More stories

  • in

    Water sources aggregate parasites with increasing effects in more arid conditions

    1.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 6, 166–171 (2016).ADS 

    Google Scholar 
    2.Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Nunn, C. L., Thrall, P. H., Leendertz, F. H. & Boesch, C. The spread of fecally transmitted parasites in socially-structured populations. PLoS ONE 6, e21677 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    4.Vicente, J., Fernández De Mera, I. G. & Gortazar, C. Epidemiology and risk factors analysis of elaphostrongylosis in red deer (Cervus elaphus) from Spain. Parasitol. Res. 98, 77–85 (2006).PubMed 

    Google Scholar 
    5.Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).PubMed 

    Google Scholar 
    6.Leach, C. B., Webb, C. T. & Cross P. C. When environmentally persistent pathogens transform good habitat into ecological traps. R. Soc. Open Sci. 3, 160051 (2016).7.Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O. & Getz, W. M. Going through the motions: incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604 (2018).PubMed 

    Google Scholar 
    8.Valeix, M., Fritz, H., Chamaillé-Jammes, S., Bourgarel, M. & Murindagomo, F. Fluctuations in abundance of large herbivore populations: insights into the influence of dry season rainfall and elephant numbers from long-term data. Anim. Conserv. 11, 391–400 (2008).
    Google Scholar 
    9.Western, D. Water availability and its influence on the structure and dynamics of a savannah large mammal community. Afr. J. Ecol. 13, 265–286 (1975).
    Google Scholar 
    10.Sutherland, K., Ndlovu, M. & Pérez-Rodríguez, A. Use of artificial waterholes by animals in the Southern Region of the Kruger National Park, South Africa. Afr. J. Wildl. Res. 48, 023003 (2018).
    Google Scholar 
    11.Chamaillé-Jammes, S., Fritz, H., Valeix, M., Murindagomo, F. & Clobert, J. Resource variability, aggregation and direct density dependence in an open context: the local regulation of an African elephant population. J. Anim. Ecol. 77, 135–144 (2008).PubMed 

    Google Scholar 
    12.Vanderwaal, K., Gilbertson, M., Okanga, S., Allan, B. F. & Craft, M. E. Seasonality and pathogen transmission in pastoral cattle contact networks. R. Soc. Open Sci. 4, 170808 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Hayward, M. W. & Hayward, M. D. Waterhole use by African fauna. South Afr. J. Wildl. Res. 42, 117–127 (2012).
    Google Scholar 
    14.Valeix, M., Fritz, H., Matsika, R., Matsvimbo, F. & Madzikanda, H. The role of water abundance, thermoregulation, perceived predation risk and interference competition in water access by African herbivores. Afr. J. Ecol. 46, 402–410 (2008).
    Google Scholar 
    15.Crosmary, W.-G., Valeix, M., Fritz, H., Madzikanda, H. & Côté, S. D. African ungulates and their drinking problems: hunting and predation risks constrain access to water. Anim. Behav. 83, 145–153 (2012).
    Google Scholar 
    16.Payne, A., Philipon, S., Hars, J., Dufour, B. & Gilot-Fromont, E. Wildlife interactions on baited places and waterholes in a French area infected by bovine tuberculosis. Front. Vet. Sci. 3, 16 (2017).
    Google Scholar 
    17.Wright, A. N. & Gompper, M. E. Altered parasite assemblages in raccoons in response to manipulated resource availability. Oecologia 144, 148–156 (2005).PubMed 
    ADS 

    Google Scholar 
    18.Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. & Medley, G. F. Ruminating on complexity: macroparasites of wildlife and livestock. Trends Ecol. Evol. 19, 181–188 (2004).PubMed 

    Google Scholar 
    19.Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).
    Google Scholar 
    20.Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006).PubMed 

    Google Scholar 
    21.Charlier, J., van der Voort, M., Kenyon, F., Skuce, P. & Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 30, 361–367 (2014).PubMed 

    Google Scholar 
    22.Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 186, 70–78 (2012).PubMed 

    Google Scholar 
    23.WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Heal. Organ Tech. Rep. Ser. 912, 1–57 (2002).
    Google Scholar 
    24.Ezenwa, V. O. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. Int. J. Parasitol. 34, 535–542 (2004).PubMed 

    Google Scholar 
    25.Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    26.Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. 88, 427–442 (2013).PubMed 

    Google Scholar 
    27.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 

    Google Scholar 
    28.Mignatti, A., Boag, B. & Cattadori, I. M. Host immunity shapes the impact of climate changes on the dynamics of parasite infections. Proc. Natl Acad. Sci. USA 113, 2970–2975 (2016).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    29.Anderson, R. C. Nematode Parasites of Vertebrates: Their Development and Transmission, Second Edi (CABI Publishing, 2000).30.Stromberg, B. E. Environmental Factors Influencing Transmission in Veterinary Parasitology 247–264 (Elsevier, 1997).31.Knapp-Lawitzke, F., Küchenmeister, F., Küchenmeister, K., von Samson-Himmelstjerna, G. & Demeler, J. Assessment of the impact of plant species composition and drought stress on survival of strongylid third-stage larvae in a greenhouse experiment. Parasitol. Res. 113, 4123–4131 (2014).PubMed 

    Google Scholar 
    32.Nunn, C. L., Thrall, P. H. & Kappeler, P. M. Shared resources and disease dynamics in spatially structured populations. Ecol. Modell. 272, 198–207 (2014).
    Google Scholar 
    33.Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 

    Google Scholar 
    34.Round, M. C. Check List of the Helminth Parasites of African Mammals of the Orders Carnivora, Tubulidentata, Proboscidea, Hyra-coidea, Artiodactyla and Perissodactyla (Farnham Royal, Commonwealth Agricultural Bureaux, 1968).35.Wells, K. et al. Global spread of helminth parasites at the human–domestic animal–wildlife interface. Glob. Chang. Biol. 24, 3254–3265 (2018).PubMed 
    ADS 

    Google Scholar 
    36.VanderWaal, K., Omondi, G. P. & Obanda, V. Mixed-host aggregations and helminth parasite sharing in an East African wildlife-livestock system. Vet. Parasitol. 205, 224–232 (2014).PubMed 

    Google Scholar 
    37.Walker, J. G., Plein, M., Morgan, E. R. & Vesk, P. A. Uncertain links in host-parasite networks: lessons for parasite transmission in a multi-host system. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160095 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    38.Bull, J. J. Virulence. Evolution 48, 1423–1437 (1994).CAS 
    PubMed 

    Google Scholar 
    39.R. W. Ashford, W. Crewe, Parasites of Homo sapiens: An Annotated Checklist of the Protozoa, Helminths, and Arthropods for which We Are Home, 2nd edn (Taylor & Francis, 2003).40.Loarie, S. R., Van Aarde, R. J. & Pimm, S. L. Fences and artificial water affect African savannah elephant movement patterns. Biol. Conserv. 142, 3086–3098 (2009).
    Google Scholar 
    41.Kay, R. N. B. Responses of African livestock and wild herbivores to drought. J. Arid Environ. 37, 683–694 (1997).ADS 

    Google Scholar 
    42.Chamaillé-Jammes, S., Mtare, G., Makuwe, E. & Fritz, H. African elephants adjust speed in response to surface-water constraint on foraging during the dry-season. PLoS ONE 8, e59164 (2013).43.Redfern, J. V., Grant, R., Biggs, H. & Getz, W. M. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84, 2092–2107 (2003).
    Google Scholar 
    44.Titcomb, G. C., Amooni, G., Mantas, J. N. & Young, H. S. The effects of herbivore aggregations at water sources on savanna plants differ across soil and climate gradients. Ecol. Appl. 31, e02422 (2021).PubMed 

    Google Scholar 
    45.Smit, I. P. J., Grant, C. C. & Devereux, B. J. Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol. Conserv. 136, 85–99 (2007).
    Google Scholar 
    46.Estes, R. D. The Behavior Guide to African Mammals 1st edn (University of California Press, 2012).47.Ezenwa, V. O. Selective defecation and selective foraging: antiparasite behavior in wild ungulates? Ethology 110, 851–862 (2004).
    Google Scholar 
    48.Valeix, M. et al. How key habitat features influence large terrestrial carnivore movements: Waterholes and African lions in a semi-arid savanna of north-western Zimbabwe. Landsc. Ecol. 25, 337–351 (2010).
    Google Scholar 
    49.Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    51.Thrash, I. & Derry, J. F. Review of literature on the nature and modelling of piospheres. Koedoe 42, 73–94 (1999).
    Google Scholar 
    52.Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    53.Ogutu, J. O. et al. Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: what are the causes? PLoS ONE 11, e0163249 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Adhikari, U., Nejadhashemi, A. & Matthew, R. A review of climate change impacts on water resources in east. Afr. Trans. Am. Soc. Agric. Biol. Eng. 58, 1493–1507 (2015).
    Google Scholar 
    55.Funk, C. et al. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl Acad. Sci. USA 105, 11081–11086 (2008).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.IPCC. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pachauri, R., Meyer, L.) (IPCC, 2014).57.de Wit, M. & Stankiewicz, J. Changes in surface water supply across africa with predicted climate change. Science 311, 1917–1921 (2006).PubMed 
    ADS 

    Google Scholar 
    58.Obanda, V., Iwaki, T., Mutinda, N. M. & Gakuya, F. Gastrointestinal parasites and associated pathological lesions in starving free-ranging african elephants. South Afr. J. Wildl. Res. 41, 167–172 (2011).
    Google Scholar 
    59.Hawkins, J. A. Economic benefits of parasite control in cattle. Vet. Parasitol. 46, 159–173 (1993).CAS 
    PubMed 

    Google Scholar 
    60.Weinstein, S. B., Buck, J. C. & Young, H. S. A landscape of disgust. Science 359, 1213–1214 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    61.Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).CAS 
    PubMed 

    Google Scholar 
    62.Ndlovu, M. et al. Water for African elephants (Loxodonta africana): faecal microbial loads affect use of artificial waterholes. Biol. Lett. 14, 20180360 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    63.Amoroso, C. R., Kappeler, P. M., Fichtel, C. & Nunn, C. L. Fecal contamination, parasite risk, and waterhole use by wild animals in a dry deciduous forest. Behav. Ecol. Sociobiol. 73, 1–11 (2019).
    Google Scholar 
    64.Thurber, M. I. et al. Effects of rainfall, host demography, and musth on strongyle fecal egg counts in African elephants (Loxodonta Africana) in Namibia. J. Wildl. Dis. 47, 172–181 (2011).CAS 
    PubMed 

    Google Scholar 
    65.Cizauskas, C. A., Turner, W. C., Pitts, N. & Getz, W. M. Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease. PLoS ONE 10, e0120800 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Pelletier, N. & Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000-2050. Proc. Natl Acad. Sci. USA 107, 18371–18374 (2010).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    67.Shorrocks, B. The Biology of African Savannahs (Oxford University Press Inc., 2007).68.Barda, B. D. et al. Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Negl. Trop. Dis. 7, e2344 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    69.Azian, M. Y. et al. Detection of helminth infections in dogs and soil contamination in rural and urban areas. Southeast Asian J. Trop. Med. Public Health 39, 205–212 (2008).PubMed 

    Google Scholar 
    70.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020).71.Anderson, R. M. & May, R. M. Infectious Disease of Humans: Dynamics and Control (Oxford University Press, 1991).72.Franz, T. E., Caylor, K. K., Nordbotten, J. M., Rodríguez-Iturbe, I. & Celia, M. A. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Resour. 33, 215–230 (2010).ADS 

    Google Scholar 
    73.K. K. Caylor, J. Gitonga, D. J. Martins, Mpala Research Centre Meterorological and Hydrological Dataset (2017).74.R Core Team. R: A Language and Environment for Statistical Computing (2016).75.Titcomb, G. Herbivore dung and parasite counts, Ol Pejeta Conservancy and Mpala Research Centre, Kenya (2015–2018). Environ. Data Initiat. https://doi.org/10.6073/pasta/2728d61f10b767814b5d95fbd69137fa (2021). More

  • in

    Diet-driven mercury contamination is associated with polar bear gut microbiota

    1.Evariste, L. et al. Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environ. Pollut. 248, 989–999 (2019).CAS 
    PubMed 

    Google Scholar 
    2.Guo, G., Yumvihoze, E., Poulain, A. J. & Chan, H. M. Monomethylmercury degradation by the human gut microbiota is stimulated by protein amendments. J. Toxicol. Sci. 43, 717–725 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Dempsey, J. L., Little, M. & Cui, J. Y. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 75, 41–69 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    4.Breton, J. Ô. et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol. Lett. 222, 132–138 (2013).CAS 
    PubMed 

    Google Scholar 
    5.Claus, S. P., Guillou, H. & Ellero-Simatos, S. The gut microbiota: A major player in the toxicity of environmental pollutants?. NPJ Biofilms Microbiomes 2, 16003 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    6.Nakamura, I., Hosokawa, K., Tamura, H. & Miura, T. Reduced mercury excretion with feces in germfree mice after oral administration of methyl mercury chloride. Bull. Environ. Contam. Toxicol. 17, 528–533 (1977).CAS 
    PubMed 

    Google Scholar 
    7.Rowland, I. R., Davies, M. J. & Evans, J. G. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora. Arch. Environ. Health 35, 155–160 (1980).CAS 
    PubMed 

    Google Scholar 
    8.Seko, Y., Miura, T., Takahashi, M. & Koyama, T. Methyl mercury decomposition in mice treated with antibiotics. Acta Pharmacol. Toxicol. (Copenh) 49, 259–265 (1981).CAS 

    Google Scholar 
    9.Lapanje, A., Zrimec, A., Drobne, D. & Rupnik, M. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut. Environ. Pollut. 158, 3186–3193 (2010).CAS 
    PubMed 

    Google Scholar 
    10.Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).CAS 
    PubMed 

    Google Scholar 
    11.Desforges, J.-P.W. et al. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 86, 126–139 (2016).CAS 
    PubMed 

    Google Scholar 
    12.Dietz, R. et al. What are the toxicological effects of mercury in Arctic biota?. Sci. Total Environ. 443, 775–790 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Amstrup, S. C., Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. The polar bear-Ursus maritimus biology, management, and conservation. Wild Mammals North Am. Biol. Manag. Conserv. 2, 587–610 (2003).
    Google Scholar 
    14.McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633 (2017).
    Google Scholar 
    15.Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. 10, 2093–2103 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    16.Routti, H. et al. Contaminants in Polar Bears from the Circumpolar Arctic State of Knowledge and Further Recommendations for Monitoring and Research-Action #42 of the Circumpolar Action Plan for polar Bear Conservation (2019).17.Letcher, R. J. et al. Exposure and effects assessment of persistent organohalogen contaminants in Arctic wildlife and fish. Sci. Total Environ. 408, 2995–3043 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Dietz, R. et al. Trends in mercury in hair of Greenlandic polar bears (Ursus maritimus) during 1892–2001. Environ. Sci. Technol. 40, 1120–1125 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    19.Borgå, K., Fisk, A. T., Hoekstra, P. F. & Muir, D. C. G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ. Toxicol. Chem. 23, 2367 (2004).PubMed 

    Google Scholar 
    20.Hoekstra, P. F. et al. Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort-Chukchi Seas. Environ. Pollut. 124, 509–522 (2003).CAS 
    PubMed 

    Google Scholar 
    21.Ley, R. E. et al. Evolution of mammals and their gut microbes. Science (80–) 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    23.Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    24.Ferguson, S. H., Stirling, I. & McLoughlin, P. Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Mar. Mammal Sci. 21, 121–135 (2005).
    Google Scholar 
    25.Thiemann, G., Iverson, S. & Stirling, I. Polar bear diets and arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr. 78, 591–613 (2008).
    Google Scholar 
    26.Muir, D. C., Norstrom, R. J. & Simon, M. Organochlorine contaminants in Arctic marine food chains: Accumulation of specific polychlorinated biphenyls and chlordane-related compounds. Environ. Sci. Technol. 22, 1071–1079 (1988).ADS 
    CAS 
    PubMed 

    Google Scholar 
    27.Young, B. G., Loseto, L. L. & Ferguson, S. H. Diet differences among age classes of Arctic seals: Evidence from stable isotope and mercury biomarkers. Polar Biol. 33, 153–162 (2010).
    Google Scholar 
    28.Correa, L., Castellini, J. M., Quakenbush, L. T. & O’Hara, T. M. Mercury and selenium concentrations in skeletal muscle, liver, and regions of the heart and kidney in bearded seals from Alaska, USA. Environ. Toxicol. Chem. 34, 2403–2408 (2015).CAS 
    PubMed 

    Google Scholar 
    29.Brown, T. M. et al. Mercury and cadmium in ringed seals in the Canadian Arctic: Influence of location and diet. Sci. Total Environ. 545–546, 503–511 (2016).ADS 
    PubMed 

    Google Scholar 
    30.McKinney, M. A., Atwood, T. C., Pedro, S. & Peacock, E. Ecological change drives a decline in mercury concentrations in southern Beaufort Sea polar bears. Environ. Sci. Technol. 51, 7814–7822 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    31.Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. 20, 1–1 (2019).
    Google Scholar 
    32.Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 
    33.Cattet, M. R., Caulkett, N. A., Obbard, M. E. & Stenhouse, G. B. A body-condition index for ursids. Can. J. Zool. 80, 1156–1161 (2002).
    Google Scholar 
    34.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 

    Google Scholar 
    35.Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    37.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Golzadeh, N. et al. Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta Canada. Chemosphere 250, 20 (2020).
    Google Scholar 
    40.Iverson, S. J., Field, C., DonBowen, W. & Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).
    Google Scholar 
    41.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    42.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
    Google Scholar 
    43.Grandjean, P. & Budtz-Jørgensen, E. Total imprecision of exposure biomarkers: Implications for calculating exposure limits. Am. J. Ind. Med. 50, 712–719 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Dietz, R. et al. Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ. Sci. Technol. 45, 1458–1465 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    45.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    46.Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Xia, J. et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 209, 1–8 (2018).CAS 

    Google Scholar 
    48.Rothenberg, S. E. et al. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study. Toxicol. Lett. 242, 60–67 (2016).CAS 
    PubMed 

    Google Scholar 
    49.Wu, J. et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice. Toxicol. Sci. 151, 324–333 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: An overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    51.Gilmour, C. C. et al. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 11810–11820 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    52.Li, H. et al. Intestinal methylation and demethylation of mercury. Bull. Environ. Contam. Toxicol. 1025(102), 597–604 (2018).
    Google Scholar 
    53.Guo, X. et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112, 1–8 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Hollister, E. B. et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3, 36 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Rowland, I., Davies, M. & Grasso, P. Biosynthesis of methylmercury compounds by the intestinal flora of the rat. Arch. Environ. Health Int. J. 32, 24–28 (1977).CAS 

    Google Scholar 
    58.Paredes-Sabja, D., Setlow, P. & Sarker, M. R. Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol. 19, 85–94 (2011).CAS 
    PubMed 

    Google Scholar 
    59.Setlow, P., Wang, S. & Li, Y. Q. Germination of spores of the orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 71, 459–477 (2017).CAS 
    PubMed 

    Google Scholar 
    60.Ilinskaya, O. N., Ulyanova, V. V., Yarullina, D. R. & Gataullin, I. G. Secretome of intestinal bacilli: A natural guard against pathologies. Front. Microbiol. 8, 25 (2017).
    Google Scholar 
    61.Hiller-Bittrolff, K., Foreman, K., Bulseco-McKim, A. N., Benoit, J. & Bowen, J. L. Effects of mercury addition on microbial community composition and nitrate removal inside permeable reactive barriers. Environ. Pollut. 242, 797–806 (2018).CAS 
    PubMed 

    Google Scholar 
    62.Kuhn, K. A. et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 11, 357–368 (2018).CAS 
    PubMed 

    Google Scholar 
    63.Wei, Z. S. et al. Effect of gaseous mercury on nitric oxide removal performance and microbial community of a hybrid catalytic membrane biofilm reactor. Chem. Eng. J. 316, 584–591 (2017).CAS 

    Google Scholar 
    64.Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science (80–) 359, 568–572 (2018).ADS 
    CAS 

    Google Scholar 
    65.Van Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-Van Der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. (Lond.) 69, 405–411 (1971).
    Google Scholar 
    66.Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).CAS 
    PubMed 

    Google Scholar 
    67.Cowan, T. E. et al. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 25, 489–495 (2014).CAS 
    PubMed 

    Google Scholar 
    68.Bishara, J. et al. Obesity as a risk factor for Clostridium difficile infection. Clin. Infect. Dis. 57, 489–493 (2013).PubMed 

    Google Scholar 
    69.Pohlner, M. et al. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. 10, 659 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    70.Simon, M. et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11, 1483–1499 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    71.Castonguay-Paradis, S. et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci. Rep. 10, 1–11 (2020).
    Google Scholar  More

  • in

    Tropical bee species abundance differs within a narrow elevational gradient

    1.Galbraith, S. M., Griswold, T., Price, W. J. & Bosque-Pérez, N. A. Biodiversity and community composition of native bee populations vary among human-dominated land uses within the seasonally dry tropics. J. Insect Conserv. https://doi.org/10.1007/s10841-020-00274-8 (2020).Article 

    Google Scholar 
    2.Imbach, P. et al. Climate change, ecosystems and smallholder agriculture in Central America: An introduction to the special issue. Clim. Change 141, 1–12 (2017).
    Google Scholar 
    3.HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts?. Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).PubMed 

    Google Scholar 
    4.Butt, N. et al. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob. Chang. Biol. 21, 3267–3277 (2015).ADS 
    PubMed 

    Google Scholar 
    5.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451-458.e4 (2021).CAS 
    PubMed 

    Google Scholar 
    7.Bezerra, E. S., Lopes, A. V. & Machado, I. C. Biologia reprodutiva de Byrsonima gardnerana A. Juss. (Malpighiaceae) e interações com abelhas Centris (Centridini) no Nordeste do Brasil. Rev. Bras. Bot. 32, 95–108 (2009).
    Google Scholar 
    8.Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2019.12.010 (2020).Article 
    PubMed 

    Google Scholar 
    9.Hoiss, B., Krauss, J. & Steffan-Dewenter, I. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks. Glob. Chang. Biol. 21, 4086–4097 (2015).ADS 
    PubMed 

    Google Scholar 
    10.Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).MathSciNet 

    Google Scholar 
    11.Classen, A. et al. Temperature versus resource constraints: Which factors determine bee diversity on Mount Kilimanjaro, Tanzania?. Glob. Ecol. Biogeogr. 24, 642–652 (2015).
    Google Scholar 
    12.Ramos-Jiliberto, R. et al. Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).
    Google Scholar 
    13.Dellinger, A. S. et al. Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytol. https://doi.org/10.1111/nph.17390 (2021).Article 
    PubMed 

    Google Scholar 
    14.González-Vanegas, P. A., Rös, M., García-Franco, J. G. & Aguirre-Jaimes, A. Buzz-pollination in a tropical montane cloud forest: Compositional similarity and plant-pollinator interactions. Neotrop. Entomol. https://doi.org/10.1007/s13744-021-00867-1 (2021).Article 
    PubMed 

    Google Scholar 
    15.Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: A systematic review. PLoS ONE 8, 1–11 (2013).
    Google Scholar 
    16.García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U. S. A. 113, 680–685 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Sheldon, K. S. Climate change in the tropics: Ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst. 50, 303–333 (2019).
    Google Scholar 
    18.McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).PubMed 

    Google Scholar 
    19.Aguilar, I., Herrera, E. & Zamora, G. Stingless bees of Costa Rica. Pot-Honey https://doi.org/10.1007/978-1-4614-4960-7 (2012).Article 

    Google Scholar 
    20.Köppler, K., Vorwohl, G. & Koeniger, N. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie 38, 341–353 (2007).
    Google Scholar 
    21.Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
    Google Scholar 
    22.Ortiz-Mora, R. A., Van Veen, J. W., Corrales, G. & Sommeijer, M. J. Influence of altitude on the distribution of stingless bees (Hymenoptera Apidae: Meliponinae). Apiacta 30, 101–105 (1995).
    Google Scholar 
    23.Michener, C. D. The Bees of the World (The Johns Hopkins University Press, 2007).
    Google Scholar 
    24.Rehan, S. M., Tierney, S. M. & Wcislo, W. T. Evidence for social nesting in Neotropical ceratinine bees. Insectes Soc. 62, 465–469 (2015).
    Google Scholar 
    25.Gonzalez, V. H. et al. Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecol. Entomol. 45, 688–696 (2020).
    Google Scholar 
    26.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    27.Theobald, E. J., Gabrielyan, H. & HilleRisLambers, J. Lilies at the limit: Variation in plant-pollinator interactions across an elevational range. Am. J. Bot. 103, 189–197 (2016).PubMed 

    Google Scholar 
    28.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Bode, R. F., Linhart, R. D. & Dufresne, C. Variation in the pollinator community visiting invasive Cytisus scoparius L. Link (Fabaceae) along an elevation gradient. Arthropod. Plant. Interact. https://doi.org/10.1007/s11829-020-09755-8 (2020).Article 

    Google Scholar 
    30.Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).PubMed 

    Google Scholar 
    31.Dymond, K. et al. The role of insect pollinators in avocado production: A global review. J. Appl. Entomol. https://doi.org/10.1111/jen.12869 (2021).Article 

    Google Scholar 
    32.Giannini, T. C. et al. Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric. Ecosyst. Environ. 171, 39–46 (2013).
    Google Scholar 
    33.Ashworth, L., Quesada, M., Casas, A., Aguilar, R. & Oyama, K. Pollinator-dependent food production in Mexico. Biol. Conserv. 142, 1050–1057 (2009).
    Google Scholar 
    34.Tepedino, V. J. The Pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377 (1981).
    Google Scholar 
    35.Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).
    Google Scholar 
    36.Barrantes, G. The role of historical and local factors in determining species composition of the highland avifauna of Costa Rica and western Panamá. Rev. Biol. Trop. 57, 333–346 (2009).
    Google Scholar 
    37.Macedo, M. V. et al. Insect elevational specialization in a tropical biodiversity hotspot. Insect Conserv. Divers. 11, 240–254 (2018).
    Google Scholar 
    38.Frankie, G. W. et al. Diversity and abundance of bees visiting a mass flowering tree species in disturbed seasonal dry forest, Costa Rica. Kansas Entomol. Soc. 70, 281–296 (1997).
    Google Scholar 
    39.Heard, T. A. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).CAS 
    PubMed 

    Google Scholar 
    40.Abrol, D. P. Wild bees and crop pollination. In Pollination Biology: Biodiversity Conservation and Agricultural Production 111–184 (Springer, 2012).
    Google Scholar 
    41.Tucker, E. M. & Rehan, S. M. Farming for bees: Annual variation in pollinator populations across agricultural landscapes. Agric. For. Entomol. 20, 541–548 (2018).
    Google Scholar 
    42.Peters, V. E., Mordecai, R., Carroll, C. R., Cooper, R. J. & Greenberg, R. Bird community response to fruit energy. J. Anim. Ecol. 79, 824–835 (2010).PubMed 

    Google Scholar 
    43.Baker, C. P. Moon Costa Rica (Moon Travel, 2007).
    Google Scholar 
    44.Hinton, C. R. & Peters, V. E. Plant species with the trait of continuous flowering do not hold core roles in a Neotropical lowland plant-pollinating insect network. Ecol. Evol. 11, 2346–2359 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    45.Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera, Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).
    Google Scholar 
    46.Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Museum Nat. Hist. 3296, 1–11 (2000).
    Google Scholar 
    47.Calfee, E., Agra, M. N., Palacio, M. A., Ramírez, S. R. & Coop, G. Selection and hybridization shaped the Africanized honey bee invasion of the Americas. bioRxiv https://doi.org/10.1101/2020.03.17.994632 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Davila, Y. C. & Wardle, G. M. Variation in native pollinators in the absence of honeybees: Implications for reproductive success of an Australian generalist-pollinated herb Trachymene incisa (Apiaceae). Bot. J. Linn. Soc. 156, 479–490 (2008).
    Google Scholar 
    49.Chen, H., Morrell, P. L., Ashworth, V. E. T. M., De La Cruz, M. & Clegg, M. T. Tracing the geographic origins of major avocado cultivars. J. Hered. 100, 56–65 (2009).PubMed 

    Google Scholar 
    50.Bender, G. S. Avocado flowering and pollination. Avocado Prod. Calif. 1, 39–49 (2002).ADS 

    Google Scholar 
    51.Bergh, B. O. The remarkable avocado flower. Calif. Avocado Soc. Yearb. 57, 40–41 (1973).
    Google Scholar 
    52.Wilson, H. D. Gene flow in squash species. Bioscience 40, 449–455 (1990).
    Google Scholar 
    53.Hurd, P. D., Linsley, E. G. & Whitaker, T. W. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234 (1971).PubMed 

    Google Scholar 
    54.Willis, S. D. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).
    Google Scholar 
    55.Gómez-Escobar, E., Liedo, P., Montoya, P., Vandame, R. & Sánchez, D. Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120. J. Econ. Entomol. 107, 1447–1449 (2014).PubMed 

    Google Scholar 
    56.Jarau, S. & Barth, F. G. Stingless bees of the Golfo Dulce region, Costa Rica (Hymenoptera, Apidae, Apinae, Meliponini). Stapfia 88, 267–276 (2008).
    Google Scholar 
    57.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    58.Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. (2018).59.Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).60.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 

    Google Scholar 
    61.Salim, H. M. W. et al. Stingless bee (Hymenoptera: Apidae: Meliponini) diversity in dipterocarp forest reserves in Peninsular Malaysia. Raffles Bull. Zool. 60, 213–219 (2012).MathSciNet 

    Google Scholar 
    62.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    63.Baselga, A. et al. Partitioning Beta Diversity into Turnover and Nestedness Components (Wiley, 2021).
    Google Scholar 
    64.Oksanen, J. et al. Package ‘vegan’. Community Ecol. Packag. 2, 1–295 (2013).
    Google Scholar 
    65.Wang, Y. et al. Statistical Methods for Analysing Multivariate Abundance Data. (2021).66.Kindt, R. & Coe, R. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies (World Agroforestry Centre (ICRAF), 2005).
    Google Scholar  More

  • in

    Soundscape and ambient noise levels of the Arctic waters around Greenland

    1.Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).2.Wenz, G. M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962).ADS 

    Google Scholar 
    3.Ross, D. Ship sources of ambient noise. IEEE J. Ocean. Eng. 30, 257–261 (2005).ADS 

    Google Scholar 
    4.Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science (80-). 371, eaba4658 (2021).CAS 
    PubMed 

    Google Scholar 
    5.Tyack, P., Frisk, G., Boyd, I., Urban, E. & Seeyave, S. (eds). An International Quiet Ocean Experiment Science Plan. Scientific Committee on Oceanic Research / Partnership for Observation of the Global Oceans (2015).6.Kaplan, M. B. & Solomon, S. A coming boom in commercial shipping? The potential for rapid growth of noise from commercial ships by 2030. Mar. Policy 73, 119–121 (2016).
    Google Scholar 
    7.McDonald, M. A., Hildebrand, J. A. & Wiggins, S. M. Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. J. Acoust. Soc. Am. 120, 711 (2006).ADS 
    PubMed 

    Google Scholar 
    8.Kyhn, L. A. et al. Basin-wide contributions to the underwater soundscape by multiple seismic surveys with implications for marine mammals in Baffin Bay, Greenland. Mar. Pollut. Bull. 138, 474–490 (2019).CAS 
    PubMed 

    Google Scholar 
    9.Bailey, H. et al. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals. Mar. Pollut. Bull. 60, 888–897 (2010).CAS 
    PubMed 

    Google Scholar 
    10.Nieukirk, S. L., Stafford, K. M., Mellinger, D. K., Dziak, R. P. & Fox, C. G. Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean. J. Acoust. Soc. Am. 115, 1832–1843 (2004).ADS 
    PubMed 

    Google Scholar 
    11.Guerra, M., Thode, A. M., Blackwell, S. B. & Michael Macrander, A. Quantifying seismic survey reverberation off the Alaskan North Slope. J. Acoust. Soc. Am. 130, 3046–3058 (2011).ADS 
    PubMed 

    Google Scholar 
    12.OSPAR Commission. The North-East Atlantic Environment Strategy: Strategy of the OSPAR Commission for the Protection of the Marine Environment of the North-East Atlantic 2010–2020. OSPAR Secretariat, London (2010).13.UN. General Assembly (74th sess.: 2019–2020). Oceans and the law of the sea: Resolution/adopted by the General Assembly. A/RES/74/19 (2019).14.Arctic Council. Arctic Marine Shipping Assessment 2009 Report, second printing. Arctic Council, Tromsø, Norway (2009).15.International Maritime Organization. Guidelines from the International Maritime Organization for the reduction of underwater noise from commercial shipping, to address adverse impacts on marine life. MEPC. 1/Circ. 833. IMO, London (2014).16.European Commission. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). European Commission, Brussels (2008).17.Halliday, W. D., Pine, M. K. & Insley, S. J. Underwater noise and Arctic marine mammals: Review and policy recommendations. Environ. Rev. https://doi.org/10.1139/er-2019-0033 (2020).Article 

    Google Scholar 
    18.PAME. Underwater Noise in the Arctic: A State of Knowledge Report, Roveniemi, May 2019. Protection of the Arctic Marine Environment (PAME) Secretariat, Akureyri (2019).19.Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).ADS 

    Google Scholar 
    20.Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).ADS 

    Google Scholar 
    21.Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. PNAS 110, E1191–E1195 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ebinger, C. K. & Zambetakis, E. The geopolitics of Arctic melt. Int. Aff. 85, 1215–1232 (2009).
    Google Scholar 
    23.Huntington, H. P. A preliminary assessment of threats to arctic marine mammals and their conservation in the coming decades. Mar. Policy 33, 77–82 (2009).
    Google Scholar 
    24.Merchant, N. D. et al. Measuring acoustic habitats. Methods Ecol. Evol. 6, 257–265 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    25.Baumgartner, M. F., Stafford, K. M. & Latha, G. Near real-time underwater passive acoustic monitoring of natural and anthropogenic sounds. In Observing the Oceans in Real Time (eds Venkatesan, R. et al.) 203–226 (Springer Oceanography, 2018). https://doi.org/10.1007/978-3-319-66493-4_10.Chapter 

    Google Scholar 
    26.Mellinger, D. K. & Clark, C. W. Blue whale (Balaenoptera musculus) sounds from the North Atlantic. J. Acoust. Soc. Am. 114, 1108 (2003).ADS 
    PubMed 

    Google Scholar 
    27.Mustonen, M. et al. Spatial and temporal variability of ambient underwater sound in the Baltic Sea. Sci. Rep. 9, 1–13 (2019).CAS 

    Google Scholar 
    28.Pieretti, N. & Danovaro, R. Acoustic indexes for marine biodiversity trends and ecosystem health. Philos. Trans. R. Soc. B 375, 20190447 (2020).
    Google Scholar 
    29.Palmer, K. J., Brookes, K. L., Davies, I. M., Edwards, E. & Rendell, L. Habitat use of a coastal delphinid population investigated using passive acoustic monitoring. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 254–270 (2019).
    Google Scholar 
    30.Sigray, P. et al. BIAS: A regional management of underwater sound in the Baltic Sea. In The Effects of Noise on Aquatic Life II (eds. Popper A., Hawkins A.) 1015–1023. Advances in Experimental Medicine and Biology. 875. (Springer New York, 2016).31.Farcas, A., Powell, C. F., Brookes, K. L. & Merchant, N. D. Validated shipping noise maps of the Northeast Atlantic. Sci. Total Environ. 735, 139509 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    32.Davis, G. E. et al. Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014. Sci. Rep. 7, 13460 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Caruso, F. et al. Long-term monitoring of dolphin biosonar activity in deep pelagic waters of the Mediterranean Sea. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    34.Thomas, L. et al. Last call: Passive acoustic monitoring shows continued rapid decline of critically endangered vaquita. J. Acoust. Soc. Am. 142, EL512–EL517 (2017).PubMed 

    Google Scholar 
    35.Hildebrand, J. A. et al. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Sci. Rep. 5, 16343 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.ANSI S1.11-2004. Specification for Octave, Half-Octave, and Third Octave Band Filters. American National Standards Institute Inc., New York (2004).37.Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean Version 4.0. Sci. Data 7, 1–14 (2020).
    Google Scholar 
    38.Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans. J. Acoust. Soc. Am. 30, 54–62 (2008).
    Google Scholar 
    39.Gillespie, D., Caillat, M., Gordon, J. & White, P. Automatic detection and classification of odontocete whistles. J. Acoust. Soc. Am. 134, 2427–2437 (2013).ADS 
    PubMed 

    Google Scholar 
    40.Mellinger, D. K. et al. Ishmael 3.0 User Manual ISHMAEL 3.O User Guide. (2018).41.Jensen, F. H., Johnson, M., Ladegaard, M., Wisniewska, D. M. & Madsen, P. T. Narrow acoustic field of view drives frequency scaling in toothed whale biosonar. Curr. Biol. 28, 3878-3885.e3 (2018).CAS 
    PubMed 

    Google Scholar 
    42.Madsen, P. T., Wahlberg, M. & Møhl, B. Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: Implications for echolocation and communication. Behav. Ecol. Sociobiol. 53, 31–41 (2002).
    Google Scholar 
    43.Zahn, M. J., Laidre, K. L., Stilz, P., Rasmussen, M. H. & Koblitz, J. C. Vertical sonar beam width and scanning behavior of wild belugas (Delphinapterus leucas) in West Greenland. PLoS ONE 16, e0257054 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Frouin-Mouy, H., Kowarski, K., Martin, B. & Bröker, K. Seasonal trends in acoustic detection of marine mammals in Baffin Bay and Melville Bay, Northwest Greenland. Source Arct. 70, 59–76 (2017).
    Google Scholar 
    45.Commission, E. Commission Decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/477/EU. Off. J. Eur. Union 125, 43–74 (2017).
    Google Scholar 
    46.Diachok, O. I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59, 1110 (1998).ADS 

    Google Scholar 
    47.McGrath, J. R. Depth and Seasonal Dependence of Ambient Sea Noise Near the Marginal Ice Zone of the Greenland Sea. Naval Research Laboratory. Washington DC (1976).48.Ahonen, H. et al. The underwater soundscape in western Fram Strait: Breeding ground of Spitsbergen’s endangered bowhead whales. Mar. Pollut. Bull. 123, 97–112 (2017).CAS 
    PubMed 

    Google Scholar 
    49.Merchant, N. D. et al. Underwater noise levels in UK waters. Sci. Rep. 6, 36942, (2016).50.Urick, R. J. Ambient Noise in the Sea (Undersea Warfare Technology Office, Naval Sea Systems Command, Department of the Navy, 1984).
    Google Scholar 
    51.Kinda, G. B., Simard, Y., Gervaise, C., Mars, J. I. & Fortier, L. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. J. Acoust. Soc. Am. 138, 2034 (2015).ADS 
    PubMed 

    Google Scholar 
    52.Urick, R. J. The noise of melting icebergs. J. Acoust. Soc. Am. 50, 337–341 (1971).ADS 

    Google Scholar 
    53.Roth, E. H., Hildebrand, J. A., Wiggins, S. M. & Ross, D. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am. 131, 104–110 (2012).ADS 
    PubMed 

    Google Scholar 
    54.Tervo, O. M., Parks, S. E. & Miller, L. A. Seasonal changes in the vocal behavior of bowhead whales (Balaena mysticetus) in Disko Bay, Western-Greenland. J. Acoust. Soc. Am. 126, 1570–1580 (2009).ADS 
    PubMed 

    Google Scholar 
    55.Boye, T. K., Simon, M. J., Laidre, K. L., Rigét, F. & Stafford, K. M. Seasonal detections of bearded seal (Erignathus barbatus) vocalizations in Baffin Bay and Davis Strait in relation to sea ice concentration. Polar Biol. 43, 1493–1502 (2020).
    Google Scholar 
    56.De Vreese, S. et al. Marine mammal acoustic detections in the Greenland and Barents Sea, 2013–2014 seasons. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    57.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).ADS 
    PubMed 

    Google Scholar 
    58.Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Chang. Biol. 23, 5344–5357 (2017).ADS 
    PubMed 

    Google Scholar 
    59.Møhl, B. Masking effects of noise: their distribution in time and space. In The question of sound from icebreaker operations: The proceedings of a workshop (ed. Peterson, N. M.) 259–266. Arctic Pilot Project. Calgary, AB (1981).60.Erbe, C. & Farmer, D. M. Masked hearing thresholds of a beluga whale (Delphinapterus leucas) in icebreaker noise. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 1373–1388 (1998).ADS 

    Google Scholar 
    61.Gordon, J. C. D. et al. A review of the effects of seismic survey on marine mammals. Mar. Technol. Soc. J. 37, 14–32 (2004).
    Google Scholar 
    62.Nowacek, D. P., Thorne, L. H., Johnston, D. W. & Tyack, P. L. Responses of cetaceans to anthropogenic noise. Mamm. Rev. 37, 81–115 (2007).
    Google Scholar 
    63.Southall, B. L. et al. Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects. Aquat. Mamm. 45, 125–232 (2019).
    Google Scholar 
    64.Frid, A. & Dill, L. Human-caused Disturbance Stimuli as a Form of Predation Risk. Conserv. Ecol. 6, 11 (2002). More

  • in

    In vitro interaction network of a synthetic gut bacterial community

    Probing directional interactions of OMM12 strains using spent culture mediaTo characterize directional interactions of the OMM12 consortium members, we chose an in vitro approach to explore how the bacterial strains alter their chemical environment by growth to late stationary phase.Growth of the individual monocultures in a rich culture medium that supports growth of all members (AF medium, Methods, Table S1) was monitored over time (Fig. S1; SI data table 1) and growth rates (Table S2) were determined. Strains were grouped by growth rate (GR) into fast growing strains (GR  > 1.5 h–1, E. faecalis KB1, B. animalis YL2, C. innocuum I46 and B. coccoides YL58), strains with intermediate growth rate (GR  > 1 h–1, M. intestinale YL27, F. plautii YL31, E. clostridioformis YL32, B. caecimuris I48 and L.reuteri I49) and slow growing strains (GR  More

  • in

    Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling

    1.Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
    Google Scholar 
    2.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).CAS 

    Google Scholar 
    3.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).
    Google Scholar 
    4.Verma, M. et al. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences 11, 2185–2200 (2014).
    Google Scholar 
    5.MacBean, N. et al. Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16, 094023 (2021).CAS 

    Google Scholar 
    6.Wang, L., Manzoni, S., Ravi, S., Riveros-Iregui, D. & Caylor, K. Dynamic interactions of ecohydrological and biogeochemical processes in water-limited systems. Ecosphere 6, 1–27 (2015).
    Google Scholar 
    7.Oleson, K. W. et al. Technical Description of the Community Land Model (CLM). Technical Note NCAR/TN-461+ STR (NCAR, 2004).8.Bonan, G. B. & Levis, S. Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J. Clim. 19, 2290–2301 (2006).
    Google Scholar 
    9.Brovkin, V., Ganopolski, A. & Svirezhev, Y. A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol. Modell. 101, 251–261 (1997).
    Google Scholar 
    10.Foley, J. A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628 (1996).CAS 

    Google Scholar 
    11.Haxeltine, A. & Prentice, I. C. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem. Cycles 10, 693–709 (1996).CAS 

    Google Scholar 
    12.Sitch, S. The Role of Vegetation Dynamics in the Control of Atmospheric CO2 Content. Dissertation, Lund Univ. (2000).13.Levis, S., Bonan, G. B., Vertenstein, M. & Oleson, K. W. The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User’s Guide. NCAR Technical Note TN-459+ IA 50 (NCAR, 2004).14.Woodward, F. I., Lomas, M. R. & Betts, R. A. Vegetation-climate feedbacks in a greenhouse world. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 29–39 (1998).
    Google Scholar 
    15.Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T. & Zaehle, S. Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 15, 567–577 (2006).
    Google Scholar 
    16.Turner, D. P. et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 102, 282–292 (2006).
    Google Scholar 
    17.Loik, M. E., Breshears, D. D., Lauenroth, W. K. & Belnap, J. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141, 269–281 (2004).
    Google Scholar 
    18.Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).
    Google Scholar 
    19.Biederman, J. A. et al. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob. Change Biol. 22, 1867–1879 (2016).
    Google Scholar 
    20.Wilcox, B. P., Sorice, M. G. & Young, M. H. Dryland ecohydrology in the Anthropocene: taking stock of human–ecological interactions. Geogr. Compass 5, 112–127 (2011).21.Biederman, J. A. et al. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Glob. Change Biol. 23, 4204–4221 (2017).
    Google Scholar 
    22.Lauenroth, W. K. & Bradford, J. B. Ecohydrology of dry regions of the United States: precipitation pulses and intraseasonal drought. Ecohydrology 2, 173–181 (2009).
    Google Scholar 
    23.Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).
    Google Scholar 
    24.Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).CAS 

    Google Scholar 
    25.Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).
    Google Scholar 
    26.Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K. & Palmquist, K. A. Robust ecological drought projections for drylands in the 21st century. Glob. Change Biol. 26, 3906–3919 (2020).
    Google Scholar 
    27.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
    Google Scholar 
    28.Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).
    Google Scholar 
    29.Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).CAS 

    Google Scholar 
    30.Xiao, J. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).
    Google Scholar 
    31.Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).CAS 

    Google Scholar 
    32.Joiner, J. & Yoshida, Y. Satellite-based reflectances capture large fraction of variability in global gross primary production (GPP) at weekly time scales. Agric. For. Meteorol. 291, 108092 (2020).
    Google Scholar 
    33.Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).CAS 

    Google Scholar 
    34.Bacour, C. et al. Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. J. Geophys. Res. Biogeosci. 124, 3281–3306 (2019).
    Google Scholar 
    35.MacBean, N. et al. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Sci. Rep. 8, 1973 (2018).
    Google Scholar 
    36.Xiao, J. et al. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agric. For. Meteorol. 151, 60–69 (2011).
    Google Scholar 
    37.Ropelewski, C. F. & Halpert, M. S. Global and REGIONAL SCALE PRECIPITATION PATTERNS ASSociated with the El Niño/Southern Oscillation. Mon. Wea. Rev. 115, 1606–1626 (1987).
    Google Scholar 
    38.Trenberth, K. E. The definition of El Niño. Bull. Amer. Meteor. Soc. 78, 2771–2778 (1997).
    Google Scholar 
    39.Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).40.Kogan, F. & Guo, W. Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens. 38, 161–178 (2017).
    Google Scholar 
    41.Berntson, G. G., Lozano, D. L. & Chen, Y. J. Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology 42, 246–252 (2005).
    Google Scholar 
    42.von Neumann, J., Kent, R. H., Bellinson, H. R. & Hart, B. I. The mean square successive difference. Ann. Math. Stat. 12, 153–162 (1941).
    Google Scholar 
    43.Jenerette, G. D., Barron-Gafford, G. A., Guswa, A. J., McDonnell, J. J. & Villegas, J. C. Organization of complexity in water limited ecohydrology. Ecohydrology 5, 184–199 (2012).
    Google Scholar 
    44.IPCC 2013. Climate Change 2013 – The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).45.Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).46.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, nclimate3114 (2016).
    Google Scholar 
    47.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).
    Google Scholar 
    48.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 

    Google Scholar 
    49.Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).
    Google Scholar 
    50.Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).
    Google Scholar 
    51.Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).CAS 

    Google Scholar 
    52.MacDonald, G. M. Water, climate change, and sustainability in the Southwest. Proc. Natl Acad. Sci. USA 107, 21256–21262 (2010).CAS 

    Google Scholar 
    53.van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).
    Google Scholar 
    54.Collier, N. et al. The International Land Model Benchmarking (ILAMB) System: design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).
    Google Scholar 
    55.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).57.Kuhn, M. caret: Classification and regression training. R package version 6.0-88. https://CRAN.R-project.org/package=caret (2021).58.Didan, K. MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13C1.006 (NASA EOSDIS Land Processes DAAC, 2015).59.Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.5-2. https://CRAN.R-project.org/package=raster (2021).60.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    61.Climatic Research Unit (University of East Anglia) & Met Office. CRU TS Version 4.04. http://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/ (CRU, 2020).62.Hijmans, R. J. geosphere: Spherical trigonometry. Package version 1.5-10. https://CRAN.R-project.org/package=geosphere (2019).63.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    64.Barnes, M. L. et al. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes. Ecosphere 7, n/a–n/a (2016).
    Google Scholar 
    65.Vicente-Serrano, S. M. et al. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1–27 (2012).
    Google Scholar 
    66.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696–1718 (2010).
    Google Scholar 
    67.Beguería, S. & Vicente-Serrano, S. M. SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. R package version 1.7. https://CRAN.R-project.org/package=SPEI (2017).68.Beguería, S., Vicente-Serrano, S. M. & Angulo-Martínez, M. A Multiscalar Global Drought Dataset: the SPEI base: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91, 1351–1356 (2010).
    Google Scholar 
    69.Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & El Kenawy, A. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).
    Google Scholar 
    70.Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
    Google Scholar 
    71.Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).
    Google Scholar 
    72.Sörensen, L. A spatial analysis approach to the global delineation of dryland areas of relevance to the CBD Programme of Work on Dry and Subhumid Lands. Dataset based on spatial analysis between WWF terrestrial ecoregions (WWF-US, 2004) and aridity zones https://www.unep-wcmc.org/resources-and-data/a-spatial-analysis-approach-to-the-global-delineation-of-dryland-areas-of-relevance-to-the-cbd-programme-of-work-on-dry-and-subhumid-lands (CRU/UEA; UNE, 2007). Data accessed: 6/27/2021.73.Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).
    Google Scholar 
    74.Freitag, D. Information Extraction from HTML: Application of a General Machine Learning Approach, 517–523 (AAAI/IAAI, 1998).75.Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. & Van Der Laan, M. J. Survival ensembles. Biostatistics 7, 355–373 (2006).
    Google Scholar 
    76.Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 307 (2008).
    Google Scholar 
    77.Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007).
    Google Scholar 
    78.Running, S., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD17A2H.006 (NASA EOSDIS Land Processes DAAC, 2015).79.Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).CAS 

    Google Scholar 
    80.Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74 (2019).
    Google Scholar 
    81.Von Neumann, J., Kent, R., Bellinson, H. & Hart, B. The mean square successive difference. Ann. Math. Stat. 12, 153–162 (1941).82.Revelle, W. R. psych: Procedures for personality and psychological research. R package version 2.1.6. https://CRAN.R-project.org/package=psych (2021).83.Farella, M. Code and data for ‘Improved dryland carbon flux predictions with explicit consideration of water–carbon coupling’. zenodo https://doi.org/10.5281/ZENODO.5540015 (2021). More

  • in

    Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones

    Nitrite oxidation rates in the ETNPWe sampled six stations in the ETNP OMZ with DO concentrations 1 µM at 100 m (Fig. 2A). Chlorophyll concentrations were also high in the upper water column (up to 5 mg m−3 at 20 m), with an SCM spanning 70–125 m (Fig. 2B). Nitrite oxidation displayed a local maximum at the base of the EZ at Station 1 (20–30 m), and then increased to higher levels ( >100 nmol L−1 day−1; Fig. 2C). This increase at 100 and 125 m corresponded with the overlap between the bottom of the SCM and the top of the SNM. Nitrite oxidation rates then reached higher values at 150 m within the SNM at Station 1. Stations 2 and 3 displayed similar nitrite oxidation rate profiles to each other, including elevated rates in the SCM (Fig. 2G, K). Nitrite oxidation rates were similar in magnitude, and peak values at the base of the EZ and in the OMZ were also similar (69–96 nmol L−1 day−1). Depth patterns tracked oceanographic differences across the three AMZ stations, as the depth of all features increased moving offshore from Stations 1 to 2 to 3. For example, the SCM extended from 105 to 155 m at Station 2, while nitrite concentrations began to increase below 100 m; nitrite oxidation rates were elevated at 140 m and declined slightly with increasing depth (Fig. 2E–G). At Station 3, the SCM (120–180 m) and SNM ( >140 m) depths were deeper, and nitrite oxidation rates increased from 100 to 200 m (Fig. 2I–K).Fig. 2: Biogeochemical depth profiles.Profiles of A, E, I dissolved oxygen (solid lines) and nitrite (data points connected by dashed lines), B, F, J chlorophyll a, C, G, K nitrite oxidation rates, and D, H, L oxygen consumption rates (OCR; data presented as mean values of five independent replicates ±1 SD) show consistent variation across A–D Station 1, E–H Station 2, and I–L Station 3 (denoted by different colors). Black horizontal lines denote the depth of the oxygen minimum zone (OMZ), and shaded areas show the secondary chlorophyll maximum (SCM) at each station. Rates measured below the SCM should be considered potential rates (see main text). Maximum chlorophyll values at Station 1 plot off-axis.Full size imageIn contrast to these three AMZ stations (Stations 1–3), rate profiles at Stations 4–6 showed peaks at the base of the EZ followed by decreases with depth and lacked a pronounced rate increase within the OMZ (Supplementary Fig. 1). Parallel measurements of ammonia oxidation rates also showed this type of pattern at all stations (Supplementary Fig. 1). Subsurface maxima in ammonia oxidation tracked variations in the EZ across all six stations, but rates were not elevated in OMZ/AMZ waters—again contrasting with nitrite oxidation rate profiles at the AMZ stations. These data accord with earlier work in OMZs showing contrasting ammonia and nitrite oxidation rate profiles, and particularly high rates of nitrite oxidation in OMZ waters6,7,8,29,30,31.Initial DO concentrations for these measurements closely matched in situ values above the SCM (where DO concentrations are higher), and starting DO ranged from 260–1500 nM for measurements in and below the SCM. These DO concentrations are generally lower than those used for previous nitrite oxidation rate measurements in OMZs6,9, but similar to work examining the oxygen affinity of nitrite oxidation22 and overall oxygen consumption16,19. Elevated nitrite oxidation in the limited number of samples (n = 5) collected below the SCM ( >125 m at Station 1, >155 m at Station 2, and >180 m at Station 3)—where little to no DO is typically available—should be considered potential rates and could have a number of possible explanations discussed below. Within the SCM, our data support the idea that nitrite oxidation contributes to ‘cryptic’ oxygen cycling15—i.e., that DO produced via oxygenic photosynthesis is rapidly consumed.Oxygen consumption via nitrite oxidationWe determined the contribution of nitrite oxidation to overall oxygen consumption via parallel measurements of OCRs using in situ optical sensor spots—which are noninvasive, provide nearly identical results as other low-level measurement approaches32, are the only effective means of achieving substantial replication, and for which sensitivity increases as DO decreases32,33. Decreases in DO were measured in both nitrite and ammonia oxidation rate sample bottles, as well as in three additional replicates, to leverage statistical power for increased sensitivity to low-level DO consumption (see “Methods”). Water column OCR profiles at all stations showed exponential declines with depth and decreasing DO concentrations (Fig. 2D, H, L and Supplementary Fig. 1). Rates were highest in the upper water column and declined sharply within the upper portion of the OMZ above the SCM. The majority of measurements within the SCM—where DO may be produced via photosynthesis—were 100 s of nmol L−1 day−1, with an overall range of 160–1380 nmol L−1 day−1. Below the SCM, DO would be available more rarely (e.g., ref. 16), and OCR measurements represent potential rates should oxygen be supplied; OCR ranged from 120 to 390 nmol L−1 day−1. OCR also tracked variations in DO across stations, with progressively steeper declines in OCR with depth from Station 6 to Station 1.These OCR results are similar to the limited previous measurements that have been conducted in OMZ regions, with some key differences. In particular, they are consistent with previous measurements of rapid DO consumption in the SCM, with OCR rates ranging from 482 to 1520 nmol-O2 L−1 day−1 in the ETSP, and from 55 to 418 nmol-O2  L−1 day−1 in the ETNP15. Earlier OCR measurements conducted in the ETNP near Stations 1 and 3 (across a wide range of DO values) likewise ranged from 420 to 828 nmol L−1 day−1 in the SCM near Station 1, and from 101 to 269 nmol L−1 day−1 in the SCM near Station 3 (ref. 16). Above the SCM, previous OCR measurements in the ETNP spanned 2260 to 662 nmol L−1 day−1 from the EZ to the edge of the OMZ; these values are lower than our measurements at 44 and 67 m depth at Station 2, but in line with our remaining measurements above the SCM. OCR reached 1610 nmol L−1 day−1 in the SCM in Namibian shelf waters and 200–400 nmol L−1 day−1 in the SCM off Peru18. Kalvelage et al.18 furthermore observed sharp decreases with depth in the ETSP, with rates declining from >1000 nmol L−1 day−1 above the SCM.This pattern of declining OCR with increasing depth and decreasing DO was also evident in our dataset and contrasted with that of nitrite oxidation rates, which were notably elevated in the SCM at the AMZ stations (Fig. 2). We directly compared nitrite oxidation rates with OCR, assuming that each mole of nitrite is oxidized using ½ mole of O2 (ref. 5). We found that nitrite oxidation systematically increased as a proportion of overall OCR at lower DO levels (Fig. 3A, B). Nitrite oxidation was responsible for up to 69% of OCR at Station 1, although most values were closer to 10–40% at Stations 2 and 3 (Fig. 3A, B). In contrast, ammonia oxidation contributed 100 s of nM represent potential rates. For OMZ edge samples, OCR values in the µM range were higher than observed in profiles—most likely due to the effects of bubbling19, which could physically break down the organic matter present in higher concentrations at these depths (Table 1). Throughout all experiments, rate magnitudes in the 100 s of nM DO concentration range (11–820 nmol L−1 day−1) were similar to profile measurements (Fig. 2), as well as to previous measurements in OMZs15,16,18,19 (see above).DO concentrations were also continuously monitored in a subset of experimental bottles, and DO consumption was consistently linear (see “Methods”). The few exceptions occurred in several experiments conducted at DO concentrations More

  • in

    Temperature-dependent modelling and spatial prediction reveal suitable geographical areas for deployment of two Metarhizium anisopliae isolates for Tuta absoluta management

    1.Sibomana, M. S., Workneh, T. S. & Audain, K. A review of postharvest handling and losses in the fresh tomato supply chain: A focus on Sub-Saharan Africa. Food Secur. 8, 389–404 (2016).
    Google Scholar 
    2.Ochilo, W. N. et al. Characteristics and production constraints of smallholder tomato production in Kenya. Sci. Afr. 2, e00014 (2019).
    Google Scholar 
    3.Pratt, C. F., Constantine, K. L. & Murphy, S. T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Sec. 14, 31–37 (2017).
    Google Scholar 
    4.Aigbedion-Atalor, P. O. et al. The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts. J. Econ. Entomol. 112, 2797–2807 (2019).PubMed 

    Google Scholar 
    5.Brévault, T., Sylla, S., Diatte, M., Bernadas, G. & Diarra, K. Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): A new threat to tomato production in sub-Saharan Africa. African Entomol. 22, 441–444 (2014).
    Google Scholar 
    6.Guedes, R. N. C. & Picanço, M. C. The tomato borer Tuta absoluta in South America: Pest status, management and insecticide resistance. EPPO Bull. 42, 211–216 (2012).
    Google Scholar 
    7.Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
    Google Scholar 
    8.Abbes, K., Harbi, A. & Chermiti, B. The tomato leafminer Tuta absoluta (Meyrick) in Tunisia: Current status and management strategies. EPPO Bull. 42, 226–233 (2012).
    Google Scholar 
    9.Biondi, A., Guedes, R. N. C., Wan, F.-H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).PubMed 
    CAS 

    Google Scholar 
    10.Niassy, S., Ekesi, S., Migiro, L. & Otieno, W. Sustainable management of invasive pests in Africa. (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-41083-4.11.Mansour, R. et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 38, 83–112 (2018).
    Google Scholar 
    12.Lietti, M. M. M., Botto, E. & Alzogaray, R. A. Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 34, 113–119 (2005).
    Google Scholar 
    13.Guedes, R. N. C. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. 92, 1329–1342 (2019).
    Google Scholar 
    14.APRD. Arthropod Pesticide Resistance Database, Michigan State University. https://www.pesticideresistance.org/display.php?pa.15.Lichtenberg, E. & Zimmerman, R. Adverse health experiences, environmental attitudes, and pesticide usage behavior of farm operators. Risk Anal. 19, 283–294 (1999).PubMed 
    CAS 

    Google Scholar 
    16.Soares, M. A. et al. Botanical insecticide and natural enemies: a potential combination for pest management against Tuta absoluta. J. Pest Sci. 92, 1433–1443 (2019).
    Google Scholar 
    17.Aigbedion-Atalor, P. O. et al. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control 144, 1–8 (2020).
    Google Scholar 
    18.Akutse, K. S., Subramanian, S., Khamis, F. M., Ekesi, S. & Mohamed, S. A. Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol. 1–11 (2020). https://doi.org/10.1111/jen.12812.19.Agbessenou, A. et al. Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle. Sci. Rep. 10, 22195 (2020).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    20.Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).PubMed 
    CAS 

    Google Scholar 
    21.Chandler, D. et al. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B Biol. Sci. 366, 1987–1998 (2011).22.Shang, Y., Feng, P. & Wang, C. Fungi that infect insects: Altering host behavior and beyond. PLoS Pathog. 11, 1–6 (2015).
    Google Scholar 
    23.Bayissa, W. et al. Selection of fungal isolates for virulence against three aphid pest species of crucifers and okra. J. Pest Sci. 90, 355–368 (2017).
    Google Scholar 
    24.Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55, 129–145 (2010).
    Google Scholar 
    25.Fang, W., Azimzadeh, P. & St. Leger, R. J. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr. Opin. Microbiol. 15, 232–238 (2012).26.Tumuhaise, V. et al. Temperature-dependent growth and virulence, and mass production potential of two candidate isolates of Metarhizium anisopliae (Metschnikoff) Sorokin for managing Maruca vitrata Fabricius (Lepidoptera: Crambidae) on cowpea. African Entomol. 26, 73–83 (2018).
    Google Scholar 
    27.Onsongo, S. K., Gichimu, B. M., Akutse, K. S., Dubois, T. & Mohamed, S. A. Performance of three isolates of Metarhizium anisopliae and their virulence against Zeugodacus cucurbitae under different temperature regimes, with global extrapolation of their efficiency. Insects 10, 1–13 (2019).
    Google Scholar 
    28.Dimbi, S., Maniania, N. K., Lux, S. A. & Mueke, J. M. Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. Biocontrol 49, 83–94 (2004).
    Google Scholar 
    29.Ekesi, S., Maniania, N. K. & Lux, S. A. Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. J. Invertebr. Pathol. 83, 157–167 (2003).PubMed 
    CAS 

    Google Scholar 
    30.Jaronski, S. T. Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55, 159–185 (2010).
    Google Scholar 
    31.Klass, J. I., Blanford, S. & Thomas, M. B. Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agric. For. Entomol. 9, 189–199 (2007).
    Google Scholar 
    32.Klass, J. I., Blanford, S. & Thomas, M. B. Use of a geographic information system to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agric. For. Entomol. 9, 201–208 (2007).
    Google Scholar 
    33.Allen, C. & Mehler, D. M. A. Open science challenges, benefits and tips in early career and beyond. Plos Biol. 17, 1–14 (2019).
    Google Scholar 
    34.McCammon, S. A. & Rath, A. C. Separation of Metarhizium anisopliae strains by temperature dependent germination rates. Mycol. Res. 98, 1253–1257 (1994).
    Google Scholar 
    35.Ekesi, S., Maniania, N. K. & Ampong-Nyarko, K. Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci. Technol. 9, 177–185 (1999).
    Google Scholar 
    36.De Croos, J. N. A. & Bidochka, M. J. Effects of low temperature on growth parameters in the entomopathogenic fungus Metarhizium anisopliae. Can. J. Microbiol. 45, 1055–1061 (1999).
    Google Scholar 
    37.Dahlberg, K. R. & Etten, J. L. V. Physiology and biochemistry of fungal sporulation. Annu. Rev. Phytopathol. 20, 281–301 (1982).CAS 

    Google Scholar 
    38.Hywel-Jones, N. L. & Gillespie, A. T. Effect of temperature on spore germination in Metarhizium anisopliae and Beauveria bassiana. Mycol. Res. 94, 389–392 (1990).
    Google Scholar 
    39.Acheampong, M. A., Coombes, C. A., Moore, S. D. & Hill, M. P. Temperature tolerance and humidity requirements of select entomopathogenic fungal isolates for future use in citrus IPM programmes. J. Invertebr. Pathol. 174, 107436 (2020).40.Allen, P. J. Metabolic aspects of spores germination in fungi. Annu. Rev. Phytopathol. 3, 313–342 (1965).CAS 

    Google Scholar 
    41.de Campos, M. R. et al. Thermal biology of Tuta absoluta: demographic parameters and facultative diapause. J. Pest Sci. (2004). (2020) doi:https://doi.org/10.1007/s10340-020-01286-8.42.Vidal, C., Fargues, J. & Lacey, L. A. Intraspecific variability of Paecilomyces fumosoroseus: Effect of temperature on vegetative growth. J. Invertebr. Pathol. 70, 18–26 (1997).
    Google Scholar 
    43.Smits, N., Brière, J.-F. & Fargues, J. Comparison of non-linear temperature-dependent development rate models applied to in vitro growth of entomopathogenic fungi. Mycol. Res. 107, 1476–1484 (2003).PubMed 

    Google Scholar 
    44.Cabanillas, H. E. & Jones, W. A. Effects of temperature and culture media on vegetative growth of an entomopathogenic fungus Isaria sp. (Hypocreales: Clavicipitaceae) naturally affecting the whitefly, Bemisia tabaci in Texas. Mycopathologia 167, 263–271 (2009).45.Guimapi, R. A. et al. Decision support system for fitting and mapping nonlinear functions with application to insect pest management in the biological control context. Algorithms 13, 1–21 (2020).
    Google Scholar 
    46.Smith, J. D. et al. Host range of the invasive tomato pest Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) on solanaceous crops and Weeds in Tanzania. Florida Entomol. 101, 573–579 (2018).
    Google Scholar 
    47.Tumuhaise, V., Khamis, F. M., Agona, A., Sseruwu, G. & Mohamed, S. A. First record of Tuta absoluta (Lepidoptera: Gelechiidae) in Uganda. Int. J. Trop. Insect Sci. 36, 135–139 (2016).
    Google Scholar 
    48.Kassa, A., Brownbridge, M., Parker, B. L. & Skinner, M. Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycol. Res. 112, 583–591 (2008).PubMed 

    Google Scholar 
    49.Jenkins, N. E., Heviefo, G., Langewald, J., Cherry, A. J. & Lomer, C. J. Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News Inf. 19, 21–32 (1998).
    Google Scholar 
    50.Barra, P., Barros, G., Etcheverry, M. & Nesci, A. Mass production studies in solid substrates with the entomopathogenic fungus, Purpureocillium lilacinum. Int. J. Adv. Agric. Res. 6, 78–84 (2018).
    Google Scholar 
    51.Jackson, M. A. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J. Ind. Microbiol. Biotechnol. 19, 180–187 (1997).CAS 

    Google Scholar 
    52.Goettel, M. S. & Inglis, D. G. Fungi: Hyphomycetes. Manual of Techniques in Insect Pathology https://doi.org/10.1016/B978-012432555-5/50013-0 (1997).Article 

    Google Scholar 
    53.Fargues, J., Maniania, N., Delmas, J. & Smits, N. Influence de la température sur la croissance in vitro d’hyphomycètes entomopathogènes. Agronomie 12, 557–564 (1992).
    Google Scholar 
    54.Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2018).
    Google Scholar 
    55.Migiro, L. N., Maniania, N. K., Chabi-Olaye, A. & Vandenberg, J. Pathogenicity of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) isolates to the adult pea leafminer (Diptera: Agromyzidae) and prospects of an autoinoculation device for infection in the field. Environ. Entomol. 39, 468–475 (2010).PubMed 
    CAS 

    Google Scholar 
    56.Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. & Mackauer, M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431–438 (1974).
    Google Scholar 
    57.Brière, J.-F., Pracros, P., Le Roux, A.-Y. & Pierre, J.-S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).
    Google Scholar 
    58.Archontoulis, S. V. & Miguez, F. E. Nonlinear regression models and applications in agricultural research. Agron. J. 107, 786–798 (2015).
    Google Scholar 
    59.Logan, J. A., Wollkind, D. J., Hoyt, S. C. & Tanigoshi, L. K. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133–1140 (1976).
    Google Scholar 
    60.Steiniger, S. & Hunter, A. J. S. Free and open source GIS software for building a spatial data infrastructure. in Geospatial Free and Open Source Software in the 21st Century 247–261 (2012).61.Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).CAS 

    Google Scholar 
    62.R Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/. (2019). More