Short term fluctuating temperature alleviates Daphnia stoichiometric constraints
1.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article
Google Scholar
2.Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706. https://doi.org/10.1038/nature09407 (2010).ADS
CAS
Article
PubMed
Google Scholar
3.Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).Article
Google Scholar
4.Elser, J., Obrien, W., Dobberfuhl, D. & Dowling, T. The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. J. Evol. Biol. 13, 845–853 (2000).Article
Google Scholar
5.Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).ADS
CAS
Article
Google Scholar
6.Hessen, D. O., Faerovig, P. J. & Andersen, T. Light, nutrients, and P : C ratios in algae: Grazer performance related to food quality and quantity. Ecology 83, 1886–1898 (2002).Article
Google Scholar
7.Moody, E. K., Rugenski, A. T., Sabo, J. L., Turner, B. L. & Elser, J. J. Does the growth rate hypothesis apply across temperatures? Variation in the growth rate and body phosphorus of neotropical benthic grazers. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00014 (2017).Article
Google Scholar
8.Prater, C., Wagner, N. D. & Frost, P. C. Seasonal effects of food quality and temperature on body stoichiometry, biochemistry, and biomass production in Daphnia populations. Limnol. Oceanogr. 63, 1727–1740. https://doi.org/10.1002/lno.10803 (2018).ADS
CAS
Article
Google Scholar
9.Boersma, M. et al. Temperature driven changes in the diet preference of omnivorous copepods: No more meat when it’s hot?. Ecol. Lett. 19, 45–53. https://doi.org/10.1111/ele.12541 (2016).Article
PubMed
Google Scholar
10.Wojewodzic, M. W., Kyle, M., Elser, J. J., Hessen, D. O. & Andersen, T. Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna. Oecologia 165, 837–846. https://doi.org/10.1007/s00442-010-1863-2 (2011).ADS
Article
PubMed
Google Scholar
11.Starke, C. W. E., Jones, C. L. C., Burr, W. S. & Frost, P. C. Interactive effects of water temperature and stoichiometric food quality on Daphnia pulicaria. Freshwat. Biol. 66, 256–265. https://doi.org/10.1111/fwb.13633 (2020).CAS
Article
Google Scholar
12.Ruiz, T. et al. U-shaped response Unifies views on temperature dependency of stoichiometric requirements. Ecol. Lett. 23, 860–869. https://doi.org/10.1111/ele.13493 (2020).Article
PubMed
Google Scholar
13.Persson, J., Wojewodzic, M. W., Hessen, D. O. & Andersen, T. Increased risk of phosphorus limitation at higher temperatures for Daphnia magna. Oecologia 165, 123–129. https://doi.org/10.1007/s00442-010-1756-4 (2011).ADS
Article
PubMed
Google Scholar
14.Malzahn, A. M., Doerfler, D. & Boersma, M. Junk food gets healthier when it’s warm. Limnol. Oceanogr. 61, 1677–1685. https://doi.org/10.1002/lno.10330 (2016).ADS
Article
Google Scholar
15.Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 21, 1025–1040. https://doi.org/10.1111/gcb.12809 (2015).ADS
Article
Google Scholar
16.Woods, H. A. et al. Temperature and the chemical composition of poikilothermic organisms. Funct. Ecol. 17, 237–245. https://doi.org/10.1046/j.1365-2435.2003.00724.x (2003).Article
Google Scholar
17.Cotner, J. B., Makino, W. & Biddanda, B. A. Temperature affects stoichiometry and biochemical composition of Escherichia coli. Microb. Ecol. 52, 26–33. https://doi.org/10.1007/s00248-006-9040-1 (2006).CAS
Article
PubMed
Google Scholar
18.Hessen, D. O. et al. Changes in stoichiometry, cellular RNA, and alkaline phosphatase activity of Chlamydomonas in response to temperature and nutrients. Front. Microbiol. 8, 18. https://doi.org/10.3389/fmicb.2017.00018 (2017).Article
PubMed
PubMed Central
Google Scholar
19.Van Geest, G. J., Sachse, R., Brehm, M., van Donk, E. & Hessen, D. Maximizing growth rate at low temperatures: RNA:DNA allocation strategies and life history traits of Arctic and temperate Daphnia. Polar Biol. 33, 1255–1262 (2010).Article
Google Scholar
20.Prater, C., Wagner, N. D. & Frost, P. C. Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology 98, 1399–1408. https://doi.org/10.1002/ecy.1795 (2017).Article
PubMed
Google Scholar
21.Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).Article
Google Scholar
22.Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridge, J. K. Towards a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011).ADS
Article
Google Scholar
23.Dawidowicz, P. & Loose, C. J. Metabolic costs during predator-induced diel vertical migration of Daphnia. Limnol. Oceanogr. 37, 1589–1595 (1992).ADS
Article
Google Scholar
24.Mikulski, A., Grzesiuk, M., Rakowska, A., Bernatowicz, P. & Pijanowska, J. Thermal shock in Daphnia: cost of diel vertical migrations or inhabiting thermally-unstable waterbodies?. Fund. Appl. Limnol. 190, 213–220. https://doi.org/10.1127/fal/2017/0989 (2017).Article
Google Scholar
25.Reichwaldt, E. S., Wolf, I. D. & Stibor, H. Effects of a fluctuating temperature regime experienced by Daphnia during diel vertical migration on Daphnia life history parameters. Hydrobiologia 543, 199–205. https://doi.org/10.1007/s10750-004-7451-x (2005).Article
Google Scholar
26.Orcutt, J. D. & Porter, K. G. Diel vertical migration in zooplankton. Constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol. Oceanogr. 28, 720–730 (1983).ADS
Article
Google Scholar
27.Stich, H. B. & Lampert, W. Growth and reproduction of migrating and non-migrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration. Oecologia 61, 192–196. https://doi.org/10.1007/BF00396759 (1984).ADS
Article
PubMed
Google Scholar
28.Fischer, J. M. et al. Diel vertical migration of copepods in mountain lakes: The changing role of ultraviolet radiation across a transparency gradient. Limnol. Oceanogr. 60, 252–262. https://doi.org/10.1002/lno.10019 (2015).ADS
Article
Google Scholar
29.Kessler, K., Lockwood, R. S., Williamson, C. E. & Saros, J. E. Vertical distribution of zooplankton in subalpine and alpine lakes: Ultraviolet radiation, fish predation, and the transparency-gradient hypothesis. Limnol. Oceanogr. 53, 2374–2382 (2008).ADS
Article
Google Scholar
30.Bergström, A.-K., Karlsson, J., Karlsson, D. & Vrede, T. Contrasting plankton stoichiometry and nutrient regeneration in northern arctic and boreal lakes. Aquat. Sci. https://doi.org/10.1007/s00027-018-0575-2 (2018).Article
Google Scholar
31.Sterner, R. W. On the phosphorus limitation paradigm for lakes. Int. Rev. Hydrobiol. 93, 433–445. https://doi.org/10.1002/iroh.200811068 (2008).CAS
Article
Google Scholar
32.Sterner, R. W. C: N: P stoichiometry in Lake superior: Freshwater sea as end member. Inland Waters 1, 29–46 (2011).CAS
Article
Google Scholar
33.Modenutti, B. E. et al. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquat. Sci. 75, 361–371. https://doi.org/10.1007/s00027-012-0282-3 (2013).CAS
Article
Google Scholar
34.Longhi, M. L. & Beisner, B. E. Environmental factors controlling the vertical distribution of phytoplankton in lakes. J. Plankton Res. 31, 1195–1207. https://doi.org/10.1093/plankt/fbp065 (2009).CAS
Article
Google Scholar
35.Leach, T. H. et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 63, 628–646. https://doi.org/10.1002/lno.10656 (2018).ADS
CAS
Article
Google Scholar
36.Laspoumaderes, C. et al. Glacier melting and stoichiometric implications for lake community structure: Zooplankton species distributions across a natural light gradient. Glob. Change Biol. 19, 316–326. https://doi.org/10.1111/gcb.12040 (2013).ADS
Article
Google Scholar
37.Jacobs, A. F. G., Jetten, T. H., Lucassen, D., Heusinkveld, B. G. & Joost, P. N. Diurnal temperature fluctuations in a natural shallow water body. Agric. For. Meteorol. 88, 269–277. https://doi.org/10.1016/S0168-1923(97)00039-7 (1997).ADS
Article
Google Scholar
38.Vilas, M. P., Marti, C. L., Adams, M. P., Oldham, C. E. & Hipsey, M. R. Invasive macrophytes control the spatial and temporal patterns of temperature and dissolved oxygen in a shallow lake: A proposed feedback mechanism of macrophyte loss. Front. Plant Sci. 8, 2097. https://doi.org/10.3389/fpls.2017.02097 (2017).Article
PubMed
PubMed Central
Google Scholar
39.Burks, R. L., Lodge, D. M., Jeppesen, E. & Lauridsen, T. L. Diel horizontal migration of zooplankton: Costs and benefits of inhabiting the littoral. Freshwat. Biol. 47, 343–365 (2002).Article
Google Scholar
40.Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).ADS
CAS
Article
Google Scholar
41.Balseiro, E. G., Modenutti, B. E., Queimaliños, C. & Reissig, M. Daphnia distribution in Andean Patagonian lakes: Effect of low food quality and fish predation. Aquat. Ecol. 41, 599–609 (2007).CAS
Article
Google Scholar
42.Modenutti, B. E., Wolinski, L., Souza, M. S. & Balseiro, E. G. When eating a prey is risky: Implications for predator diel vertical migration. Limnol. Oceanogr. 63, 939–950. https://doi.org/10.1002/lno.10681 (2018).ADS
Article
Google Scholar
43.Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73. https://doi.org/10.1038/417070a (2002).ADS
CAS
Article
PubMed
Google Scholar
44.Acharya, K., Kyle, M. & Elser, J. J. Biological stoichiometry of Daphnia growth: An ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 49, 656–665 (2004).ADS
CAS
Article
Google Scholar
45.Souza, M. S., Hansson, L.-A., Hylander, S., Modenutti, B. E. & Balseiro, E. G. Rapid enzymatic response to compensate UV radiation in copepods. PLoS ONE 7, e32046. https://doi.org/10.1371/journal.pone.0032046 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
46.Wolinski, L., Modenutti, B., Souza, M. S. & Balseiro, E. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity. Environ. Pollut. 213, 135–142. https://doi.org/10.1016/j.envpol.2016.02.016 (2016).CAS
Article
PubMed
Google Scholar
47.Xie, J. et al. Physiological effects of compensatory growth during the larval stage of the ladybird Cryptolaemus montrouzieri. J. Insect Physiol. 83, 37–42. https://doi.org/10.1016/j.jinsphys.2015.11.001 (2015).CAS
Article
PubMed
Google Scholar
48.Dmitriew, C. & Rowe, L. Resource limitation, predation risk and compensatory growth in a damselfly. Oecologia 142, 150–154. https://doi.org/10.1007/s00442-004-1712-2 (2005).ADS
Article
PubMed
Google Scholar
49.Malzahn, A. M. & Boersma, M. Effects of poor food quality on copepod growth are dose dependent and non-reversible. Oikos 121, 1408–1416. https://doi.org/10.1111/j.1600-0706.2011.20186.x (2012).Article
Google Scholar
50.Droop, M. R. Some thoughts on nutrient limitation in algae. J. PhycoI. 9, 264–272 (1973).CAS
Article
Google Scholar
51.Boersma, M. The nutritional quality of P-limited algae for Daphnia. Limnol. Oceanogr. 45, 1157–1161 (2000).ADS
CAS
Article
Google Scholar
52.Plath, K. & Boersma, M. Mineral limitation of zooplankton: Stoichiometric constraints and optimal foraging. Ecology 82, 1260–1269 (2001).Article
Google Scholar
53.Barbiero, R. P. & Tuchman, M. L. Results from the US EPA’s biological open water surveillance program of the Laurentian Great Lakes: II. Deep chlorophyll maxima. J. Great Lakes Res. 27, 155–166 (2001).CAS
Article
Google Scholar
54.Camacho, A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25, 453–478 (2006).
Google Scholar
55.Pérez, G. L., Queimaliños, C. P. & Modenutti, B. E. Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J. Plankton Res. 24, 591–599 (2002).Article
Google Scholar
56.Magee, M. R. & Wu, C. H. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrol. Earth Syst. Sci. 21, 6253–6274. https://doi.org/10.5194/hess-21-6253-2017 (2017).ADS
Article
Google Scholar
57.Niedrist, G. H., Psenner, R. & Sommaruga, R. Climate warming increases vertical and seasonal water temperature differences and inter-annual variability in a mountain lake. Clim. Change 151, 473–490. https://doi.org/10.1007/s10584-018-2328-6 (2018).ADS
Article
Google Scholar
58.Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E. & Herrera, L. COMBO – A defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377, 147–159 (1998).CAS
Article
Google Scholar
59.Guillard, R. R. L. & Lorenzen, C. J. Yellow-green algae with chlorophyllide c. J. Phycol. 8, 10–14 (1972).CAS
Google Scholar
60.Balseiro, E. G., Souza, M. S., Modenutti, B. E. & Reissig, M. Living in transparent lakes: Low food P: C ratio decreases antioxidant response to ultraviolet radiation in Daphnia. Limnol. Oceanogr. 53, 2383–2390 (2008).ADS
CAS
Article
Google Scholar
61.Laspoumaderes, C., Souza, M. S., Modenutti, B. E. & Balseiro, E. Glacier melting and response of Daphnia oxidative stress. J. Plankton Res. 39, 675–686. https://doi.org/10.1093/plankt/fbx028 (2017).CAS
Article
Google Scholar
62.APHA. Standard methods for the examination of water and wastewater. (American Public Health Association, AWWA, 2005).63.Gorokhova, E. & Kyle, M. Analysis of nucleic acids in Daphnia: development of methods and ontogenetic variations in RNA-DNA content. J. Plankton Res. 24, 511–522 (2002).CAS
Article
Google Scholar More