuesta JA, Manrubia S, Katsnelson MI, Koonin EV. Disentangling the effects of selection and loss bias on gene dynamics. Proc Natl Acad Sci USA. 2017;114:E5616–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Exploring bycatch diversity of organisms in whole genome sequencing of Erebidae moths (Lepidoptera)

    1.Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 

    Google Scholar 
    2.Dillon, R. J. & Dillon, V. M. THE gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).CAS 
    PubMed 

    Google Scholar 
    3.Duplouy, A., Hursts, G. D. D., O’neill, S. L. & Charlat, S. Rapid spread of male-killing Wolbachia in the butterfly Hypolimnas bolina. J. Evol. Biol. 23, 231–235 (2010).CAS 
    PubMed 

    Google Scholar 
    4.Altizer, S. M., Oberhauser, K. S. & Brower, L. P. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecol. Entomol. 25, 125–139 (2000).
    Google Scholar 
    5.Jiggins, X., Hurst, X., Dolman, X. & Majerus, X. High-prevalence male-killing Wolbachia in the butterfly Acraea encedana. J. Evol. Biol. 13, 495–501 (2000).
    Google Scholar 
    6.Xu, P., Liu, Y., Graham, R. I., Wilson, K. & Wu, K. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt Biopesticide. PLoS Pathog. 10, e1004490 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    7.Bapatla, K. G., Singh, A., Yeddula, S. & Patil, R. H. Annotation of gut bacterial taxonomic and functional diversity in Spodoptera litura and Spilosoma obliqua. J. Basic Microbiol. 58, 217–226 (2018).CAS 
    PubMed 

    Google Scholar 
    8.Chen, F. et al. Effects of Wolbachia on mitochondrial DNA variation in populations of Athetis lepigone (Lepidoptera: Noctuidae) in China. Mitochondrial DNA Part A 28, 826–834 (2017).CAS 

    Google Scholar 
    9.van Nieukerken, E. J. et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 1758, 212–221 (2011).
    Google Scholar 
    10.Duplouy, A. & Hornett, E. A. Uncovering the hidden players in Lepidoptera biology: The heritable microbial endosymbionts. PeerJ 6, e4629 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    11.Werren, J. H., Windsor, D. & Guo, L. Distribution of Wolbachia among neotropical arthropods. Proc. R. Soc. Lond. Ser. B Biol. Sci. 262, 197–204 (1995).ADS 

    Google Scholar 
    12.Salunke, B. K. et al. Determination of Wolbachia diversity in butterflies from Western Ghats, India, by a multigene approach. Appl. Environ. Microbiol. 78, 4458–4467 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Duplouy, A. & Brattström, O. Wolbachia in the genus Bicyclus: A forgotten player. Microb. Ecol. 75, 255–263 (2018).PubMed 

    Google Scholar 
    14.Jiggins, F. M., Bentley, J. K., Majerus, M. E. & Hurst, G. D. How many species are infected with Wolbachia ? Cryptic sex ratio distorters revealed to be common by intensive sampling. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1123–1126 (2001).CAS 

    Google Scholar 
    15.Tagami, Y. & Miura, K. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. Insect Mol. Biol. 13, 359–364 (2004).CAS 
    PubMed 

    Google Scholar 
    16.Ilinsky, Y. & Kosterin, O. E. Molecular diversity of Wolbachia in Lepidoptera: Prevalent allelic content and high recombination of MLST genes. Mol. Phylogenet. Evol. 109, 164–179 (2017).CAS 
    PubMed 

    Google Scholar 
    17.Sazama, E. J., Ouellette, S. P. & Wesner, J. S. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 48, 127–133 (2019).PubMed 

    Google Scholar 
    18.Zaspel, J. M. Systematics, biology, and behavior of fruit-piercing and blood-feeding moths in the subfamily calpinae (lepidoptera: noctuidae). (2008).19.Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 25 (2014).
    Google Scholar 
    20.Ilinsky, Y. et al. Detection of bacterial symbionts (Wolbachia, Spiroplasma)and eukaryotic pathogen (Microsporidia) in Japanese populationsof gypsy moth species (Lymantria spp.). Euroasian Entomol. J. 16, 1–5 (2017).
    Google Scholar 
    21.Boonsit, P. & Wiwatanaratanabutr, I. Infection density, diversity, and distribution of Wolbachia bacteria in moths (Order Lepidoptera): First systematic report from Thailand. J. Asia-Pac. Entomol. 24, 20 (2021).
    Google Scholar 
    22.Gavotte, L. et al. A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol. Biol. Evol. 24, 427–435 (2006).PubMed 

    Google Scholar 
    23.Wang, G. H. et al. Bacteriophage WO can mediate horizontal gene transfer in endosymbiotic wolbachia genomes. Front. Microbiol. 7, 1–16 (2016).
    Google Scholar 
    24.Wang, N., Jia, S., Xu, H., Liu, Y. & Huang, D. Multiple horizontal transfers of bacteriophage WO and host wolbachia in fig wasps in a closed community. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 
    25.Tanaka, K., Furukawa, S., Nikoh, N., Sasaki, T. & Fukatsu, T. Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the wolbachia genome. Appl. Environ. Microbiol. 75, 5676–5686 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Kaushik, S., Sharma, K. K., Ramani, R. & Lakhanpaul, S. Detection of Wolbachia phage (WO) in Indian Lac insect [Kerria lacca (Kerr)] and its implications. Indian J. Microbiol. 59, 237–240 (2019).CAS 
    PubMed 

    Google Scholar 
    27.LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl. Acad. Sci. 115, 4987 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Kent, B. N. & Bordenstein, S. R. Phage WO of Wolbachia: Lambda of the endosymbiont world. Trends Microbiol. 18, 173–181 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Dale, C., Young, S. A., Haydon, D. T. & Welburn, S. C. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc. Natl. Acad. Sci. 98, 1883–1888 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Boyd, B. M. et al. Two bacterial genera, sodalis and rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl. Environ. Microbiol. 82, 3185–3197 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Fukatsu, T. et al. Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Appl. Environ. Microbiol. 73, 6660–6668 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Šochová, E., Husník, F., Nováková, E., Halajian, A. & Hypša, V. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 5, e4099 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    35.Burke, G. R., Normark, B. B., Favret, C. & Moran, N. A. Evolution and diversity of facultative symbionts from the aphid subfamily lachninae. Appl. Environ. Microbiol. 75, 5328–5335 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder sodalis: A new bacteriome-associated endosymbiont of the lygaeoid bug henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).PubMed 

    Google Scholar 
    38.Conord, C. et al. Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: Additional evidence of symbiont replacement in the dryophthoridae family. Mol. Biol. Evol. 25, 859–868 (2008).CAS 
    PubMed 

    Google Scholar 
    39.Kaiwa, N. et al. Bacterial symbionts of the giant jewel stinkbug Eucorysses grandis (Hemiptera: Scutelleridae). Zool. Sci. 28, 169–174 (2011).
    Google Scholar 
    40.Rubin, B. E. R., Sanders, J. G., Turner, K. M., Pierce, N. E. & Kocher, S. D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 5, 180369 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Sameshima, S., Hasegawa, E., Kitade, O., Minaka, N. & Matsumoto, T. Phylogenetic comparison of endosymbionts with their host ants based on molecular evidence. Zool. Sci. 16, 993–1000 (1999).CAS 

    Google Scholar 
    42.Oishi, S., Moriyama, M., Koga, R. & Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool. Lett. 5, 16 (2019).
    Google Scholar 
    43.Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).PubMed 

    Google Scholar 
    44.Khojandi, N., Haselkorn, T. S., Eschbach, M. N., Naser, R. A. & DiSalvo, S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. ISME J. 13, 2068–2081 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Itoh, H. et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc. Natl. Acad. Sci. USA 116, 22673–22682 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Ohbayashi, T., Itoh, H., Lachat, J., Kikuchi, Y. & Mergaert, P. Burkholderia gut symbionts associated with European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). Microbes Environ. 34, 219–222 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    47.Itoh, H. et al. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae). Appl. Environ. Microbiol. 80, 5974–5983 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109, 8618–8622 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Louis, F. et al. The bracovirus genome of the parasitoid wasp Cotesia congregata is amplified within 13 replication units, including sequences not packaged in the particles. J. Virol. 87, 9649–9660 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Ghanavi, H. R., Twort, V., Hartman, T. J., Zahiri, R. & Wahlberg, N. The (non) accuracy of mitochondrial genomes for family level phylogenetics: The case of erebid moths (Lepidoptera; Erebidae). bioRxiv https://doi.org/10.1101/2021.07.14.452330 (2021).Article 

    Google Scholar 
    51.Rigaud, T. & Juchault, P. Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. J. Evol. Biol. 8, 25 (1995).
    Google Scholar 
    52.Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37, 102–124 (2012).
    Google Scholar 
    53.Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).54.Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics https://doi.org/10.1093/bioinformatics/btr026 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    57.Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Kikuchi, Y. & Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia Symbiont. Appl. Environ. Microbiol. 79, 2088–2091 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 20 (2012).
    Google Scholar 
    60.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 20 (2009).CAS 

    Google Scholar 
    61.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells

    1.Fahmi, A. I., Nagaty, H. H., Eissa, R. A. & Hassan, M. M. Effects of salt stress on some nitrogen fixation parameters in faba bean. Pak. J. Biol. Sci. 14, 385–391 (2011).CAS 
    PubMed 

    Google Scholar 
    2.Munns, R. & Tester, M. Mechanism of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).CAS 
    PubMed 

    Google Scholar 
    3.Chinnusamy, V., Jagendorf, A. & Zhu, J. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437–448 (2005).CAS 

    Google Scholar 
    4.Chaum, S., Pokasombat, Y. & Kirdmanee, C. Remediation of salt-affected soil by gypsum and farm yard manure—Importance for the production of Jasmine rice. Austr. J. Crop Sci. 5(4), 458–465 (2011).
    Google Scholar 
    5.Sarwar, M., Amjad, M. & Ayyub, C. M. Alleviation of salt stress in cucumber (Cucumis sativus L.) through seed priming with triacontanol. Int. J. Agric. Biol. 19, 771–778 (2017).CAS 

    Google Scholar 
    6.Afzal, I., Basra, S. M. A., Ahmad, N. & Farooq, M. Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno de Pesquisa Série Biologia 17(1), 95–109 (2005).
    Google Scholar 
    7.Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy Seyed, A. M. M. & Allahdadi, I. The role of phytohormones in alleviating salt stress in crop plants. AJCS 5(6), 726–734 (2011).CAS 

    Google Scholar 
    8.Ahmad, P. et al. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front. Plant Sci. 7, 513 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    9.Mittova, V., Guy, M., Tal, M. & Volokita, M. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exp. Bot. 55(399), 1105–1113 (2004).CAS 
    PubMed 

    Google Scholar 
    10.Liu, P. et al. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ. Exp. Bot. 111, 42–51 (2015).CAS 

    Google Scholar 
    11.Kumaravelu, G., Livingstone, M. D. & Ramanujam, M. P. Triacontanol- induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biol. Plant 43, 287–290 (2000).CAS 

    Google Scholar 
    12.Khan, M. M. A. et al. Triacontanol-induced changes in the growth, yield and quality of tomato (Lycopersicon esculentum Mill). Electron. J. Environ. Agric. Food Chem. 5, 1492–1499 (2006).CAS 

    Google Scholar 
    13.Ries, S. K., Wert, V. F., Sweeley, C. C. & Leavitt, R. A. Triacontanol: A new naturally occurring plant growth regulator. Science 195, 1339–1341 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Muthuchelian, K., Murugan, C., Harigovindan, R., Nedunchezhian, N. & Kulandaivelu, G. Ameliorating effect of triacontanol on salt stressed Erythrina variegate seedlings. Changes in growth, biomass, pigments and solute accumulation. Biol. Plant 38, 133–136 (1996).CAS 

    Google Scholar 
    15.Verma, A., Malik, C. P., Gupta, V. K. & Bajaj, B. K. Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea hypogea L. Braz. J. Plant Physiol. 23, 271–277 (2011).CAS 

    Google Scholar 
    16.Kilic, N. K., Duygu, E. & Donmez, G. Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. J. Hazard. Mater. 182, 525–530 (2010).CAS 
    PubMed 

    Google Scholar 
    17.Naeem, M., Khan, M. M. A., Moinuddin, M., Idrees, K. & Aftab, T. Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regul. 11, 9588–9598 (2011).
    Google Scholar 
    18.Chen, X. et al. Isolation and characterization of triacontanol regulated genes in rice (Oryza sativa L.): Possible role of triacontanol as plant growth stimulator. Plant Cell Physiol. 43(8), 869–876 (2002).CAS 
    PubMed 

    Google Scholar 
    19.Chen, X., Yuan, H., Chen, R., Zhu, L. & He, G. Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regul. 40, 249–256 (2003).CAS 

    Google Scholar 
    20.Reddy, B. O., Giridhar, P. & Ravishankar, G. A. The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepis hamiltonii W&A. Plant Cell Tissue Organ Cult. 71, 253–258 (2002).
    Google Scholar 
    21.Tantos, A., Meszaros, A., Farkas, T., Szalai, J. & Horvath, G. Triacontanol supported the micropropagation of woody plants. Plant Cell Rep. 20, 16–21 (2001).CAS 
    PubMed 

    Google Scholar 
    22.Cavusoglu, K., Kilic, S. & Kabar, K. Effects of triacontanol pretreatment on seed germination, seedling growth and leaf anatomy under saline (NaCl) conditions. Sdu. Fen. Edebiyat Fakultesi Fen Dergisi (E-Dergi) 2(2), 136–145 (2007).
    Google Scholar 
    23.Noreen, Z. & Ashraf, M. Assessment of variation in antioxidative defense system in salt- treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J. Plant Physiol. 166, 1764–1774 (2009).CAS 
    PubMed 

    Google Scholar 
    24.FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Managing Systems at Risk (Food and Agriculture Organization of the United Nations, 2012).
    Google Scholar 
    25.Yamaguchi, T. & Blumwald, E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 10(12), 616–619 (2005).
    Google Scholar 
    26.Stepien, P. & Klobus, G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant 50, 610–616 (2006).CAS 

    Google Scholar 
    27.Ayers, R. S. & Westcot, D. W. Water quality for agriculture FAO irrigation and drainage. UN Rome 29, 1 (1985).
    Google Scholar 
    28.Dorota, Z. Irrigating with High Salinity Water Bulletin 322 Agricultural and Biological Engineering Dep (Florida Cooperative Extension service Institute of Food and Agriculture Sciences University of Florida, 1997).
    Google Scholar 
    29.Wang, X. J. Analysis of secondary salination in protected soils. North. Hortic. 3(4), 12–13 (1998).
    Google Scholar 
    30.Haghighi, M. & Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161, 111–117 (2013).CAS 

    Google Scholar 
    31.Sarwar, M. et al. Evaluation of cucumber germplasm for salinity tolerance based on early growth attributes and leaf inorganic osmolytes. Transylv. Rev. 24(11), 1077–1086 (2016).
    Google Scholar 
    32.Zekri, M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hortic. 47, 305–315 (1991).CAS 

    Google Scholar 
    33.Moya, J. L., Gomez-Cademas, A., Primo-Millo, E. & Talon, M. Chloride absorption in salt-sensitive Carrizo citrange and salt tolerant Cleapatra mandarian citrus rootstocks is linked to water use. J. Experi. Bot. 54, 825–833 (2003).CAS 

    Google Scholar 
    34.Giannopolitis, C. N. & Ries, S. K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59, 309–314 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Chance, B. & Maehly, A. C. Assay of catalase and peroxidase. Methods Enzymol. 2, 764–775 (1955).
    Google Scholar 
    36.Khan, W., Prithiviraj, B. & Smith, P. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160(5), 485–492 (2003).CAS 
    PubMed 

    Google Scholar 
    37.Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).CAS 

    Google Scholar 
    38.Bates, L. S., Waldron, R. P. & Teaxe, I. W. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207 (1972).
    Google Scholar 
    39.Grieve, C. M. & Gratan, S. R. Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil. 70, 303–307 (1983).CAS 

    Google Scholar 
    40.Julkenen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Agric. Food Chem. 33(2), 213–217 (1985).
    Google Scholar 
    41.Wheatherly, P. E. & Barrs, C. A reexamination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).
    Google Scholar 
    42.Dadzie, B. K. & Orchard, J. E. Routine Postharvest Screening of Banana/Plantain Hybrids: Criteria and Methods. INIBAP Technical Guidelines 2 9–11 (International Plant Genetic Resources Institute, 1997).
    Google Scholar 
    43.Delfine, S., Alvino, A., Villani, M. C. & Loreto, F. Restrictions to carbon dioxide conductance and photosynthesis in spinach leave recovering from salt stress. Plant Physiol. 119, 101–106 (1999).
    Google Scholar 
    44.Chen, S. F., Zhu, Y. L., Liu, Y. L., Hu, C. M. & Zhang, G. W. Effects of NaCl stress on ABA and polyamine contents in leaves of grafted tomato seedlings. Acta Hortic. Sin. 33(1), 58–62 (2006).
    Google Scholar 
    45.Eriksen, A. B., Haugstad, M. K. & Nilsen, S. Yield of tomato and maize in response to foliar and root applications of triacontanol. Plant Growth Regul. 1, 11–14 (1982).CAS 

    Google Scholar 
    46.Misra, A. & Srivastava, N. K. Effects of the triacontanol formulations ‘“Miraculan”’ on photosynthesis, growth, nutrient uptake, and essential oil yield of lemongrass (Cymbopogon flexuosus) Steud, Watts. Plant Growth Regul. 10, 57–63 (1991).CAS 

    Google Scholar 
    47.Ivanov, A. G. & Angelov, M. N. Photosynthesis response to triacontanol correlates with increased dynamics of mesophyll protoplast and chloroplast membranes. Plant Growth Regul. 21, 145–152 (1997).CAS 

    Google Scholar 
    48.Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. & Fatkhutdinova, D. R. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164, 317–322 (2003).CAS 

    Google Scholar 
    49.Aziz, R., Shahbaz, M. & Ashraf, M. Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pak. J. Bot. 45(6), 1913–1918 (2013).CAS 

    Google Scholar 
    50.Shao, H. B. et al. Phenol by Synechocystis sp. in media including triacontanol hormone. Water Environ. J. 26, 1747–6585 (2006).
    Google Scholar 
    51.Moghaieb, R. E. A., Saneoka, H. & Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci. 166(5), 1345–1349 (2004).CAS 

    Google Scholar 
    52.Munns, R. Gene and salt tolerance: Bringing them together. New Phytol. 167(3), 645–663 (2005).CAS 
    PubMed 

    Google Scholar 
    53.Gucci, R., Lombardini, L. & Tattini, M. Analysis of leaf water relations in two olive (Olea europaea L.) cultivars differing in tolerance to salinity. Tree Physiol. 17, 13–21 (1997).CAS 
    PubMed 

    Google Scholar 
    54.Khandaker, M. M., Faruq, G., Motior, R. M., Sofian-Azirun, M. & Nasrulhaq, B. A. The influence of 1-triacontanol on the growth, flowering, and quality of potted bougainvillea plants (Bougainvillea glabra var. ‘‘Elizabeth Angus’’) under natural conditions. Sci. World J. 10, 1–12 (2013).
    Google Scholar 
    55.Gatica, A. M., Arrieta, G. & Espinosa, A. M. Direct somatic embryogenesis in Coffea arabica L cvs catura and catuai: Effect of triacontanol, light condition, and medium consistence. Agron. Costarric. 32(1), 139–147 (2008).
    Google Scholar 
    56.Naeem, M., Khan, M. M. A., Moinuddin, M. & Siddiqui, M. H. Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Sci. Hortic. 121, 389–396 (2009).CAS 

    Google Scholar 
    57.Zhu, J. K. Overexpression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci. 6, 66–72 (2001).CAS 
    PubMed 

    Google Scholar 
    58.Dos-Reis, S. P., Lima, A. M. & De-Souza, C. R. B. Recent molecular advances on down stream plant responses to abiotic stress. Int. J. Mol. Sci. 13(7), 8628–8647 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    59.Shahbaz, M., Ashraf, M., Al-Qurainy, F. & Harris, P. J. C. Salt tolerance in selected vegetable crops. Crit. Rev. Plant Sci. 31, 303–320 (2012).CAS 

    Google Scholar 
    60.Mahboob, W. et al. Seed priming improves the performance of late sown spring maiz (Zea mays) through better crop stand and physiological attributes. Int. J. Agric. Biol. 17(3), 491–498 (2015).CAS 

    Google Scholar 
    61.Sarwar, M. et al. Improving the salt stress tolerance in cucumber (Cucumis sativus L.) using by triacontanol. J. Hortic. Sci. Technol. 2(1), 20–26 (2019).
    Google Scholar 
    62.Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant derived bio stimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364, 145–158 (2012).
    Google Scholar 
    63.Miniraj, N. & Shanmugavelu, K. G. Studies on the effect of triacontanol on growth, flowering, yield, quality and nutrient uptake in chillies. South Indian Hortic. 35, 362–366 (1987).
    Google Scholar 
    64.Aftab, T. et al. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J. Plant Interact. 4, 273–481 (2010).
    Google Scholar 
    65.Borowski, E. & Blamowski, Z. K. The effect of triacontanol ‘TRIA’ and Asahi-SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Hortic. 21(1), 39–48 (2009).
    Google Scholar 
    66.Chaudhary, B. R., Sharma, M. D., Shakya, S. M. & Gautam, D. M. Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annum L.) at Rampur Chitwan. J. Inst. Agric. Anim. Sci. 27, 65–68 (2006).
    Google Scholar 
    67.Ashraf, M., Akram, N. A., Arteca, R. N. & Foolad, M. R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci. 29(3), 162–190 (2010).CAS 

    Google Scholar 
    68.Hangarter, R., Ries, S. K. & Carlson, P. Effect of triacontanol on plant cell cultures in vitro. Plant Physiol. 61, 855–857 (1978).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Kapitsimadi, C. & Vioryl, S. A. Effect of a long chain aliphatic alcohol (triacontanol) on growth and yield of different horticultural crops. Acta Hortic. 379, 237–243 (1995).CAS 

    Google Scholar 
    70.Muthuchelian, K., Velayutham, M. & Nedunchezhian, N. Ameliorating effect of triacontanol on acidic mist-treated Erythrina variegata seedlings. Changes in growth and photosynthetic activities. Plant Sci. 165, 1253–1257 (2003).CAS 

    Google Scholar 
    71.Khan, N., Nazar, R. & Anjum, N. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci. Hortic. 122, 455–460 (2009).CAS 

    Google Scholar  More