1.Howell, K. L. et al. A decade to study deep-sea life. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01352-5 (2020).Article
Google Scholar
2.Howell, K. L. et al. A blueprint for an inclusive, global deep-sea ocean decade field program. Front. Mar. Sci. 7, 1–25. https://doi.org/10.3389/fmars.2020.584861 (2020).ADS
Article
Google Scholar
3.Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, 22588. https://doi.org/10.1371/journal.pone.0022588 (2011).ADS
CAS
Article
Google Scholar
4.Bernardino, A. F., Levin, L. A., Thurber, A. R. & Smith, C. R. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE 7, e33515. https://doi.org/10.1371/journal.pone.0033515 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
5.Thiel, M. & Gutow, L. The ecology of rafting in the marine environment. II. The rafting organisms and community. Ocean. Mar. Biol. 43, 279–418. https://doi.org/10.1201/9781420037449.ch7 (2005).Article
Google Scholar
6.McClain, C. & Barry, J. Beta-diversity on deep-sea wood falls reflects gradients in energy availability. Biol. Lett. 10, 20140129. https://doi.org/10.1098/rsbl.2014.0129 (2014).Article
PubMed
PubMed Central
Google Scholar
7.Knudsen, J. The Bathyal and Abyssal Xylophaga (Pholadidae, Bivalvia) (Danish Science Press Ltd., 1961).
Google Scholar
8.Turner, R. Wood-boring bivalves, opportunistic species in the deep sea. Science 180, 1377–1379. https://doi.org/10.1126/science.180.4093.1377 (1973).ADS
CAS
Article
PubMed
Google Scholar
9.Voight, J. R. Deep-sea wood-boring bivalves of Xylophaga (Myoida: Pholadidae) on the continental shelf: A new species described. J. Mar. Biol. Assoc. UK 88, 1459–1464. https://doi.org/10.1017/S0025315408002117 (2008).Article
Google Scholar
10.Turner, R. D. A survey and Illustrated Catalogue of the Teredinidae (Mollusca: Bivalvia) (Harvard University, 1966).Book
Google Scholar
11.Hoppe, K. N. Teredo Navalis—the Cryptogenic Shipworm. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management. (ed. Leppäkoski E., Gollasch S., O. S.) 116–119, https://doi.org/10.1007/978-94-015-9956-6_12 (2002).12.Distel, D. L. & Roberts, S. J. Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and X. washingtona. Biol. Bull. 192, 253–261. https://doi.org/10.2307/1542719 (1997).CAS
Article
PubMed
Google Scholar
13.Distel, D. L., Morrill, W., MacLaren-Toussaint, N., Franks, D. & Waterbury, J. Teredinibacter turnerae gen. nov., sp. Nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int. J. Syst. Evol. Microbiol. 52, 2261–2269 (2002).CAS
PubMed
Google Scholar
14.O’Connor, R. M. et al. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proc. Natl. Acad. Sci. U. S. A. 111, 5096–5104. https://doi.org/10.1073/pnas.1413110111 (2014).CAS
Article
Google Scholar
15.Sabbadin, F. et al. Uncovering the molecular mechanisms of lignocellulose digestion in shipworms. Biotechnol. Biofuels 11, 1–14. https://doi.org/10.1186/s13068-018-1058-3 (2018).CAS
Article
Google Scholar
16.Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge University Press, 2010).
Google Scholar
17.Sarà, G., Palmeri, V., Montalto, V., Rinaldi, A. & Widdows, J. Parameterisation of bivalve functional traits for mechanistic eco-physiological dynamic energy budget (DEB) models. Mar. Ecol. Prog. Ser. 480, 99–117. https://doi.org/10.3354/meps10195 (2013).ADS
Article
Google Scholar
18.Sarà, G., Rinaldi, A. & Montalto, V. Thinking beyond organism energy use: A trait-based bioenergetic mechanistic approach for predictions of life-history traits in marine organisms. Mar. Ecol. 35, 506–515. https://doi.org/10.1111/maec.12106 (2014).ADS
Article
Google Scholar
19.Mangano, M. C. et al. Moving toward a strategy for addressing climate displacement of marine resources: A proof-of-concept. Front. Mar. Sci. 7, 1–16. https://doi.org/10.3389/fmars.2020.00408 (2020).ADS
Article
Google Scholar
20.Romano, C. et al. Wooden stepping stones: Diversity and biogeography of deep-sea wood-boring Xylophagaidae (Mollusca: Bivalvia) in the North-East Atlantic Ocean, with the description of a new genus. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.579959 (2020).Article
Google Scholar
21.Culliney, J. L. & Turner, R. D. Larval development of the deep-water wood boring bivalve, Xylophaga atlantica Richards (Mollusca, bivalvia, pholadidae). Ophelia 15, 149–161. https://doi.org/10.1080/00785326.1976.10425455 (1976).Article
Google Scholar
22.Romey, W., Bullock, R. & Dealteris, J. Rapid growth of a deep-sea wood-boring bivalve. Cont. Shelf Res. 14, 1349–1359. https://doi.org/10.1016/0278-4343(94)90052-3 (1994).ADS
Article
Google Scholar
23.Gaudron, S. M. et al. Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna. Mar. Environ. Res. 70, 1–12. https://doi.org/10.1016/j.marenvres.2010.02.002 (2010).CAS
Article
PubMed
Google Scholar
24.Gaudron, S. M., Haga, T., Wang, H., Laming, S. R. & Duperron, S. Plasticity in reproduction and nutrition in wood-boring bivalves (Xylophaga atlantica) from the Mid-Atlantic Ridge. Mar. Biol. 163, 1–12. https://doi.org/10.1007/s00227-016-2988-6 (2016).CAS
Article
Google Scholar
25.Childress, J. J., Cowles, D. L., Favuzzi, J. A. & Mickel, T. J. Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep Sea Res. Part A Oceanogr. Res. Pap. 37, 929–949. https://doi.org/10.1016/0198-0149(90)90104-4 (1990).ADS
CAS
Article
Google Scholar
26.Childress, J. J. Are there physiological and biochemical adaptations of metabolism in deep-sea animals?. Trends Ecol. Evol. 10, 30–36. https://doi.org/10.1016/S0169-5347(00)88957-0 (1995).CAS
Article
PubMed
Google Scholar
27.Tittensor, D. P., Rex, M. A., Stuart, C. T., Mcclain, C. R. & Smith, C. R. Species—energy relationships in deep-sea molluscs subject collections species—energy relationships in deep-sea molluscs. Biol. Lett. 7, 718–722 (2011).Article
Google Scholar
28.McClain, C. R., Allen, A. P., Tittensor, D. P. & Rex, M. A. Energetics of life on the deep seafloor. Proc. Natl. Acad. Sci. U. S. A. 109, 15366–15371. https://doi.org/10.1073/pnas.1208976109 (2012).ADS
Article
PubMed
PubMed Central
Google Scholar
29.Mickel, T. J. & Childress, J. J. Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bythograea Thermydron (Brachyura). Biol. Bull. 162, 70–82. https://doi.org/10.2307/1540971 (1982).Article
Google Scholar
30.Voight, J. R., Cooper, J. C. & Lee, R. W. Stable isotopic evidence of mixotrophy in Xylophagaids, deep-sea wood-boring bivalves. Front. Mar. Sci. 7, 50. https://doi.org/10.3389/fmars.2020.00050 (2020).Article
Google Scholar
31.Lika, K. et al. The ‘covariation method’ for estimating the parameters of the standard dynamic energy budget model I: Philosophy and approach. J. Sea Res. 66, 270–277. https://doi.org/10.1016/j.seares.2011.07.010 (2011).ADS
Article
Google Scholar
32.Marques, G. M. et al. The AmP project: Comparing species on the basis of dynamic energy budget parameters. PLoS Comput. Biol. 14, 1–23. https://doi.org/10.1371/journal.pcbi.1006100 (2018).CAS
Article
Google Scholar
33.Mariño, J., Augustine, S., Dufour, S. C. & Hurford, A. Dynamic Energy Budget theory predicts smaller energy reserves in thyasirid bivalves that harbour symbionts. J. Sea Res. 143, 119–127. https://doi.org/10.1016/j.seares.2018.07.015 (2019).ADS
Article
Google Scholar
34.Brown, A. et al. Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab Lithodes maja. J. Exp. Biol. 220, 3916–3926. https://doi.org/10.1242/jeb.158543 (2017).Article
PubMed
Google Scholar
35.Eisenmenger, M. J. & Reyes-De-Corcuera, J. I. High pressure enhancement of enzymes: A review. Enzyme Microb. Technol. 45, 331–347. https://doi.org/10.1016/j.enzmictec.2009.08.001 (2009).CAS
Article
Google Scholar
36.Kalenitchenko, D. et al. Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea. ISME J. 12, 367–379. https://doi.org/10.1038/ismej.2017.163 (2018).CAS
Article
PubMed
Google Scholar
37.Levesque, C., Limén, H. & Juniper, S. K. Origin, composition and nutritional quality of particulate matter at deep-sea hydrothermal vents on Axial Volcano NE pacific. Mar. Ecol. Prog. Ser. 289, 43–52. https://doi.org/10.3354/meps289043 (2005).ADS
Article
Google Scholar
38.Limén, H., Levesque, C. & Kim Juniper, S. POM in macro-/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge. Mar. Biol. 153, 129–139. https://doi.org/10.1007/s00227-007-0790-1 (2007).Article
Google Scholar
39.Culliney, J. L. Comparative larval development of the shipworms Bankia gouldi and Teredo navalis. Mar. Biol. 29, 245–251. https://doi.org/10.1007/BF00391850 (1975).Article
Google Scholar
40.Ramirez Llodra, E. Fecundity and life-history strategies in marine invertebrates. Adv. Mar. Biol. 43, 87–170. https://doi.org/10.1016/S0065-2881(02)43004-0 (2002).Article
PubMed
Google Scholar
41.Fernandez-Arcaya, U. et al. Bathymetric gradients of fecundity and egg size in fishes: A Mediterranean case study. Deep Sea Res. Part A Oceanogr. Res. Pap. 116, 106–117. https://doi.org/10.1016/j.enzmictec.2009.08.001 (2016).ADS
CAS
Article
Google Scholar
42.Young, C. M., Emson, R. H., Rice, M. E. & Tyler, P. A. A paradoxical mismatch of fecundity and recruitment in deep-sea opportunists: cocculinid and pseudococculinid limpets colonizing vascular plant remains on the Bahamian Slope. Deep Sea Res. 92, 36–45. https://doi.org/10.1016/j.dsr2.2013.01.027 (2013).ADS
Article
Google Scholar
43.Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45. https://doi.org/10.1111/j.1469-185X.1950.tb00585.x (1950).CAS
Article
PubMed
Google Scholar
44.Hitt, N. T. et al. Growth and longevity of New Zealand black corals. Deep. Res. Part I Oceanogr. Res. Pap. 162, e103298. https://doi.org/10.1016/j.dsr.2020.103298 (2020).Article
Google Scholar
45.McNichol, J. et al. Primary productivity below the seafloor at deep-sea hot springs. Proc. Natl. Acad. Sci. U. S. A. 115, 6756–6761. https://doi.org/10.1073/pnas.1804351115 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
46.Levin, L. A. et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Mar. Sci. 3, 1–23. https://doi.org/10.3389/fmars.2016.00072 (2016).ADS
Article
Google Scholar
47.Nedoncelle, K., Lartaud, F., de Rafelis, M., Boulila, S. & Le Bris, N. A new method for high-resolution bivalve growth rate studies in hydrothermal environments. Mar. Biol. 160, 1427–1439. https://doi.org/10.1007/s00227-013-2195-7 (2013).CAS
Article
Google Scholar
48.Turekian, K. K., Cochran, J. K. & Bennett, J. T. Growth rate of a vesicomyid clam from the 21° N East Pacific Rise hydrothermal area. Nature 303, 55–56. https://doi.org/10.1038/303055a0 (1983).ADS
Article
Google Scholar
49.Lutz, R. A. et al. Rapid growth at deep-sea vents. Nature 371, 663–664. https://doi.org/10.1038/371663a0 (1994).ADS
Article
Google Scholar
50.Reed, A. J., Morris, J. P., Linse, K. & Thatje, S. Plasticity in shell morphology and growth among deep-sea protobranch bivalves of the genus Yoldiella (Yoldiidae) from contrasting Southern ocean regions. Deep. Res. Part I Oceanogr. Res. Pap. 81, 14–24. https://doi.org/10.1016/j.dsr.2013.07.006 (2013).ADS
Article
Google Scholar
51.Oliver, G., Allen, J. A. & Yonge, M. The functional and adaptive morphology of the deep-sea species of the Arcacea (Mollusca: Bivalvia) from the Atlantic. Philos. Trans. R. Soc. London. B Biol. Sci. 291, 45–76. https://doi.org/10.1098/rstb.1980.0127 (1980).ADS
Article
Google Scholar
52.Romano, C., Voight, J. R., Pérez-Portela, R. & Martin, D. Morphological and genetic diversity of the wood-boring Xylophaga (Mollusca, Bivalvia): New species and records from deep-sea Iberian canyons. PLoS ONE 9, 102887. https://doi.org/10.1371/journal.pone.0102887 (2014).ADS
CAS
Article
Google Scholar
53.Saulsbury, J. et al. Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates. Paleobiology 45, 405–420. https://doi.org/10.1017/pab.2019.20 (2019).Article
Google Scholar
54.Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine bivalvia, with implications for phanerozoic evolution. Proc. R. Soc. B Biol. Sci. 283, 20161364. https://doi.org/10.1098/rspb.2016.1364 (2016).Article
Google Scholar
55.Tyler, P. A., Young, C. M. & Dove, F. Settlement, growth and reproduction in the deep-sea wood-boring bivalve mollusc Xylophaga depalmai. Mar. Ecol. Prog. Ser. 343, 151–159. https://doi.org/10.3354/meps06832 (2007).ADS
Article
Google Scholar
56.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000 (2004).Article
Google Scholar
57.Maino, J. L., Kearney, M. R., Nisbet, R. M. & Kooijman, S. A. L. M. Reconciling theories for metabolic scaling. J. Anim. Ecol. 83, 20–29. https://doi.org/10.1111/1365-2656.12085 (2014).Article
PubMed
Google Scholar
58.Gaudron, S. M., Demoyencourt, E. & Duperron, S. Reproductive traits of the cold-seep symbiotic mussel Idas modiolaeformis: gametogenesis and larval biology. Biol. Bull. 222, 6–16. https://doi.org/10.1086/bblv222n1p6 (2012).Article
Google Scholar
59.Hilário, A. et al. Estimating dispersal distance in the deep sea: Challenges and applications to marine reserves. Front. Mar. Sci. 2, 6. https://doi.org/10.3389/fmars.2015.00006 (2015).ADS
Article
Google Scholar
60.Marsh, A. G., Mullineaux, L. S., Young, C. M. & Manahan, D. T. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411, 77–80. https://doi.org/10.1038/35075063 (2001).ADS
CAS
Article
PubMed
Google Scholar
61.Young, C. M. et al. Dispersal of deep-sea larvae from the intra-American seas: Simulations of trajectories using ocean models. Integr. Comp. Biol. 52, 483–496. https://doi.org/10.1093/icb/ics090 (2012).Article
PubMed
Google Scholar
62.Yearsley, J. M., Salmanidou, D. M., Carlsson, J., Burns, D. & Van Dover, C. L. Biophysical models of persistent connectivity and barriers on the northern Mid-Atlantic Ridge. Deep. Res. Part II Top. Stud. Oceanogr. 180, 104819. https://doi.org/10.1016/j.dsr2.2020.104819 (2020).Article
Google Scholar
63.Levin, L. A. et al. Global observing needs in the deep ocean. Front. Mar. Sci. 6, 1–32. https://doi.org/10.3389/fmars.2019.00241 (2019).ADS
Article
Google Scholar
64.McClain, C. R., Boyer, A. G. & Rosenberg, G. The island rule and the evolution of body size in the deep sea. J. Biogeogr. 33, 1578–1584. https://doi.org/10.1111/j.1365-2699.2006.01545.x (2006).Article
Google Scholar
65.Zonneveld, C. & Kooijman, S. A. L. M. Application of a dynamic energy budget model to Lymnaea stagnalis (L.). Funct. Ecol. 3, 269–278. https://doi.org/10.2307/2389365 (1989).Article
Google Scholar
66.Mueller, C. A., Augustine, S., Kooijman, S. A. L. M., Kearney, M. R. & Seymour, R. S. The trade-off between maturation and growth during accelerated development in frogs. Comp. Biochem. Physiol. A 163, 95–102. https://doi.org/10.1016/j.cbpa.2012.05.190 (2012).CAS
Article
Google Scholar
67.MacArthur, R.H. & Wilson, E. The Theory of Island Biogeography (1967).68.Kooijman, S. A. L. M. Metabolic acceleration in animal ontogeny: An evolutionary perspective. J. Sea Res. 94, 128–137. https://doi.org/10.1016/j.seares.2014.06.005 (2014).ADS
Article
Google Scholar More