More stories

  • in

    Microbial dysbiosis reflects disease resistance in diverse coral species

    1.Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. & Weil, E. Climate change and wildlife diseases: when does the host matter the most? Ecology 90, 912–920 (2009).2.Wood, C. L. & Johnson, P. T. J. A world without parasites: exploring the hidden ecology of infection. Front. Ecol. Environ. 13, 425–434 (2015).3.Randall, C. J. & Van Woesik, R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat. Clim. Chang. 5, 375–379 (2015).Article 

    Google Scholar 
    4.Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, 1220–1227 (2007).Article 
    CAS 

    Google Scholar 
    5.Pollock, F. J. et al. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLoS ONE 9, e102498 (2014).6.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).7.Lafferty, K. D. & Kuris, A. M. Mass mortality of abalone Haliotis cracherodii on the California Channel Islands: tests of epidemiological hypotheses. Mar. Ecol. Prog. Ser. 96, 239–239 (1993).8.Miner, C. M. et al. Large-scale impacts of sea star wasting disease (SSWD) on intertidal sea stars and implications for recovery. PLoS ONE 13, e0192870 (2018).9.Patterson, K. L. et al. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc. Natl Acad. Sci. USA 99, 8725–8730 (2002).10.Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia. 460, 25–38 (2001).Article 

    Google Scholar 
    11.Weil, E., Croquer, A. & Urreiztieta, I. Temporal variability and impact of coral diseases and bleaching in La Parguera, Puerto Rico from 2003-2007. Caribb. J. Sci. 45, 221–246 (2009).12.Muller, E. et al. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs. 28, 925–937 (2009).Article 

    Google Scholar 
    13.Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl Acad. Sci. USA 101, 8251–8253 (2004).14.Jones, D. O. B. et al. Global reductions in seafloor biomass in response to climate change. Glob Chang Biol. 20, 1861–1872 (2014).15.Descombes, P. et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Chang Biol. 21, 2479–2487 (2015).16.Weil, E., Smith, G. & Gil-Agudelo, D. L. Status and progress in coral reef disease research. Dis. Aquatic Organ. 69, 1–7 (2006).17.Sutherland, K. P., Porter, J. W. & Torres, C. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine Ecol. Progress Ser. 266, 273–302 (2004).18.Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).19.Williams, L., Smith, T. B., Burge, C. A. & Brandt, M. E. Species-specific susceptibility to white plague disease in three common Caribbean corals. Coral Reefs 39, 27–31 (2020).20.Velthuis, A. G. J., Bouma, A., Katsma, W. E. A., Nodelijk, G. & De Jong, M. C. M. Design and analysis of small-scale transmission experiments with animals. Epidemiol. Infect. 135, 202–217 (2007).21.Richardson, L. L., Goldberg, W. M., Carlton, R. G. & Halas, J. C. Coral disease outbreak in the Florida keys: Plague type II. Rev. Biol. Trop. 46, 187–198 (1998).
    Google Scholar 
    22.Frias-Lopez, J., Klaus, J. S., Bonheyo, G. T. & Fouke, B. W. Bacterial community associated with black band disease in corals. Appl. Environ. Microbiol. 70, 5955–5962 (2004).23.Soffer, N., Brandt, M. E., Correa, A. M. S., Smith, T. B. & Thurber, R. V. Potential role of viruses in white plague coral disease. ISME J. 8, 271–283 (2014).24.Sweet, M. et al. Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease. Microbiome 7, 1–14 (2019).25.Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Marine Sci. 4, 9 (2017).26.Egan, S. & Gardiner, M. Microbial dysbiosis: rethinking disease in marine ecosystems. Front. Microbiol. 7, 991 (2016).27.Ezzat, L. et al. Parrotfish predation drives distinct microbial communities in reef-building corals. Anim. Microbiome 2, 5 (2020).28.Ezzat, L. et al. Surgeonfish feces increase microbial opportunism in reef-building corals. Mar. Ecol. Prog. Ser. 631, 81–97 (2019).29.Meyer, J. L. et al. Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida reef tract. Front. Microbiol. 10, 2244 (2019).30.Lima, L. F. O. et al. Modeling of the coral microbiome: the influence of temperature and microbial network. MBio. 11, e02691–19 (2020).31.Thurber, R. V. et al. Deciphering coral disease dynamics: integrating host, microbiome, and the changing environment. Front. Ecol. Evol. 8, 402 (2020).
    Google Scholar 
    32.Cárdenas, A., Rodriguez-R, L. M., Pizarro, V., Cadavid, L. F. & Arévalo-Ferro, C. Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. ISME J. 6, 502–512 (2012).Article 
    CAS 

    Google Scholar 
    33.Meyer, J. L., Gunasekera, S. P., Scott, R. M., Paul, V. J. & Teplitski M. Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. ISME J. 10, 1204–1216 (2016).34.Sweet M. J., Burian A., Bulling M. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. OSF Prepr. https://doi.org/10.31219/osf.io/gv6s7 (2020).35.Glasl, B. et al. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 7, 1–13 (2019).36.Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 1–8 (2017).37.Fan, L., Liu, M., Simister, R., Webster, N. S. & Thomas T. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 7, 991–1002 (2013).38.Darling, E. S., Alvarez-Filip, L., Oliver, T. A., Mcclanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).39.Calnan, J. M., Smith, T. B., Nemeth, R. S., Kadison, E. & Blondeau, J. Coral disease prevalence and host susceptibility on mid-depth and deep reefs in the United States Virgin Islands. Rev. Biol. Trop. 56, 223–224 (2008).40.Perry, C. T. et al. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob Chang Biol. 21, 1153–1164 (2015).41.Okazaki, R. R. et al. Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Glob. Chang Biol. 23, 1023–1035 (2017).42.Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10 (2008).43.Pinzón, C. J. H., Beach-Letendre, J., Weil, E. & Mydlarz, L. D. Relationship between phylogeny and immunity suggests older caribbean coral lineages are more resistant to disease. PLoS ONE 9, e104787 (2014).44.Smith, T. B. et al. Convergent mortality responses of Caribbean coral species to seawater warming. Ecosphere 4, 1–40 (2013).45.Jolles, A. E., Sullivan, P., Alker, A. P., Harvell, C. D. Disease transmission of aspergillosis in sea fans: Inferring process from spatial pattern. Ecology 83, 2373–2378 (2002).46.Shore, A. & Caldwell, J. M. Modes of coral disease transmission: how do diseases spread between individuals and among populations? Mar. Biol. 166, 45 (2019).Article 

    Google Scholar 
    47.Glasl, B., Herndl, G. J., Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 10, 2280–2292 (2016).48.Lesser, M. P., Bythell, J. C., Gates, R. D. & Johnstone, R. W., Hoegh-Guldberg, O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Bio. Ecol. 346, 36–44 (2007).49.Muller, E. M. & Van Woesik, R. Caribbean coral diseases: primary transmission or secondary infection? Glob. Chang Biol. 18, 3529–3535 (2012).50.Fernandes, N. et al. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS ONE 6, e27387 (2011).51.Vandecandelaere, I. et al. Nautella italica gen. nov., sp. nov., isolated from a marine electroactive biofilm. Int. J. Syst. Evol. Microbiol. 59, 811–817 (2009).52.Dang, H. & Lovell, C. R. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 66, 467–475 (2000).53.Kviatkovski, I. & Minz, D. A member of the Rhodobacteraceae promotes initial biofilm formation via the secretion of extracellular factor(s). Aquat. Microb. Ecol. 75, 155–167 (2015).54.Rosales, S. M., Clark, A. S., Huebner, L. K., Ruzicka, R. R. & Muller E. M. Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front. Microbiol. 11, 681 (2020).55.Campbell, A. H., Harder, T., Nielsen, S., Kjelleberg, S. & Steinberg, P. D. Climate change and disease: bleaching of a chemically defended seaweed. Glob. Chang. Biol. 17, 2958–2970 (2011).56.Kumar, V., Zozaya-Valdes, E., Kjelleberg, S., Thomas, T. & Egan, S. Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. Environ. Microbiol. 18, 3962–3975 (2016).57.Brandt, M. E. & Mcmanus, J. W. Disease incidence is related to bleaching extent in reef-building corals. Ecology 90, 2859–2867 (2009).58.Brandt, M. E., Smith, T. B., Correa, A. M. S. & Vega-Thurber, R. Disturbance driven colony fragmentation as a driver of a coral disease outbreak. PLoS ONE 8, e57164 (2013).59.Godwin, S., Bent, E., Borneman, J. & Pereg, L. The role of coral-associated bacterial communities in Australian subtropical white Syndrome of Turbinaria mesenterina. PLoS ONE 7, e44243 (2012).60.Ranson, H. J. et al. Draft Genome Sequence of the Putative Marine Pathogen Thalassobius sp. I31.1. Microbiol. Resour. Announc. 8, e01431–18 (2019).61.Miller A. W., Richardson L. L. Fine structure analysis of black band disease (BBD) infected coral and coral exposed to the BBD toxins microcystin and sulfide. J. Invertebr. Pathol. 109, 27–33 (2012).62.Geffen, Y., Ron, E. Z. & Rosenberg, E. Regulation of release of antibacterials from stressed scleractinian corals. FEMS Microbiol. Lett. 295, 103–109 (2009).63.Beurmann, S. et al. Pseudoalteromonas piratica strain OCN003 is a coral pathogen that causes a switch from chronic to acute Montipora white syndrome in Montipora capitata. PLoS ONE (2017).64.Apprill, A., Marlow, H. Q., Martindale, M. Q., Rappé, M. S. Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. Appl. Environ. Microbiol. 78, 7467–7475 (2012).65.Shnit-Orland, M., Sivan, A. & Kushmaro, A. Antibacterial activity of Pseudoalteromonas in the Coral Holobiont. Microb. Ecol. 64, 851–859 (2012).66.Sunagawa, S. et al. Bacterial diversity and white Plague disease-associated community changes in the caribbean coral montastraea faveolata. ISME J. 3, 512–521 (2009).Article 
    CAS 

    Google Scholar 
    67.Bettarel, Y. et al. Corallivory and the microbial debacle in two branching scleractinians. ISME J. 12, 1109–1126 (2018).68.Ritchie, K. B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).69.Bayer, T. et al. The microbiome of the red sea coral stylophora pistillata is dominated by tissue-associated endozoicomonas bacteria. Appl. Environ. Microbiol. 79, 4759–4762 (2013).70.Lesser, M. P. & Jarett, J. K. Culture-dependent and culture-independent analyses reveal no prokaryotic community shifts or recovery of Serratia marcescens in Acropora palmata with white pox disease. FEMS Microbiol. Ecol. 88, 457–467 (2014).Article 
    CAS 

    Google Scholar 
    71.Morrow, K. M., Muller, E. & Lesser, M. P. How does the coral microbiome cause, respond to, or modulate the bleaching process? Coral Bleaching 233, 153–188 (2018).72.Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 1–13 (2018).73.Price, E. P. et al. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR. PLoS ONE 8, e71647 (2013).74.Price, E. P. et al. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis. PLoS Negl. Trop. Dis. 11, e0005928 (2017).75.Therneau, T. Package Survival: A Package for Survival Analysis in R. R Package version 238. (2015).76.Oksanen, J. et al. Vegan: community ecology. R package version 2.2-1. (2015).77.Andres, B., David, O., Sebastien, V., Julien, De B. & Fabien, L. betapart: partitioning Beta Diversity into Turnover and Nestedness Components. R Packag. (1.5.1). https://cran.r-project.org/package=betapart (2018).78.nmacknight. nmacknight/16sCommunityAnalysis: First Release. 2021 Mar 24 [cited 2021 Mar 24]: https://doi.org/10.5281/zenodo.4635319#.YFvOI-zLDNs.mendeley. (2021). More

  • in

    Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees

    Exp 1: chemo-tactile conditioning of the proboscis extension response (PER)Bee foragers may assess the quality of floral nectars through chemo-sensilla located on their antennae47. In this first experiment, we asked whether nectar-relevant concentrations of GABA, β-alanine, taurine, citrulline and ornithine can be detected by bees through their antennae. To this aim, we used a chemo-tactile differential conditioning of PER protocol48 in which different groups of bees were trained to discriminate one of the five NPAAs from water. Briefly, tethered bees experienced five pairings of a neutral stimulus (either NPAA-laced water or water) (CS+) with a 30% sucrose solution reinforcement (US) and five pairings (either water or NPAA-laced water) (CS−) with a saturated NaCl solution (US) used as punishment. The results showed that bees increased their response to both the rewarded (CS+) and the punished (CS−) stimuli over the ten conditioning trials (GLMM, trial: GABA: n = 76, χ2 = 65.75, df = 1, p  More

  • in

    Global patterns of geo-ecological controls on the response of soil respiration to warming

    1.Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).CAS 
    Article 

    Google Scholar 
    2.Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).Article 

    Google Scholar 
    3.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).CAS 
    Article 

    Google Scholar 
    4.Houghton, R. A. The contemporary carbon cycle. Treatise Geochem. 8, 473–513 (2003).Article 

    Google Scholar 
    5.Paterson, E., Midwood, A. J. & Millard, P. Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytol. 184, 19–33 (2009).CAS 
    Article 

    Google Scholar 
    6.Bader, M. K. F. & Körner, C. No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob. Change Biol. 16, 2830–2843 (2010).Article 

    Google Scholar 
    7.Reynolds, L. L., Lajtha, K., Bowden, R. D., Johnson, B. R. & Bridgham, S. D. The carbon quality–temperature hypothesis does not consistently predict temperature sensitivity of soil organic matter mineralization in soils from two manipulative ecosystem experiments. Biogeochemistry 136, 249–260 (2017).CAS 
    Article 

    Google Scholar 
    8.Knorr, W., Prentice, I. C., House, J. & Holland, E. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).CAS 
    Article 

    Google Scholar 
    9.Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil–carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS 
    Article 

    Google Scholar 
    10.Kirschbaum, M. U. F. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006).CAS 
    Article 

    Google Scholar 
    11.Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).CAS 
    Article 

    Google Scholar 
    12.Pries, C. E. H., Castanha, C., Porras, R. & Torn, M. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).Article 
    CAS 

    Google Scholar 
    13.Li, J. et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Glob. Change Biol. 25, 900–910 (2019).Article 

    Google Scholar 
    14.Schaphoff, S. et al. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026 (2013).CAS 
    Article 

    Google Scholar 
    15.Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020).CAS 
    Article 

    Google Scholar 
    16.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    Article 

    Google Scholar 
    17.Koven, C. D. et al. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 10, 7109–7131 (2013).CAS 
    Article 

    Google Scholar 
    18.Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4, 1099–1102 (2014).CAS 
    Article 

    Google Scholar 
    19.Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).CAS 
    Article 

    Google Scholar 
    20.Wieder, W. R. et al. Explicitly representing soil microbial processes in Earth system models. Glob. Biogeochem. Cycles 29, 1782–1800 (2015).CAS 
    Article 

    Google Scholar 
    21.Gonzalez-Dominguez, B. et al. Temperature and moisture are minor drivers of regional-scale soil organic carbon dynamics. Sci. Rep. 9, 6422 (2019).CAS 
    Article 

    Google Scholar 
    22.Blankinship, J. C. et al. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry 140 (2018).23.Koven, C. D. et al. Permafrost carbon–climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).CAS 
    Article 

    Google Scholar 
    24.Angst, G. et al. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol. Biochem. 122, 19–30 (2018).CAS 
    Article 

    Google Scholar 
    25.Abramoff, R. et al. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137, 51–71 (2017).Article 

    Google Scholar 
    26.Doetterl, S. et al. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat. Geosci. 11, 589–593 (2018).CAS 
    Article 

    Google Scholar 
    27.Hamdi, S., Moyano, F., Sall, S., Bernoux, M. & Chevallier, T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126 (2013).CAS 
    Article 

    Google Scholar 
    28.Hashimoto, S. et al. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12, 4121–4132 (2015).Article 

    Google Scholar 
    29.Varney, R. M. et al. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat. Commun. 11, 5544 (2020).CAS 
    Article 

    Google Scholar 
    30.Wu, D., Piao, S., Liu, Y., Ciais, P. & Yao, Y. Evaluation of CMIP5 Earth System Models for the spatial patterns of biomass and soil carbon turnover times and their linkage with climate. J. Clim. 31, 5947–5960 (2018).Article 

    Google Scholar 
    31.Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2018).Article 

    Google Scholar 
    32.Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).CAS 
    Article 

    Google Scholar 
    33.Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).CAS 
    Article 

    Google Scholar 
    34.Foereid, B., Ward, D., Mahowald, N., Paterson, E. & Lehmann, J. The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth Syst. Dynam. 5, 211–221 (2014).Article 

    Google Scholar 
    35.Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).Article 

    Google Scholar 
    36.Post, H., Vrugt, J. A., Fox, A., Vereecken, H. & Hendricks Franssen, H. J. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites. J. Geophys. Res. Biogeosci. 122, 661–689 (2017).CAS 
    Article 

    Google Scholar 
    37.Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).CAS 
    Article 

    Google Scholar 
    38.Bailey, V. L. et al. Soil carbon cycling proxies: understanding their critical role in predicting climate change feedbacks. Glob. Change Biol. 24, 895–905 (2018).Article 

    Google Scholar 
    39.Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).Article 

    Google Scholar 
    40.Meyer, N., Welp, G. & Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 32, 306–323 (2018).CAS 
    Article 

    Google Scholar 
    41.Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).CAS 
    Article 

    Google Scholar 
    42.Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).CAS 
    Article 

    Google Scholar 
    43.Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).CAS 
    Article 

    Google Scholar 
    44.Cusack, D. F. et al. Decadal-scale litter manipulation alters the biochemical and physical character of tropical forest soil carbon. Soil Biol. Biochem. 124, 199–209 (2018).CAS 
    Article 

    Google Scholar 
    45.Wang, X. et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biol. Biochem. 42, 1728–1734 (2010).CAS 
    Article 

    Google Scholar 
    46.Warner, D. L., Bond‐Lamberty, B., Jian, J., Stell, E. & Vargas, R. Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Glob. Biogeochem. Cycles 33, 1733–1745 (2019).CAS 
    Article 

    Google Scholar 
    47.Todd-Brown, K., Zheng, B. & Crowther, T. W. Field-warmed soil carbon changes imply high 21st-century modeling uncertainty. Biogeosciences 15, 3659–3671 (2018).CAS 
    Article 

    Google Scholar 
    48.He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).CAS 
    Article 

    Google Scholar 
    49.Haddix, M. L. et al. The role of soil characteristics on temperature sensitivity of soil organic matter. Soil Sci. Soc. Am. J. 75, 56–68 (2011).CAS 
    Article 

    Google Scholar 
    50.Lara, M. J., Lin, D. H., Andresen, C., Lougheed, V. L. & Tweedie, C. E. Nutrient release from permafrost thaw enhances CH4 emissions from Arctic tundra wetlands. J. Geophys. Res. Biogeosci. 124, 1560–1573 (2019).CAS 
    Article 

    Google Scholar 
    51.Prater, I. et al. From fibrous plant residues to mineral-associated organic carbon–the fate of organic matter in Arctic permafrost soils. Biogeosciences 17, 3367–3383 (2020).CAS 
    Article 

    Google Scholar 
    52.Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Process. 19, 279–292 (2008).Article 

    Google Scholar 
    53.Jilling, A. et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139, 103–122 (2018).CAS 
    Article 

    Google Scholar 
    54.Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).Article 

    Google Scholar 
    55.Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2019).Article 

    Google Scholar 
    56.Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).Article 

    Google Scholar 
    57.Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).58.Crowther, T. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).59.R Core Team. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).60.Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).CAS 
    Article 

    Google Scholar 
    61.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).Article 

    Google Scholar 
    62.Conover, W. J., Johnson, M. E. & Johnson, M. M. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23, 351–361 (1981).Article 

    Google Scholar 
    63.Chen, X., Zhao, P. L. & Zhang, J. A note on ANOVA assumptions and robust analysis for a cross‐over study. Stat. Med. 21, 1377–1386 (2002).Article 

    Google Scholar 
    64.McGuinness, K. A. Of rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumption. Austral. Ecol. 27, 681–688 (2002).Article 

    Google Scholar 
    65.Zimmerman, D. W. & Zumbo, B. D. Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. J. Exp. Educ. 62, 75–86 (1993).Article 

    Google Scholar 
    66.Tomczak, M. & Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1, 19–25 (2014).
    Google Scholar 
    67.Thornley, J. & Cannell, M. Soil carbon storage response to temperature: an hypothesis. Ann. Bot. 87, 591–598 (2001).CAS 
    Article 

    Google Scholar 
    68.Lloyd, J. & Taylor, J. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).69.Libohova, Z. et al. The anatomy of uncertainty for soil pH measurements and predictions: implications for modellers and practitioners. Eur. J. Soil Sci. 70, 185–199 (2019).Article 

    Google Scholar 
    70.Kirkby, C. A. et al. Carbon–nutrient stoichiometry to increase soil carbon sequestration. Soil Biol. Biochem. 60, 77–86 (2013).CAS 
    Article 

    Google Scholar 
    71.Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).CAS 
    Article 

    Google Scholar 
    72.Beer, C. et al. Temporal and among‐site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 23, GB2018 (2009).Article 
    CAS 

    Google Scholar 
    73.Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543 (2014).CAS 
    Article 

    Google Scholar 
    74.Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 333 (2013).Article 

    Google Scholar 
    75.Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning Vol. 1 (Springer, 2001).76.Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. Least angle regression. Ann. Stat. 32, 407–499 (2004).Article 

    Google Scholar 
    77.Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).Article 

    Google Scholar 
    78.Kuhn, M. & Johnson, K. Applied Predictive Modeling Vol. 26 (Springer, 2013).79.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    80.Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).81.Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).
    Google Scholar 
    82.Quinlan, J. R. Learning with Continuous Classes in Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (eds Adams, A. & Sterling, L.) 343–348 (World Scientific, 1992).83.Boulesteix, A. L., Janitza, S., Kruppa, J. & König, I. R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIRES Data Mining Knowl. Discov. 2, 493–507 (2012).Article 

    Google Scholar 
    84.Xu, Q.-S. & Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 56, 1–11 (2001).CAS 
    Article 

    Google Scholar 
    85.Shcherbakov, M. V. et al. A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013).
    Google Scholar 
    86.James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).87.Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28 (2008).88.Grömping, U. Variable importance assessment in regression: linear regression versus random forest. Am. Statistician 63, 308–319 (2009).Article 

    Google Scholar 
    89.Wei, P., Lu, Z. & Song, J. Variable importance analysis: a comprehensive review. Reliab. Eng. Syst. Saf. 142, 399–432 (2015).Article 

    Google Scholar 
    90.Yang, R.-M. et al. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 60, 870–878 (2016).CAS 
    Article 

    Google Scholar 
    91.Greenwell, B. M. pdp: an R package for constructing partial dependence plots. R J. 9, 421–436 (2017).Article 

    Google Scholar 
    92.Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    Article 

    Google Scholar 
    93.Land Cover CCI Product User Guide Version 2 (ESA, 2017); maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf94.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 
    CAS 

    Google Scholar 
    95.Moran, P. A. A test for the serial independence of residuals. Biometrika 37, 178–181 (1950).CAS 
    Article 

    Google Scholar 
    96.Legendre, P. Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993).Article 

    Google Scholar  More

  • in

    Integrating multiple chemical tracers to elucidate the diet and habitat of Cookiecutter Sharks

    1.Norse, E. A. et al. Sustainability of deep-sea fisheries. Mar. Policy 36, 307–320 (2012).Article 

    Google Scholar 
    2.Simpfendorfer, C. A. & Kyne, P. M. Limited potential to recover from overfishing raises concerns for deep-sea sharks, rays and chimaeras. Environ. Conserv. 36, 97–103 (2009).Article 

    Google Scholar 
    3.Kyne, P. & Simpfendorfer, C. In Sharks and Their Relatives II: Biodiversity, Physiology, and Conservation (eds Carrier, J. C. et al.) 37–113 (CRC Press, 2010).
    Google Scholar 
    4.Dunn, M. R., Szabo, A., McVeagh, M. S. & Smith, P. J. The diet of deepwater sharks and the benefits of using DNA identification of prey. Deep Sea Res. Part I 57, 923–930 (2010).CAS 
    Article 

    Google Scholar 
    5.Mauchline, J. & Gordon, J. Diets of the sharks and chimaeroids of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 75, 269–278 (1983).Article 

    Google Scholar 
    6.Cortes, E. Standardized diet compositions and trophic levels in sharks. ICES J. Mar. Sci. 56, 707–717 (1999).Article 

    Google Scholar 
    7.Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).Article 

    Google Scholar 
    8.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    9.Estrada, J. A., Rice, A. N., Lutcavage, M. E. & Skomall, G. B. Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. J. Mar. Biol. Assoc. UK 83, 1347–1350 (2003).CAS 
    Article 

    Google Scholar 
    10.Hussey, N. E. et al. Stable isotopes and elasmobranchs: Tissue types, methods, applications and assumptions. J. Fish. Biol. 20, 1449–1484 (2012).Article 
    CAS 

    Google Scholar 
    11.Meyer, L., Pethybridge, H., Nichols, P. D., Beckmann, C. & Huveneers, C. Abiotic and biotic drivers of fatty acid tracers in ecology: A global analysis of chondrichthyan profiles. Funct. Ecol. 20, 20 (2019).
    Google Scholar 
    12.Munroe, S., Meyer, L. & Heithaus, M. Dietary biomarkers in shark foraging and movement ecology. Shark Res. Emerg. Technol. Appl. Field Lab. 20, 20 (2018).

    Google Scholar 
    13.Hobson, K. A., Barnett-Johnson, R. & Cerling, T. E. In Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping (eds West, J. B. et al.) 273–298 (Springer, 2010).
    Google Scholar 
    14.Michener, R. H. & Kaufman, L. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 238–282 (Blackwell, 2007).
    Google Scholar 
    15.West, J. B., Bowen, G. J., Cerling, T. E. & Ehleringer, J. R. Stable isotopes as one of nature’s ecological recorders. Trends Ecol. Evol. 21, 408–414 (2006).PubMed 
    Article 

    Google Scholar 
    16.DeNiro, M. J. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–345 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    17.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 32–37 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.MacNeil, M. A., Skomal, G. B. & Fisk, A. T. Stable isotopes from multiple tissues reveal diet switching in sharks. Mar. Ecol. Prog. Ser. 302, 199–206 (2005).ADS 
    Article 

    Google Scholar 
    20.Kim, S. L., Martinez del Rio, C., Casper, D. & Koch, P. L. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J Exp Biol 215, 2495–2500 (2012).21.Madigan, D. J. et al. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis). PLoS One 7, e49220 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Carlisle, A. B. et al. Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS One 7, 30492 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    23.Madigan, D. J. et al. Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox. Ecology 95, 1674–1683 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Ackman, R.G. & Macpherson, E.J. Coincidence of cis-and trans-monoethylenic fatty acids simplifies the open-tubular gas-liquid chromatography of butyl esters of butter fatty acids. Food chem. 50(1), 45–52 (1994).25.Sargent, J., Bell, G., McEvoy, L., Tocher, D. & Estevez, A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture., 177(1–4), 191–199 (1999).26.Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11(2), 107–184 (2003).27.McMeans, B. C. et al. The role of Greenland sharks (Somniosus microcephalus) in an Arctic ecosystem: Assessed via stable isotopes and fatty acids. Mar. Biol. 160, 1223–1238. https://doi.org/10.1007/s00227-013-2174-z (2013).Article 

    Google Scholar 
    28.Pethybridge, H. R., Nichols, P. D., Virtue, P. & Jackson, G. D. The foraging ecology of an oceanic squid, Todarodes filippovae: The use of signature lipid profiling to monitor ecosystem change. Deep Sea Res. Part II 95, 119–128 (2013).CAS 
    Article 

    Google Scholar 
    29.Pethybridge, H. et al. Lipid and mercury profiles of 61 mid-trophic species collected off south-eastern Australia. Mar. Freshw. Res. 61, 1092–1108 (2010).CAS 
    Article 

    Google Scholar 
    30.Beckmann, C. L., Mitchell, J. G., Stone, D. A. & Huveneers, C. A controlled feeding experiment investigating the effects of a dietary switch on muscle and liver fatty acid profiles in Port Jackson sharks Heterodontus portusjacksoni. J. Exp. Mar. Biol. Ecol. 448, 10–18 (2013).CAS 
    Article 

    Google Scholar 
    31.Pethybridge, H. R., Choy, C. A., Polovina, J. J. & Fulton, E. A. Improving marine ecosystem models with biochemical tracers. Ann. Rev. Mar. Sci. 10, 199–228 (2018).PubMed 
    Article 

    Google Scholar 
    32.Belicka, L. L., Matich, P., Jaffé, R. & Heithaus, M. R. Fatty acids and stable isotopes as indicators of early-life feeding and potential maternal resource dependency in the bull shark Carcharhinus leucas. Mar. Ecol. Prog. Ser. 455, 245–256 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Every, S. L., Fulton, C. J., Pethybridge, H. R., Kyne, P. M. & Crook, D. A. A seasonally dynamic estuarine ecosystem provides a diverse prey base for Elasmobranchs. Estuar. Coasts 42, 580–595 (2019).CAS 
    Article 

    Google Scholar 
    34.Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 20, e00547 (2019).Article 

    Google Scholar 
    35.Soininen, E. M. et al. Shedding new light on the diet of Norwegian lemmings: DNA metabarcoding of stomach content. Polar Biol 36, 1069–1076 (2013).Article 

    Google Scholar 
    36.De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).Article 
    CAS 

    Google Scholar 
    37.Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Bade, L. M., Balakrishnan, C. N., Pilgrim, E. M., McRae, S. B. & Luczkovich, J. J. A genetic technique to identify the diet of cownose rays, Rhinoptera bonasus: Analysis of shellfish prey items from North Carolina and Virginia. Environ. Biol. Fishes 97, 999–1012 (2014).Article 

    Google Scholar 
    39.Jensen, M. R., Knudsen, S. W., Munk, P., Thomsen, P. F. & Møller, P. R. Tracing European eel in the diet of mesopelagic fishes from the Sargasso Sea using DNA from fish stomachs. Mar. Biol. 165, 130 (2018).Article 
    CAS 

    Google Scholar 
    40.Compagno, L. FAO species catalogue. Vol. 4. Sharks of the world. An annotated and illustrated catalogue of sharks species known to date. Part 1. Hexanchiformes to Lammiformes. FAO Fish. Synop. 20, 1–249 (1984).
    Google Scholar 
    41.Jahn, A. & Haedrich, R. Notes on the pelagic squaloid shark Isistius brasiliensis. Biol. Oceanogr. 5, 297–309 (1988).
    Google Scholar 
    42.Nakano, H. & Tabuchi, M. Occurrence of the cookiecutter shark Isistius brasiliensis in surface waters of the North Pacific Ocean. Jpn. J. Ichthyol. 37, 60–63 (1990).
    Google Scholar 
    43.Hubbs, C. L., Iwai, T. & Matsubara, K. External and internal characters, horizontal and vertical distributions, luminescence, and food of the dwarf pelagic shark, Euprotomicrus bispinatus. (1967).44.Papastamatiou, Y. P., Wetherbee, B. M., O’Sullivan, J., Goodmanlowe, G. D. & Lowe, C. G. Foraging ecology of cookiecutter sharks (Isistius brasiliensis) on pelagic fishes in Hawaii, inferred from prey bite wounds. Environ. Biol. Fishes 88, 361–368 (2010).Article 

    Google Scholar 
    45.Feunteun, A. et al. First evaluation of the cookie-cutter sharks (Isistius sp.) predation pattern on different cetacean species in Martinique. Environ. Biol. Fishes 20, 1–11 (2018).
    Google Scholar 
    46.Jones, E. Isistius brasiliensis, a squaloid shark, probable cause of crater wounds on fishes and cetaceans. Fish Bull. 69, 791–798 (1971).
    Google Scholar 
    47.Strasburg, D. W. The diet and dentition of Isistius brasiliensis, with remarks on tooth replacement in other sharks. Copeia 20, 33–40 (1963).Article 

    Google Scholar 
    48.Widder, E. A. A predatory use of counter illumination by the squaloid shark, Isistius brasiliensis. Environ. Biol. Fishes 53, 267–273 (1998).Article 

    Google Scholar 
    49.Moore, M., Steiner, L. & Jann, B. Cetacean surveys in the Cape Verde Islands and the use of cookiecutter shark bite lesions as a population marker for fin whales. Aquat. Mamm. 29, 383–389 (2003).Article 

    Google Scholar 
    50.Muñoz-Chápuli, R., Salgado, J. R. & de La Serna, J. Biogeography of Isistius brasiliensis in the north-eastern Atlantic, inferred from crater wounds on swordfish (Xiphias gladius). J. Mar. Biol. Assoc. U K 68, 315–321 (1988).Article 

    Google Scholar 
    51.Murakami, C., Yoshida, H. & Yonezaki, S. Cookie-cutter shark Isistius brasiliensis eats Bryde’s whale Balaenoptera brydei. Ichthyol. Res. 65, 398–404 (2018).Article 

    Google Scholar 
    52.Castro, J., Anllo, T., Mejuto, J. & García, B. Ichnology applied to the study of Cookiecutter shark (Isistius brasiliensis) biogeography in the Gulf of Guinea. Environ. Biol. Fishes 101, 579–588 (2018).Article 

    Google Scholar 
    53.Kim, S. L. et al. Carbon and nitrogen discrimination factors for elasmobranch soft tissues based on a long-term controlled feeding study. Environ. Biol. Fishes 95, 37–52 (2012).Article 

    Google Scholar 
    54.Le Boeuf, B., McCosker, J. & Hewitt, J. Crater wounds on northern elephant seals: The Cookiecutter Shark strikes again. Fish Bull. 85, 20 (1987).
    Google Scholar 
    55.Niella, Y. et al. Cookie-cutter shark Isistius spp. predation upon different tuna species from the south-western Atlantic Ocean. J. Fish. Biol. 92, 1082–1089 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Manlick, P. J., Petersen, S. M., Moriarty, K. M. & Pauli, J. N. Stable isotopes reveal limited Eltonian niche conservatism across carnivore populations. Funct. Ecol. 33, 335–345 (2019).Article 

    Google Scholar 
    57.McMeans, B.C., Arts, M.T. & Fisk, A.T. Similarity between predator and prey fatty acid profiles is tissue dependent in Greenland sharks (Somniosus microcephalus): Implications for diet reconstruction. J. Exp. Mar. Biol. Ecol. 429, 55–63 (2012).58.Waugh, C.A., Nichols, P.D., Schlabach, M., Noad, M. & Nash, S.B. Vertical distribution of lipids, fatty acids and organochlorine contaminants in the blubber of southern hemisphere humpback whales (Megaptera novaeangliae). Mar. Environ. Res. 94, 24–31 (2014).59.Sigler, M. F. et al. Diet of Pacific sleeper shark, a potential Steller sea lion predator, in the north-east Pacific Ocean. J. Fish. Biol. 69, 392–405 (2006).Article 

    Google Scholar 
    60.Leclerc, L.-M. et al. Greenland sharks (Somniosus microcephalus) scavenge offal from minke (Balaenoptera acutorostrata) whaling operations in Svalbard (Norway). Polar. Res. 30, 7342 (2011).Article 

    Google Scholar 
    61.Yano, K., Stevens, J. & Compagno, L. Distribution, reproduction and feeding of the Greenland shark Somniosus (Somniosus) microcephalus, with notes on two other sleeper sharks, Somniosus (Somniosus) pacificus and Somniosus (Somniosus) antarcticus. J. Fish. Biol. 70, 374–390 (2007).Article 

    Google Scholar 
    62.Preti, A. et al. Comparative feeding ecology of shortfin mako, blue and thresher sharks in the California current. Environ. Biol. Fishes https://doi.org/10.1007/s10641-10012-19980-x (2012).Article 

    Google Scholar 
    63.Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014).Article 

    Google Scholar 
    64.Smith, J. A., Mazumder, D., Suthers, I. M. & Taylor, M. D. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol. Evol. 4, 612–618 (2013).Article 

    Google Scholar 
    65.Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. https://doi.org/10.1111/ele.12226 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Childress, J. J. & Nygaard, M. H. Deep Sea Research and Oceanographic Abstracts 1093–1109 (Elsevier, 1973).
    Google Scholar 
    67.Childress, J., Price, M., Favuzzi, J. & Cowles, D. Chemical composition of midwater fishes as a function of depth of occurrence off the Hawaiian Islands: Food availability as a selective factor?. Mar. Biol. 105, 235–246 (1990).Article 

    Google Scholar 
    68.Choy, C. A., Popp, B. N., Hannides, C. C. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).ADS 
    Article 

    Google Scholar 
    69.Gloeckler, K. et al. Stable isotope analysis of micronekton around Hawaii reveals suspended particles are an important nutritional source in the lower mesopelagic and upper bathypelagic zones. Limnol. Oceanogr. 63, 1168–1180 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Hannides, C. C., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Dunstan, G.A., Sinclair, A.J., O’Dea, K. & Naughton, J.M. The lipid content and fatty acid composition of various marine species from southern Australian coastal waters. Comp. Biochem. Physiol. B: Comp. Biochem. 91(1), 165–169 (1988).72.Semeniuk, C.A., Speers-Roesch, B. & Rothley, K.D. Using fatty-acid profile analysis as an ecologic indicator in the management of tourist impacts on marine wildlife: a case of stingray-feeding in the Caribbean. Environ. Manag. 40(4), 665–677 (2007).73.Wai, T.C., Leung, K.M., Sin, S.Y., Cornish, A., Dudgeon, D. & Williams, G.A. Spatial, seasonal, and ontogenetic variations in the significance of detrital pathways and terrestrial carbon for a benthic shark, Chiloscyllium plagiosum (Hemiscylliidae), in a tropical estuary. Limnol. Oceanogr. 56(3), 1035–1053 (2011).74.Ebert, D. A., Fowler, S. L., Compagno, L. J. & Dando, M. Sharks of the World: A Fully Illustrated Guide (Wild Nature Press, 2013).
    Google Scholar 
    75.Vaudo, J. J., Matich, P. & Heithaus, M. R. Mother-offspring isotope fractionation in two species of placentatrophic sharks. J. Fish. Biol. 77, 1724–1727 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Olin, J. A. et al. Maternal meddling in neonatal sharks: Implications for interpreting stable isotopes in young animals. Rapid Commun. Mass Spectrom. 25, 1008–1016 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Grubbs, R. D. In Sharks and Their Relatives II: Biodiversity, Physiology, and Conservation (eds Carrier, J. C. et al.) 319–350 (CRC Press, 2010).
    Google Scholar 
    78.Yano, K. & Tanaka, S. Size at maturity, reproductive cycle, fecundity, and depth segregation of the deep sea squaloid sharks Centroscymnus owstoni and C. coelolepis in Suruga Bay Japan. Nippon Suisan Gakkaishi 54, 20 (1988).
    Google Scholar 
    79.Yano, K. & Tanaka, S. Review of the deep sea squaloid shark genus Scymnodon of Japan, with a description of a new species. Jpn. J. Ichthyol. 30, 341–360 (1984).
    Google Scholar 
    80.Munoz-Chapuli, R. Ethologie de la reproduction chez quelques requins de l’Atlantique Nord-Est. Cybium 8, 1–14 (1984).
    Google Scholar 
    81.Jakobsdóttir, K. B. Biological aspects of two deep-water squalid sharks: Centroscyllium fabricii (Reinhardt, 1825) and Etmopterus princeps (Collett, 1904) in Icelandic waters. Fish Res. 51, 247–265 (2001).Article 

    Google Scholar 
    82.Wetherbee, B. M. Distribution and reproduction of the southern lantern shark from New Zealand. J. Fish. Biol. 49, 1186–1196. https://doi.org/10.1111/j.1095-8649.1996.tb01788.x (1996).Article 

    Google Scholar 
    83.MacNeil, M. A., Drouillard, K. G. & Fisk, A. T. Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can. J. Fish. Aquat. Sci. 63, 345–353 (2006).CAS 
    Article 

    Google Scholar 
    84.Logan, J. M. & Lutcavage, M. Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644, 231–244 (2010).CAS 
    Article 

    Google Scholar 
    85.Weidel, B. C., Carpenter, S. R., Kitchell, J. F. & Vander Zanden, M. J. Rates and components of carbon turnover in fish muscle: Insights from bioenergetics models and a whole-lake 13C addition. Can. J. Fish. Aquat. Sci. 68, 387–399 (2011).CAS 
    Article 

    Google Scholar 
    86.Carlisle, A. B. et al. Interactive effects of urea and lipid content confound stable isotope analysis in elasmobranch fishes. Can. J. Fish. Aquat. Sci. 74, 419–428 (2016).Article 
    CAS 

    Google Scholar 
    87.Kim, S. L. & Koch, P. L. Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. Environ. Biol. Fishes 95, 53–63 (2012).Article 

    Google Scholar 
    88.Witteveen, B. H., Worthy, G. A. J. & Roth, J. D. Tracing migratory movements of breeding North Pacific humpback whales using stable isotope analysis. Mar. Ecol. Prog. Ser. 393, 173–183. https://doi.org/10.3354/meps08231 (2009).ADS 
    Article 

    Google Scholar 
    89.Parry, M. P. The trophic ecology of two ommastrephid squid species, Ommastrephes bartamii and Sthenoteuthis oualaniensis, in the North Pacific sub-tropical gyre Ph.D. thesis, University of Hawaii, (2003).90.Parry, M. P. Trophic variation with length in two ommastrephid squids, Ommastrephes bartramiii and Sthenoteuthis oualaniensis. Mar. Biol. 153, 249–256 (2008).Article 

    Google Scholar 
    91.Graham, B. S. Trophic dynamics and movements of tuna in tropical Pacific Ocean inferred from stable isotope analyses Ph. D. thesis thesis, University of Hawaii, (2007).92.Graham, B. S., Grubbs, D., Holland, K. & Popp, B. N. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar. Biol. 150, 647–658 (2007).Article 

    Google Scholar 
    93.Carlisle, A. B. et al. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark. Proc. R. Soc. B-Biol. Sci. 282, 20141446. https://doi.org/10.1098/rspb.2014.1446 (2015).CAS 
    Article 

    Google Scholar 
    94.Stock, B. C. & Semmens, B. X. MixSIAR GUI user manual, version 1.0. http://conserver.iugo-cafe.org/user/brice.semmens/MixSIAR (2013).95.Folch, J., Lees, M. & Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957).96.Kartikasari, L.R., Hughes, R.J., Geier, M.S., Makrides, M. & Gibson, R.A. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in
    chicken tissues. Prostaglandins Leukot. Essent. Fatty Acids. 87(4–5), 103–109 (2012).97.Froese, R. & D. Pauly. Editors. 2021. FishBase. World Wide Web electronic publication. https://www.fishbase.org, version (02/2021).98.Clarke, K. & Gorley, R. (PRIMER-E: Plymouth, 2006).
    99.Riaz, T. et al. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145–e145 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS One 9, e86175 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    101.Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    102.Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Shehzad, W. et al. Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 21, 1951–1965 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    Article 

    Google Scholar 
    105.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    106.Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    107.Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated-reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).Article 
    CAS 

    Google Scholar 
    109.Oksanen, J. et al. Vegan: Community ecology package. R package version 1.17–4. http://cran.r-project.org. Acesso em 23, 2010 (2010). More

  • in

    Vulnerability to climate change of a microendemic lizard species from the central Andes

    1.Møller, A., Fiedler, W. & Berthold, P. Effects of climate change on birds (Oxford University Press, 2010).
    Google Scholar 
    2.IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (The Intergovernmental Panel on Climate Change, 2018).3.Lovejoy, T. E., Hannah, L. & Wilson, E. O. Biodiversity and climate change (Yale University Press, 2019).Book 

    Google Scholar 
    4.Hughes, L. Biological consequences of global warming: is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Moore, N. Precipitation regimes and climate change. In Global Environmental Change (ed. Freedman, B.) 191–197 (Springer, Dordrecht, 2014).
    Google Scholar 
    6.Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments. Glob. Change Biol. 21, 2624–2633 (2015).ADS 
    Article 

    Google Scholar 
    7.Tobias, A. & Díaz, J. Heat waves, human health, and climate change. In Global Environmental Change (ed. Freedman, B.) 447–453 (Springer, Dordrecht, 2014).
    Google Scholar 
    8.Freedman, B. Global Environmental Change (Springer, 2014).Book 

    Google Scholar 
    9.Hannah, L. Climate change biology 2nd edn. (Elsevier, 2014).
    Google Scholar 
    10.Gibbons, J. W. et al. The global decline of reptiles, Déjà Vu Amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience 50, 653–666 (2000).11.Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS ONE 6, e325 (2008).Article 
    CAS 

    Google Scholar 
    12.Huey, R. B., Losos, J. B. & Moritz, C. Are Lizards Toast?. Science 328, 832–833 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sinervo, B. et al. Erosion of lizard diversity by Climate Change and altered thermal niches. Science 328, 894–899 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Glick, P., Stein, B. A. & Edelson, N. A. Scanning the conservation horizon: A guide to climate change vulnerability assessment (National Wildlife Federation, 2011).
    Google Scholar 
    15.Parmesan, C. Climate and species’ range. Nature 382, 765–766 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 105, 11823–11826 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Zuckerberg, B., Woods, A. M. & Porter, W. F. Poleward shifts in breeding bird distributions in New York State. Glob. Change Biol. 15, 1866–1883 (2009).ADS 
    Article 

    Google Scholar 
    19.Sodhi, N. S. & Ehrlich, P. R. Conservation Biology for all (Oxford University Press, 2010).Book 

    Google Scholar 
    20.Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).Article 

    Google Scholar 
    21.Avery, R. A. Field studies of body temperatures and thermoregulation. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 93–166 (Academic Press, New York, 1982).
    Google Scholar 
    22.Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).Book 

    Google Scholar 
    23.Huey, R. B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 25–91 (Academic Press, New York, 1982).
    Google Scholar 
    24.Angilletta, M. J. Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).Article 

    Google Scholar 
    25.Shine, R. Incubation regimes of cold-climate reptiles: the thermal consequences of nest-site choice, viviparity and maternal basking. Biol. J. Linn. Soc. 83, 145–155 (2004).Article 

    Google Scholar 
    26.Shine, R. Life-history evolution in Reptiles. Ann. Rev. Ecol. Evol. Syst. 36, 23–46 (2005).Article 

    Google Scholar 
    27.Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).Article 

    Google Scholar 
    28.Bennett, A. F. The thermal dependence of lizard behaviour. Anim. Behav. 28, 752–762 (1980).Article 

    Google Scholar 
    29.Christian, K. A. & Tracy, C. R. The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218–223 (1981).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Snell, H. L., Jennings, R. D., Snell, H. M. & Harcourt, S. Intrapopulation variation in predator-avoidance performance of Galápagos lava lizards: The interaction of sexual and natural selection. Evol. Ecol. 2, 353–369 (1988).Article 

    Google Scholar 
    31.Robson, M. A. & Miles, D. B. Locomotor performance and dominance in male Tree Lizards, Urosaurus ornatus. Funct. Ecol. 14, 338–344 (2000).Article 

    Google Scholar 
    32.Perry, G., LeVering, K., Girard, I. & Garland, T. Locomotor performance and social dominance in male Anolis cristatellus. Anim. Behav. 67, 37–47 (2004).Article 

    Google Scholar 
    33.Cowles, R. B. & Bogert, C. M. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 265–296 (1944).
    Google Scholar 
    34.Bartholomew, G. A. Physiological control of body temperature. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 167–211 (Academic Press, New York, 1982).
    Google Scholar 
    35.Beaupre, S. J. Effects of geographically variable thermal environment on bioenergetics of mottled rock rattlesnakes. Ecology 76, 1655–1665 (1995).Article 

    Google Scholar 
    36.Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Huey, R. B. Behavioral thermoregulation in lizards: importance of associated costs. Science 184, 1001 (1974).ADS 
    Article 

    Google Scholar 
    38.Hertz, P. E., Huey, R. B. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms: The fallacy of the inappropriate question. Am. Nat. 142, 796–818 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Vitt, L. & Caldwell, J. Herpetology: An introductory biology of amphibians and reptiles 4th edn. (Elsevier, 2014).
    Google Scholar 
    40.Ortega, Z., Mencía, A. & Pérez-Mellado, V. Sexual differences in behavioral thermoregulation of the lizard Scelarcis perspicillata. J. Therm. Biol. 61, 44–49 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Rodríguez-Serrano, E., Navas, C. A. & Bozinovic, F. The comparative field body temperature among Liolaemus lizards: Testing the static and the labile hypotheses. J. Therm. Biol. 34, 306–309 (2009).Article 

    Google Scholar 
    42.Telemeco, R. S., Radder, R. S., Baird, T. A. & Shine, R. Thermal effects on reptile reproduction: Adaptation and phenotypic plasticity in a montane lizard. Biol. J. Linn. Soc. 100, 642–655 (2010).Article 

    Google Scholar 
    43.Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus Lizards: Adaptation, phylogenetic inertia, and niche tracking. Am. Nat. 174, 204–220 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. Biol. Sci. 276, 1939–1948 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    45.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Bestion, E., Teyssier, A., Richard, M., Clobert, J. & Cote, J. Live fast, die young: Experimental evidence of population extinction risk due to climate change. PLoS ONE 13, e1002281 (2015).Article 
    CAS 

    Google Scholar 
    48.Zhang, L., Yang, F. & Zhu, W.-L. Evidence for the ‘rate-of-living’ hypothesis between mammals and lizards, but not in birds, with field metabolic rate. Comp. Biochem. Physiol. Part A 253, 110867 (2021).CAS 
    Article 

    Google Scholar 
    49.Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Sinervo, B. et al. Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai—Tibetan Plateau. Integr. Zool. 13, 450–470 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Ibarguengoytía, N. R. et al. Looking at the past to infer into the future: Thermal traits track environmental change in Liolaemidae. Evolution https://doi.org/10.1111/evo.14246 (2021)Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Beniston, M. Climate change in mountain regions: A review of possible impacts. Clim. Change 59, 5–31 (2003).Article 

    Google Scholar 
    53.Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Martínez Carretero, E. La Puna argentina: Delimitación general y división en distritos florísticos. Bol. Soc. Argent. Bot. 31, 27–40 (1995).
    Google Scholar 
    55.Esquerré, D., Brennan, I. G., Catullo, R. A., Torres-Pérez, F. & Keogh, J. S. How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution 73, 214–230 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Abdala, C. S., Laspiur, A. & Langstroth, R. Las especies del género Liolaemus (Liolaemidae). Lista de taxones y comentarios sobre los cambios taxonómicos más recientes. Cuad. Herp. 35, 193–223 (2021).
    Google Scholar 
    57.Abdala, C. S. et al. Unravelling interspecific relationships among highland lizards: First phylogenetic hypothesis using total evidence of the Liolaemus montanus group (Iguania: Liolaemidae). Zool. J. Linn. Soc. 189, 349–377 (2020).Article 

    Google Scholar 
    58.Cabrera, M. R. & Monguillot, J. C. A new Andean species of Liolaemus of the darwinii complex (Reptilia: Iguanidae). Zootaxa 1106, 35–43 (2006).Article 

    Google Scholar 
    59.Abdala, C. S. et al. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuad. Herp. 26, 215–248 (2012).
    Google Scholar 
    60.Avila, L. J. Liolaemus montanezi. The IUCN Red List of Threatened Species 2016: e.T56077261A56077269. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T56077261A56077269.en (2016).61.Barros, V. R. et al. Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Change 6, 151–169 (2015).Article 

    Google Scholar 
    62.IPCC. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifh Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, 2014).63.Bury, R. B. Natural history, field ecology, conservation biology and wildlife management: time to connect the dots. Herp. Con. Biol. 1, 56–61 (2006).
    Google Scholar 
    64.Fei, T. et al. A body temperature model for lizards as estimated from the thermal environment. J. Therm. Biol. 37, 56–64 (2012).Article 

    Google Scholar 
    65.Ortega, Z. et al. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. J. Trop. Ecol. 35, 149–156 (2019).Article 

    Google Scholar 
    66.Bujes, C. S. & Verrastro, L. Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae) in the coastal sand dunes of Rio Grande do Sul, Brazil. Braz. J. Biol. 66, 945–954 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Almeida-Santos, P., Militão, C. M., Nogueira-Costa, P., Menezes, V. A. & Rocha, C. F. D. Thermal ecology of five remaining populations of an endangered lizard (Liolaemus lutzae) in different restinga habitats in Brazil. J. Coast. Conserv. 19, 335–343 (2015).Article 

    Google Scholar 
    68.Liz, A. V., Santos, V., Ribeiro, T., Guimarães, M. & Verrastro, L. Are lizards sensitive to anomalous seasonal temperatures? Long-term thermobiological variability in a subtropical species. PLoS ONE 14, e0226399 (2019).Article 
    CAS 

    Google Scholar 
    69.Martori, R., Bignolo, P. & Cardinale, L. Relaciones térmicas en una población de Liolaemus wiegmannii (Iguania: Tropiduridae). Rev. Esp. Herpetol. 12, 19–26 (1998).
    Google Scholar 
    70.Martori, R., Aun, L. & Orlandini, S. Relaciones térmicas temporales en una población de Liolaemus koslowskyi. Cuad. Herp. 16, 33–45 (2002).
    Google Scholar 
    71.Cánovas, M. G., Villavicencio, H. J. & Acosta, J. C. Liolaemus olongasta (NCN) Body temperature. Herp. Rev. 37, 87–88 (2006).
    Google Scholar 
    72.Villavicencio, H., Acosta, J., Cánovas, M. & Marinero, J. Thermal ecology of a population of the lizard, Liolaemus pseudoanomalus in western Argentina. Amphibia-Reptilia 28, 163–165 (2007).Article 

    Google Scholar 
    73.Ibargüengoytía, N. R. et al. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35, 21–27 (2010).Article 

    Google Scholar 
    74.Castillo, G. N., Villavicencio, H. J., Acosta, J. C. & Marinero, J. A. Temperatura corporal de campo y actividad temporal de las lagartijas Liolaemus vallecurensis y Liolaemus ruibali en clima riguroso de los Andes centrales de Argentina. Multequina 24, 19–31 (2015).
    Google Scholar 
    75.Laspiur, A., Villavicencio, H. J. & Acosta, J. C. Liolaemus chacoensis (NCN). Body temperature. Herp. Rev. 38, 458–459 (2007).
    Google Scholar 
    76.Salva, A. G., Robles, C. I. & Tulli, M. J. Thermal biology of Liolaemus scapularis (Iguania:Liolaemidae) from argentinian northwest. J. Therm. Biol 98, 102924 (2021).PubMed 
    Article 

    Google Scholar 
    77.Mesinger, F., Jovic, D., Chou, S. C., Gomes, J. L. & Bustamante, J. F. Wind forecast around the Andes using the sloping discretization of the eta coordinate. in Proceedings of the 8th International Conference on Southern Hemisphere Meteorology and Oceanography 1837–1848 (INPE, 2006).78.Sannolo, M. & Carretero, M. A. Dehydration constrains thermoregulation and space use in lizards. PLoS ONE 14, e0220384 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Nicholson, K. L. et al. The influence of temperatura and humidity on activity patterns of the lizards Anolis stratulus and Ameiva exsul in the British Virgin Islands. Caribb. J. Sci. 41, 870–873 (2005).
    Google Scholar 
    80.Adolph, A. S. & Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Bakken, G. S., Santee, W. R. & Erskine, D. Operative and standard operative temperature: Tools for thermal energetics studies. Am. Zool. 25, 933–943 (1985).Article 

    Google Scholar 
    82.Black, I. R. G., Berman, J. M., Cadena, V. C. & Tattersall, G. J. Behavioral thermoregulation in lizards. Strategies for achieving preferred temperature. In Behavior of lizards. Evolutionary and mechanistic perspectives (eds Bels, V. L. & Russell, A. P.) 13–46 (CRC Press, Florida, 2019).
    Google Scholar 
    83.Pirtle, E. I., Tracy, C. R. & Kearney, M. R. Hydroregulation. A neglected behavioral response of lizards to climate change? In Behavior of Lizards. Evolutionary and mechanistic perspectives (eds Bels, V. L. & Russell, A. P.) 343–374 (CRC Press, Florida, 2019).
    Google Scholar 
    84.Medina, M. et al. Thermal biology of genus Liolaemus: A phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 37, 579–586 (2012).Article 

    Google Scholar 
    85.Blouin-Demers, G. & Weatherhead, P. J. Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82, 3025–3043 (2001).Article 

    Google Scholar 
    86.Cabezas-Cartes, F., Fernández, J. B., Duran, F. & Kubisch, E. L. Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard. PeerJ 7, e7437 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Obregón, R. L., Scolaro, J. A., Ibargüengoytía, N. R. & Medina, M. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change? Integr. Zool. 16, 53–66 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Litmer, A. R. & Murray, C. M. Critical thermal tolerance of invasion: Comparative niche breadth of two invasive lizards. J. Therm. Biol. 86, 102432 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Bels, V. L. & Russell, A. P. Behavior of lizards. Evoutionary and mechanistic perspectives (CRC Press, Florida, 2019).Book 

    Google Scholar 
    90.Panda, B. B., Achary, V. M., Mahanty, S. & Panda, K. K. Plant adaptation to abiotic and genotoxic stress: Relevance to climate change and evolution. In Climate Change and plant abiotic stress tolerance (eds Tuteja, N. & Gill, S. S.) 251–294 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014).
    Google Scholar 
    91.Kiesling, R. Flora de San Juan, República Argentina Vol. 1 (Vázquez Mazzini, Buenos Aires, 1994).
    Google Scholar 
    92.Köeppen, V. P. Climatología. Con un estudio de los climas de la tierra (Fondo de Cultura Económica, Pánuco, México, DF, 1948).
    Google Scholar 
    93.Bakken, G. S. Measurements and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194–216 (1992).Article 

    Google Scholar 
    94.Cecchetto, N. R., Medina, S. M., Taussig, S. & Ibargüengoytía, N. R. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. Can. J. Zool. 97, 773–782 (2019).Article 

    Google Scholar 
    95.Cecchetto, N. R., Medina, S. M. & Ibargüengoytía, N. R. Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus. Sci. Rep. 10, 14732 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Mahoney, J. J. & Hutchison, V. H. Photoperiod acclimation and 24-hour variations in the critical thermal maxima of a tropical and a temperate frog. Oecologia 2, 143–161 (1969).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Christian, K. A. & Weavers, B. W. Thermoregulation of monitor lizards in Australia: An evaluation of methods in thermal biology. Ecol. Monogr. 66, 139–157 (1996).Article 

    Google Scholar 
    98.Camacho, A. et al. Measuring behavioral thermal tolerance to address hot topics in ecology, evolution, and conservation. J. Therm. Biol. 73, 71–79 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Clusella-Trullas, S. & Chown, S. L. Lizard thermal trait variation at multiple scales: a review. J. Comp. Physiol. B 184, 5–21 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. USA 111, 5610–5615 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and practice of statistics in biological research 3rd edn. (Freeman W.H, 1995).MATH 

    Google Scholar 
    102.Kovach, W. Oriana ver. 4.0. Software. (Kovach Computing Services, 2001).103.Fitzgerald, L. A., Cruz, F. B. & Perotti, G. Phenology of a lizard assemblage in the dry Chaco of Argentina. J. Herpetol. 33, 526–535 (1999).Article 

    Google Scholar 
    104.Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Educ. 64, 79–93 (1995).Article 

    Google Scholar 
    105.García Pérez, M. A. & Núñez Antón, V. Cellwise residual analysis in two-way contingency tables. Educ. Psychol. Meas. 65, 825–839 (2003).MathSciNet 
    Article 

    Google Scholar 
    106.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).Article 

    Google Scholar 
    107.Bohonak, A. J. & van Der Linde, K. RMA for JAVA Software for Reduced Major Axis regression. ver. 1.21. (2004).108.Baty, F. et al. A toolbox for nonlinear regression in R: The Package nlstools. J. Stat. Softw. 5, 1–21 (2015).
    Google Scholar 
    109.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2019).110.Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package ver. 3.4.6. (2020).111.Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package ver. 1.1-4. (2017).112.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package ver. 3.4-5. (2020). More

  • in

    Flume experiments reveal flows in the Burgess Shale can sample and transport organisms across substantial distances

    Fieldwork and rock sample analysisThe primary objective of our fieldwork was to collect sedimentological data that would allow us to interpret the processes responsible for the deposition of the beds of the Greater Phyllopod Bed. These parameters could then be incorporated into our experimental design and recreation of Burgess Shale-type flows. To understand the complex sedimentary deposits of the Burgess Shale Formation, we targeted individual beds (Fig. 3, Supplementary Figs. 2–5) that were logged at outcrop for informative mm-scale and cm-scale sedimentary structures. Grain size analysis was conducted in the field using a grain-size comparator and hand-lens and during petrographic analysis. The Greater Phyllopod Bed has been logged in considerable detail in the field20,33, and so logs produced from our work can be used to compare to previous studies. Detailed descriptions of the intervals sampled included color, bounding surfaces, micro-sedimentary structures, grain size, and textures. Larger-scale field mapping and analysis of sedimentary architecture were not undertaken and so we were not attempting to answers questions on the relationship of the Cathedral Escarpment to the fossil-bearing deposits or the precise provenance of the organisms.We collected whole-rock samples from the Greater Phyllopod Bed of the Walcott Quarry at stratigraphic heights of 111.6, 136, 149.95, 184.83, and 226.68 cm (labeled Bed A to E, respectively) above the top of the Wash Limestone Member. All sedimentological samples for this study were collected in situ from this location under the Parks Canada collection and research permit (YNP-2015-19297). The permit for our fieldwork allowed us to collect and sample sedimentological material exclusively. These were subsequently sampled for laboratory analysis and thin-section preparation.Petrographic analysis was performed on all samples using a Leica DM750P microscope. Each thin section was scanned with an Epson scanner to observe details of the millimeter-scale structures and textures (Fig. 3, Supplementary Figs. 2–5). Plain and cross-polarized light micrographs were taken of areas of particular sedimentological interest from each thin section and documented along with the petrological analysis. These samples were processed for further geochemical and elemental analysis.Sample analysisX-Ray Diffraction (XRD) was used to characterize the mineralogical content of the matrix of Bed A (111.6 cm above the top of the Wash Limestone Member) from the Walcott Quarry. For whole-rock bulk powder analyses, the sample was ground into a powder, and XRD was conducted using a PANalytical X’Pert3 diffractometer. For clay analysis, we applied the fractions to orientated glass slides. Organics were removed from each sample by H2O2 treatment before disaggregating the material using ultrasonic vibration. The suspended material was decanted from the ultrasonic bath in centrifuge bottles, which were topped up with deionized water so that each bottle weighed within the same gram. The bottles were placed in the centrifuge for two treatments, first at 1000 rpm for 4 min, and then again at 4000 rpm for 20 min. After the first treatment, the supernatant was transferred to new centrifuge bottles. The three lightest bottles were topped up with deionized water in order to reach the weight of the heaviest. The resultant concentrated sample yield ( More

  • in

    Cyclic drying and wetting tests on combined remediation of chromium-contaminated soil by calcium polysulfide, synthetic zeolite and cement

    Selection of materials for joint repair of chromium-contaminated soilTable 1 shows the results of the orthogonal test. Range analysis was performed according to the results of Table 1. The range-analysis results are shown in Table 2.Table 1 Orthogonal design scheme and results.Full size tableTable 2 Orthogonal test results range analysis calculation table.Full size tableTable 2 shows that, from the perspective of unconfined compressive strength, the primary and secondary order of the 28 day strength, factors affecting the combined repair of chromium-contaminated soil were cement content → fly-ash synthetic zeolite content → CaS5 content. The best test ratio was: CaS5 content 3 times, synthetic zeolite content 15%, and cement content 20%. The unconfined compressive strength of the contaminated soil after remediation increased with the increase in cement content, but the relationship between the content of CaS5 and synthetic zeolite, and the unconfined compressive strength of the specimen was not very obvious. From the perspective of toxicity leaching, the primary and secondary order of factors affecting the total chromium leaching concentration of the combined remediation of chromium-contaminated soil were cement content → fly-ash synthetic zeolite content → CaS5 content. The primary and secondary order of factors affecting the leaching concentration of Cr(VI) in the combined remediation of contaminated soil were CaS5 content → cement content → fly-ash synthetic zeolite content. The best test ratios of the total chromium and Cr(VI) toxicity leaching test were: CaS5 content is 4 times, synthetic zeolite content 15%, and cement content 20%. Total chromium and Cr(VI) leaching concentration of the chromium-contaminated soil after joint remediation was negatively correlated with the content of CaS5, synthetic zeolite, and cement content. The change of total chromium leaching concentration was most significantly affected by cement content and synthetic zeolite. Second, the change of Cr(VI) leaching concentration was most significantly affected by CaS5 content. From the perspective of leaching concentration, when reducing agent CaS5, adsorbent synthetic zeolite, and curing agent cement were all at maximum, the leaching effect of total chromium and Cr(VI) was best. However, considering the actual engineering cost and dosage of the preparation should be reduced as much as possible for meeting the requirements. Therefore, comprehensive balance analysis determined the optimal ratio for joint repair of chromium-contaminated soil to be 3 times the dosage of CaS5, 15% synthetic zeolite, and cement amount 20%.Strength change of combined repair of chromium-contaminated soil under action of dry–wet cycleThe test compared the variation of unconfined compressive strength with the number of dry and wet cycles under different conditions of chromium content, combined to repair standard specimens of chromium-contaminated soil, and test results are shown in Fig. 1.Figure 1The relationship between unconfined compressive strength and the number of dry wet cycles.Full size imageFigure 1 shows that, in the beginning, the unconfined compressive strength of the combined repair of chromium-contaminated soil increased with the increase in the number of wet and dry cycles. After reaching the maximal value, it gradually decreased as the number of dry–wet cycles continued to increase. In the initial stage of the dry–wet cycle, the unconfined compressive strength of the combined repair of chromium-contaminated soil increased to varying degrees. For 1000 and 3000 mg/kg of chromium-contaminated soil, the peak of the unconfined compressive strength appeared at 2 times during the dry–wet cycle, and the peak of the unconfined compressive strength of 5000 mg/kg chromium-contaminated soil appeared at 4 dry–wet cycles. After that, unconfined compressive strength gradually decreased with the progress of dry–wet cycles, and the decrease rate became slower. From strength-loss analysis, the higher the chromium content was, the greater the change in strength loss. After 16 wet and dry cycles, the strength-loss rates of 1000, 3000, and 5000 mg/kg chromium-contaminated soil were 17.95%, 22.27%, and 28.73%, respectively, and strength loss was within 30%, showing better water stability21,22.From analysis of the strength-change process, after 28 days of curing for the joint repair of chromium-contaminated soil, the physical and chemical interaction between cement hydrate and soil in the repair preparation was still occurring, as was the strength increase and dry–wet cycle caused by its hydration products. The weakening effect on strength is a dynamic equilibrium process of mutual decline and growth, and the equilibrium state of the two reaction degrees directly affected the strength of solidified chromium-contaminated soil23. In the initial stage of the dry–wet cycle, the strength increase caused by the interaction between remediation agent and chromium-contaminated soil continued. At that time, the destructive effect of the dry–wet cycle on the joint repair of chromium-contaminated soil was not significant in comparison. As the number of dry–wet cycles increased, hydration products formed and became stable. Dry shrinkage and wet expansion cause internal stress in the joint repair of chromium-contaminated soil, and the soil has cracks due to internal stress changes. A dry–wet cycle has a relatively destructive effect that is gradually noticeable and resulting in a decrease in strength. After many instances of drying and wetting, the strength of repairing chromium-contaminated soil was decreased and stabilized.Figure 1 also shows that, compared with low-content chromium-contaminated soil, the high-content chromium-contaminated-soil solidified body strength peak appeared later, and the peak value was low. This is because the higher the chromium ion content was, the more serious the delay of the hydration reaction of the repair agent was, and the more obvious the weakening effect on the strength of the cured body was, which is not conducive to strength growth. The weakening effect of the dry–wet cycle on strength continued to exist, which led to the repaired contaminated soil with a high content of chromium having lower strength.Toxic-leaching changes of combined remediation of chromium-contaminated soil under dry–wet cycleThe experiment compared the variation of hexavalent chromium and total chromium leaching concentration with the number of dry–wet cycles in standard specimens of the combined repair of chromium-contaminated soil under different chromium-content conditions of the contaminated soil. Test results are shown in Fig. 2.Figure 2Effect of drying–wetting cycle timeson leaching concentration of Cr.Full size imageFigure 2 shows that the leaching concentration of Cr(VI) and total chromium decreased in the initial stage of the dry–wet cycle of the remediation of chromium-contaminated soil. After that, as the number of dry–wet cycles increased, leaching concentration also increased, but the content was low (1000 mg/kg). The medium content (3000 mg/kg) of chromium-contaminated soil Cr(VI) and total chromium leaching concentration fluctuated slightly, and the change was relatively stable, while the high content of chromium-contaminated soil (5000 mg/kg) Cr(VI) leaching the concentration fluctuated greatly, and total chromium increased significantly. Compared with the low-content chromium-contaminated soil, the leaching concentration of the solidified body of high-content chromium-contaminated soil was higher.In the beginning of the dry–wet cycle, the physical and chemical interaction between the cement hydrate and the soil in the repair preparation was still happening. The fly-ash synthetic zeolite had the adsorption effect of metal chromium ions and hydroxide precipitation in the alkaline environment. The formation of chromium ions could meet the requirements of curing/stabilizing chromium ions, and heavy-metal chromium ions are not easy to leach. With the increase in the number of dry–wet cycles, a series of evolutionary processes occurred, such as the expansion of local microcracks, the increase in macropores, the appearance of internal cracks in the contaminated soil, and the appearance of cracks and peeling phenomena on the outside of the contaminated-soil damage. At this time, the contact area between the heavy-metal ions in the contaminated soil and the external environment, especially water, increased, which reduced the ability of the repair agent to adsorb and wrap chromium ions, so that chromium ions were easily leached. In the leaching test, the use of the acidic leaching solution also destroyed the pH balance of the repaired chromium-contaminated soil, the hydrated gel was dissolved and desorbed, and the heavy metals changed, thereby accelerating the leaching of heavy-metal ions24.From analysis of the leaching law shown by the contaminated soil with different chromium content levels, when chromium content in the contaminated soil was low, the remediation agent could effectively solidify/stabilize most of the chromium ions in the soil Cr(VI) and low total chromium leaching. When the chromium content in the contaminated soil was high, the limited content of the repair agent showed an insufficient solidification/stabilization effect of the heavy-metal chromium ions. Because a higher concentration of chromium ions hindered the formation of hydration products of the repair agent, it weakened the adsorption and binding capacity of the hydrated gel. The heavy-metal chromium ions existed in the pores of the contaminated soil in a free state, making the repair agent solidify the chromium ions, the stabilization effect decreased, and the leaching of Cr(VI) and total chromium increased.Overall, the effect of the dry–wet cycle on the joint repair of chromium-contaminated soil was limited, and the joint repair of chromium-contaminated soil had strong resistance to dry–wet cycles, especially the low- and medium-content chromium-polluted soil.Combined repair of quality loss of chromium-contaminated soil under action of dry–wet cyclesThe cumulative mass-loss rate of the sample was calculated from Formula (1), and the result is shown in Fig. 3. With the increase in the number of wet and dry cycles, the cumulative mass-loss rate of the composite preparation to repair chromium-contaminated soil gradually increased; and the higher the chromium content of the contaminated soil was, the greater the cumulative mass-loss rate was. The cumulative mass-loss rate of 16 wet and dry cycles was less than 1%, which shows that the joint repair of chromium-contaminated soil had strong resistance to dry and wet cycles.Figure 3Change of cumulative mass loss rate during dry wet cycle.Full size imageFigure 4 is a photograph of the appearance change of a solidified 5000 mg/kg chromium-contaminated-soil sample after a dry–wet cycle. The soundness-evaluation results of the sample after each dry–wet cycle are shown in Fig. 5.Figure 4Appearance changes of cured chromium contaminated soil samples with dry and wet cycles at (a) 0 times; (b) 2 times; (c) 4 times; (d) 8 times; and (e) 16 times.Full size imageFigure 5Soundness evaluation results of cured chromium contaminated soil samples.Full size imageFigures 4 and 5 show that, after two dry–wet cycles of the joint repair of chromium-contaminated soil, the appearance of the sample did not significantly change, compared with 0 cycles, the surface changed from smooth to rough. Slight cracks appeared from the fourth cycle. Obvious cracks appeared in the sample at the end of the eighth cycle, and a small part of the sample fell off. The sample began to show obvious cracks from the end of the 15th dry–wet cycle, and large pieces of slack simultaneously appeared. The sample was subjected to 16 wet and dry cycles, and soundness was still not at e–h level, indicating that the joint repair of chromium-contaminated soil had strong resistance to dry and wet cycles.Combined repair of chromium-contaminated-soil microstructure changes under action of dry–wet cyclesAfter the joint repair of chromium-contaminated-soil specimens underwent a certain number of wet and dry cycles, the strength, leaching characteristics, and appearance of the specimens significantly changed. From the microstructure, there had to be corresponding changes. Therefore, scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to further analyze the microstructure changes of specimens with different chromium content levels under the action of different wet and dry cycles, as shown in Figs. 6 and 7.Figure 6SEM images of 5000 mg/kg chromium contaminated soil specimens after different dry wet cycles at (a) 0 times; (b) 2 times; (c) 8 times; and (d) 16 times.Full size imageFigure 7XRD pattern of 5000 mg/kg chromium contaminated soil specimen after different dry wet cycles.Full size imageFigure 6 shows that the combined repair of chromium-contaminated soil after 28 days of curing had many pores in the specimen at 0 dry–wet cycles (standard sample), the physical and chemical interaction between the cement hydrate and the soil in the repair preparation still continued, and there were platelike calcium hydroxide crystals on the surface. After two dry–wet cycles, the contaminated soil was denser, and the overall structure was more complete than that in the samples without dry–wet cycles. The plate-shaped calcium hydroxide crystals were reduced, and a large number of fibrous and flocculent hydrated gels could be seen on the surface of the structure. This shows that the reaction between remediation agent and chromium-contaminated soil continued, which is consistent with the law that strength did not drop but rose during the two dry and wet cycles in the unconfined-compressive-strength test. After the test piece had undergone 8 dry–wet cycles, the surface of the test piece not only had a large increase in pores, but also had local cracks, indicating that the structure of the test piece was damaged under the action of the dry–wet cycle, which is consistent with the unconfined compressive strength found in the experiment, coinciding with a sharp drop. After 16 wet and dry cycles, the surface of the specimen not only showed a large number of pores and cracks, but also had obvious roughness. It showed that the dry–wet cycle effect caused the hydration products and cement materials in the soil to be destroyed and dissolved out, and the coupling and supporting forces between soil particles are weakened, and the strength of the soil is reduced accordingly, which was consistent with the macroscopic test results.Figure 7 shows that the main crystal phases of the chromium-contaminated soil were SiO2 and Al2O3 for the samples that did not undergo a dry–wet cycle. A small number of CSH, CAH, Ca(OH)2, and CaCO3 crystals could also be detected from the diffraction peaks. Cr3+ and Cr6+ formed hydroxide precipitates in a highly alkaline environment and wrapped them on the surface of cement, hindering their contact reaction with water. Compared with 0 cycles, SiO2 and Al2O3 in the second cycle were decreased, while the contents of CSH, CAH, Ca(OH)2, and CaCO3 significantly increased. This is because in the process of dry and wet cycles, the sample is fully exposed to moisture and air, so the hydration, depolymerization-cementation, pozzolanic, and carbonation reactions between composite preparation and chromium-contaminated soil continued. After two dry–wet cycles, more hydration products were generated than in the specimens without dry–wet cycles, which filled the pores between the particles of the solidified body, effectively blocking the permeability of the pores, and making the contaminated soil denser, and more structured and complete. At the same time, the full progress of the hydration reaction also delayed the damage rate of the water body to the soil in the dry–wet cycle, so that the soil could maintain a certain strength in the harsh environment, which is consistent with the above-mentioned growth trend of the soil strength. At the same time, the extension of a large amount of fibrous calcium silicate hydrate greatly increased the internal specific surface area of the soil. Free-state Cr3+ and Cr6+ were adsorbed or produced hydroxide precipitation and filled in the pores of the soil, and free ion concentration was also greatly reduced, which is consistent with the above ion-leaching test results. For the specimens with 8 dry and wet cycles, the content of hydration products such as CAH and CSH was reduced. This is due to a series of evolutionary processes such as the expansion of local microcracks, the increase in macropores, the appearance of internal cracks in the contaminated soil, and the appearance of cracks and peeling on the outside of the contaminated soil. Structural integrity was destroyed, and strength was accordingly reduced. By 16 wet and dry cycles, a large amount of fibrous CSH disappeared, which weakened the cementation between soil particles. At this time, the heavy-metal ions originally wrapped in the contaminated soil solidified the body and the external environment, the contact area with the water was increased, the pH value of the environment was decreased, hydrate CSH was decalcified, and Ca/Si ratio was decreased. This reduced the adsorption capacity of the compound formulation to chromium ions, so that chromium ions were dissolved out of the soil. More

  • in

    Ignoring species hybrids in the IUCN Red List assessments for African elephants may bias conservation policy

    Wildlife Conservation Research Unit, Recanati-Kaplan Centre, Zoology, University of Oxford, Oxford, UKHans Bauer & Claudio Sillero-ZubiriEvolutionary Ecology Group, Biology, University of Antwerp, Antwerp, BelgiumHans BauerLaboratory for Applied Ecology, Natural Resource Conservation, University of Abomey-Calavi, Cotonou, BeninAristide Comlan TehouDepartment of HydroSciences and Environment, University Iba Der Thiam, Thiès, SénégalMallé GueyeDirection de la Faune, de la Chasse et des Parcs et Réserves, Ministère de l’Environnement de la Salubrité Urbaine et du Développement Durable, Niamey, NigerHamissou GarbaDirection de la Faune et des Chasses, Ministère de l’Environnement et du Développement Durable, Ouagadougou, Burkina FasoBenoit DoambaNational Parks Directorate, Ministry of Environment and Sustainable Development, Dakar, SenegalDjibril DiouckThe Born Free Foundation, Horsham, UKClaudio Sillero-Zubiri More