1.Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).CAS
PubMed
Google Scholar
2.Schmid, A. K., Allers, T. & DiRuggiero, J. Snapshot: microbial extremophiles. Cell 180, 818–818.e1 (2020).CAS
PubMed
Google Scholar
3.Denef, V. J., Mueller, R. S. & Banfield, J. F. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J. 4, 599–610 (2010).PubMed
Google Scholar
4.Inskeep, W. P. et al. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front. Microbiol. 4, 67 (2013).CAS
PubMed
PubMed Central
Google Scholar
5.Oren, A. Halophilic microbial communities and their environments. Curr. Opin. Microbiol. 33, 119–124 (2015).CAS
Google Scholar
6.Reysenbach, A. L., Wickham, G. S. & Pace, N. R. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol. 60, 2113–2119 (1994).CAS
PubMed
PubMed Central
Google Scholar
7.Bond, P. L., Smriga, S. P. & Banfield, J. F. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66, 3842–3849 (2000).CAS
PubMed
PubMed Central
Google Scholar
8.Huber, J. A. et al. Microbial population structures in the deep marine biosphere. Science 318, 97–100 (2007).CAS
PubMed
Google Scholar
9.Kuang, J. L. et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7, 1038–1050 (2013).CAS
PubMed
Google Scholar
10.Power, J. F. et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat. Commun. 9, 2876 (2018). Extensive sampling and high-throughput 16S rRNA gene sequencing have provided deeper insights into the patterns and ecological drivers of microbial communities inhabiting geothermal springs.PubMed
PubMed Central
Google Scholar
11.Podell, S. et al. Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community. ISME J. 8, 979–990 (2014).CAS
PubMed
Google Scholar
12.Chen, L. X. et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).PubMed
Google Scholar
13.Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).CAS
PubMed
Google Scholar
14.Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).CAS
PubMed
Google Scholar
15.Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015). The cultivation-independent reconstruction of the first complete genomes for members of the DPANN archaea allowed confident prediction of incomplete or absent pathways for these enigmatic organisms.CAS
PubMed
Google Scholar
16.Sharp, C. E. et al. Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J. 8, 1166–1174 (2014).CAS
PubMed
PubMed Central
Google Scholar
17.Hedlund, B. P. et al. Uncultivated thermophiles: current status and spotlight on ‘Aigarchaeota’. Curr. Opin. Microbiol. 25, 136–145 (2015).CAS
PubMed
Google Scholar
18.Hua, Z. S. et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J. 9, 1280–1294 (2015).CAS
PubMed
Google Scholar
19.Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004). This is the first shotgun metagenomic sequencing study that enabled reconstruction of near-complete microbial genomes directly (without cultivation) from a natural community.CAS
PubMed
Google Scholar
20.Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).CAS
PubMed
Google Scholar
21.Chen, L. X. et al. Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota. ISME J. 12, 756–775 (2018).CAS
PubMed
Google Scholar
22.Baker, B. J. et al. Enigmatic, ultrasmall, uncultivated Archaea. Proc. Natl Acad. Sci. USA 107, 8806–8811 (2010).CAS
PubMed
PubMed Central
Google Scholar
23.Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).CAS
PubMed
Google Scholar
24.Brock, T. D. Life at high temperatures. Science 158, 1012–1019 (1967).CAS
PubMed
Google Scholar
25.Cole, J. K. et al. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J. 7, 718–729 (2013).CAS
PubMed
Google Scholar
26.Colman, D. R. et al. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol. Ecol. 92, fiw137 (2016).PubMed
Google Scholar
27.Ward, D. M. et al. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65 (1990).CAS
PubMed
Google Scholar
28.Miller, S. R. et al. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl. Environ. Microbiol. 75, 4565–4572 (2009).CAS
PubMed
PubMed Central
Google Scholar
29.Ward, L. et al. Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring. ISME J. 11, 1158–1167 (2017).CAS
PubMed
PubMed Central
Google Scholar
30.Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl Acad. Sci. USA 91, 1609–1613 (1994).CAS
PubMed
PubMed Central
Google Scholar
31.Takai, K. & Yoshihiko, S. A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol. Ecol. 28, 177–188 (1999).CAS
Google Scholar
32.Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).CAS
PubMed
PubMed Central
Google Scholar
33.Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).PubMed
PubMed Central
Google Scholar
34.Nunoura, T. et al. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ. Microbiol. 7, 1967–1984 (2005).CAS
PubMed
Google Scholar
35.Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).CAS
PubMed
Google Scholar
36.Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community. ISME J. 10, 210–224 (2016).CAS
PubMed
Google Scholar
37.Hua, Z. S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).PubMed
PubMed Central
Google Scholar
38.Takami, H. et al. A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem. PLoS ONE 7, e30559 (2012).CAS
PubMed
PubMed Central
Google Scholar
39.Colman, D. R. et al. Novel, deep-branching heterotrophic bacterial populations recovered from thermal spring metagenomes. Front. Microbiol. 7, 304 (2016).PubMed
PubMed Central
Google Scholar
40.Nobu, M. et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J. 10, 273–286 (2016).CAS
PubMed
Google Scholar
41.Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376 (1998).CAS
PubMed
PubMed Central
Google Scholar
42.Orcutt, B. N., Sylvan, J. B., Knab, N. J. & Edwards, K. J. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75, 361–422 (2011).CAS
PubMed
PubMed Central
Google Scholar
43.Eloe-Fadrosh, E. A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat. Commun. 7, 10476 (2016). This is a good example of how analysis of the increasing wealth of metagenomic data collected from diverse environments may lead to the discovery of novel major lineages.CAS
PubMed
PubMed Central
Google Scholar
44.Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at Mid-Ocean Ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491 (2002).CAS
Google Scholar
45.Perner, M. et al. In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environ. Microbiol. 15, 1551–1560 (2013).CAS
PubMed
Google Scholar
46.Flores, G. E. et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ. Microbiol. 13, 2158–2171 (2011).CAS
PubMed
Google Scholar
47.Dick, G. J. et al. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. 17, 271–283 (2019).CAS
PubMed
Google Scholar
48.Campbell, B. J., Summers Engel, A., Porter, M. L. & Takai, K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4, 458–468 (2006).CAS
PubMed
Google Scholar
49.Reysenbach, A. L., Longnecker, K. & Kirshtein, J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 3798–3806 (2000).CAS
PubMed
PubMed Central
Google Scholar
50.Takai, K., Komatsu, T., Inagaki, F. & Horikoshi, K. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67, 3618–3629 (2001).CAS
PubMed
PubMed Central
Google Scholar
51.Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).CAS
PubMed
Google Scholar
52.Brazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. Methane- and sulfur-metabolizing microbial communities dominate the Lost City Hydrothermal Field ecosystem. Appl. Environ. Microbiol. 72, 6257–6270 (2006).CAS
PubMed
PubMed Central
Google Scholar
53.Reveillaud, J. et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ. Microbiol. 18, 1970–1987 (2016).CAS
PubMed
PubMed Central
Google Scholar
54.Brazelton, W. J. et al. Archaea and bacteria with surprising micro-diversity show shifts in dominance over 1000-year time scales in hydrothermal chimneys. Proc. Natl Acad. Sci. USA 107, 1612–1617 (2010).CAS
PubMed
PubMed Central
Google Scholar
55.Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).CAS
PubMed
Google Scholar
56.Waters, E. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA 100, 12984–12988 (2003).CAS
PubMed
PubMed Central
Google Scholar
57.Casanueva, A. et al. Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12, 651–656 (2008).CAS
PubMed
Google Scholar
58.Wurch, L. et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat. Commun. 7, 12115 (2016). This is an interesting study demonstrating that insights from genomic studies may help develop effective cultivation strategies for the isolation of novel microbial species.CAS
PubMed
PubMed Central
Google Scholar
59.Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015). The discovery and genomic characterization of Lokiarchaeota have unveiled insights into eukaryogenesis.CAS
PubMed
PubMed Central
Google Scholar
60.Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).CAS
PubMed
PubMed Central
Google Scholar
61.Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).CAS
PubMed
Google Scholar
62.Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525 (2020). This study reports the isolation of the first member of the superphylum Asgard, confirming the existence of these archaea and their close phylogenetic relatedness to eukaryotes.CAS
PubMed
PubMed Central
Google Scholar
63.Margesin, R. & Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl. Microbiol. Biotechnol. 103, 2537–2549 (2019).CAS
PubMed
PubMed Central
Google Scholar
64.Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).CAS
PubMed
Google Scholar
65.Hoham, R. W. & Duval, B. in Snow Ecology (eds Jones, H. et al.) 168–228 (Cambridge Univ. Press, 2001).66.Edwards, A. et al. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol. Ecol. 89, 222–237 (2014).CAS
PubMed
Google Scholar
67.Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4, 191–202 (2010).CAS
PubMed
Google Scholar
68.Franzetti, A. et al. Temporal variability of bacterial communities in cryoconite on an alpine glacier. Environ. Microbiol. Rep. 9, 71–78 (2017).CAS
PubMed
Google Scholar
69.Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R. & Sattler, B. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Chang. Biol. 15, 955–960 (2009).
Google Scholar
70.Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).CAS
PubMed
Google Scholar
71.Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).CAS
PubMed
Google Scholar
72.Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).CAS
PubMed
Google Scholar
73.Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92, fiw018 (2016).PubMed
Google Scholar
74.Fernández, A. B. et al. Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol. Ecol. 88, 623–635 (2014).PubMed
Google Scholar
75.Ventosa, A. et al. Microbial diversity of hypersaline environments: a metagenomic approach. Curr. Opin. Microbiol. 25, 80–87 (2015).CAS
PubMed
Google Scholar
76.Emerson, J. B. et al. Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea 2013, 370871 (2013).PubMed
PubMed Central
Google Scholar
77.Ley, R. E. et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695 (2006).CAS
PubMed
PubMed Central
Google Scholar
78.Harris, J. K. et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50–60 (2013). This study retrieves an unprecedented number of nearly full length 16S rRNA gene sequences from the microbial mats of the Guerrero Negro hypersaline environment, Mexico, demonstrating them to be among the most diverse, complex and novel microbial ecosystems known.PubMed
Google Scholar
79.Vavourakis, C. D. et al. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front. Microbiol. 7, 211 (2016).PubMed
PubMed Central
Google Scholar
80.Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA. 116, 14661–14670 (2019).CAS
PubMed
PubMed Central
Google Scholar
81.Nigro, L. M., Hyde, A. S., MacGregor, B. J. & Teske, A. Phylogeography, salinity adaptations and metabolic potential of the candidate division KB1 bacteria based on a partial single cell genome. Front. Microbiol. 7, 1266 (2016).PubMed
PubMed Central
Google Scholar
82.Vavourakis, C. D. et al. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 6, 168 (2018).PubMed
PubMed Central
Google Scholar
83.Edwards, K. J., Becker, K. & Colwell, F. The deep, dark energy biosphere: intraterrestrial life on Earth. Annu. Rev. Earth Planet. Sci. 40, 551–568 (2012).CAS
Google Scholar
84.Parkes, R. J. et al. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar. Geol. 352, 409–425 (2014).CAS
Google Scholar
85.Starnawski, P. et al. Microbial community assembly and evolution in subseafloor sediment. Proc. Natl Acad. Sci. USA 114, 2940–2945 (2017).CAS
PubMed
PubMed Central
Google Scholar
86.Ciobanu, M. C. et al. Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J. 8, 1370–1380 (2014).PubMed
PubMed Central
Google Scholar
87.Inagaki, F. et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349, 420–424 (2015).CAS
PubMed
Google Scholar
88.D’Hondt, S., Pockalny, R., Fulfer, V. M. & Spivack, A. J. Subseafloor life and its biogeochemical impacts. Nat. Commun. 10, 3519 (2019).PubMed
PubMed Central
Google Scholar
89.Petro, C., Starnawski, P., Schramm, A. & Kjeldsen, K. U. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).
Google Scholar
90.Teske, A. & Sørensen, K. B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2, 3–18 (2008).CAS
PubMed
Google Scholar
91.Orsi, W. D. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol. 16, 671–683 (2018).CAS
PubMed
Google Scholar
92.Sørensen, K. B. & Teske, A. Stratified communities of active Archaea in deep marine subsurface sediments. Appl. Environ. Microbiol. 72, 4596–4603 (2006).PubMed
PubMed Central
Google Scholar
93.Walsh, E. A. et al. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Appl. Environ. Microbiol. 82, 4994–4999 (2016).CAS
PubMed
PubMed Central
Google Scholar
94.Petro, C. et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front. Microbiol. 10, 758 (2019).PubMed
PubMed Central
Google Scholar
95.Jorgensen, S. L. et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl Acad. Sci. USA 109, E2846–E2855 (2012).CAS
PubMed
PubMed Central
Google Scholar
96.Edwards, K. J., Wheat, C. G. & Sylvan, J. B. Under the sea: microbial life in volcanic oceanic crust. Nat. Rev. Microbiol. 9, 703–712 (2011).CAS
PubMed
Google Scholar
97.Li, J. et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 579, 250–255 (2020). This is a multiple-approach exploration to provide the first insights into the ultralow-biomass microbial assemblages inhabiting the lithified lower oceanic crust.CAS
PubMed
Google Scholar
98.Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS
PubMed
PubMed Central
Google Scholar
99.Nyyssönen, M. et al. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J. 8, 126–138 (2014).PubMed
Google Scholar
100.Lin, X., Kennedy, D., Fredrickson, J., Bjornstad, B. & Konopka, A. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ. Microbiol. 14, 414–425 (2012).CAS
PubMed
Google Scholar
101.Osburn, M. R. et al. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA. Front. Microbiol. 5, 610 (2014).PubMed
PubMed Central
Google Scholar
102.Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).CAS
Google Scholar
103.Navarro-Noya, Y. E. et al. Pyrosequencing analysis of the bacterial community in drinking water wells. Microb. Ecol. 66, 19–29 (2013).PubMed
Google Scholar
104.Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).CAS
PubMed
Google Scholar
105.Bagnoud, A. et al. Reconstructing a hydrogen driven microbial metabolic network in Opalinus Clay rock. Nat. Commun. 7, 12770 (2016).CAS
PubMed
PubMed Central
Google Scholar
106.Magnabosco, C. et al. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J. 10, 730–741 (2016).CAS
PubMed
Google Scholar
107.Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 1915–1929 (2017).CAS
PubMed
PubMed Central
Google Scholar
108.Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).CAS
PubMed
PubMed Central
Google Scholar
109.Kantor, R. S. et al. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. mBio 4, e00708–e00713 (2013).PubMed
PubMed Central
Google Scholar
110.Wrighton, K. C. et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 8, 1452–1463 (2014).CAS
PubMed
PubMed Central
Google Scholar
111.Hallberg, K. B., Coupland, K., Kimura, S. & Johnson, D. B. Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl. Environ. Microbiol. 72, 2022–2030 (2006).CAS
PubMed
PubMed Central
Google Scholar
112.Belnap, C. P. et al. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions. ISME J. 5, 1152–1161 (2011).CAS
PubMed
PubMed Central
Google Scholar
113.Edwards, K. J. et al. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol. 65, 3627–3632 (1999).CAS
PubMed
PubMed Central
Google Scholar
114.Liu, J. et al. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl. Environ. Microbiol. 80, 3677–3686 (2014).PubMed
PubMed Central
Google Scholar
115.Golyshina, O. V. et al. ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ. Nat. Commun. 8, 60 (2017).PubMed
PubMed Central
Google Scholar
116.Antony, C. P. et al. Microbiology of Lonar Lake and other soda lakes. ISME J. 7, 468–476 (2013).PubMed
Google Scholar
117.Sorokin, D. Y. et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18, 791–809 (2014).CAS
PubMed
PubMed Central
Google Scholar
118.Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).CAS
PubMed
Google Scholar
119.Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA. 112, 15684–15689 (2015).CAS
PubMed
PubMed Central
Google Scholar
120.Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).CAS
PubMed
Google Scholar
121.Reinthaler, T. et al. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol. Oceanogr. 51, 1262–1273 (2006).CAS
Google Scholar
122.Hewson, I., Steele, J. A., Capone, D. G. & Fuhrman, J. A. Remarkable heterogeneity in meso- and bathypelagic bacterioplankton assemblage composition. Limnol. Oceanogr. 51, 1274–1283 (2006).
Google Scholar
123.DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).CAS
PubMed
Google Scholar
124.Pham, V. D., Konstantinidis, K. T., Palden, T. & DeLong, E. F. Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ. Microbiol. 10, 2313–2330 (2008).CAS
PubMed
Google Scholar
125.Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).CAS
PubMed
Google Scholar
126.Ziegler, S. et al. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria. ISME J. 7, 1725–1737 (2013).CAS
PubMed
PubMed Central
Google Scholar
127.Méndez-García, C. et al. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME J. 8, 1259–1274 (2014).PubMed
PubMed Central
Google Scholar
128.Klatt, C. G. et al. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J. 7, 1775–1789 (2013).CAS
PubMed
PubMed Central
Google Scholar
129.Klatt, C. G. et al. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments. Front. Microbiol. 4, 106 (2013).CAS
PubMed
PubMed Central
Google Scholar
130.Inskeep, W. P. et al. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS ONE 5, e9773 (2010).PubMed
PubMed Central
Google Scholar
131.Swingley, W. D. et al. Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem. PLoS ONE 7, e38108 (2012).CAS
PubMed
PubMed Central
Google Scholar
132.Liu, Z. et al. Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME J. 5, 1279–1290 (2011).CAS
PubMed
PubMed Central
Google Scholar
133.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).CAS
PubMed
Google Scholar
134.Ghai, R. et al. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep. 1, 135 (2011).PubMed
PubMed Central
Google Scholar
135.Uritskiy, G. et al. Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert. ISME J. 13, 2737–2749 (2019).CAS
PubMed
PubMed Central
Google Scholar
136.Uritskiy, G. et al. Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. Environ. Microbiol. 23, 3401–3417 (2021).CAS
PubMed
Google Scholar
137.Herrmann, M. et al. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl. Environ. Microbiol. 81, 2384–2394 (2015).CAS
PubMed
PubMed Central
Google Scholar
138.Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).CAS
PubMed
PubMed Central
Google Scholar
139.Mueller, R. S. et al. Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 6, 374 (2010).PubMed
PubMed Central
Google Scholar
140.Chen, L. X. et al. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ. Microbiol. 15, 2431–2444 (2013).CAS
PubMed
Google Scholar
141.Mueller, R. S. et al. Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environ. Microbiol. 13, 2279–2292 (2011).CAS
PubMed
Google Scholar
142.Mosier, A. C. et al. Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J. 9, 180–194 (2015).CAS
PubMed
Google Scholar
143.Papke, R. T., Koenig, J. E., Rodriguez-Valera, F. & Doolittle, W. F. Frequent recombination in a saltern population of Halorubrum. Science 306, 1928–1929 (2004).CAS
PubMed
Google Scholar
144.Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol. Biol. Evol. 22, 2354–2361 (2005).CAS
PubMed
Google Scholar
145.Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448 (2012).CAS
PubMed
Google Scholar
146.Reno, M. L., Held, N. L., Fields, C. J., Burke, P. V. & Whitaker, R. J. Biogeography of the Sulfolobus islandicus pan-genome. Proc. Natl Acad. Sci. USA 106, 8605–8610 (2009).CAS
PubMed
PubMed Central
Google Scholar
147.Mongodin, E. F. et al. The genome of Salinibacter Ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147–18152 (2005).CAS
PubMed
PubMed Central
Google Scholar
148.Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012). Comparative genomics provides evidence that massive amounts of gene influx from bacterial sources may have led to the drastic change in lifestyle in the extremely salt tolerant Haloarchaea.CAS
PubMed
PubMed Central
Google Scholar
149.Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct 7, 46 (2012).CAS
PubMed
PubMed Central
Google Scholar
150.Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2015).CAS
PubMed
Google Scholar
151.Simmons, S. L. et al. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol. 6, e177 (2008).PubMed
PubMed Central
Google Scholar
152.Lo, I. et al. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446, 537–541 (2007).CAS
PubMed
Google Scholar
153.Denef, V. J. et al. Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environ. Microbiol. 11, 313–325 (2009).CAS
PubMed
Google Scholar
154.Denef, V. J. et al. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc. Natl Acad. Sci. USA 107, 2383–2390 (2010).CAS
PubMed
PubMed Central
Google Scholar
155.Denef, V. J. & Banfield, J. F. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science 336, 462–466 (2012). This study provides a time-series population metagenomic analysis of microorganisms in exceptionally low diversity AMD biofilms, allowing for the first time measurement of evolutionary rates for wild populations.CAS
PubMed
Google Scholar
156.Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).CAS
PubMed
Google Scholar
157.Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. Biol. Sci. 278, 1009–1018 (2011).CAS
PubMed
Google Scholar
158.Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 17081 (2017).CAS
PubMed
PubMed Central
Google Scholar
159.Baker, B. J. et al. Diversity, ecology and evolution of archaea. Nat. Microbiol. 5, 887–900 (2020).CAS
PubMed
Google Scholar
160.Paul, B. G. et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat. Commun. 6, 6585 (2015).CAS
PubMed
Google Scholar
161.Paul, B. G. et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2, 17045 (2017).CAS
PubMed
PubMed Central
Google Scholar
162.Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).CAS
PubMed
Google Scholar
163.Anderson, R. E. et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat. Commun. 8, 1114 (2017).PubMed
PubMed Central
Google Scholar
164.Brazelton, W. J. & Baross, J. A. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J. 3, 1420–1424 (2009).CAS
PubMed
Google Scholar
165.Jansson, J. K. & Taş, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).CAS
PubMed
Google Scholar
166.Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539 (2016).CAS
PubMed
PubMed Central
Google Scholar
167.Clark, D. R. et al. Biogeography at the limits of life: do extremophilic microbial communities show biogeographical regionalization? Glob. Ecol. Biogeogr. 26, 1435–1446 (2017).
Google Scholar
168.Atanasova, N. S., Roine, E., Oren, A., Bamford, D. H. & Oksanen, H. M. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14, 426–440 (2012).CAS
PubMed
Google Scholar
169.Wilkins, D. et al. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol. Rev. 37, 303–335 (2013).CAS
PubMed
Google Scholar
170.Cavicchioli, R. Microbial ecology of Antarctic aquatic systems. Nat. Rev. Microbiol. 13, 691–706 (2015).CAS
PubMed
Google Scholar
171.López-Bueno, A. et al. High diversity of the viral community from an Antarctic lake. Science 326, 858–861 (2009).PubMed
Google Scholar
172.Aguirre de Cárcer, D., López-Bueno, A., Pearce, D. A. & Alcamí, A. Biodiversity and distribution of polar freshwater DNA viruses. Sci. Adv. 1, e1400127 (2015).PubMed
PubMed Central
Google Scholar
173.Yau, S. et al. Virophage control of Antarctic algal host–virus dynamics. Proc. Natl Acad. Sci. USA 108, 6163–6168 (2011). This is the first study to reveal the important ecological roles of virophages and their regulation of host–virus interactions.CAS
PubMed
PubMed Central
Google Scholar
174.Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020). Analysis of massive metagenomic datasets revealed clades of huge phages from diverse habitats, including extreme environments.CAS
PubMed
PubMed Central
Google Scholar
175.Tschitschko, B. et al. Antarctic archaea-virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME J. 9, 2094–2107 (2015).CAS
PubMed
PubMed Central
Google Scholar
176.Mosier, A. C. et al. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage. Front. Microbiol. 7, 238 (2016).PubMed
PubMed Central
Google Scholar
177.Quemener, M. et al. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ. Microbiol. 22, 3950–3967 (2020).CAS
PubMed
Google Scholar
178.Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).CAS
PubMed
Google Scholar
179.Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).CAS
PubMed
PubMed Central
Google Scholar
180.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed
Google Scholar
181.Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).CAS
PubMed
PubMed Central
Google Scholar
182.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).CAS
PubMed
PubMed Central
Google Scholar
183.López-Pérez, M., Haro-Moreno, J. M., Coutinho, F. H., Martinez-Garcia, M. & Rodriguez-Valera, F. The evolutionary success of the marine bacterium SAR11 analyzed through a metagenomic perspective. mSystems 5, e00605-20 (2020).PubMed
PubMed Central
Google Scholar
184.Altshuler, I., Goordial, J. & Whyte, L. G. in Psychrophiles: From Biodiversity to Biotechnology (ed. Margesin, R.) 153–180 (Springer International Publishing, 2017).185.Huang, L. N., Kuang, J. L. & Shu, W. S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol. 24, 581–593 (2016).CAS
PubMed
Google Scholar
186.Klatt, C. G. et al. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J. 5, 1262–1278 (2011).CAS
PubMed
PubMed Central
Google Scholar
187.Menzel, P. et al. Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb. Ecol. 70, 411–424 (2015).PubMed
Google Scholar
188.Stokke, R. et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ. Microbiol. 17, 4063–4077 (2015).CAS
PubMed
Google Scholar
189.Zeng, Y. et al. Potential rhodopsin- and bacteriochlorophyll-based dual phototrophy in a High Arctic glacier. mBio 11, e02641–20 (2020).CAS
PubMed
PubMed Central
Google Scholar
190.Simon, C., Wiezer, A., Strittmatter, A. W. & Daniel, R. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl. Environ. Microbiol. 75, 7519–7526 (2009).CAS
PubMed
PubMed Central
Google Scholar
191.Lipson, D. A. et al. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLoS ONE 8, e64659 (2013).CAS
PubMed
PubMed Central
Google Scholar
192.Podell, S. et al. Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS ONE 8, e61692 (2013).CAS
PubMed
PubMed Central
Google Scholar
193.DeMaere, M. Z. et al. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc. Natl Acad. Sci. USA. 110, 16939–16944 (2013).CAS
PubMed
PubMed Central
Google Scholar
194.Smith, A. R. et al. Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME J. 13, 1737–1749 (2019).CAS
PubMed
PubMed Central
Google Scholar
195.Zhao, R. et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc. Natl Acad. Sci. USA. 117, 32617–32626 (2020).CAS
PubMed
PubMed Central
Google Scholar
196.Luo, Z. H. et al. Diversity and genomic characterization of a novel Parvarchaeota family in acid mine drainage sediments. Front. Microbiol. 11, 612257 (2020).PubMed
PubMed Central
Google Scholar
197.Lewin, A., Wentzel, A. & Valla, S. Metagenomics of microbial life in extreme temperature environments. Curr. Opin. Biotechnol. 24, 516–525 (2013).CAS
PubMed
Google Scholar
198.Schlesinger, M. J. Heat-shock proteins. J. Biol. Chem. 265, 12111–12114 (1990).CAS
PubMed
Google Scholar
199.D’Amico, S., Collins, T., Marx, J.-C., Feller, G. & Gerday, C. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385–389 (2006).PubMed
PubMed Central
Google Scholar
200.Bakermans, C., Bergholz, P. W., Ayala-del-Río, H. & Tiedje, J. in Permafrost Soils (ed. Margesin, R.) 159–168 (Springer, 2009).201.Gunde-Cimerman, N., Plemenitaš, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375 (2018).CAS
PubMed
Google Scholar
202.Baker-Austin, C. & Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165–171 (2007).CAS
PubMed
Google Scholar
203.Dopson, M., Baker-Austin, C., Koppineedi, P. R. & Bond, P. L. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149, 1959–1970 (2003).CAS
PubMed
Google Scholar
204.Dopson, M., Ossandon, F. J., Lövgren, L. & Holmes, D. S. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms. Front. Microbiol. 5, 157 (2014).PubMed
PubMed Central
Google Scholar
205.Allen, E. E. & Banfield, J. F. Community genomics in microbial ecology and evolution. Nat. Rev. Microbiol. 3, 489–498 (2005).CAS
PubMed
Google Scholar
206.Sakowski, E. et al. Current state of and future opportunities for prediction in microbiome research: report from the Mid-Atlantic Microbiome Meet-up in Baltimore on 9 January 2019. mSystems 4, e00392–19 (2019).PubMed
PubMed Central
Google Scholar
207.Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).PubMed
Google Scholar More