Interploidy gene flow involving the sexual-asexual cycle facilitates the diversification of gynogenetic triploid Carassius fish
1.Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. Mol. Mech. Mutagen. 1, 2–9 (1964).
Google Scholar
2.Maynard Smith, J. The Evolution of Sex (Cambridge University Press, 1978).
Google Scholar
3.Avise, J. C. Clonality (Oxford University Press, 2008).
Google Scholar
4.Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (A review). Proc. Natl. Acad. Sci. USA 87, 3566–3573 (1990).ADS
CAS
PubMed
PubMed Central
Google Scholar
5.Lynch, M. & Gabriel, W. Mutation load and the survival of small populations. Evolution 44, 1725 (1990).PubMed
Google Scholar
6.Schurko, A. M., Neiman, M. & Logsdon, J. M. Signs of sex: what we know and how we know it. Trends Ecol. Evol. 24, 208–217 (2009).PubMed
Google Scholar
7.Verduijn, M. H., Van Dijk, P. J. & Van Damme, J. M. M. The role of tetraploids in the sexual-asexual cycle in dandelions (Taraxacum). Heredity 93, 390–398 (2004).CAS
PubMed
Google Scholar
8.D’Souza, T. G., Storhas, M., Schulenburg, H., Beukeboom, L. W. & Michiels, N. K. Occasional sex in an ‘asexual’ polyploid hermaphrodite. Proc. R. Soc. B Biol. Sci. 271, 1001–1007 (2004).
Google Scholar
9.Schartl, M. et al. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature 373, 68–71 (1995).ADS
Google Scholar
10.Bogart, J. P., Bi, K., Fu, J., Noble, D. W. A. & Niedzwiecki, J. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome 50, 119–136 (2007).CAS
PubMed
Google Scholar
11.Hedtke, S. M., Glaubrecht, M. & Hillis, D. M. Rare gene capture in predominantly androgenetic species. Proc. Natl. Acad. Sci. USA 108, 9520–9524 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
12.Warren, W. C. et al. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0473-y (2018).Article
PubMed
PubMed Central
Google Scholar
13.Flot, J. F. et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500, 453–457 (2013).ADS
CAS
PubMed
Google Scholar
14.Dawley, R. M. & Bogart, J. P. Evolution and Ecology of Unisexual Vertebrates. (Albany, University of the State of New York, State Education Department, New York State Museum, 1989).15.Avise, J. C. Evolutionary perspectives on clonal reproduction in vertebrate animals. Proc. Natl. Acad. Sci. USA 112, 8867–8873 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
16.Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: Along the ‘extended speciation continuum’. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200103 (2021).17.Fujita, M. K., Singhal, S., Brunes, T. O. & Maldonado, J. A. Evolutionary Dynamics and Consequences of Parthenogenesis in Vertebrates. Annu. Rev. Ecol. Evol. Syst. 51, 191–214 (2020).
Google Scholar
18.Lehtonen, J., Schmidt, D. J., Heubel, K. & Kokko, H. Evolutionary and ecological implications of sexual parasitism. Trends Ecol. Evol. 28, 297–306 (2013).PubMed
Google Scholar
19.Hosoya, K. Fishes of Japan with pictorial keys to the species, English edn. in (ed. Nakabo, T.) 308–309, 1813–1814 (Tokai University Press, 2013).20.Kobayashi, H., Kawashima, J. & Takeuchi, N. Comparative chromosome studies in the genus Carassius expecially with a finding of polyploidy in the ginbuna (C. auratus langsdorfi). Jpn. J. Ichthyol. 17, 153–160 (1970).
Google Scholar
21.Shimizu, Y., Oshiro, T. & Sakaizumi, M. Electrophoretic studies of diploid, triploid, and tetraploid forms of the Japanese silver crucian carp, Carassius auratus langsdorfii. Jpn. J. Ichthyol. 40, 65–75 (1993).
Google Scholar
22.Eschmeyer, W. N., Fricke, R. & van der Laan, R. Catalog of Fishes: Genera, Species, References. (2017). http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.23.Mishina, T. et al. Molecular identification of species and ploidy of Carassius fishes in Lake Biwa, using mtDNA and microsatellite multiplex PCRs. Ichthyol. Res. 61, 169–175 (2014).
Google Scholar
24.Iguchi, K., Yamamoto, G., Matsubara, N. & Nishida, M. Morphological and genetic analysis of fish of a Carassius complex (Cyprinidae) in Lake Kasumigaura with reference to the taxonomic status of two all-female triploid morphs. Biol. J. Linn. Soc. 79, 351–357 (2003).
Google Scholar
25.Ohara, K., Ariyoshi, T., Sumida, E. & Taniguchi, N. Clonal diversity in the Japanese silver crucian carp, Carassius langsdorfii inferred from genetic markers. Zoolog. Sci. 20, 797–804 (2003).PubMed
Google Scholar
26.Takada, M. et al. Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol. Biol. 10, 7 (2010).PubMed
PubMed Central
Google Scholar
27.Luo, J. et al. Tempo and mode of recurrent polyploidization in the Carassius auratus species complex (Cypriniformes, Cyprinidae). Heredity 112, 415–427 (2014).CAS
PubMed
PubMed Central
Google Scholar
28.Murakami, M., Matsuba, C. & Fujitani, H. Characterization of DNA markers isolated from the gynogenetic triploid ginbuna (Carassius auratus langsdorfi) by representational difference analysis. Aquaculture 208, 59–68 (2002).CAS
Google Scholar
29.Cao, L. et al. Evolutionary dynamics of 18S and 5S rDNA in autotriploid Carassius auratus. Gene 737, 144433 (2020).CAS
PubMed
Google Scholar
30.Yahara, T. Evolution of agamospermous races in Boehmeria and Eupatorium. Plant Species Biol. 5, 183–196 (1990).
Google Scholar
31.Li, C., Ortí, G., Zhang, G. & Lu, G. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 7, 44 (2007).PubMed
PubMed Central
Google Scholar
32.Yue, G. H. & Orban, L. Polymorphic microsatellites from silver crucian carp (Carassius auratus gibelio Bloch) and cross-amplification in common carp (Cyprinus carpio L.). Mol. Ecol. Notes 2, 534–536 (2002).CAS
Google Scholar
33.Takeshima, H. et al. Rapid and effective isolation of candidate sequences for development of microsatellite markers in 30 fish species by using kit-based target capture and multiplexed parallel sequencing. Conserv. Genet. Resour. 9, 479–490 (2017).
Google Scholar
34.Gao, Y. et al. Quaternary palaeoenvironmental oscillations drove the evolution of the Eurasian Carassius auratus complex (Cypriniformes, Cyprinidae). J. Biogeogr. 39, 2264–2278 (2012).
Google Scholar
35.Konishi, S. & Yoshikawa, S. Immigration times of the two proboscidean species, Stegodon orientalis and Palaeoloxodon naumanni, into the Japanese Islands and the formation of land bridge. Earth Sci. (Chikyu Kagaku) 53, 125–134 (1999).
Google Scholar
36.Kitamura, A., Takano, O., Takata, H. & Omote, H. Late pliocene-early pleistocene paleoceanographic evolution of the Sea of Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 81–98 (2001).
Google Scholar
37.Dong, J., Murakami, M., Fujimoto, T., Yamaha, E. & Arai, K. Genetic characterization of the progeny of a pair of the tetraploid silver crucian carp Carassius auratus langsdorfii. Fish. Sci. 79, 935–941 (2013).CAS
Google Scholar
38.Murakami, M. & Fujitani, H. Polyploid-specific repetitive DNA sequences from triploid ginbuna (Japanese silver crucian carp, Carassius auratus langsdorfi). Genes Genet. Syst. 72, 107–113 (1997).CAS
PubMed
Google Scholar
39.Mada, Y., Miyagawa, M., Hayashi, T., Umino, T. & Arai, K. Production of tetraploids by introduction of sperm nucleus into the eggs of gynogenetic triploid ginbuna Carasius langsdorfii. Aquac. Sci. 49, 103–112 (2001).CAS
Google Scholar
40.Alves, M. J., Coelho, M. M. & Collares-Pereira, M. J. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: A genetic review. Genetica 111, 375–385 (2001).CAS
PubMed
Google Scholar
41.Collares-Pereira, M. J., Matos, I., Morgado-Santos, M. & Coelho, M. M. Natural pathways towards polyploidy in animals: The Squalius alburnoides fish complex as a model system to study genome size and genome reorganization in polyploids. Cytogenet. Genome Res. 140, 97–116 (2013).CAS
PubMed
Google Scholar
42.Lafond, J., Hénault, P., Leung, C. & Angers, B. Unexpected oogenic pathways for the triploid fish chrosomus eos-neogaeus. J. Hered. 110, 370–377 (2019).CAS
PubMed
Google Scholar
43.Gauze, G. F. The Struggle for Existence (The Williams & Wilkins Company, 1934).
Google Scholar
44.Vrijenhoek, R. C. Ecological differentiation among clones: the frozen niche variation model. in Population Biology and Evolution (eds. Wöhrmann, K. & Loeschcke, V.) 217–231 (Springer Berlin Heidelberg, 1984).45.Weeks, A. R. & Hoffmann, A. A. Frequency-dependent selection maintains clonal diversity in an asexual organism. Proc. Natl. Acad. Sci. USA 105, 17872–17877 (2008).46.Vrijenhoek, R. C. Coexistence of clones in a heterogeneous environment. Science 199, 549–552 (1978).ADS
CAS
PubMed
Google Scholar
47.Dagan, Y., Liljeroos, K., Jokela, J. & Ben-Ami, F. Clonal diversity driven by parasitism in a freshwater snail. J. Evol. Biol. 26, 2509–2519 (2013).CAS
PubMed
Google Scholar
48.Otto, S. P. & Lenormand, T. Evolution of sex resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–261 (2002).CAS
PubMed
Google Scholar
49.Yamashita, M., Jiang, J., Onozato, H., Nakanishi, T. & Nagahama, Y. A tripolar spindle formed at meiosis I assures the retention of the original ploidy in the gynogenetic triploid. Dev. Growth Differ. 35, 631–636 (1993).
Google Scholar
50.Kobayasi, H. A cytological study on the maturation division in the oogenic process of the Triploid Ginbuna (Carassius auratus langsdorfii). Jpn. J. Ichthyol. 22, 234–240 (1976).
Google Scholar
51.Yamashita, M., Onozato, H., Nakanishi, T. & Nagahama, Y. Breakdown of the sperm nuclear envelope is a prerequisite for male pronucleus formation: Direct evidence from the gynogenetic crucian carp Carassius auratus langsdorfii. Dev. Biol. 137, 155–160 (1990).CAS
PubMed
Google Scholar
52.Kobayasi, H. A cytological study on gynogenesis of the triploid ginbuna (Carassius auratus langsdorfii). Zool. Mag. 80, 316–322 (1971).
Google Scholar
53.Lampert, K. P. & Schartl, M. A little bit is better than nothing: the incomplete parthenogenesis of salamanders, frogs and fish. BMC Biol. 8, 78 (2010).PubMed
PubMed Central
Google Scholar
54.Lu, Y. et al. Fixation of allelic gene expression landscapes and expression bias pattern shape the transcriptome of the clonal Amazon molly. Genome Res. 31, 372–379 (2021).PubMed
PubMed Central
Google Scholar
55.Science Council of Japan. Guidelines for Proper Conduct of Animal Experiments. (2006).56.du Sert, N. P. et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, 1–12 (2020).
Google Scholar
57.code by Richard A. Becker, O. S. & version by Ray Brownrigg., A. R. W. R. mapdata: Extra Map Databases. (2018).58.Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013).59.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS
PubMed
PubMed Central
Google Scholar
60.Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed
PubMed Central
Google Scholar
61.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS
PubMed
PubMed Central
Google Scholar
62.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS
PubMed
PubMed Central
Google Scholar
63.Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods – A bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).CAS
PubMed
Google Scholar
64.Buerkle, C. A. Maximum-likelihood estimation of a hybrid index based on molecular markers. Mol. Ecol. Notes 5, 684–687 (2005).CAS
Google Scholar
65.Gompert, Z. & Alex Buerkle, C. Introgress: A software package for mapping components of isolation in hybrids. Mol. Ecol. Resour. 10, 378–384 (2010).CAS
PubMed
Google Scholar
66.Liu, S. et al. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross. Proc. Natl. Acad. Sci. USA 113, 1327–1332 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
67.Li, C. Y. et al. The transcriptomes of the crucian carp complex (Carassius auratus) provide insights into the distinction between unisexual triploids and sexual diploids. Int. J. Mol. Sci. 15, 9386–9406 (2014).CAS
PubMed
PubMed Central
Google Scholar
68.Chen, Z. et al. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci. Adv. 5, 1–13 (2019).
Google Scholar
69.Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS
PubMed
Google Scholar
70.der Auwera, G. A. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. Genomics in the cloud: Using Docker, GATK, and WDL in Terra (O’Reilly Media, 2020).
Google Scholar
71.Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed
PubMed Central
Google Scholar
72.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH
Google Scholar
73.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 1–8 (2007).
Google Scholar
74.Liu, H.-T. & Su, T.-T. Pliocene fishes from Yüshe Basin, Shansi. Vertebr. Palasiat. 6, 1–47 (1962).
Google Scholar
75.Rüber, L., Kottelat, M., Tan, H. H., Ng, P. K. L. & Britz, R. Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world’s smallest vertebrate. BMC Evol. Biol. 7, 1–10 (2007).
Google Scholar
76.Tominaga, K., Nagata, N., Kitamura, J., Watanabe, K. & Sota, T. Phylogeography of the bitterling Tanakia lanceolata (Teleostei: Cyprinidae) in Japan inferred from mitochondrial cytochrome b gene sequences. Ichthyol. Res. 67, 105–116 (2020).
Google Scholar
77.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).CAS
PubMed
PubMed Central
Google Scholar
78.Ritchie, A. M., Lo, N. & Ho, S. Y. W. The impact of the tree prior on molecular dating of data sets containing a mixture of inter- and intraspecies sampling. Syst. Biol. 66, 413–425 (2017).PubMed
Google Scholar
79.Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).CAS
PubMed
Google Scholar
80.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed
Google Scholar
81.Oksanen, J. et al. vegan: Community Ecology Package. (2017).82.Legendre, P. & Legendre, L. F. J. Numerical Ecology (Elsevier Science, 1998).MATH
Google Scholar
83.Muggeo, V. M. R. segmented: An R package to fit regression models with broken-line relationships. R NEWS 8(1), 20–25 (2008).
Google Scholar
84.Bruvo, R., Michiels, N. K., D’Souza, T. G. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101–2106 (2004).CAS
PubMed
Google Scholar
85.Clark, L. V. & Jasieniuk, M. polysat: An R package for polyploid microsatellite analysis. Mol. Ecol. Resour. 11, 562–566 (2011).PubMed
Google Scholar
86.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed Central
Google Scholar
87.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
PubMed Central
Google Scholar
88.Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Google Scholar
89.Rolf, F. J. tpsDig, Digitize Landmarks and Outlines, Version 2.05. (Department of Ecology and Evolution, State University of New York at Stony Brook, 2006).90.Klingenberg, C. P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).PubMed
Google Scholar More