More stories

  • in

    An insight into the botanical origins of propolis from permanent preservation and reforestation areas of southern Brazil

    Alpha-pinene, the most abundant volatile found in all propolis, was also the most abundant volatile found in propolis produced in the Adriatic Sea coast of Italy, and its likely botanical origin was suggested to be native conifer trees from that region13. α-Pinene together with β-pinene were previously found as the two most abundant volatiles in propolis produced in the Rio Grande do Sul14 and Paraná3 states, in a not specified Brazilian propolis sample15, and propolis from South Africa16 and Uruguay1. It is noteworthy that South Africa and Uruguay are in similar latitudes to southern Brazil, indicating a characteristic profile related to that propolis location.Furfural, which was found in almost all samples, is a product of sugars dehydration commonly found in agricultural byproducts and was identified by SHS-GCxGC-TOF-MS in South African propolis, in which volatiles was extracted by heating at 45 °C/5 min, at concentrations ranging from trace to 11.3%16.β-Eudesmol was found as the most abundant volatile in propolis produced in France, Hungary, Bulgaria, and Northern Italy and was also the most abundant volatile in the distilled essential oil of Populus nigra buds, which likely is its primary botanical origin1. However, in our study, β-eudesmol was also found in the resins of AA as a minor volatile (from 0.7 to 2.4%). Additionally, AA resins were the only ones containing sabinene, α-thujene and α-bisabolol. Thereby, AA may be plant sources of these volatiles for brown propolis from southern Brazil. α-Bisabolol was also found as a major volatile in propolis produced in temperate zones of China and Turkish1.It is noteworthy that the temperature used to extract the volatiles, 180 °C, was higher than those commonly used for volatile profile characterization of 50–75 °C3,15,17. The degradation rate of pure monoterpenes at 120 °C varied greatly, depending on the compound, as it was 100% after 4 h for α-terpinene, 50% after 24 h for limonene, and 38% after 72 h for camphene18. The thermal degradation led to p-cymene, eucarvone and 1,2-epoxyde derivatives from limonene; thymol, ketoaldehydes, and eucalyptol from α-terpinene; and camphenilone, verbenone, and aromatic compounds from camphene18.Although verbenone was found in samples of our study (up to 1.3%), it was also tentatively identified in brown propolis extracted at 75 °C/30 min3, while p-cymene and verbenone were tentatively identified in Mediterranean propolis extracted at 60 °C/45 min17.Furthermore, McGraw et al.18 quoted Punsuvon, who reported the degradation at 90–130 °C (not specifying the time length) of pure α-pinene (23–37%), forming β-pinene, α-pinene oxide, α-campholenal, verbenol, pinocamphone, myrtenol and verbenone, and of pure β-pinene (22%), forming mainly myrtenol. From those thermal degradation products of α-pinene, some are reportedly relevant in propolis and conifer tissues, such as β-pinene, α-campholenal, myrtenol and verbenol1,15,19. Hence, the terpene diversity in natural products seems to result from naturally occurring chemical reactions catalyzed by microorganisms or enzyme systems20. At the same time, induced heating is a non-natural way to get it, and it is not simple to differentiate whether the terpene diversity is natural or induced by extraction conditions.The increase in temperature increased peak intensities up to 180 °C, and the number of peaks also increased, which likely indicates volatiles release from the propolis’s complex resinous/waxy matrix (Supplementary Fig. S1). However, the formation of low percentages of the tentatively identified carvone oxide (Supplementary Table S1), which likely had the added internal control l-carvone as a precursor, is an indication of oxidation. Nevertheless, l-carvone was pierced outside the samples within the vials. Thereby, it was more exposed to O2 and more prone to oxidation than the other volatiles present in the propolis/resins matrices.Concerning the multivariate analysis, the PCA showed that the SHS-GCMS method was sensible to discriminate propolis samples produced in different municipalities, even when the distance between the apiaries was 72 km (from ‘Beira do mato’ to ‘Vila Zulmira sede’). Moreover, the PCA indicates that A. angustifolia may be more attractive than Pinus species for bee foragers as a plant resin source to produce propolis.It is noteworthy that the possibility of Araucaria sp. resins be used as a botanical source for bees to produce brown propolis in southern Brazil was previously suggested by5, based on the identification of a single non-volatile compound, which is typical in some Araucaria species, in propolis samples from Paraná state. AA is a dominant species in subtropical and temperate rainforests in southern Brazil and adjacent areas. These areas were intensively explored over the nineteenth century. Nowadays, it is legally protected in permanent preservation areas since AA is endangered10. Therefore, the likely presence of AA resins in OP1 reinforces the need for sustainable preservation of natural environments since it may be related to OP1’s outstanding antioxidant activity4.From the tentatively identified volatiles in the hierarchical clustering heatmap, α-campholenal, α-phellandrene, β-bourbonene and trans-verbenol were found in essential oils of Pinus species19. This finding may indicate PT as another plant resin source for propolis production in those areas. To our knowledge, p-mentha-1,8-dien-7-ol was tentatively identified in plants from the Araucariceae family for the first time. p-Mentha-1,8-dien-7-ol, also known as perilla alcohol, is found in many plants’ essential oils, such as lavendin, peppermint, spearmint, and cherries21. Therefore, further studies should be conducted with authentic standards to confirm the identified volatiles in brown propolis and conifer resins from southern Brazil to be further used as phytochemical markers.In conclusion, there are indications that the resin from native Araucaria angustifolia is more attractive for bees to produce propolis in southern Brazil, although there is also an indication that non-native Pinus elliott and Pinus taeda are plant resin sources as well. However, the singularities on the chromatograms of propolis from each apiary/municipality illustrated in the heatmaps and the not complete overlap of the propolis and the conifer resins in the PCA may indicate that there are other botanical sources for bees to produce propolis within the permanent preservation areas of southern Brazil, which remain unknown. More

  • in

    Indigenous sex-selective salmon harvesting demonstrates pre-contact marine resource management in Burrard Inlet, British Columbia, Canada

    1.Drucker, P. Indians of the Northwest Coast (McGraw-Hill, 1955).Book 

    Google Scholar 
    2.Kroeber, A. Culture and natural areas of Native North America (University of California Press, 1939).
    Google Scholar 
    3.Introduction, S. W. In Handbook of North American Indians volume 7: Northwest Coast (ed. Suttles, W.) 1–15 (Smithsonian Institution, 1990).
    Google Scholar 
    4.Suttles, W. Coping with abundance: subsistence on the Northwest Coast. In Coast Salish Essays (ed. Suttles, W.) (Talon Books, 1987).
    Google Scholar 
    5.Barnett, H. G. The Coast Salish of British Columbia (University of Oregon Press, 1955).
    Google Scholar 
    6.Ames, K. The Northwest Coast: Complex hunter-gatherers, ecology, and social evolution. Annu. Rev. Anthropol. 23, 209–229 (1994).Article 

    Google Scholar 
    7.Carlson, R. L., Szpak, P. & Richards, M. The Pender Canal site and the beginnings of the Northwest Coast cultural system. Can. J. Archaeol. 41, 1–29 (2017).
    Google Scholar 
    8.Cannon, A. & Yang, D. Y. Early storage and sedentism on the Pacific Northwest Coast: ancient DNA analysis of salmon remains from Namu, British Columbia. Am. Antiquity 71, 123–140 (2006).Article 

    Google Scholar 
    9.Matson, R. G. The evolution of Northwest Coast subsistence. In Research in Economic Anthropology Supplement 6: Long-Term Subsistence Change in Prehistoric North America (eds Croes, D. et al.) 366–428 (JAI Press Inc., 1992).
    Google Scholar 
    10.Caldwell, M. et al. A bird’s eye view of northern Coast Salish intertidal resource management features, southern British Columbia. J. Island Coast. Archaeol. 7, 219–233 (2012).Article 

    Google Scholar 
    11.Caldwell, M. & Lepofsky, D. Indigenous marine resource management on the Northwest Coast of North America. Ecol. Process. 2(1), 12 (2013).
    Google Scholar 
    12.Croes, D. R. (ed.). The Qwu?gwes Archaeological Site and Fish Trap (45TN240), and Tested Homestead (45TN396), Eleven-year South Puget Sound Community College Summer Field School Investigations with the Squaxin Island Tribe—Final Report. Report on file, Washington State Department of Archaeology and Historic Preservation, Olympia (2013).13.Lepofsky, D. et al. Shellfish mariculture on the Northwest Coast of North America. Am. Antiq. 80, 236–259 (2015).Article 

    Google Scholar 
    14.Mathews, D. L. & Turner, N. J. Ocean cultures: northwest coast ecosystems and indigenous management systems. In Conservation for the Anthropocene Ocean: Interdisciplinary Science in Support of Nature and People (eds Levin, P. S. & Poe, M. R.) 169–201 (Academic Press, 2017).Chapter 

    Google Scholar 
    15.Williams, J. Clam gardens: aboriginal mariculture on Canada’s West Coast (New Star Books, 2006).
    Google Scholar 
    16.Campbell, S. & Butler, V. Archaeological evidence for resilience of Pacific Northwest salmon populations and the socioecological system over the last~7,500 years. Ecol. Soc. 15(1), 17 (2000).Article 

    Google Scholar 
    17.Thornton, T., Deur, D. & Kitka, H. Cultivation of salmon and other marine resources on the Northwest Coast of North America. Hum. Ecol. 43, 189–199 (2015).Article 

    Google Scholar 
    18.Thornton, T. The ideology and practice of Pacific Herring cultivation among the Tlingit and Haida. Hum. Ecol. 43, 213–223 (2015).Article 

    Google Scholar 
    19.Petersen, J. R. et al. Use of the traditional halibut hook of the Makah Tribe, the čibu⋅d, reduces bycatch in recreational halibut fisheries. PeerJ 8, e9288 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ritchie, M. & Angelbeck, B. “Coyote broke the dams”: Power, reciprocity, and conflict in fish weir narratives and implications for traditional and contemporary fisheries. Ethnohistory 67(2), 191–220 (2020).Article 

    Google Scholar 
    21.Royle, T. C. A. et al. An efficient and reliable DNA-based sex identification method for archaeological Pacific salmonid (Oncorhynchus spp.) remains. PLoS ONE 13(3), e0193212 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Royle, T. C. A. et al. Investigating the sex-selectivity of a Middle Ontario Iroquoian Atlantic salmon (Salmo salar) and lake trout (Salvelinus namaycush) fishery through ancient DNA analysis. J. Archaeol. Sci. Rep. 31, 102301 (2020).
    Google Scholar 
    23.George, G. National Energy Board Hearing Order OH-001-2014. Trans Mountain Pipeline ULC. Trans Mountain Expansion Project. Volume 6 (2014).24.Morin, J. Tsleil-Waututh Nation’s History, Culture and Aboriginal Interests in Eastern Burrard Inlet. Report on file, Gowlings, Lafleur, Henderson LLP, Vancouver (2015).25.Suttles, W. Central Coast Salish. In Handbook of North American Indians Volume 7: Northwest Coast (ed. Suttles, W.) 453–475 (Smithsonian Institution, 1990).26.Hancock, M. J. & Marshall, D.E. Catalogue of Salmon Streams and Spawning Escapements of Statistical Area 28 Howe Sound-Burrard Inlet. Canadian Data Report of Fisheries and Aquatic Sciences No. 557 (1986).27.Harris, G. The salmon and trout streams of Vancouver. Waters J. Vanc. Aquar. 3, 4–23 (1978).
    Google Scholar 
    28.Ricker, W. E. Effects of the Fishery and of Obstacles to Migration on the Abundance of Fraser River Sockeye Salmon (Oncorhynchus nerka). Canadian Technical Report of Fisheries and Aquatic Sciences No. 1522 (1987).29.Charlton, A. S. The Belcarra Park Site. (Department of Archaeology, Simon Fraser University, 1980).30.Lepofsky, D., Trost, D. & Morin, J. Coast Salish interaction: a view from the inlets. Can. J. Archaeol. 31, 190–223 (2007).
    Google Scholar 
    31.Morin, J., Lepofsky, D., Ritchie, M., Porcic, M. & Edinborough, K. Assessing continuity in the ancestral territory of the Tsleil-Waututh-Coast Salish, southwest British Columbia, Canada. J. Anthropol. Archaeol. 51, 77–87 (2018).Article 

    Google Scholar 
    32.Morin, J., Muir, B., Ritchie, M. & Sellers, I. Tsleil-Waututh and Simon Fraser University Archaeological Investigations at Port Moody (Reed Point, Shoreline Park, Old Orchard Park, Slaughterhouse Creek, Carraholly Point, and Barnet Beach). Permit 2014–344. Report on file, British Columbia Archaeology Branch, Victoria (2020).33.Harris, C. Voices of disaster: smallpox around the Strait of Georgia in 1782. Ethnohistory 41, 591–626 (1994).Article 

    Google Scholar 
    34.Chisholm, B. S. Reconstructions of Prehistoric Diet in British Columbia Using Stable-Carbon Isotopic Analysis. PhD dissertation. (Simon Fraser University, 1986).35.Hanson, D. K. Late Prehistoric Subsistence in the Strait of Georgia Region of the Northwest Coast. Master’s thesis. (Simon Fraser University, 1991).36.Trost, T. Forgotten Waters: A Zooarchaeological Analysis of the Cove Cliff Site (DhRr 18), Indian Arm, British Columbia. Master’s thesis. (Simon Fraser University, 2005).37.Pierson, N. Bridging Troubled Waters: Zooarchaeology and Marine Conservation on Burrard Inlet, Southwest British Columbia. Master’s thesis. (Simon Fraser University, 2011).38.Morin, J. et al. DNA-based species identification of ancient salmonid remains provides new insight into pre-contact Coast Salish salmon fisheries in Burrard Inlet, British Columbia, Canada. J. Archaeol. Sci. Rep. 37, 102956 (2021).
    Google Scholar 
    39.Sproat, G. June 15, 1877. Copy of minute of decision, Joint Indian Reserve Commission. Signed by Dominion Commissioner Alex Anderson, Provincial Commissioner Arch. McKinley and Joint Commissioner G.M. Sproat. Federal set of JIRC’s Minutes and plans, surveyor’s copy. Aboriginal and Northern Affairs Canada, BC Regional Office Specific Claims Branch, Resource Library, Vancouver. AAND Lands and Trusts registration #15215. Also LAC, RG10, Volume 3612, File 3756-23, Reel C10106 (1877).40.Mortimer, H. & George, D. You Call Me Chief: Impressions of the Life of Dan George (Doubleday, 1981).
    Google Scholar 
    41.Talbot, M. Old Legends and Customs of the British Columbia Coast Indians. s.n., New Westminster (1952).42.Thornton, M. Indian Lives and Legends (Mitchell Press, 1966).
    Google Scholar 
    43.MacDonald, C., Drake, D., Doerksen, J. & Cotton, M. Between Forest and Sea: Memories of Belcarra (Belcarra Historical Group, 1998).
    Google Scholar 
    44.Romanoff, S. Fraser Lillooet Fishing. In A Complex Culture of the British Columbia Plateau, Vancouver (ed. Hayden, B.) 222–265 (University of British Columbia Press, 1992).
    Google Scholar 
    45.Kennedy, D. & Bouchard, R. Sliammon Life, Sliammon Lands (Talonbooks, 1983).
    Google Scholar 
    46.Mathisen, O. A. The effect of altered sex ratios on the spawning of red salmon. In Studies of Alaska Red Salmon (ed. Koo, T.) 137–246 (University of Washington Press, 1962).
    Google Scholar 
    47.Reed, W. J. Sex-selective harvesting of Pacific salmon: a theoretically optimal solution. Ecol. Model. 14, 261–271 (1982).Article 

    Google Scholar 
    48.Salo, E. O. Life history of chum salmon (Oncorhynchus keta). In Pacific Salmon Life Histories (eds Margolis Groot, C. & Margolis, L.) 231–310 (UBC Press, 1991).
    Google Scholar 
    49.Jenness, D. The Faith of a Coast Salish Indian (British Columbia Provincial Museum, 1955).50.Richling, B. (ed.) The W̲SÁNEĆ and Their Neighbours: Diamond Jenness on the Coast Salish of Vancouver Island, 1935 (Rock’s Mills Press, 2016).51.Dale, C. & Natcher, D. C. What is old is new again: the reintroduction of Indigenous fishing technologies in British Columbia. Local Environ. 20(11), 1309–1321 (2015).Article 

    Google Scholar 
    52.Ritchie, M. P. & Springer, C. Harrison River Chum Fishery: The Ethnographic and Archaeological Perspective. Report on file, Sts′ailes, Agassiz (2010).53.Simeone, W. E. & Valentine, E. M. Ahtna Knowledge of Long-Term Changes in Salmon runs in the Upper Copper River Drainage, Alaska (Alaska Department of Fish and Game, Division of Subsistence, 2007).54.Langdon, S. J. Traditional Knowledge and Harvesting of Salmon by Huna and Hinyaa Tlingit. (U.S. Fish and Wildlife Service, Office of Subsistence Management, Fisheries Resource Monitoring Program, 2006).55.Ratner, N. C. et al. Local Knowledge, Customary Practices, and Harvest of Sockeye salmon from the Klawock and Sarkar Rivers, Prince of Wales Island, Alaska (Alaska Department of Fish and Game, Division of Subsistence, 2006)56.Curtis, E. The North American Indian: being a series of volumes picturing and describing the Indians of the United States, the Dominion of Canada, and Alaska, Vol. 13 (Plimpton Press, 1924).
    Google Scholar 
    57.Kennedy, D. & Bouchard, R. Stl’atl’imx fishing. In A Complex Culture of the British Columbia Plateau (ed. Hayden, B.) 266–354 (UBC Press, 1992).
    Google Scholar 
    58.Yang, D. Y. & Watt, K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J. Archaeol. Sci. 32(3), 331–336 (2005).Article 

    Google Scholar 
    59.Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    60.Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105(4), 539–543 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Yang, D. Y., Liu, L., Chen, X. & Speller, C. F. Wild or domesticated: DNA analysis of ancient water buffalo remains from North China. J. Archaeol. Sci. 35(10), 2778–2785 (2008).Article 

    Google Scholar 
    62.Bertho, S. et al. The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Proc. Natl. Acad. Sci. U.S.A. 115(50), 12781–12786 (2008).Article 
    CAS 

    Google Scholar 
    63.Yano, A. et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 22(15), 1423–1428 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Yano, A. et al. The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol. Appl. 6(3), 486–496 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Yang, D., Cannon, A. & Sanders, S. R. DNA species identification of archaeological salmon bone from the Pacific Northwest Coast of North America. J. Archaeol. Sci. 31, 619–631 (2004).Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).67.Kim, K. et al. A real-time PCR-based amelogenin Y allele dropout assessment model in gender typing of degraded DNA samples. Int. J. Legal Med. 127, 55–61 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Sinding, M. et al. Sex determination of baleen whale artefacts: Implications for ancient DNA use in zooarchaeology. J. Archaeol. Sci. Rep. 10, 345–349 (2016).
    Google Scholar 
    69.Cooper, A. & Poinar, H. Ancient DNA: do it right or not at all. Science 289(5482), 1139 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.McKechnie, I. Investigating the complexities of sustainable fishing at a prehistoric village on western Vancouver Island, British Columbia, Canada. J. Nat. Conserv. 15(3), 208–222 (2007).Article 

    Google Scholar 
    71.Cannon, A., Yang, D. Y. & Speller, C. Site-specific salmon fisheries on the central coast of British Columbia. In The Archaeology of North Pacific Fisheries (eds Moss, M. & Cannon, A.) 57–74 (University of Alaska Press, 2011).
    Google Scholar 
    72.McKechnie, I. & Moss, M. Meta-analysis in zooarchaeology expands perspectives on Indigenous fisheries of the Northwest Coast of North America. J. Archaeol. Sci. Rep. 8, 470–485 (2016).
    Google Scholar 
    73.Orchard, T. J. & Szpak, P. Zooarchaeological and isotopic insights into locally variable economic patterns: a case study from late Holocene southern Haida Gwaii, British Columbia. BC Stud. 187, 107–147 (2015).
    Google Scholar 
    74.Rodrigues, A. T., McKechnie, I. & Yang, D. Y. Ancient DNA analysis of indigenous rockfish use on the Pacific Coast: implications for marine conservation areas and fisheries management. PLoS ONE 13(2), e0192716 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.McGregor, D. Coming full circle: Indigenous knowledge, environment, and our future. Am. Indian Q. 28(3), 385–410 (2004).Article 

    Google Scholar 
    76.Suttles, W. Economic Life of the Coast Salish of Hario and Rosario Straits. PhD Dissertation. (University of Washington, 1951).77.Caldwell, M. E. Northern Coast Salish Marine Resource Management. PhD dissertation. (University of Alberta, 2015).78.Deur, D. Tending the garden, making the soil: Northwest Coast estuarine gardens as engineered environments. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America (eds Deur, D. & Turner, N.) (UBC Press, 2005).
    Google Scholar 
    79.Hoffmann, T. et al. Engineered feature used to enhance gardening at a 3800-year-old site on the Pacific Northwest coast. Sci. Adv. 2(12), e1601282 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    80.Lepofsky, D. et al. Documenting pre-contact plant management on the Northwest Coast: an example of prescribed burning in the Central and Upper Fraser Valley, British Columbia. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America (eds Deur, D. & Turner, N.) 218–239 (UBC Press, 2005).
    Google Scholar 
    81.Turner, N. J., Deur, D. & Lepofsky, D. Plant management systems of British Columbia’s First Peoples. BC Stud. 179, 107–133 (2013).
    Google Scholar 
    82.Turner, N. J., Smith, R. & Jones, J. A fine line between two nations: ownership patterns for plant resources among Northwest Coast indigenous peoples. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America (eds Deur, D. & Turner, N. J.) 151–180 (UBC Press, 2005).
    Google Scholar 
    83.Turner, N. J. & Peacock, S. Solving the perennial paradox: ethnobotanical evidence for plant resource management on the Northwest Coast. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America (eds Deur, D. & Turner, N. J.) 101–151 (UBC Press, 2005).
    Google Scholar 
    84.Limburg, K. E., Walther, Y., Hong, B., Olson, C. & Stora, J. Prehistoric versus modern Baltic Sea cod fisheries: selectivity across the millennia. Proc. R. Soc. B 275, 2659–2665 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Sanchez, G. Indigenous stewardship of marine and estuarine fisheries? Reconstructing the ancient size of Pacific herring through linear regression models. J. Archaeol. Sci. Rep. 29, 102061 (2020).
    Google Scholar 
    86.Slaney, T. L., Hyatt, K. D., Northcote, T. G. & Fielden, R. J. Status of anadromous salmon and trout in British Columbia and Yukon. Fisheries 21(10), 20–35 (1996).Article 

    Google Scholar 
    87.Kope, R. & Wainwright, T. Trends in the status of Pacific salmon populations in Washington, Oregon, California, and Idaho. N. Pac. Anadr. Fish Comm. Bull. 1, 1–12 (1998).
    Google Scholar 
    88.Gustafson, R. G. et al. Pacific salmon extinctions: Quantifying lost and remaining diversity. Conserv. Biol. 21(4), 1009–1020 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Price, M. H., English, K. K., Rosenberger, A. G., MacDuffee, M. & Reynolds, J. D. Canada’s wild salmon policy: an assessment of conservation progress in British Columbia. Can. J. Fish. Aquat. Sci. 74(10), 1507–1518 (2017).Article 

    Google Scholar 
    90.Gayeski, N. J. et al. The failure of wild salmon management: need for a place-based conceptual foundation. Fisheries 43(7), 303–309 (2018).Article 

    Google Scholar 
    91.Morales, Q. E., Lepofsky, D. & Berkes, F. Ethnobiology and fisheries: Learning from the past for the present. J. Ethnobiol. 37(3), 369–379 (2017).Article 

    Google Scholar 
    92.Reid, A. J. et al. Two-eyed seeing: an Indigenous framework to transform fisheries research and management. Fish Fish. 00, 1–19 (2020).
    Google Scholar 
    93.Atlas, W. I. et al. Indigenous systems of management for culturally and ecologically resilient Pacific salmon (Oncorhynchus spp.) fisheries. Bioscience 71(2), 1–19 (2021).Article 

    Google Scholar  More

  • in

    Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community

    1.Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33:206–24.CAS 
    PubMed 

    Google Scholar 
    3.Rumbaugh KP, Sauer K. Biofilm dispersion. Nat Rev Microbiol. 2020;18:571–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.CAS 
    PubMed 

    Google Scholar 
    5.Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416:740–3.CAS 
    PubMed 

    Google Scholar 
    6.de Carvalho CCCR. Marine biofilms: a successful microbial strategy with economic implications. Front Mar Sci. 2018;5:126.7.McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012;10:39–50.CAS 

    Google Scholar 
    8.Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA. 2008;105:19052–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Yan J, Monaco H, Xavier JB. The ultimate guide to bacterial swarming: an experimental model to study the evolution of cooperative behavior. Annu Rev Microbiol. 2019;73:293–312.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Gokhale S, Conwill A, Ranjan T, Gore J. Migration alters oscillatory dynamics and promotes survival in connected bacterial populations. Nat Commun. 2018;9:5273.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Hallatschek O, Fisher DS. Acceleration of evolutionary spread by long-range dispersal. Proc Natl Acad Sci USA. 2014;111:E4911–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Birzu G, Hallatschek O, Korolev KS. Fluctuations uncover a distinct class of traveling waves. Proc Natl Acad Sci USA. 2018;115:E3645–54.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Ping D, Wang T, Fraebel DT, Maslov S, Sneppen K, Kuehn S. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME J. 2020;14:2007–18.PubMed 
    PubMed Central 

    Google Scholar 
    14.Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, et al. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol. 2014;10:e1003979.PubMed 
    PubMed Central 

    Google Scholar 
    15.Patra P, Kissoon K, Cornejo I, Kaplan HB, Igoshin OA. Colony expansion of socially motile Myxococcus xanthus cells is driven by growth, motility, and exopolysaccharide production. PLoS Comput Biol. 2016;12:e1005010.PubMed 
    PubMed Central 

    Google Scholar 
    16.Chapman BB, Brönmark C, Nilsson J-Å, Hansson L-A. The ecology and evolution of partial migration. Oikos. 2011;120:1764–75.
    Google Scholar 
    17.Lundberg P. Partial bird migration and evolutionarily stable strategies. J Theor Biol. 1987;125:351–60.
    Google Scholar 
    18.Kokko H. Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos. 2011;120:1826–37.
    Google Scholar 
    19.Singh NJ, Leonardsson K. Partial migration and transient coexistence of migrants and residents in animal populations. PloS One. 2014;9:e94750.PubMed 
    PubMed Central 

    Google Scholar 
    20.Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol. 2012;10:743.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015;3. https://doi.org/10.1128/microbiolspec.UTI-0017-2013.22.Jones BV, Young R, Mahenthiralingam E, Stickler DJ. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun. 2004;72:3941–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Li X, Zhao H, Lockatell CV, Drachenberg CB, Johnson DE, Mobley HL. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun. 2002;70:389–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pr Urol. 2008;5:598–608.CAS 

    Google Scholar 
    25.Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008;21:26–59.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol. 2003;57:249–73.CAS 
    PubMed 

    Google Scholar 
    27.Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 2008;16:496–506.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Wu Y, Jiang Y, Kaiser AD, Alber M. Self-organization in bacterial swarming: lessons from myxobacteria. Phys Biol. 2011;8:055003.PubMed 

    Google Scholar 
    30.Howery KE, Şimşek E, Kim M, Rather PN. Positive autoregulation of the flhDC operon in Proteus mirabilis. Res Microbiol. 2018;169:199–204.CAS 
    PubMed 

    Google Scholar 
    31.Little K, Austerman J, Zheng J, Gibbs KA. Cell shape and population migration are distinct steps of Proteus mirabilis swarming that are decoupled on high-percentage agar. J Bacteriol. 2019;201:e00726–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Furness RB, Fraser GM, Hay NA, Hughes C. Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol. 1997;179:5585–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Claret L, Hughes C. Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. J Mol Biol. 2000;303:467–78.CAS 
    PubMed 

    Google Scholar 
    34.Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–9.CAS 

    Google Scholar 
    35.Andac T, Weigmann P, Velu SKP, Pinçe E, Volpe G, Volpe G, et al. Active matter alters the growth dynamics of coffee rings. Soft Matter. 2019;15:1488–96.CAS 
    PubMed 

    Google Scholar 
    36.Nellimoottil TT, Rao PN, Ghosh SS, Chattopadhyay A. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria. Langmuir. 2007;23:8655–8.CAS 
    PubMed 

    Google Scholar 
    37.Clemmer KM, Rather PN. Regulation of flhDC expression in Proteus mirabilis. Res Microbiol. 2007;158:295–302.CAS 
    PubMed 

    Google Scholar 
    38.Howery KE, Clemmer KM, Rather PN. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genet. 2016;62:775–89.CAS 
    PubMed 

    Google Scholar 
    39.Howery KE, Clemmer KM, Şimşek E, Kim M, Rather PN. Regulation of the min cell division inhibition complex by the Rcs phosphorelay in Proteus mirabilis. J Bacteriol. 2015;197:2499–507.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Wang Q, Zhao Y, McClelland M, Harshey RM. The RcsCDB signaling system and swarming motility in Salmonella enterica Serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol. 2007;189:8447–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Samanta P, Clark ER, Knutson K, Horne SM, Prüß BM. OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli biofilm. BMC Microbiol. 2013;13:182.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Girgis HS, Liu Y, Ryu WS, Tavazoie S. A comprehensive genetic characterization of bacterial motility. PLoS Genet. 2007;3:e154.PubMed Central 

    Google Scholar 
    43.Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanié-Cornet MP, et al. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol. 2003;49:823–32.CAS 
    PubMed 

    Google Scholar 
    44.Rieck VT, Palumbo SA, Witter LD. Glucose availability and the growth rate of colonies of Pseudomonas fluorescens. J Gen Microbiol. 1973;74:1–8.CAS 
    PubMed 

    Google Scholar 
    45.Shao X, Mugler A, Kim J, Jeong HJ, Levin BR, Nemenman I. Growth of bacteria in 3-d colonies. PLoS Comput Biol. 2017;13:e1005679.PubMed 
    PubMed Central 

    Google Scholar 
    46.Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. Elife. 2019;8:e41093.PubMed 
    PubMed Central 

    Google Scholar 
    47.Lavrentovich MO, Koschwanez JH, Nelson DR. Nutrient shielding in clusters of cells. Phys Rev E Stat Nonlin Soft Matter Phys. 2013;87:062703. -PubMed 
    PubMed Central 

    Google Scholar 
    48.Dal Co A, van Vliet S, Ackermann M. Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. Philos Trans R Soc Lond B Biol Sci. 2019;374:20190080.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Huang YH, Ferrières L, Clarke DJ. The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol. 2006;157:206–12.CAS 
    PubMed 

    Google Scholar 
    50.Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol. 2005;59:379–405.CAS 
    PubMed 

    Google Scholar 
    51.Fraebel DT, Mickalide H, Schnitkey D, Merritt J, Kuhlman TE, Kuehn S. Environment determines evolutionary trajectory in a constrained phenotypic space. Elife. 2017;6:e24669.PubMed 
    PubMed Central 

    Google Scholar 
    52.Yi X, Dean AM. Phenotypic plasticity as an adaptation to a functional trade-off. Elife. 2016;5:e19307.PubMed 
    PubMed Central 

    Google Scholar 
    53.van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD, Déziel É, et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 2013;4:697–708.PubMed 
    PubMed Central 

    Google Scholar 
    54.Auer GK, Oliver PM, Rajendram M, Lin T-Y, Yao Q, Jensen GJ, et al. Bacterial swarming reduces Proteus mirabilis and Vibrio parahaemolyticus cell stiffness and increases β-Lactam susceptibility. mBio. 2019;10:e00210–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Kaiser D. Bacterial swarming: a re-examination of cell-movement patterns. Curr Biol. 2007;17:R561–R70.CAS 
    PubMed 

    Google Scholar 
    56.Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol. 2007;189:950–7.CAS 
    PubMed 

    Google Scholar 
    57.Dong T, Joyce C, Schellhorn H. The role of RpoS in bacterial adaptation. In: El-Sharoud W, editor. Bacterial physiology. Heidelberg: Springer, Berlin; 2008. pp 313-37.58.Phaiboun A, Zhang Y, Park B, Kim M. Survival kinetics of starving bacteria is biphasic and density-dependent. PLoS Comput Biol. 2015;11:e1004198.PubMed 
    PubMed Central 

    Google Scholar 
    59.Majdalani N, Hernandez D, Gottesman S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol. 2002;46:813–26.CAS 
    PubMed 

    Google Scholar 
    60.Peterson CN, Carabetta VJ, Chowdhury T, Silhavy TJ. LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol. 2006;188:3175–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Lok T, Overdijk O, Piersma T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol Lett. 2015;11:20140944.PubMed 
    PubMed Central 

    Google Scholar 
    62.Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M, Mitropolsky M, et al. Costs of migratory decisions: a comparison across eight white stork populations. Sci Adv. 2016;2:e1500931.PubMed 
    PubMed Central 

    Google Scholar 
    63.Rankin MA, Burchsted JCA. The cost of migration in insects. Annu Rev Entomol. 1992;37:533–59.
    Google Scholar 
    64.Ni B, Colin R, Link H, Endres RG, Sourjik V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA. 2020;117:595–601.CAS 
    PubMed 

    Google Scholar 
    65.Amsler CD, Cho M, Matsumura P. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol. 1993;175:6238–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Yokota T, Gots JS. Requirement of adenosine 3’, 5’-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1970;103:513–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, et al. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol. 1999;181:7500–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Silverman M, Simon M. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol. 1974;120:1196–203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. Bioessays. 2008;30:542–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135:216–26.71.Ferrières L, Clarke DJ. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol. 2003;50:1665–82.PubMed 

    Google Scholar 
    72.Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37:849–71.CAS 

    Google Scholar  More

  • in

    Drivers and impacts of changes in China’s drylands

    1.Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).Article 

    Google Scholar 
    2.Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 0003 (2017).Article 

    Google Scholar 
    3.Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).Article 

    Google Scholar 
    4.Bestelmeyer, B. T. et al. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 13, 28–36 (2015).Article 

    Google Scholar 
    5.Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897 (2018).Article 

    Google Scholar 
    6.Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).Article 

    Google Scholar 
    7.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    8.Middleton, N. & Sternberg, T. Climate hazards in drylands: a review. Earth Sci. Rev. 126, 48–57 (2013).Article 

    Google Scholar 
    9.Park, C.-E. et al. Keeping global warming within 1.5 C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).Article 

    Google Scholar 
    10.Pra˘va˘lie, R., Bandoc, G., Patriche, C. & Sternberg, T. Recent changes in global drylands: evidences from two major aridity databases. Catena 178, 209–231 (2019).Article 

    Google Scholar 
    11.Huang, J. et al. Declines in global ecological security under climate change. Ecol. Indic. 117, 106651 (2020).Article 

    Google Scholar 
    12.Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).Article 

    Google Scholar 
    13.He, B., Wang, S., Guo, L. & Wu, X. Aridity change and its correlation with greening over drylands. Agric. For. Meteorol. 278, 107663 (2019).Article 

    Google Scholar 
    14.Zhang, C., Yang, Y., Yang, D. & Wu, X. Multidimensional assessment of global dryland changes under future warming in climate projections. J. Hydrol. 592, 125618 (2020).Article 

    Google Scholar 
    15.Pra˘va˘lie, R. Exploring the multiple land degradation pathways across the planet. Earth Sci. Rev. 220, 103689 (2021).Article 

    Google Scholar 
    16.Balvanera, P. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).Article 

    Google Scholar 
    17.UNCCD. United Nations Convention to Combat Desertification — Global Land Outlook (UNCCD, 2017).18.Pra˘va˘lie, R. Drylands extent and environmental issues. A global approach. Earth Sci. Rev. 161, 259–278 (2016).Article 

    Google Scholar 
    19.Yang, X. et al. Quaternary environmental changes in the drylands of China — a critical review. Quat. Sci. Rev. 30, 3219–3233 (2011).Article 

    Google Scholar 
    20.Chen, X., Hu, R., Jiang, F., Wang, Y. & Zhang, J. Physical Geography in China’s Drylands (Science, 2015).21.Ci, L. & Yang, X. Desertification and its Control in China (Springer, 2010).22.Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).Article 

    Google Scholar 
    23.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).Article 

    Google Scholar 
    24.Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).Article 

    Google Scholar 
    25.D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2006).26.Brauman, K. A., Daily, G. C., Duarte, T. K. E. & Mooney, H. A. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 32, 67–98 (2007).Article 

    Google Scholar 
    27.Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88, 188–206 (2008).Article 

    Google Scholar 
    28.Stringer, L. C. et al. Climate change impacts on water security in global drylands. One Earth 4, 851–864 (2021).Article 

    Google Scholar 
    29.Qi, J., Chen, J., Wan, S. & Ai, L. Understanding the coupled natural and human systems in dryland East Asia. Environ. Res. Lett. 7, 015202 (2012).Article 

    Google Scholar 
    30.Chi, W., Zhao, Y., Kuang, W. & He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total Environ. 668, 204–215 (2019).Article 

    Google Scholar 
    31.Shi, P., Yan, P., Yuan, Y. & Nearing, M. A. Wind erosion research in China: past, present and future. Prog. Phys. Geogr. 28, 366–386 (2004).Article 

    Google Scholar 
    32.Cheng, L. et al. Estimation of the costs of desertification in China: a critical review. Land. Degrad. Dev. 29, 975–983 (2018).Article 

    Google Scholar 
    33.Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193 (2018).Article 

    Google Scholar 
    34.Scott, R. L., Jenerette, G. D., Potts, D. L. & Huxman, T. E. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophys. Res. Biogeosci. 114, G4 (2009).Article 

    Google Scholar 
    35.Scott, R. L. et al. When vegetation change alters ecosystem water availability. Glob. Change Biol. 20, 2198–2210 (2014).Article 

    Google Scholar 
    36.Zhang, L. et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).Article 

    Google Scholar 
    37.Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).Article 

    Google Scholar 
    38.Arndt, S. K. et al. Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater. J. Arid. Environ. 59, 259–270 (2004).Article 

    Google Scholar 
    39.Deng, L., Shangguan, Z.-P., Wu, G.-L. & Chang, X.-F. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 173, 84–95 (2017).Article 

    Google Scholar 
    40.Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).Article 

    Google Scholar 
    41.Fu, C., Jiang, Z., Guan, Z., He, J. & Xu, Z. F. Regional Climate Studies of China (Springer Science & Business Media, 2008).42.Zhao, J., Zhang, Q., Zhu, X., Shen, Z. & Yu, H. Drought risk assessment in China: evaluation framework and influencing factors. Geogr. Sustain. 1, 220–228 (2020).
    Google Scholar 
    43.Huang, J., Xie, Y., Guan, X., Li, D. & Ji, F. The dynamics of the warming hiatus over the northern hemisphere. Clim. Dyn. 48, 429–446 (2017).Article 

    Google Scholar 
    44.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).Article 

    Google Scholar 
    45.Liu, M., Shen, Y., Qi, Y., Wang, Y. & Geng, X. Changes in precipitation and drought extremes over the past half century in China. Atmosphere 10, 203 (2019).Article 

    Google Scholar 
    46.Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    47.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 1–12 (2018).Article 

    Google Scholar 
    48.Li, Y., Huang, J., Ji, M. & Ran, J. Dryland expansion in northern China from 1948 to 2008. Adv. Atmos. Sci. 32, 870–876 (2015).Article 

    Google Scholar 
    49.Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).Article 

    Google Scholar 
    50.Posner, S. M., McKenzie, E. & Ricketts, T. H. Policy impacts of ecosystem services knowledge. Proc. Natl Acad. Sci. USA 113, 1760–1765 (2016).Article 

    Google Scholar 
    51.Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).Article 

    Google Scholar 
    52.Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).Article 

    Google Scholar 
    53.Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 1826–1831 (2008).Article 

    Google Scholar 
    54.Liu, J., Li, S., Ouyang, Z., Tam, C. & Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl Acad. Sci. USA 105, 9477–9482 (2008).Article 

    Google Scholar 
    55.Wang, X., Zhang, C., Hasi, E. & Dong, Z. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid. Environ. 74, 13–22 (2010).Article 

    Google Scholar 
    56.Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).Article 

    Google Scholar 
    57.Chen, L., Wei, W., Fu, B. & Lü, Y. Soil and water conservation on the Loess Plateau in China: review and perspective. Prog. Phys. Geogr. 31, 389–403 (2007).Article 

    Google Scholar 
    58.Lü, Y. et al. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 7, e31782 (2012).Article 

    Google Scholar 
    59.McVicar, T. R. et al. Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China’s re-vegetation program in the Loess Plateau: matching model complexity to data availability. For. Ecol. Manag. 259, 1277–1290 (2010).Article 

    Google Scholar 
    60.Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).Article 

    Google Scholar 
    61.Xiao, J. et al. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecol. Evol. 9, 13596–13607 (2019).Article 

    Google Scholar 
    62.Zastrow, M. China’s tree-planting drive could falter in a warming world. Nature 573, 474–476 (2019).Article 

    Google Scholar 
    63.Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).Article 

    Google Scholar 
    64.Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).Article 

    Google Scholar 
    65.Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187 (2016).Article 

    Google Scholar 
    66.Yue, Y. et al. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China. Proc. Natl Acad. Sci. USA 113, 6617–6622 (2016).Article 

    Google Scholar 
    67.Peng, S. et al. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature 501, 88–92 (2013).Article 

    Google Scholar 
    68.Cao, S. et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth Sci. Rev. 104, 240–245 (2011).Article 

    Google Scholar 
    69.Wang, G., Innes, J. L., Lei, J., Dai, S. & Wu, S. China’s forestry reforms. Science 318, 1556 (2007).Article 

    Google Scholar 
    70.Li, M. M. et al. An overview of the “Three-North” Shelterbelt project in China. Forestry Stud. China 14, 70–79 (2012).Article 

    Google Scholar 
    71.Wang, Y., Shao, M. A., Zhu, Y. & Liu, Z. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 151, 437–448 (2011).Article 

    Google Scholar 
    72.Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).Article 

    Google Scholar 
    73.Zhao, G., Mu, X., Wen, Z., Wang, F. & Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 24, 499–510 (2013).Article 

    Google Scholar 
    74.Fu, B. et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 8, 284–293 (2011).Article 

    Google Scholar 
    75.Huang, L. & Shao, M. Advances and perspectives on soil water research in China’s Loess Plateau. Earth Sci. Rev. 199, 102962 (2019).Article 

    Google Scholar 
    76.Wang, L. & D’Odorico, P. Water limitations to large-scale desert agroforestry projects for carbon sequestration. Proc. Natl Acad. Sci. USA 116, 24925–24926 (2019).Article 

    Google Scholar 
    77.Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431, 181–184 (2004).Article 

    Google Scholar 
    78.Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).Article 

    Google Scholar 
    79.Zhenghu, D., Honglang, X., Xinrong, L., Zhibao, D. & Gang, W. Evolution of soil properties on stabilized sands in the Tengger Desert, China. Geomorphology 59, 237–246 (2004).Article 

    Google Scholar 
    80.Wang, Y., Shao, M. A. & Shao, H. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 381, 9–17 (2010).Article 

    Google Scholar 
    81.Huang, J., Wang, T., Wang, W., Li, Z. & Yan, H. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos. 119, 11–398 (2014).Article 

    Google Scholar 
    82.Cheng, S., Guan, X., Huang, J., Ji, F. & Guo, R. Long-term trend and variability of soil moisture over East Asia. J. Geophys. Res. Atmos. 120, 8658–8670 (2015).Article 

    Google Scholar 
    83.Wang, S., Fu, B., Chen, H. & Liu, Y. Regional development boundary of China’s Loess Plateau: water limit and land shortage. Land Use Policy 74, 130–136 (2018).Article 

    Google Scholar 
    84.Zhang, S. et al. Excessive afforestation and soil drying on China’s Loess Plateau. J. Geophys. Res. Biogeosci. 123, 923–935 (2018).Article 

    Google Scholar 
    85.Jia, X., Shao, M., Yu, D., Zhang, Y. & Binley, A. Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China. Agric. Ecosyst. Environ. 273, 25–35 (2019).Article 

    Google Scholar 
    86.Piao, S., Fang, J., Liu, H. & Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 32, L06402 (2005).Article 

    Google Scholar 
    87.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Envir. 1, 14–27 (2020).Article 

    Google Scholar 
    88.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).Article 

    Google Scholar 
    89.D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).Article 

    Google Scholar 
    90.Xue, Y. in Dryland Ecohydrology 139–169 (Springer, 2019).91.Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).Article 

    Google Scholar 
    92.Li, S. G. et al. Micrometeorological changes following establishment of artificially established artemisia vegetation on desertified sandy land in the Horqin sandy land, China and their implication on regional environmental change. J. Arid. Environ. 52, 101–119 (2002).Article 

    Google Scholar 
    93.Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).Article 

    Google Scholar 
    94.Xue, Y. The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J. Clim. 9, 2173–2189 (1996).Article 

    Google Scholar 
    95.Chen, L., Ma, Z. & Zhao, T. Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China. Clim. Change 144, 461–473 (2017).Article 

    Google Scholar 
    96.Peng, D. et al. The influences of drought and land-cover conversion on inter-annual variation of NPP in the Three-North Shelterbelt Program zone of China based on MODIS data. PLoS ONE 11, e0158173 (2016).Article 

    Google Scholar 
    97.Wang, F., Pan, X., Wang, D., Shen, C. & Lu, Q. Combating desertification in China: past, present and future. Land Use Policy 31, 311–313 (2013).Article 

    Google Scholar 
    98.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    99.Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).Article 

    Google Scholar 
    100.Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).Article 

    Google Scholar 
    101.Deng, L., Liu, G. & Shangguan, Z. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Glob. Change Biol. 20, 3544–3556 (2014).Article 

    Google Scholar 
    102.Zhao, Y., Wu, J., He, C. & Ding, G. Linking wind erosion to ecosystem services in drylands: a landscape ecological approach. Landsc. Ecol. 32, 2399–2417 (2017).Article 

    Google Scholar 
    103.Gao, Y., Dang, P., Zhao, Q., Liu, J. & Liu, J. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, northwest China. Land Degrad. Dev. 29, 1031–1040 (2018).Article 

    Google Scholar 
    104.Xu, J., Chen, J., Liu, Y. & Fan, F. Identification of the geographical factors influencing the relationships between ecosystem services in the Belt and Road region from 2010 to 2030. J. Clean. Prod. 275, 124153 (2020).Article 

    Google Scholar 
    105.Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).Article 

    Google Scholar 
    106.Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).Article 

    Google Scholar 
    107.Xu, J. China’s new forests aren’t as green as they seem. Nature 477, 371–371 (2011).Article 

    Google Scholar 
    108.Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 1–11 (2016).
    Google Scholar 
    109.Kong, Z.-H., Stringer, L. C., Paavola, J. & Lu, Q. Situating China in the global effort to combat desertification. Land 10, 702 (2021).Article 

    Google Scholar 
    110.Cao, S. et al. Greening China naturally. Ambio 40, 828–831 (2011).Article 

    Google Scholar 
    111.Chen, H., Shao, M. & Li, Y. Soil desiccation in the Loess Plateau of China. Geoderma 143, 91–100 (2008).Article 

    Google Scholar 
    112.Chu, X., Zhan, J., Li, Z., Zhang, F. & Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 215, 382–389 (2019).Article 

    Google Scholar 
    113.Yang, H., Huang, Q., Zhang, J., Songer, M. & Liu, J. Range-wide assessment of the impact of China’s nature reserves on giant panda habitat quality. Sci. Total. Environ. 769, 145081 (2021).Article 

    Google Scholar 
    114.Feng, C. et al. Which management measures lead to better performance of China’s protected areas in reducing forest loss? Sci. Total Environ. 764, 142895 (2021).Article 

    Google Scholar 
    115.Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 

    Google Scholar 
    116.Luedeling, E. et al. Forest restoration: overlooked constraints. Science 366, 315–315 (2019).Article 

    Google Scholar 
    117.Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001 (2019).Article 

    Google Scholar 
    118.Morton, S. et al. A fresh framework for the ecology of arid Australia. J. Arid. Environ. 75, 313–329 (2011).Article 

    Google Scholar 
    119.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).Article 

    Google Scholar 
    120.Kotiaho, J. S. & Halme, P. The IPBES Assessment Report on Land Degradation and Restoration (Univ. of Jyväskylä, 2018).121.Bhattachan, A., D’Odorico, P., Dintwe, K., Okin, G. S. & Collins, S. L. Resilience and recovery potential of duneland vegetation in the southern Kalahari. Ecosphere 5, 1–14 (2014).Article 

    Google Scholar 
    122.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).Article 

    Google Scholar 
    123.Yu, G. et al. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. J. Geogr. Sci. 26, 803–826 (2016).Article 

    Google Scholar 
    124.Fu, B. et al. Chinese ecosystem research network: progress and perspectives. Ecol. Complex. 7, 225–233 (2010).Article 

    Google Scholar 
    125.Wang, C. et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 5, 4799 (2014).Article 

    Google Scholar 
    126.Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).Article 

    Google Scholar 
    127.Assessment, M. E. Ecosystems and Human Well-Being Vol. 5 (Island, 2005).128.Zhu, Q., Castellano, M. J. & Yang, G. Coupling soil water processes and the nitrogen cycle across spatial scales: potentials, bottlenecks and solutions. Earth Sci. Rev. 187, 248–258 (2018).Article 

    Google Scholar 
    129.Fu, B. Promoting geography for sustainability. Geogr. Sustain. 1, 1–7 (2020).
    Google Scholar 
    130.Fu, B. et al. The research priorities of resources and environmental sciences. Geogr. Sustain. 2, 87–94 (2021).
    Google Scholar 
    131.Li, C., Zhang, C., Luo, G. & Chen, X. Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007 — the spatiotemporal patterns and climate controls. Ecol. Model. 267, 148–157 (2013).Article 

    Google Scholar 
    132.Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).Article 

    Google Scholar 
    133.Zhang, Y., Zhao, R., Liu, Y., Huang, K. & Zhu, J. Sustainable wildlife protection on the Qingzang Plateau. Geogr. Sustain. 2, 40–47 (2021).
    Google Scholar 
    134.Wang, X., Chen, F. & Dong, Z. The relative role of climatic and human factors in desertification in semiarid China. Glob. Environ. Change 16, 48–57 (2006).Article 

    Google Scholar 
    135.An, S. et al. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena 75, 248–256 (2008).Article 

    Google Scholar 
    136.Huang, J. et al. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 31, 1380–1391 (2020).Article 

    Google Scholar 
    137.Sun, D. et al. The effects of land use change on soil infiltration capacity in China: a meta-analysis. Sci. Total Environ. 626, 1394–1401 (2018).Article 

    Google Scholar 
    138.Ren, C. et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. For. Ecol. Manag. 376, 59–66 (2016).Article 

    Google Scholar 
    139.Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).Article 

    Google Scholar 
    140.Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).Article 

    Google Scholar 
    141.Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).Article 

    Google Scholar  More

  • in

    Microbial diversity in extreme environments

    1.Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).CAS 
    PubMed 

    Google Scholar 
    2.Schmid, A. K., Allers, T. & DiRuggiero, J. Snapshot: microbial extremophiles. Cell 180, 818–818.e1 (2020).CAS 
    PubMed 

    Google Scholar 
    3.Denef, V. J., Mueller, R. S. & Banfield, J. F. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J. 4, 599–610 (2010).PubMed 

    Google Scholar 
    4.Inskeep, W. P. et al. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front. Microbiol. 4, 67 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Oren, A. Halophilic microbial communities and their environments. Curr. Opin. Microbiol. 33, 119–124 (2015).CAS 

    Google Scholar 
    6.Reysenbach, A. L., Wickham, G. S. & Pace, N. R. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol. 60, 2113–2119 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Bond, P. L., Smriga, S. P. & Banfield, J. F. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66, 3842–3849 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Huber, J. A. et al. Microbial population structures in the deep marine biosphere. Science 318, 97–100 (2007).CAS 
    PubMed 

    Google Scholar 
    9.Kuang, J. L. et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7, 1038–1050 (2013).CAS 
    PubMed 

    Google Scholar 
    10.Power, J. F. et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat. Commun. 9, 2876 (2018). Extensive sampling and high-throughput 16S rRNA gene sequencing have provided deeper insights into the patterns and ecological drivers of microbial communities inhabiting geothermal springs.PubMed 
    PubMed Central 

    Google Scholar 
    11.Podell, S. et al. Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community. ISME J. 8, 979–990 (2014).CAS 
    PubMed 

    Google Scholar 
    12.Chen, L. X. et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).PubMed 

    Google Scholar 
    13.Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).CAS 
    PubMed 

    Google Scholar 
    14.Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).CAS 
    PubMed 

    Google Scholar 
    15.Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015). The cultivation-independent reconstruction of the first complete genomes for members of the DPANN archaea allowed confident prediction of incomplete or absent pathways for these enigmatic organisms.CAS 
    PubMed 

    Google Scholar 
    16.Sharp, C. E. et al. Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J. 8, 1166–1174 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Hedlund, B. P. et al. Uncultivated thermophiles: current status and spotlight on ‘Aigarchaeota’. Curr. Opin. Microbiol. 25, 136–145 (2015).CAS 
    PubMed 

    Google Scholar 
    18.Hua, Z. S. et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J. 9, 1280–1294 (2015).CAS 
    PubMed 

    Google Scholar 
    19.Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004). This is the first shotgun metagenomic sequencing study that enabled reconstruction of near-complete microbial genomes directly (without cultivation) from a natural community.CAS 
    PubMed 

    Google Scholar 
    20.Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).CAS 
    PubMed 

    Google Scholar 
    21.Chen, L. X. et al. Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota. ISME J. 12, 756–775 (2018).CAS 
    PubMed 

    Google Scholar 
    22.Baker, B. J. et al. Enigmatic, ultrasmall, uncultivated Archaea. Proc. Natl Acad. Sci. USA 107, 8806–8811 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).CAS 
    PubMed 

    Google Scholar 
    24.Brock, T. D. Life at high temperatures. Science 158, 1012–1019 (1967).CAS 
    PubMed 

    Google Scholar 
    25.Cole, J. K. et al. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J. 7, 718–729 (2013).CAS 
    PubMed 

    Google Scholar 
    26.Colman, D. R. et al. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol. Ecol. 92, fiw137 (2016).PubMed 

    Google Scholar 
    27.Ward, D. M. et al. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65 (1990).CAS 
    PubMed 

    Google Scholar 
    28.Miller, S. R. et al. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl. Environ. Microbiol. 75, 4565–4572 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Ward, L. et al. Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring. ISME J. 11, 1158–1167 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl Acad. Sci. USA 91, 1609–1613 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Takai, K. & Yoshihiko, S. A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol. Ecol. 28, 177–188 (1999).CAS 

    Google Scholar 
    32.Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    34.Nunoura, T. et al. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ. Microbiol. 7, 1967–1984 (2005).CAS 
    PubMed 

    Google Scholar 
    35.Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).CAS 
    PubMed 

    Google Scholar 
    36.Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community. ISME J. 10, 210–224 (2016).CAS 
    PubMed 

    Google Scholar 
    37.Hua, Z. S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    38.Takami, H. et al. A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem. PLoS ONE 7, e30559 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Colman, D. R. et al. Novel, deep-branching heterotrophic bacterial populations recovered from thermal spring metagenomes. Front. Microbiol. 7, 304 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    40.Nobu, M. et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J. 10, 273–286 (2016).CAS 
    PubMed 

    Google Scholar 
    41.Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Orcutt, B. N., Sylvan, J. B., Knab, N. J. & Edwards, K. J. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75, 361–422 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Eloe-Fadrosh, E. A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat. Commun. 7, 10476 (2016). This is a good example of how analysis of the increasing wealth of metagenomic data collected from diverse environments may lead to the discovery of novel major lineages.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at Mid-Ocean Ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491 (2002).CAS 

    Google Scholar 
    45.Perner, M. et al. In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environ. Microbiol. 15, 1551–1560 (2013).CAS 
    PubMed 

    Google Scholar 
    46.Flores, G. E. et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ. Microbiol. 13, 2158–2171 (2011).CAS 
    PubMed 

    Google Scholar 
    47.Dick, G. J. et al. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. 17, 271–283 (2019).CAS 
    PubMed 

    Google Scholar 
    48.Campbell, B. J., Summers Engel, A., Porter, M. L. & Takai, K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4, 458–468 (2006).CAS 
    PubMed 

    Google Scholar 
    49.Reysenbach, A. L., Longnecker, K. & Kirshtein, J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 3798–3806 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Takai, K., Komatsu, T., Inagaki, F. & Horikoshi, K. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67, 3618–3629 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).CAS 
    PubMed 

    Google Scholar 
    52.Brazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. Methane- and sulfur-metabolizing microbial communities dominate the Lost City Hydrothermal Field ecosystem. Appl. Environ. Microbiol. 72, 6257–6270 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Reveillaud, J. et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ. Microbiol. 18, 1970–1987 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Brazelton, W. J. et al. Archaea and bacteria with surprising micro-diversity show shifts in dominance over 1000-year time scales in hydrothermal chimneys. Proc. Natl Acad. Sci. USA 107, 1612–1617 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).CAS 
    PubMed 

    Google Scholar 
    56.Waters, E. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA 100, 12984–12988 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Casanueva, A. et al. Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12, 651–656 (2008).CAS 
    PubMed 

    Google Scholar 
    58.Wurch, L. et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat. Commun. 7, 12115 (2016). This is an interesting study demonstrating that insights from genomic studies may help develop effective cultivation strategies for the isolation of novel microbial species.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015). The discovery and genomic characterization of Lokiarchaeota have unveiled insights into eukaryogenesis.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).CAS 
    PubMed 

    Google Scholar 
    62.Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525 (2020). This study reports the isolation of the first member of the superphylum Asgard, confirming the existence of these archaea and their close phylogenetic relatedness to eukaryotes.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Margesin, R. & Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl. Microbiol. Biotechnol. 103, 2537–2549 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).CAS 
    PubMed 

    Google Scholar 
    65.Hoham, R. W. & Duval, B. in Snow Ecology (eds Jones, H. et al.) 168–228 (Cambridge Univ. Press, 2001).66.Edwards, A. et al. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol. Ecol. 89, 222–237 (2014).CAS 
    PubMed 

    Google Scholar 
    67.Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4, 191–202 (2010).CAS 
    PubMed 

    Google Scholar 
    68.Franzetti, A. et al. Temporal variability of bacterial communities in cryoconite on an alpine glacier. Environ. Microbiol. Rep. 9, 71–78 (2017).CAS 
    PubMed 

    Google Scholar 
    69.Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R. & Sattler, B. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Chang. Biol. 15, 955–960 (2009).
    Google Scholar 
    70.Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).CAS 
    PubMed 

    Google Scholar 
    71.Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).CAS 
    PubMed 

    Google Scholar 
    72.Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).CAS 
    PubMed 

    Google Scholar 
    73.Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92, fiw018 (2016).PubMed 

    Google Scholar 
    74.Fernández, A. B. et al. Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol. Ecol. 88, 623–635 (2014).PubMed 

    Google Scholar 
    75.Ventosa, A. et al. Microbial diversity of hypersaline environments: a metagenomic approach. Curr. Opin. Microbiol. 25, 80–87 (2015).CAS 
    PubMed 

    Google Scholar 
    76.Emerson, J. B. et al. Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea 2013, 370871 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    77.Ley, R. E. et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Harris, J. K. et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50–60 (2013). This study retrieves an unprecedented number of nearly full length 16S rRNA gene sequences from the microbial mats of the Guerrero Negro hypersaline environment, Mexico, demonstrating them to be among the most diverse, complex and novel microbial ecosystems known.PubMed 

    Google Scholar 
    79.Vavourakis, C. D. et al. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front. Microbiol. 7, 211 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    80.Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA. 116, 14661–14670 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Nigro, L. M., Hyde, A. S., MacGregor, B. J. & Teske, A. Phylogeography, salinity adaptations and metabolic potential of the candidate division KB1 bacteria based on a partial single cell genome. Front. Microbiol. 7, 1266 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    82.Vavourakis, C. D. et al. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 6, 168 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    83.Edwards, K. J., Becker, K. & Colwell, F. The deep, dark energy biosphere: intraterrestrial life on Earth. Annu. Rev. Earth Planet. Sci. 40, 551–568 (2012).CAS 

    Google Scholar 
    84.Parkes, R. J. et al. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar. Geol. 352, 409–425 (2014).CAS 

    Google Scholar 
    85.Starnawski, P. et al. Microbial community assembly and evolution in subseafloor sediment. Proc. Natl Acad. Sci. USA 114, 2940–2945 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Ciobanu, M. C. et al. Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J. 8, 1370–1380 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    87.Inagaki, F. et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349, 420–424 (2015).CAS 
    PubMed 

    Google Scholar 
    88.D’Hondt, S., Pockalny, R., Fulfer, V. M. & Spivack, A. J. Subseafloor life and its biogeochemical impacts. Nat. Commun. 10, 3519 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    89.Petro, C., Starnawski, P., Schramm, A. & Kjeldsen, K. U. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).
    Google Scholar 
    90.Teske, A. & Sørensen, K. B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2, 3–18 (2008).CAS 
    PubMed 

    Google Scholar 
    91.Orsi, W. D. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol. 16, 671–683 (2018).CAS 
    PubMed 

    Google Scholar 
    92.Sørensen, K. B. & Teske, A. Stratified communities of active Archaea in deep marine subsurface sediments. Appl. Environ. Microbiol. 72, 4596–4603 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    93.Walsh, E. A. et al. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Appl. Environ. Microbiol. 82, 4994–4999 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Petro, C. et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front. Microbiol. 10, 758 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    95.Jorgensen, S. L. et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl Acad. Sci. USA 109, E2846–E2855 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Edwards, K. J., Wheat, C. G. & Sylvan, J. B. Under the sea: microbial life in volcanic oceanic crust. Nat. Rev. Microbiol. 9, 703–712 (2011).CAS 
    PubMed 

    Google Scholar 
    97.Li, J. et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 579, 250–255 (2020). This is a multiple-approach exploration to provide the first insights into the ultralow-biomass microbial assemblages inhabiting the lithified lower oceanic crust.CAS 
    PubMed 

    Google Scholar 
    98.Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Nyyssönen, M. et al. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J. 8, 126–138 (2014).PubMed 

    Google Scholar 
    100.Lin, X., Kennedy, D., Fredrickson, J., Bjornstad, B. & Konopka, A. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ. Microbiol. 14, 414–425 (2012).CAS 
    PubMed 

    Google Scholar 
    101.Osburn, M. R. et al. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA. Front. Microbiol. 5, 610 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    102.Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).CAS 

    Google Scholar 
    103.Navarro-Noya, Y. E. et al. Pyrosequencing analysis of the bacterial community in drinking water wells. Microb. Ecol. 66, 19–29 (2013).PubMed 

    Google Scholar 
    104.Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).CAS 
    PubMed 

    Google Scholar 
    105.Bagnoud, A. et al. Reconstructing a hydrogen driven microbial metabolic network in Opalinus Clay rock. Nat. Commun. 7, 12770 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Magnabosco, C. et al. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J. 10, 730–741 (2016).CAS 
    PubMed 

    Google Scholar 
    107.Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 1915–1929 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    109.Kantor, R. S. et al. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. mBio 4, e00708–e00713 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    110.Wrighton, K. C. et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 8, 1452–1463 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Hallberg, K. B., Coupland, K., Kimura, S. & Johnson, D. B. Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl. Environ. Microbiol. 72, 2022–2030 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Belnap, C. P. et al. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions. ISME J. 5, 1152–1161 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Edwards, K. J. et al. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol. 65, 3627–3632 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Liu, J. et al. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl. Environ. Microbiol. 80, 3677–3686 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    115.Golyshina, O. V. et al. ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ. Nat. Commun. 8, 60 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    116.Antony, C. P. et al. Microbiology of Lonar Lake and other soda lakes. ISME J. 7, 468–476 (2013).PubMed 

    Google Scholar 
    117.Sorokin, D. Y. et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18, 791–809 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).CAS 
    PubMed 

    Google Scholar 
    119.Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA. 112, 15684–15689 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    120.Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).CAS 
    PubMed 

    Google Scholar 
    121.Reinthaler, T. et al. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol. Oceanogr. 51, 1262–1273 (2006).CAS 

    Google Scholar 
    122.Hewson, I., Steele, J. A., Capone, D. G. & Fuhrman, J. A. Remarkable heterogeneity in meso- and bathypelagic bacterioplankton assemblage composition. Limnol. Oceanogr. 51, 1274–1283 (2006).
    Google Scholar 
    123.DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).CAS 
    PubMed 

    Google Scholar 
    124.Pham, V. D., Konstantinidis, K. T., Palden, T. & DeLong, E. F. Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ. Microbiol. 10, 2313–2330 (2008).CAS 
    PubMed 

    Google Scholar 
    125.Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).CAS 
    PubMed 

    Google Scholar 
    126.Ziegler, S. et al. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria. ISME J. 7, 1725–1737 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    127.Méndez-García, C. et al. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME J. 8, 1259–1274 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    128.Klatt, C. G. et al. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J. 7, 1775–1789 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    129.Klatt, C. G. et al. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments. Front. Microbiol. 4, 106 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    130.Inskeep, W. P. et al. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS ONE 5, e9773 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    131.Swingley, W. D. et al. Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem. PLoS ONE 7, e38108 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Liu, Z. et al. Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME J. 5, 1279–1290 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).CAS 
    PubMed 

    Google Scholar 
    134.Ghai, R. et al. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep. 1, 135 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    135.Uritskiy, G. et al. Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert. ISME J. 13, 2737–2749 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    136.Uritskiy, G. et al. Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. Environ. Microbiol. 23, 3401–3417 (2021).CAS 
    PubMed 

    Google Scholar 
    137.Herrmann, M. et al. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl. Environ. Microbiol. 81, 2384–2394 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    138.Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    139.Mueller, R. S. et al. Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 6, 374 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    140.Chen, L. X. et al. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ. Microbiol. 15, 2431–2444 (2013).CAS 
    PubMed 

    Google Scholar 
    141.Mueller, R. S. et al. Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environ. Microbiol. 13, 2279–2292 (2011).CAS 
    PubMed 

    Google Scholar 
    142.Mosier, A. C. et al. Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J. 9, 180–194 (2015).CAS 
    PubMed 

    Google Scholar 
    143.Papke, R. T., Koenig, J. E., Rodriguez-Valera, F. & Doolittle, W. F. Frequent recombination in a saltern population of Halorubrum. Science 306, 1928–1929 (2004).CAS 
    PubMed 

    Google Scholar 
    144.Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol. Biol. Evol. 22, 2354–2361 (2005).CAS 
    PubMed 

    Google Scholar 
    145.Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448 (2012).CAS 
    PubMed 

    Google Scholar 
    146.Reno, M. L., Held, N. L., Fields, C. J., Burke, P. V. & Whitaker, R. J. Biogeography of the Sulfolobus islandicus pan-genome. Proc. Natl Acad. Sci. USA 106, 8605–8610 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    147.Mongodin, E. F. et al. The genome of Salinibacter Ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147–18152 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    148.Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012). Comparative genomics provides evidence that massive amounts of gene influx from bacterial sources may have led to the drastic change in lifestyle in the extremely salt tolerant Haloarchaea.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    149.Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct 7, 46 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    150.Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2015).CAS 
    PubMed 

    Google Scholar 
    151.Simmons, S. L. et al. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol. 6, e177 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    152.Lo, I. et al. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446, 537–541 (2007).CAS 
    PubMed 

    Google Scholar 
    153.Denef, V. J. et al. Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environ. Microbiol. 11, 313–325 (2009).CAS 
    PubMed 

    Google Scholar 
    154.Denef, V. J. et al. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc. Natl Acad. Sci. USA 107, 2383–2390 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    155.Denef, V. J. & Banfield, J. F. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science 336, 462–466 (2012). This study provides a time-series population metagenomic analysis of microorganisms in exceptionally low diversity AMD biofilms, allowing for the first time measurement of evolutionary rates for wild populations.CAS 
    PubMed 

    Google Scholar 
    156.Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).CAS 
    PubMed 

    Google Scholar 
    157.Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. Biol. Sci. 278, 1009–1018 (2011).CAS 
    PubMed 

    Google Scholar 
    158.Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 17081 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    159.Baker, B. J. et al. Diversity, ecology and evolution of archaea. Nat. Microbiol. 5, 887–900 (2020).CAS 
    PubMed 

    Google Scholar 
    160.Paul, B. G. et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat. Commun. 6, 6585 (2015).CAS 
    PubMed 

    Google Scholar 
    161.Paul, B. G. et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2, 17045 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    162.Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).CAS 
    PubMed 

    Google Scholar 
    163.Anderson, R. E. et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat. Commun. 8, 1114 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    164.Brazelton, W. J. & Baross, J. A. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J. 3, 1420–1424 (2009).CAS 
    PubMed 

    Google Scholar 
    165.Jansson, J. K. & Taş, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).CAS 
    PubMed 

    Google Scholar 
    166.Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    167.Clark, D. R. et al. Biogeography at the limits of life: do extremophilic microbial communities show biogeographical regionalization? Glob. Ecol. Biogeogr. 26, 1435–1446 (2017).
    Google Scholar 
    168.Atanasova, N. S., Roine, E., Oren, A., Bamford, D. H. & Oksanen, H. M. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14, 426–440 (2012).CAS 
    PubMed 

    Google Scholar 
    169.Wilkins, D. et al. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol. Rev. 37, 303–335 (2013).CAS 
    PubMed 

    Google Scholar 
    170.Cavicchioli, R. Microbial ecology of Antarctic aquatic systems. Nat. Rev. Microbiol. 13, 691–706 (2015).CAS 
    PubMed 

    Google Scholar 
    171.López-Bueno, A. et al. High diversity of the viral community from an Antarctic lake. Science 326, 858–861 (2009).PubMed 

    Google Scholar 
    172.Aguirre de Cárcer, D., López-Bueno, A., Pearce, D. A. & Alcamí, A. Biodiversity and distribution of polar freshwater DNA viruses. Sci. Adv. 1, e1400127 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    173.Yau, S. et al. Virophage control of Antarctic algal host–virus dynamics. Proc. Natl Acad. Sci. USA 108, 6163–6168 (2011). This is the first study to reveal the important ecological roles of virophages and their regulation of host–virus interactions.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    174.Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020). Analysis of massive metagenomic datasets revealed clades of huge phages from diverse habitats, including extreme environments.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    175.Tschitschko, B. et al. Antarctic archaea-virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME J. 9, 2094–2107 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    176.Mosier, A. C. et al. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage. Front. Microbiol. 7, 238 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    177.Quemener, M. et al. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ. Microbiol. 22, 3950–3967 (2020).CAS 
    PubMed 

    Google Scholar 
    178.Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).CAS 
    PubMed 

    Google Scholar 
    179.Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    180.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 

    Google Scholar 
    181.Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    182.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    183.López-Pérez, M., Haro-Moreno, J. M., Coutinho, F. H., Martinez-Garcia, M. & Rodriguez-Valera, F. The evolutionary success of the marine bacterium SAR11 analyzed through a metagenomic perspective. mSystems 5, e00605-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    184.Altshuler, I., Goordial, J. & Whyte, L. G. in Psychrophiles: From Biodiversity to Biotechnology (ed. Margesin, R.) 153–180 (Springer International Publishing, 2017).185.Huang, L. N., Kuang, J. L. & Shu, W. S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol. 24, 581–593 (2016).CAS 
    PubMed 

    Google Scholar 
    186.Klatt, C. G. et al. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J. 5, 1262–1278 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    187.Menzel, P. et al. Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb. Ecol. 70, 411–424 (2015).PubMed 

    Google Scholar 
    188.Stokke, R. et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ. Microbiol. 17, 4063–4077 (2015).CAS 
    PubMed 

    Google Scholar 
    189.Zeng, Y. et al. Potential rhodopsin- and bacteriochlorophyll-based dual phototrophy in a High Arctic glacier. mBio 11, e02641–20 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    190.Simon, C., Wiezer, A., Strittmatter, A. W. & Daniel, R. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl. Environ. Microbiol. 75, 7519–7526 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    191.Lipson, D. A. et al. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLoS ONE 8, e64659 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    192.Podell, S. et al. Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS ONE 8, e61692 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    193.DeMaere, M. Z. et al. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc. Natl Acad. Sci. USA. 110, 16939–16944 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    194.Smith, A. R. et al. Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME J. 13, 1737–1749 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    195.Zhao, R. et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc. Natl Acad. Sci. USA. 117, 32617–32626 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    196.Luo, Z. H. et al. Diversity and genomic characterization of a novel Parvarchaeota family in acid mine drainage sediments. Front. Microbiol. 11, 612257 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    197.Lewin, A., Wentzel, A. & Valla, S. Metagenomics of microbial life in extreme temperature environments. Curr. Opin. Biotechnol. 24, 516–525 (2013).CAS 
    PubMed 

    Google Scholar 
    198.Schlesinger, M. J. Heat-shock proteins. J. Biol. Chem. 265, 12111–12114 (1990).CAS 
    PubMed 

    Google Scholar 
    199.D’Amico, S., Collins, T., Marx, J.-C., Feller, G. & Gerday, C. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385–389 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    200.Bakermans, C., Bergholz, P. W., Ayala-del-Río, H. & Tiedje, J. in Permafrost Soils (ed. Margesin, R.) 159–168 (Springer, 2009).201.Gunde-Cimerman, N., Plemenitaš, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375 (2018).CAS 
    PubMed 

    Google Scholar 
    202.Baker-Austin, C. & Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165–171 (2007).CAS 
    PubMed 

    Google Scholar 
    203.Dopson, M., Baker-Austin, C., Koppineedi, P. R. & Bond, P. L. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149, 1959–1970 (2003).CAS 
    PubMed 

    Google Scholar 
    204.Dopson, M., Ossandon, F. J., Lövgren, L. & Holmes, D. S. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms. Front. Microbiol. 5, 157 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    205.Allen, E. E. & Banfield, J. F. Community genomics in microbial ecology and evolution. Nat. Rev. Microbiol. 3, 489–498 (2005).CAS 
    PubMed 

    Google Scholar 
    206.Sakowski, E. et al. Current state of and future opportunities for prediction in microbiome research: report from the Mid-Atlantic Microbiome Meet-up in Baltimore on 9 January 2019. mSystems 4, e00392–19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    207.Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).PubMed 

    Google Scholar  More

  • in

    Water column structure influences long-distance latitudinal migration patterns and habitat use of bumphead sunfish Mola alexandrini in the Pacific Ocean

    1.Sims, D. W., Queiroz, N., Doyle, T. K., Houghton, J. D. R. & Hays, G. C. Satellite tracking of the world’s largest bony fish, the ocean sunfish (Mola mola L.) in the North East Atlantic. J. Exp. Mar. Biol. Ecol. 370, 127–133 (2009a)2.Sims, D. W., Queiroz, N., Humphries, N. E., Lima, F. P. & Hays, G. C. Long-term GPS tracking of ocean sunfish Mola mola offers a new direction in fish monitoring. PLoS ONE 4, e7351 (2009b).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Dewar, H. et al. Satellite tracking the world’s largest jelly predator, the ocean sunfish, Mola mola, in the Western Pacific. J. Exp. Mar. Biol. Ecol. 393, 32–42 (2010).Article 

    Google Scholar 
    4.Thys, T. M. et al. Ecology of the ocean sunfish, Mola mola, in the southern California current system. J. Exp. Mar. Biol. Ecol. 471, 64–76 (2015).Article 

    Google Scholar 
    5.Sousa, L. L., Queiroz, N., Mucientes, G., Humphries, N. E. & Sims, D. W. Environmental influence on the seasonal movements of satellite-tracked ocean sunfish Mola mola in the north-east Atlantic. Anim. Biotelemetry 4, 7 (2016a).Article 

    Google Scholar 
    6.Sousa, L. L. et al. Integrated monitoring of Mola mola behaviour in space and time. PLoS ONE 11, e0160404 (2016b).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Chang, C. T. et al. Horizontal and vertical movement patterns of sunfish off eastern Taiwan. Deep-Sea Res. Part II Top. Stud. Oceanogr. 175, 104683 (2020).8.Sawai, E., Yamanoue, Y., Yoshita, Y., Sakai, Y. & Hashimoto, H. Seasonal occurrence patterns of Mola sunfishes (Mola spp. A and B; Molidae) in waters off the Sanriku region, eastern Japan. Japan. J. Ichthyol. 58, 181–187 (2011).
    Google Scholar 
    9.Thys, T. M., Ryan, J. P., Weng, K. C., Erdmann, M. & Tresnati, J. Tracking a marine ecotourism star: Movements of the short ocean sunfish Mola ramsayi in Nusa Penida, Bali, Indonesia. J. Mar. Biol. 2016, 8750193 (2016).Article 

    Google Scholar 
    10.Thys, T. M., Hearn, A. R., Weng, K. C., Ryan, J. P. & Peñaherrera-Palma, C. Satellite tracking and site fidelity of short ocean sunfish, Mola ramsayi, in the Galapagos Islands. J. Mar. Biol. 2017, 7097965 (2017).Article 

    Google Scholar 
    11.Aspillaga, E. et al. Thermal stratification drives movement of a coastal apex predator. Sci. Rep. 7, 526 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Nakamura, I., Goto, Y. & Sato, K. Ocean sunfish rewarm at the surface at the surface after deep excursion to forage for siphonophores. J. Anim. Ecol. 84, 590–603 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Tolotti, M. et al. Fine-scale vertical movements of oceanic whitetip sharks (Carcharhinus longimanus). Fish. Bull. 115, 380–395 (2017).Article 

    Google Scholar 
    15.Musyl, M. K. et al. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 109, 341–368 (2011).
    Google Scholar 
    16.Furukawa, S. et al. Vertical movements of Pacific bluefin tuna (Thunnus orientalis) and dolphinfish (Coryphaena hippurus) relative to the thermocline in the northern East China Sea. Fish. Res. 149, 86–91 (2014).Article 

    Google Scholar 
    17.Gaube, P. et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PloS ONE 12, e0172839 (2017).18.Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. PNAS 116, 17187–17192 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Sawai, E., Yamanoue, Y., Nyegaard, M. & Sakai, Y. Redescription of the bump-head sunfish Mola alexandrini (Ranzani 1839), senior synonym of Mola ramsayi (Giglioli 1883), with designation of a neotype for Mola mola (Linnaeus 1758) (Tetraodontiformes: Molidae). Ichthyol. Res. 65, 142–160 (2018).Article 

    Google Scholar 
    20.Sawai, E. & Yamada, M. Bump-head sunfish Mola alexandrini photographed in the north-west Pacific Ocean mesopelagic zone. J. Fish Biol. 96, 278–280 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kiyofuji, H. et al. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean. Progr. Oceanogr. 175, 55–67 (2019).ADS 
    Article 

    Google Scholar 
    22.Fujioka, K. et al. Spatial and temporal variability in the trans-Pacific migration of Pacific bluefin tuna (Thunnus orientalis) revealed by archival tags. Progr. Oceanogr. 162, 52–65 (2018).23.Kobari, T. et al. Variability in taxonomic composition, standing stock, and productivity of the plankton community in the Kuroshio and its neighboring waters in Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics (ed. Nagai, T., Saito, H., Suzuki, K., Takahashi, M.) 223–243 (Hoboken, 2019).24.Queiroz, N., Humphries, N. E., Noble, L. R., Santos, A. M. & Sims, D. W. Short-term movements and diving behaviour of satellite-tracked blue sharks Prionace glauca in the northeastern Atlantic Ocean. Mar. Ecol. Progress Ser. 406, 265–279 (2010).ADS 
    Article 

    Google Scholar 
    25.McMahon, C. R. & Hays, G. C. Thermal niche, large-scale movements and implications of climate change for a critically endangered marine vertebrate. Glob. Change Biol. 12, 1330–1338 (2006).ADS 
    Article 

    Google Scholar 
    26.Nakatsubo, T., Kawachi, M., Mano, N. & Hirose, H. Spawning period of ocean sunfish Mola mola in waters of the eastern Kanto region, Japan. Aquacult. Sci. 55, 613–618 (2007).
    Google Scholar 
    27.Ashida, H., Suzuki, N., Tanabe, T., Suzuki, N. & Aonuma, Y. Reproductive condition, batch fecundity, and spawning fraction of large Pacific bluefin tuna Thunnus orientalis landed at Ishigaki Island, Okinawa, Japan. Environ. Biol. Fish. 98, 1173–1183 (2015).Article 

    Google Scholar 
    28.Watai, M. et al. Comparative analysis of the early growth history of Pacific bluefin tuna Thunnus orientalis from different spawning grounds. Mar. Ecol. Progress Ser. 607, 207–220 (2018).ADS 
    Article 

    Google Scholar 
    29.Stevens, J. D., Bradford, R. W. & West, G. J. Satellite tagging of blue sharks (Prionace glauca) and other pelagic sharks off eastern Australia: Depth behaviour, temperature experience and movements. Mar. Biol. 157, 575–591 (2010).Article 

    Google Scholar 
    30.Musyl, M. K. et al. Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fish. Oceanogr. 12, 152–169 (2003).Article 

    Google Scholar 
    31.Lin, S. J. et al. Vertical and horizontal movements of bigeye tuna (Thunnus obesus) in southeastern Taiwan. Mar. Freshw. Behav. Physiol. 54, 1–21 (2021).Article 

    Google Scholar 
    32.Yasuda, I. & Kitagawa, D. Locations of early fishing grounds of saury in the northwestern Pacific. Fish. Oceanogr. 5, 63–69 (1996).Article 

    Google Scholar 
    33.Godø, O. R. et al. Mesoscale eddies are oases for higher trophic marine life. PloS ONE 7, e30161 (2012). 34.Polovina, J. J. et al. Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Oceanogr. 13, 36–51 (2004).Article 

    Google Scholar 
    35.Sbragaglia, V. et al. Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables. Sci. Rep. 9, 1708 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Nakamura, I., Mastumoto, R. & Sato, K. Body temperature stability in the whale shark, the world’s largest fish. J. Exp. Biol. 223, jeb210286 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Brill, R. W., Bigelow, K. A., Musyl, M. K., Fritsches, K. A. & Warrant, E. J. Bigeye tuna (Thunnus obesus) behavior and physiology and their relevance to stock assessments and fishery biology. Col. Vol. Sci. Pap. ICCAT 57, 142–161 (2005).
    Google Scholar 
    38.Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2, 33–37 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Brill, R. W. A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish. Oceanogr. 3, 204–216 (1994).Article 

    Google Scholar 
    40.Lam, C. H., Kiefer, D. A. & Domeier, M. L. Habitat characterization for striped marlin in the Pacific Ocean. Fish. Res. 166, 80–91 (2015).Article 

    Google Scholar 
    41.Carlisle, A. B. et al. Influence of temperature and oxygen on the distribution of blue marlin (Makaira nigricans) in the Central Pacific. Fish. Oceanogr. 26, 34–48 (2017).Article 

    Google Scholar 
    42.Madigan D. J. et al. Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. ICES J. Mar. Sci. 78, 867–883 (2021).Article 

    Google Scholar 
    43.Schlitzer, R. Export production in the equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data. J. Oceanogr. 60, 53–62 (2004).CAS 
    Article 

    Google Scholar 
    44.Thomsen, S. et al. The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. J. Geophys. Res. 121, 476–501 (2016).ADS 
    Article 

    Google Scholar 
    45.Nakamura, I. & Sato, K. Ontogenetic shift in foraging habit of ocean sunfish Mola mola from dietary and behavioral studies. Mar. Biol. 161, 1263–1273 (2014).Article 

    Google Scholar 
    46.QGIS Development Team. Quantum GIS geographic information system. Open Source Geospatial Foundation Project. http://www.qgis.org/en/site/ (2016).47.Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–332 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Fiedler, P. C. Comparison of objective descriptions of the thermocline. Limnol. Oceanogr. Methods 8, 313–325 (2010).Article 

    Google Scholar 
    49.Zar, J. H. Biostatistical Analysis 4th edn. (Prentice Hall, 1999).
    Google Scholar 
    50.Clarke, K. R., & Gorley, R. N. PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth.51.Wood, S. N. On p-values for smooth components of an extended generalized additive model. Biometrika 100, 221–228 (2013).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Hotspots for rockfishes, structural corals, and large-bodied sponges along the central coast of Pacific Canada

    The Wuikinuxv, Kitasoo/Xai’xais, Heiltsuk and Nuxalk First Nations hold Indigenous rights to their territories, where all data were collected. Scientific staff who are members of these Nations or who work directly for them had direct approvals from Indigenous rights holders and were exempt from other research permit requirements. Collaborating DFO scientists worked in partnership with the First Nations to collect data in their territories..Sampling targeted rocky reefs, the preferred habitat for most Sebastidae38, which we located through local Indigenous knowledge or a bathymetric model49. Data were collected by four fishery-independent methods—shallow diver transects, mid-depth video transects, deep video transects, and hook-and-line sampling—detailed in earlier publications32,33,34,35,50,51 and summarized in Table 1. Data had a spatial resolution of ≤ 130 m2 and each sampling location (N = 2936 for Sebastidae, 2654 for sponges, 2321 for corals) was ascribed to a 1-km2 planning unit within the standardized grid used to design the MPA network (N = 632 for Sebastidae, 525 for sponges, 529 for corals, 516 inclusive of surveys for all taxonomic groups).Table 1 Survey methods used for data collection.Full size tableAlthough sampling encompassed 11 years (2006–2007, 2013–2021: Table 1), 84% of 1-km2 planning units were sampled during only one year (Appendix S2). Analyses, therefore, focus on spatial variability in species distributions and do not address temporal variability within planning units. When all years and methods are combined, 1-km2 planning units had a median of 3 samples (range = 1 to 80, Q1 = 2, Q3 = 6) (i.e., sum of dive transects, video sub-transects, and hook-and-line sessions). Supplementary Data Set 1 reports sampling effort by 1-km2 planning unit, survey type, and year (see Data Availability for link to these data).For each 1-km2 planning unit, u, we calculated hotspot indices for Sebastidae (BSEB,u), structural corals (BCor,u), and large-bodied sponges (BSp,u). These indices did not consider cup corals, whip-like corals or encrusting corals or sponges.As detailed below (Eqs. 1–4), each species of Sebastidae or genera of corals contributed to BSEB,u or BCor,u, according to their abundance weighted by Wt: a conservation prioritization score based on taxon characteristics. For the 26 species of Sebastidae that we observed, Wt equaled the sum of scores for (1) fishery vulnerability, using intrinsic population growth rate, r, as a proxy variable52,53, (2) depletion level, using the ratio of recent biomass to unfished biomass as a proxy variable, (3) ecological role, with trophic level as proxy, and (4) evolutionary distinctiveness14 (Table 2; Appendix S3). Because several rockfishes are very long-lived (i.e., have low values for r) and depleted, maximum potential scores were twice as large for fishery vulnerability and depletion level than for ecological role and evolutionary distinctiveness. Data for depletion level and evolutionary distinctiveness were unavailable for some species, and score calculations (detailed in Table 2) account for missing values (Appendix S3).Table 2 Criteria and equations used to calculate the conservation prioritization score, Wt, for each species of Sebastidae and for each taxa of structural corals.Full size tableFor the 6 genera of structural corals analyzed (Appendix S4), Wt depended on mean height (estimated from video transect images: Table 1), which correlates positively with vulnerability to physical damage from bottom-contact fishing gear (including longer time to recovery)20,54,55 and with strength of ecological role (e.g., amount of biogenic habitat and carbon sequestration increases with height)44,56 (Table 2, Appendix S4). Wt for corals did not include depletion level due to lack of data.The hotspot index for large-bodied sponges, BSp,u did not differentiate between species characteristics (i.e., ({W}_{t}=1)) and we pooled the abundances of all observed species of Hexactinellidae (Aphrocallistes vastus, Farrea occa, Heterochone calyx, Rhabdocalyptus dawsoni, Staurocalyptus dowlingi) and Demospongiae (Mycale cf loveni). This approach is consistent with regional fishery bodies worldwide, which treat large-bodied sponges as a single functional group57.To derive hotspot indices for each taxonomic group (Sebastidae, structural corals, or large-bodied sponges), we first developed a set of candidate generalized linear mixed models (GLMM) to explain relative abundance data for rockfish, corals, and sponges. For each GLMM, we estimated ({lambda }_{t,i,l}), the expected counts (or expected percent cover) for taxa t obtained with survey method i at point location l. (Point locations are individual dive transects, video transect bins, or hook-and-line timed sessions: Table 1.) Specifically,$${lambda }_{t,i,l}=gleft(beta {X}_{t,i,l}right)$$
    (1)
    $${C}_{t,i,l}mathrm {, or ,} {D}_{t,i,l}sim fleft({lambda }_{t,i,l}right)$$
    (2)
    where g was the link function for the GLMM and f the distribution for the likelihood function modelling either the observed counts C (negative binomial) for Sebastidae and structural corals or a combination of counts (negative binomial) and percent cover D (beta distribution) for large-bodied sponges. We used multiple GLMMs to model large-bodied sponges because deep video transects recorded actual counts whereas dive or mid-depth video transects recorded percent cover categories (Table 1).For each taxonomic group, we estimated a set of coefficients (beta) for the vector of X covariates that best estimated counts or percent cover. Our hypothesized covariates included the 1-km2 planning unit (modelled as a random intercept to control for repeated measures within a given planning unit), survey method, depth (including both linear or a 2nd order polynomial), and taxa. Each GLMM controlled for sample effort as an offset—effort was measured either as area covered by dive transects or video bins, or the duration of hook-and-line sessions. We also tested for possible covariate’s effects on the dispersion parameter (for the negative binomial GLMMs) and zero-inflation terms (for both the negative binomial and beta GLMMs). The best set of covariates to predict counts or percent cover were then chosen based on AIC model selection criteria. All models were fitted using ‘glmmTMB’58 in R version 4.0.259, and simulated residuals and diagnostic tests performed for each best-fit model using the package ‘DHARMa’60. For example, our best model for Sebastidae counts predicted 2% fewer zero counts than were observed.We applied depth and survey method selectivity criteria to reduce excessive zeroes in the count data that may be biologically unjustified (Appendix S5). For all taxon, if i detected t, then the method was valid for that taxon. If i did not detect t and t is a Sebastidae, then the method was valid (i.e., count = 0) only if the overall 10th and 90th percentiles of depths sampled by that method encompassed the expected depth range of t (Appendix S5). If i did not detect t and t is a coral or sponge (which are rarer than Sebastidae), then the method is valid only if the depth of the sampling event exceeded or equaled the minimum expected depth of t. Also, hook-and-line gear cannot systematically sample sessile benthic organisms or planktivores and this method was valid only for non-planktivorous Sebastidae (Appendix S5).Using the best-fit models from above, we calculated the expected count (or percent cover) per unit of effort, (mu), for taxa t observed with method i at each planning unit u:$${mu }_{t,i,u}=frac{{sum }_{l=1}^{{n}_{i,u}}left({lambda }_{t,i,l}right)}{{sum }_{l=1}^{{n}_{i,u}}left({mathrm{E}}_{t,i,l}right)}$$
    (3)
    where ({n}_{i,u}) was the total number of point locations sampled by that method within the planning unit and effort was either the cumulative area covered by dive or video surveys or the cumulative duration of hook-and-line sampling sessions within the planning unit. Because survey methods differed in their maximum values and potential biases (e.g., field of view is greater for divers than for video cameras; hook-and-line gear samples one fish at a time while visual methods can observe multiple fish simultaneously),({mu }_{t,i,u}) was rescaled as a min–max normalization,({mu }_{t,i,u}^{^{prime}}) (i.e., difference between the observed value and the minimum value across all u, divided by the range of values across all u).The hotspot index for each of Sebastidae, structural corals, and large-bodied sponges (denoted as taxonomic group g) was then calculated for each planning unit as:$${B}_{g,u }={sum }_{t=1}^{{n}_{s,g}}{sum }_{i=1}^{{n}_{m,g}}{mu }_{t,i,u}^{^{prime}}{W}_{t}$$
    (4)
    where Wt was the taxon-specific weighing factor (Table 2, Appendices S3, S4), ({n}_{s,g}) was the number of species in taxonomic group g, and ({n}_{m,g}) was the number of valid methods to sample group g.For each 1-km2 planning unit where all taxonomic groups were surveyed (N = 518), we then calculated the overall hotspot index:$${B}_{o,u }=H{sum }_{g=1}^{G}{B}_{g,u}.$$
    (5)
    where H is Shannon’s evenness index, with proportional abundance of each taxonomic group represented by BSEB,u, BCor,u, and BSp,u.Hotspot index values were normalized as the proportion of the maximum value and converted to decile ranks. Relationships between decile ranks and index values were nonlinear (Appendix S6).For Sebastidae, large-bodied sponges, and the overall hotspot index, we defined hotspots as planning units containing decile ranks 9 or 10: criterion which we deemed appropriate for the small spatial scales of conservation planning being used for the central portion of the Northern Shelf Bioregion (16-km2 planning units in Fig. 2). We are aware that other studies define hotspots based on a narrower range of values (e.g., top 10%26; top 2.5%28) but their context is generally one in which conservation planning is done at a much greater scale (e.g., ≈50,000-km2 grid cells26;1° latitude × 1° longitude grid cells28). For structural corals, which had near-zero index values in all but the top-ranking planning units (Appendix S6), we defined hotspots as planning units containing decile rank 10.Maximum depths sampled within planning units were deepest in the Mainland Fjord and shallowest in the Aristazabal Banks Upwelling Upper Ocean Subregion (Appendix S7). Accordingly, we used multiple logistic regression implemented with the ‘glm’ function in R to estimate the probabilities hotspot occurrence within 1-km2 planning units in relation to maximum depth sampled (including a 2nd-order polynomial) and Upper Ocean Subregion. Competing models were compared with AIC model selection procedures.Following the directive of Central Coast First Nations, decile rank distributions were mapped as 16-km2 planning units, u16 (N = 283 for Sebastidae, 264 for sponges, 263 for corals, 260 inclusive of surveys for all taxonomic groups), thereby protecting sensitive locations that would be revealed at smaller scales. To do so, we took the average between the maximum index value and the mean of the remainder of index values among the 1-km2 planning units, u, contained within each u16, and converted these values into decile ranks. This approach balances conservation prioritization among u16 that may have good average index values for multiple u, and u16 with a single high-ranking u among multiple low-scoring u. Relationships between decile ranks and hotspot index values also were nonlinear at this scale (Appendix S6). The same hotspot definitions developed for u apply to u16.Eighty one percent of 16-km2 planning units were sampled during only one or two years (Appendix S2). When all years and methods are combined, 16-km2 planning units had a median of 6 samples (range = 1 to 110, Q1 = 3, Q3 = 13). Supplementary Data Set 2 reports sampling effort by 16-km2 planning unit, survey type, and year (see Data Availability for link to these data). More

  • in

    Factors influencing the global distribution of the endangered Egyptian vulture

    1.BirdLife International. Neophron percnopterus, Egyptian vulture. http://www.iucnredlist.org/details/22695180/0 (2017) https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22695180A118600142.en2.Gradev, G., Garcia, V., Ivanov, I., Zhelev, P. & Kmetova, E. Data from Egyptian vultures (Neophron percnopterus) tagged with GPS/GSM transmitters in Bulgaria. Acta Zool. Bulg. 64, 141–146 (2012).
    Google Scholar 
    3.Green, R. E. et al. Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent. J. Appl. Ecol. 41, 793–800 (2004).CAS 
    Article 

    Google Scholar 
    4.Arkumarev, V., Dobrev, V., Abebe, Y. D., Popgeorgiev, G. & Nikolov, S. C. Congregations of wintering Egyptian Vultures Neophron percnopterus in Afar, Ethiopia: Present status and implications for conservation. Ostrich 85, 139–145 (2014).Article 

    Google Scholar 
    5.Grubač, B., Velevski, M. & Avukatov, V. Long-term population decrease and recent breeding performance of the Egyptian vulture Neophron percnopterus in Macedonia. North. West. J. Zool. 10, 25–35 (2014).
    Google Scholar 
    6.Angelov, I., Hashim, I. & Oppel, S. Persistent electrocution mortality of Egyptian vultures neophron percnopterus over 28 years in East Africa. Bird Conserv. Int. 23, 1–6 (2013).Article 

    Google Scholar 
    7.Zuberogoitia, I., Zabala, J., Martínez, J. A., Martínez, J. E. & Azkona, A. Effect of human activities on Egyptian vulture breeding success. Anim. Conserv. 11, 313–320 (2008).Article 

    Google Scholar 
    8.Sen, B., Avares, J. P. & Bilgin, C. C. Nest site selection patterns of a local Egyptian Vulture Neophron percnopterus population in Turkey. Bird Conserv. Int. 27, 568–581 (2017).Article 

    Google Scholar 
    9.Ceballos, O. & Donázar, J. A. Factors influencing the breeding density and nest-site selection of the Egyptian vulture (Neophron percnopterus). J. Ornithol. 130, 353–359 (1989).Article 

    Google Scholar 
    10.Sarà, M. & Vittorio, M. Factors influencing the distribution, abundance and nest-site selection of an endangered Egyptian vulture (Neophron percnopterus) population in Sicily. Anim. Conserv. 6, 317–328 (2003).Article 

    Google Scholar 
    11.KC, K. B. et al. Factors influencing the presence of the endangered Egyptian vulture Neophron percnopterus in Rukum, Nepal. Glob. Ecol. Conserv. 20, e00727 (2019).Article 

    Google Scholar 
    12.Mateo-Tomás, P. & Olea, P. P. Livestock-driven land use change to model species distributions: Egyptian vulture as a case study. Ecol. Indic. 57, 331–340 (2015).Article 

    Google Scholar 
    13.García-RIPOLLÉS, C., López-LÓPEZ, P. & Urios, V. First description of migration and wintering of adult Egyptian vultures neophron percnopterus tracked by GPS satellite telemetry. Bird Study 57, 261–265 (2010).Article 

    Google Scholar 
    14.Oppel, S. et al. Landscape factors affecting territory occupancy and breeding success of Egyptian vultures on the Balkan Peninsula. J. Ornithol. 158, 443–457 (2017).Article 

    Google Scholar 
    15.Bhusal, K. Population status and breeding success of Himalayan Griffon, Egyption vulture and Lammergeier in Gherabhir, Arghakhanchi, Nepal. (MSc thesis. Institute of Science and Technology, Tribuvan University, Kritipur, Nepal, 2011). https://doi.org/10.13140/RG.2.2.18494.69447.16.López-lópez, A. P. et al. Food predictability determines space use of endangered vultures: Implications for management of supplementary feeding. Ecol. Appl. 24, 938–949 (2014).PubMed 
    Article 

    Google Scholar 
    17.Cortés-avizanda, A., Ceballos, O. & Donázar, J. Long-term trends in population size and breeding success in the Egyptian Vulture (Neophron percnopterus) in Northern Spain. J. Raptor Res. 43, 43–49 (2009).Article 

    Google Scholar 
    18.Rosenblatt, E. Neophron percnopterus Egyptian vulture. Animal Diversity Web https://animaldiversity.org/accounts/Neophron_percnopterus/ (2007).19.ESRI. ArcGIS Desktop: Release 10.5. Environmental systems research Redlands, California, USA https://www.arcgis.com/features/index.html (2017).20.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    21.USGS/EarthExplorer. Data Sets. United States Geological Survey https://earthexplorer.usgs.gov/ (2017).22.JAXA EORC. Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-forest Map. Earth Observation Research Center https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm (2017).23.CIESIN. Gridded population of the world (GPW), v4. http://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (2000).24.Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.FAO/GeoNetwork. Global land cover share database. http://www.fao.org/geonetwork/srv/en/main.home (2014).26.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).Article 

    Google Scholar 
    27.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).Article 

    Google Scholar 
    28.Lobo, J. M., Jiménez-valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).Article 

    Google Scholar 
    29.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models : Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    30.Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225–245 (2000).Article 

    Google Scholar 
    31.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    32.Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).Article 

    Google Scholar 
    33.Cortés-Avizanda, A., Martín-López, B., Ceballos, O. & Pereira, H. M. Stakeholders perceptions of the endangered Egyptian vulture: Insights for conservation. Biol. Conserv. 218, 173–180 (2018).Article 

    Google Scholar 
    34.Hernández, M. & Margalida, A. Poison-related mortality effects in the endangered Egyptian vulture (Neophron percnopterus) population in Spain. Eur. J. Wildl. Res. 55, 415–423 (2009).Article 

    Google Scholar 
    35.Mateo-Tomás, P., Olea, P. P. & Fombellida, I. Status of the Endangered Egyptian vulture Neophron percnopterus in the Cantabrian Mountains, Spain, and assessment of threats. Oryx 44, 434–440 (2010).Article 

    Google Scholar 
    36.Carrete, M. et al. Habitat, human pressure, and social behavior : Partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol. Conserv. https://doi.org/10.1016/j.biocon.2006.11.025 (2007).Article 

    Google Scholar 
    37.Zuberogoitia, I., Zabala, J., Martínez, J. E., González-Oreja, J. A. & López-López, P. Effective conservation measures to mitigate the impact of human disturbances on the endangered Egyptian vulture. Anim. Conserv. 17, 410–418 (2014).Article 

    Google Scholar 
    38.Garcia-Ripolles, C. & Lopez-Lopez, P. Population size and breeding performance of Egyptian vultures (Neophron percnopterus) in eastern Iberian Peninsula. J. Raptor Res. 40, 217–221 (2006).Article 

    Google Scholar 
    39.Velevski, M., Grubac, B. & Tomovic, L. Population viability analysis of the Egyptian vulture Neophron percnopterus in Macedonia and Implications for Its Conservation. Acta Zool. Bulg. 66, 43–58 (2014).
    Google Scholar 
    40.Arkumarev, V. et al. Breeding performance and population trend of the Egyptian vulture Neophron percnopterus in Bulgaria conservation implications. Ornis Fenn. 95, 115–127 (2018).
    Google Scholar 
    41.Dobrev, V. et al. Habitat of the Egyptian vulture (Neophron percnopterus) in Bulgaria and Greece (2003–2014). (2016).42.Milchev, B., Spassov, N. & Popov, V. Diet of the Egyptian vulture (Neophron percnopterus) after livestock reduction in Eastern Bulgaria. N. West. J. Zool. 8, 315–323 (2012).
    Google Scholar 
    43.Milchev, B. & Georgiev, V. Extinction of the globally endangered Egyptian vulture Neophron percnopterus breeding in SE Bulgaria. N. West. J. Zool. 10, 266–272 (2014).
    Google Scholar 
    44.Poirazidis, K., Goutner, V., Skartsi, T. & Stamou, G. Modelling nesting habitat as a conservation tool for the Eurasian black vulture (Aegypius monachus) in Dadia Nature Reserve, northeastern Greece. Biol. Conserv. 118, 235–248 (2004).Article 

    Google Scholar 
    45.Sanchis Serra, A. et al. Towards the identification of a new taphonomic agent: An analysis of bone accumulations obtained from modern Egyptian vulture (Neophron percnopterus) nests. Quat. Int. 330, 136–149 (2014).Article 

    Google Scholar 
    46.Vittorio, M. D., Lopez-Lopez, P., Cortone, G. & Luiselli, L. The diet of the Egyptian vulture (Neophron percnopterus) in Sicily: Temporal variation and conservation implications. Vie Milieu Life Environ. 67, 1–8 (2017).
    Google Scholar 
    47.Di Vittorio, M. et al. Successful fostering of a captive-born Egyptian Vulture (Neophron Percnopterus) in Sicily. J. Raptor Res. 40, 247–248 (2006).Article 

    Google Scholar 
    48.Sarà, M., Grenci, S. & Vittorio, M. D. Status of Egyptian vulture (Neophron percnopterus) in Sicily. J. Raptor Res. 43, 66–69 (2009).Article 

    Google Scholar 
    49.Vittorio, M. D. et al. Dispersal of Egyptian vultures Neophron percnopterus: the first case of long-distance relocation of an individual from France to Sicily. Ringing Migr. 31, 111–114 (2016).Article 

    Google Scholar 
    50.García-Heras, M. S., Cortés-Avizanda, A. & Donázar, J. A. Who are we feeding? Asymmetric individual use of surplus food resources in an insular population of the endangered Egyptian vulture Neophron percnopterus. PLoS ONE 8, e80523 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Gangoso, L. et al. Susceptibility to infection and immune response in insular and continental populations of Egyptian vulture: Implications for conservation. PLoS ONE 4, e6333 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Donazar, J. A. et al. Conservation status and limiting factors in the endangered population of Egyptian vulture (Neophron percnopterus) in the Canary Islands Conservation status and limiting factors in the endangered population of Egyptian vulture ( Neophron percnopterus ) in. Biol. Conserv. 107, 89–97 (2002).Article 

    Google Scholar 
    53.Rodríguez, B., Rodríguez, A., Siverio, F. & Siverio, M. Factors affecting the spatial distribution and breeding habitat of an insular cliff-nesting raptor community. Curr. Zool. 64, 173–181 (2018).PubMed 
    Article 

    Google Scholar 
    54.Kret, E. et al. First documented case of the killing of an egyptian vulture (Neophron Percnopterus) for belief-based practices in Western Africa. Life Environ. 68, 45–50 (2018).
    Google Scholar 
    55.Thouless, C. R., Fanshawe, J. H. & Bertram, B. C. R. Egyptian vultures Neophron percnopterus and Ostrich Struthio camelus eggs: the origins of stone-throwing behaviour. Ibis (Lond.) 131, 9–15 (1989).Article 

    Google Scholar 
    56.Cuthbert, R. et al. Rapid population declines of Egyptian vulture (Neophron percnopterus) and red-headed vulture (Sarcogyps calvus) in India. Anim. Conserv. 9, 349–354 (2006).Article 

    Google Scholar 
    57.Samson, A. & Ramakarishnan, B. Observation of a population of Egyptian Vultures Neophron percnopterus in Ramanagaram Hills, Karnataka, southern India. Vulture News 71, 36–49 (2016).Article 

    Google Scholar 
    58.Farashi, A. & Alizadeh-Noughani, M. Niche modelling of the potential distribution of the Egyptian Vulture Neophron percnopterus during summer and winter in Iran, to identify gaps in protected area coverage. Bird Conserv. Int. 29, 423–436 (2019).Article 

    Google Scholar 
    59.Tauler-Ametller, H., Hernández-Matías, A., Pretus, J. L. L. & Real, J. Landfills determine the distribution of an expanding breeding population of the endangered Egyptian vulture Neophron percnopterus. Ibis (Lond). 159, 757–768 (2017).Article 

    Google Scholar 
    60.Mateo-Tomás, P. & Olea, P. P. Diagnosing the causes of territory abandonment by the Endangered Egyptian vulture Neophron percnopterus: The importance of traditional pastoralism and regional conservation. Oryx 44, 424–433 (2010).Article 

    Google Scholar 
    61.Galligan, T. H. et al. Have population declines in Egyptian vulture and Red-headed vulture in India slowed since the 2006 ban on veterinary diclofenac?. Bird Conserv. Int. 24, 272–281 (2014).Article 

    Google Scholar 
    62.Lieury, N., Gallardo, M., Ponchon, C., Besnard, A. & Millon, A. Relative contribution of local demography and immigration in the recovery of a geographically-isolated population of the endangered Egyptian vulture. Biol. Conserv. 191, 349–356 (2015).Article 

    Google Scholar 
    63.Porter, R. F. & Suleiman, A. S. the Egyptian Vulture Neophron percnopterus on Socotra, Yemen: Population, ecology, conservation and ethno-ornithology. Sandgrouse 34, 44–62 (2012).
    Google Scholar  More