More stories

  • in

    Climate change threatens olive oil production in the Levant

    Liphschitz, N., Gophna, R., Hartman, M. & Biger, G. The beginning of olive (Olea europaea) cultivation in the Old World: a reassessment. J. Archaeol. Sci. 18, 441–453 (1991).Article 

    Google Scholar 
    Blondel, J. & Aronson, J. Biology and Wildlife of the Mediterranean Region (Oxford Univ. Press, 1999).Fall, P. L., Falconer, S. E. & Lines, L. Agricultural intensification and the secondary products revolution along the Jordan Rift. Hum. Ecol. 30, 445–482 (2002).Article 

    Google Scholar 
    Terral, J.-F. et al. Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J. Biogeogr. 31, 63–77 (2004).Article 

    Google Scholar 
    Chartzoulakis, K. Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric. Water Manag. 78, 108–121 (2005).Article 

    Google Scholar 
    Vossen, P. Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42, 1093–1100 (2007).Article 

    Google Scholar 
    Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 87, 885–899 (2012).Article 

    Google Scholar 
    Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: the fossil pollen evidence. Holocene 29, 902–922 (2019).Article 

    Google Scholar 
    IPCC. AR5 Synthesis Report: Climate Change 2014 https://www.ipcc.ch/report/ar5/syr/ (IPCC, 2014).IPCC. IPCC WGII Sixth Assessment Report. Cross-Chapter Paper 4: Mediterranean Region https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (IPCC, 2022).Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010).Article 
    CAS 

    Google Scholar 
    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).Article 

    Google Scholar 
    Santos, J. A., Costa, R. & Fraga, H. Climate change impacts on thermal growing conditions of main fruit species in Portugal. Clim. Change 140, 273–286 (2017).Article 

    Google Scholar 
    Orlandi, F. et al. Impact of climate change on olive crop production in Italy. Atmosphere 11, 595 (2020).Article 

    Google Scholar 
    Rodríguez Sousa, A. A., Barandica, J. M., Aguilera, P. A. & Rescia, A. J. Examining potential environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture 10, 509 (2020).Article 

    Google Scholar 
    Besnard, G. et al. The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc. R. Soc. B 280, 20122833 (2013).Article 
    CAS 

    Google Scholar 
    Besnard, G., Terral, J. F. & Cornille, A. On the origins and domestication of the olive: a review and perspectives. Ann. Bot. 121, 385–403 (2018).Article 

    Google Scholar 
    Bartolini, G., Prevost, G., Messeri, C., Carignani, C. & Menini, U. G. Olive Germplasm: Cultivars and World-wide Collections (FAO, 1998).Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).Article 
    CAS 

    Google Scholar 
    Terral, J.-F. Wild and cultivated olive (Olea europaea L.): a new approach to an old problem using inorganic analyses of modern wood and archaeological charcoal. Rev. Palaeobot. Palynol. 91, 383–397 (1996).Article 

    Google Scholar 
    Carrión, Y., Ntinou, M. & Badal, E. Olea europaea L. in the North Mediterranean basin during the Pleniglacial and the Early–Middle Holocene. Quat. Sci. Rev. 29, 952–968 (2010).Article 

    Google Scholar 
    Zohary, M. Plants of the Bible (Cambridge Univ. Press, 1982).Galili, E., Weinstein-Evron, M. & Zohary, D. Appearance of olives in submerged Neolithic sites along the Carmel Coast. J. Isr. Plant Sci. 22, 95–97 (1989).
    Google Scholar 
    Galili, E., Stanley, D. J., Sharvit, J. & Weinstein-Evron, M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. J. Archaeol. Sci. 24, 1141–1150 (1997).Article 

    Google Scholar 
    Galili, E. et al. Early production of table olives at a mid-7th millennium BP submerged site off the Carmel Coast (Israel). Sci. Rep. 11, 2218 (2021).Article 
    CAS 

    Google Scholar 
    Fraga, H., Pinto, J. G., Viola, F. & Santos, J. A. Climate change projections for olive yields in the Mediterranean Basin. Int. J. Climatol. 40, 769–781 (2020).Article 

    Google Scholar 
    Ben Zaied, Y. & Zouabi, O. Impacts of climate change on Tunisian olive oil output. Clim. Change 139, 535–549 (2016).Article 

    Google Scholar 
    Brito, C., Dinis, L. T., Moutinho-Pereire, J. & Correia, C. M. Drought stress effects and olive tree acclimation under a changing climate. Plants 8, 232 (2019).Article 
    CAS 

    Google Scholar 
    Fraga, H., Moriondo, M., Leolini, L. & Santos, J. A. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11, 56 (2021).Article 

    Google Scholar 
    Trærup, S. & Stephan, J. Technologies for adaptation to climate change. Examples from the agricultural and water sectors in Lebanon. Clim. Change 131, 435–449 (2015).Article 

    Google Scholar 
    Chalak, L. et al. Extent of the genetic diversity in Lebanese olive (Olea europaea L.) trees: a mixture of an ancient germplasm with recently introduced varieties. Genet. Resour. Crop. Evol. 62, 621–633 (2015).Article 

    Google Scholar 
    Bou-Zeid, E. & El-Fadel, M. Climate change and water resources in Lebanon and the Middle East. J. Water Resour. Plan. Manag. 128, 343–355 (2002).Article 

    Google Scholar 
    Ramadan, H. H., Beighley, R. E. & Ramamurthy, A. S. Sensitivity analysis of climate change impact on the hydrology of the Litani Basin in Lebanon. Int. J. Environ. Pollut. 52, 65–81 (2013).Article 
    CAS 

    Google Scholar 
    Saade, J., Atieh, M., Ghanimeh, S. & Golmohammadi, G. Modeling impact of climate change on surface water availability using SWAT model in a semi-arid basin: case of El Kalb River, Lebanon. Hydrology 8, 134 (2021).Article 

    Google Scholar 
    Halwani, J. & Halwani, B. in Climate Change in the Mediterranean and Middle Eastern Region (eds Filho, W. L. & Manolas, E.) 395–412 (Springer, 2022).Aubet, M.E. in Nomads of the Mediterranean: Trade and Contact in the Bronze and Iron Ages (eds Gilboa, A. & Yasur-Landau, A.) 14–30 (Brill, 2020).Bikai, P. M. The Pottery of Tyre (Aris & Phillips, 1979).Hajar, L., Khater, C. & Cheddadi, R. Vegetation changes during the late Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa Valley. Holocene 18, 1089–1099 (2008).Article 

    Google Scholar 
    Hajar, L., Haïdar-Boustani, M., Khater, C. & Cheddadi, R. Environmental changes in Lebanon during the Holocene: man vs. climate impacts. J. Arid. Environ. 74, 746–755 (2010).Article 

    Google Scholar 
    Cheddadi, R. & Khater, C. Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species. Quat. Sci. Rev. 150, 146–157 (2016).Article 

    Google Scholar 
    Ozturk, M. et al. An overview of olive cultivation in Turkey: botanical features, eco-physiology and phytochemical aspects. Agronomy 11, 295 (2021).Article 
    CAS 

    Google Scholar 
    Lionello, P., Congedi, L., Reale, M., Scarascia, L. & Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Change 14, 2025–2038 (2014).Article 

    Google Scholar 
    Arenas-Castro, S., Gonçalves, J. F., Moreno, M. & Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 709, 136161 (2020).Article 
    CAS 

    Google Scholar 
    Mechri, B., Tekaya, M., Hammami, M. & Chehab, H. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochem. Syst. Ecol. 92, 104112 (2020).Article 
    CAS 

    Google Scholar 
    Pedan, V., Popp, M., Rohn, S., Nyfeler, M. & Bongartz, A. Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules 24, 2041 (2019).Article 
    CAS 

    Google Scholar 
    Dias, M. C., Pinto, D. C. G. A., Figueiredo, C., Santos, C. & Silva, A. M. S. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. Phytochemistry 185, 112695 (2021).Article 
    CAS 

    Google Scholar 
    Peres, F. et al. Phenolic compounds of ‘Galega Vulgar’ and ‘Cobrançosa’ olive oils along early ripening stages. Food Chem. 211, 51–58 (2016).Article 
    CAS 

    Google Scholar 
    Tsimidou, M. Z. in Handbook of Olive Oil: Analysis and Properties (eds Aparicio, R. & Harwood, J.) 311–333 (Springer, 2013).Valente, S. et al. Modulation of phenolic and lipophilic compounds of olive fruits in response to combined drought and heat. Food Chem. 329, 127191 (2020).Article 
    CAS 

    Google Scholar 
    WCRP. World Research Climate Program https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 (WCRP, 2022).Rallo, L. et al. in Advances in Plant Breeding Strategies: Fruits (eds Al-Khayri, J. et al.) (Springer, 2018).Abou-Saaid, O. et al. Statistical approach to assess chill and heat requirements of olive tree based on flowering date and temperatures data: towards selection of adapted cultivars to global warming. Agronomy 12, 2975 (2022).Article 

    Google Scholar 
    Faegri, K. & Iversen, I. Textbook of Pollen Analysis 4th edn. (Wiley, 1989).Ferrara, G., Camposeo, S., Palasciano, M. & Godini, A. Production of total and stainable pollen grains in Olea europaea L. Grana 46, 85–90 (2007).Article 

    Google Scholar 
    Kaniewski, D. et al. Wild or cultivated Olea europaea L. in the eastern Mediterranean during the Middle–Late Holocene? A pollen-numerical approach. Holocene 19, 1039–1047 (2009).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Hammer, O. & Harper, D. Paleontological Data Analysis (Blackwell, 2006).Cheddadi, R. et al. Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front. Ecol. Evol. 5, 114 (2017).Article 

    Google Scholar 
    Kaniewski, D. et al. Cold and dry outbreaks in the eastern Mediterranean 3200 years ago. Geology 47, 933–937 (2019).Article 

    Google Scholar 
    Kaniewski, D. et al. Recent anthropogenic climate change exceeds the rate and magnitude of natural Holocene variability on the Balearic Islands. Anthropocene 32, 100268 (2020).Article 

    Google Scholar 
    Kaniewski, D. et al. Coastal submersions in the north-eastern Adriatic during the last 5200 years. Glob. Planet. Change 204, 103570 (2021).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Akima, H. & Gebhardt, A. Akima: Interpolation of Irregularly and Regularly Spaced Data. R v.0.6-2 (R Foundation for Statistical Computing, 2016).Ooms, J. D., Debroy, S., Wickham, H. & Horner, J. RMySQL: Database Interface and ‘MySQL’ Driver for R. R v.0.10.18 (R Foundation for Statistical Computing, 2019).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar  More

  • in

    Evaluating sea cucumbers as extractive species for benthic bioremediation in mussel farms

    Avdelas, L. et al. The decline of mussel aquaculture in the European Union: Causes, economic impacts and opportunities. Rev. Aquac. 13, 91–118. https://doi.org/10.1111/raq.12465 (2021).Article 

    Google Scholar 
    Tamburini, E., Turolla, E., Fano, E. A. & Castaldelli, G. Sustainability of Mussel (Mytilus galloprovincialis) farming in the Po River delta, northern Italy, based on a life cycle assessment approach. Sustainability 12, 3814. https://doi.org/10.3390/su12093814 (2020).Article 
    CAS 

    Google Scholar 
    Shumway, S. E. et al. Shellfish aquaculture-In praise of sustainable economies and environments. J. World Aquacult. Soc. 34, 8–10 (2003).
    Google Scholar 
    Musella, M. et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci. Total Environ. 717, 137209. https://doi.org/10.1016/J.SCITOTENV.2020.137209 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Peharda, M., Župan, I., Bavčević, L., Frankić, A. & Klanjšček, T. Growth and condition index of mussel Mytilus galloprovincialis in experimental integrated aquaculture. Aquac. Res. 38, 1714–1720. https://doi.org/10.1111/J.1365-2109.2007.01840.X (2007).Article 

    Google Scholar 
    Sarà, G., Zenone, A. & Tomasello, A. Growth of Mytilus galloprovincialis (Mollusca, bivalvia) close to fish farms: A case of integrated multi-trophic aquaculture within the Tyrrhenian sea. Hydrobiologia 636, 129–136. https://doi.org/10.1007/S10750-009-9942-2/TABLES/4 (2009).Article 

    Google Scholar 
    Danovaro, R., Gambi, C., Luna, G. M. & Mirto, S. Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): Evidence from biochemical, microbial and meiofaunal indicators. Mar. Pollut. Bull. 49, 325–333. https://doi.org/10.1016/j.marpolbul.2004.02.038 (2004).Article 
    CAS 

    Google Scholar 
    Tancioni, L. et al. Anthropogenic threats to fish of interest in aquaculture: Gonad intersex in a wild population of thinlip grey mullet Liza ramada (Risso, 1827) from a polluted estuary in central Italy. Aquac. Res. 47(5), 1670–1674 (2016).Article 

    Google Scholar 
    Chary, K. et al. Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts. Aquaculture 516, 734621. https://doi.org/10.1016/j.aquaculture.2019.734621 (2020).Article 
    CAS 

    Google Scholar 
    Purcell, S. W., Williamson, D. H. & Ngaluafe, P. Chinese market prices of beche-de-mer: Implications for fisheries and aquaculture. Mar. Policy 91, 58–65. https://doi.org/10.1016/j.marpol.2018.02.005 (2018).Article 

    Google Scholar 
    Morroni, L. et al. Sea cucumber Holothuria polii (Delle Chiaje, 1823) as new model for embryo bioassays in ecotoxicological studies. Chemosphere 240, 124819. https://doi.org/10.1016/j.chemosphere.2019.124819 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Uthicke, S. & Karez, R. Sediment patch selectivity in tropical sea cucumbers (Holothuroidea: Aspidochirotida) analysed with multiple choice experiments. J. Exp. Mar. Biol. Ecol. 236, 69–87. https://doi.org/10.1016/S0022-0981(98)00190-7 (1999).Article 

    Google Scholar 
    MacTavish, T., Stenton-Dozey, J., Vopel, K. & Savage, C. Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS ONE 7, 1–11. https://doi.org/10.1371/journal.pone.0050031 (2012).Article 
    CAS 

    Google Scholar 
    Rakaj, A. et al. Towards sea cucumbers as a new model in embryo-larval bioassays: Holothuria tubulosa as test species for the assessment of marine pollution. Sci. Total Environ. 787, 147593. https://doi.org/10.1016/j.scitotenv.2021.147593 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Purcell, S., Conand, C., Uthicke, S. & Byrne, M. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 54, 367–386. https://doi.org/10.1201/9781315368597-8 (2016).Article 

    Google Scholar 
    Zamora, L. N., Yuan, X., Carton, A. G., Slater, M. J. & Marine, L. Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: Progress, problems, potential and future challenges. Rev. Aquac. 10, 57–74. https://doi.org/10.1111/raq.12147 (2016).Article 

    Google Scholar 
    Slater, M. J. & Carton, A. G. Survivorship and growth of the sea cucumber Australostichopus (Stichopus) mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272, 389–398. https://doi.org/10.1016/j.aquaculture.2007.07.230 (2007).Article 

    Google Scholar 
    Slater, M. J. & Carton, A. G. Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition. Mar. Pollut. Bull. 58, 1123–1129. https://doi.org/10.1016/j.marpolbul.2009.04.008 (2009).Article 
    CAS 

    Google Scholar 
    Slater, M. J. & Carton, A. G. Sea cucumber habitat differentiation and site retention as determined by intraspecific stable isotope variation. Aquac. Res. 41, 695–702. https://doi.org/10.1111/j.1365-2109.2010.02607.x (2010).Article 
    CAS 

    Google Scholar 
    Stenton-Dozey, J. Finding hidden treasure in aquaculture waste. Water Atmos. 15, 9–11 (2007).
    Google Scholar 
    Slater, M. J., Jeffs, A. G. & Carton, A. G. The use of the waste from green-lipped mussels as a food source for juvenile sea cucumber, Australostichopus mollis. Aquaculture 292, 219–224. https://doi.org/10.1016/j.aquaculture.2009.04.027 (2009).Article 

    Google Scholar 
    Stenton-Dozey, J. & Heath, P. A first for New Zealand: Culturing our endemic sea cucumber for overseas markets. Water Atmos. 17, 20–21 (2009).
    Google Scholar 
    Zamora, L. N. & Jeffs, A. G. Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture 317, 223–228. https://doi.org/10.1016/j.aquaculture.2011.04.011 (2011).Article 

    Google Scholar 
    Zamora, L. N. & Jeffs, A. G. The ability of the deposit-feeding sea cucumber Australostichopus mollis to use natural variation in the biodeposits beneath mussel farms. Aquaculture 326, 116–122. https://doi.org/10.1016/J.AQUACULTURE.2011.11.015 (2012).Article 

    Google Scholar 
    Zamora, L. N. & Jeffs, A. G. A Review of the research on the Australasian Sea Cucumber, Australostichopus mollis (Echinodermata: Holothuroidea) (Hutton 1872), with emphasis on aquaculture. J. Shellfish Res. 32, 613–627. https://doi.org/10.2983/035.032.0301 (2013).Article 

    Google Scholar 
    Zamora, L. N. & Jeffs, A. G. Macronutrient selection, absorption and energy budget of juveniles of the Australasian sea cucumber, Australostichopus mollis, feeding on mussel biodeposits at different temperatures. Aquac. Nutr. 21, 162–172. https://doi.org/10.1111/ANU.12144 (2015).Article 
    CAS 

    Google Scholar 
    Chatzivasileiou, D. et al. An IMTA in Greece: Co-culture of fish, bivalves, and holothurians. J. Mar. Sci. Eng. 10, 776. https://doi.org/10.3390/jmse10060776 (2022).Article 

    Google Scholar 
    Rakaj, A. et al. Spawning and rearing of Holothuria tubulosa: A new candidate for aquaculture in the Mediterranean region. Aquac. Res. 49, 557–568. https://doi.org/10.1111/are.13487 (2018).Article 
    CAS 

    Google Scholar 
    Rakaj, A., Fianchini, A., Boncagni, P., Scardi, M. & Cataudella, S. Artificial reproduction of Holothuria polii: A new candidate for aquaculture. Aquaculture 498, 444–453. https://doi.org/10.1016/j.aquaculture.2018.08.060 (2019).Article 

    Google Scholar 
    González-Wangüemert, M., Aydin, M. & Conand, C. Assessment of sea cucumber populations from the Aegean Sea (Turkey): First insights to sustainable management of new fisheries. Ocean Coast. Manag. 92, 87–94. https://doi.org/10.1016/J.OCECOAMAN.2014.02.014 (2014).Article 

    Google Scholar 
    González-Wangüemert, M., Valente, S. & Aydin, M. Effects of fishery protection on biometry and genetic structure of two target sea cucumber species from the Mediterranean Sea. Hydrobiologia 743, 65–74. https://doi.org/10.1007/s10750-014-2006-2 (2015).Article 

    Google Scholar 
    González-Wangüemert, M., Domínguez-Godino, J. A. & Cánovas, F. The fast development of sea cucumber fisheries in the Mediterranean and NE Atlantic waters: From a new marine resource to its over-exploitation. Ocean Coast. Manag. 151, 165–177. https://doi.org/10.1016/j.ocecoaman.2017.10.002 (2018).Article 

    Google Scholar 
    González-Wangüemert, M. & Godino, J. Sea cucumbers as new marine resource in Europe. Front. Mar. Sci. 3, 112 (2016).
    Google Scholar 
    Domínguez-Godino, J. A., Slater, M. J., Hannon, C. & González-Wangüermert, M. A new species for sea cucumber ranching and aquaculture: Breeding and rearing of Holothuria arguinensis. Aquaculture 438, 122–128. https://doi.org/10.1016/J.AQUACULTURE.2015.01.004 (2015).Article 

    Google Scholar 
    Günay, D., Emiroğlu, D., Tolon, T., Özden, O. & Saygi, H. Growth and survival rate of Juvenile Sea Cucumbers (Holothuria tubulosa, Gmelin, 1788) at Various Temperatures. Turk. J. Fish. Aquat. Sci. 15, 533–541. https://doi.org/10.4194/1303-2712-v15_2_41 (2015).Article 

    Google Scholar 
    Tolon, T. Effect of salinity on growth and survival of the juvenile sea cucumbers Holothuria tubulosa (Gmelin, 1788) and Holothuria poli (Delle Chiaje, 1923). Fresenius Environ. Bull. 26, 3930–3935 (2017).CAS 

    Google Scholar 
    Tolon, T., Emiroğlu, D., Günay, D. & Hancı, B. Effect of stocking density on growth performance of juvenile sea cucumber Holothuria tubulosa (Gmelin, 1788). Aquac. Res. 48, 4124–4131. https://doi.org/10.1111/are.13232 (2017).Article 

    Google Scholar 
    Tolon, M. T., Emiroglu, D., Gunay, D. & Ozgul, A. Sea cucumber (Holothuria tubulosa Gmelin, 1790) culture under marine fish net cages for potential use in integrated multi-trophic aquaculture (IMTA). Indian J. Geol. Mar. Sci. 46, 749–756 (2017).
    Google Scholar 
    Neofitou, N. et al. Contribution of sea cucumber Holothuria tubulosa on organic load reduction from fish farming operation. Aquaculture 501, 97–103. https://doi.org/10.1016/j.aquaculture.2018.10.071 (2019).Article 

    Google Scholar 
    Sadoul, B. et al. Aquaculture Is Holothuria tubulosa the golden goose of ecological aquaculture in the Mediterranean Sea? Aquaculture 554, 738149. https://doi.org/10.1016/j.aquaculture.2022.738149 (2022).Article 
    CAS 

    Google Scholar 
    Cutajar, K. et al. Culturing the sea cucumber Holothuria poli in open-water integrated multi-trophic aquaculture at a coastal Mediterranean fish farm. Aquaculture 550, 737881. https://doi.org/10.1016/j.aquaculture.2021.737881 (2022).Article 
    CAS 

    Google Scholar 
    Grosso, L. et al. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534, 736268. https://doi.org/10.1016/J.AQUACULTURE.2020.736268 (2021).Article 
    CAS 

    Google Scholar 
    González-Wangüemert, M., Valente, S., Henriques, F., Domínguez-Godino, J. A. & Serrão, E. A. Setting preliminary biometric baselines for new target sea cucumbers species of the NE Atlantic and Mediterranean fisheries. Fish. Res. 179, 57–66. https://doi.org/10.1016/J.FISHRES.2016.02.008 (2016).Article 

    Google Scholar 
    Aydin, M. Biometry, density and the biomass of the commercial sea cucumber population of the Aegean Sea. Turk. J. Fish. Aquat. Sci 19, 463–474. https://doi.org/10.4194/1303-2712-v19_6_02 (2018).Article 

    Google Scholar 
    Whitlock, M. C. & Schluter, D. Analisi Statistica dei Dati Biologici, Zanichelli (2010)Hammer, O. & Harper, D. A. T. PAST PAleontological STatistics Version 3 Reference Manual (University of Oslo, 2013).Zhou, Y. et al. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 256, 510–520. https://doi.org/10.1016/j.aquaculture.2006.02.005 (2006).Article 

    Google Scholar 
    Pensa, D. et al. Population status, distribution and trophic implications of Pinna nobilis along the South-eastern Italian coast. Npj Biodivers. https://doi.org/10.21203/rs.3.rs-1425249/v1 (2022).Article 

    Google Scholar 
    Francour, P. Predation on holothurians: A literature review. Invert. Bio. 116, 52–60. https://doi.org/10.2307/3226924 (1997).Article 

    Google Scholar 
    Mecheta, A. & Mezali, K. A biometric study to determine the economic and nutritional value of sea cucumbers (Holothuroidea: Echinodermata) collected from Algeria’s shallow water areas. Beche-de-mer Inf. Bull. 39, 65–70 (2019).
    Google Scholar 
    Sun, J., Hamel, J. F., Gianasi, B. L., Graham, M. & Mercier, A. Growth, health and biochemical composition of the sea cucumber Cucumaria frondosa after multi-year holding in effluent waters of land-based salmon culture. Aquac. Environ. Interact. 12, 139–151. https://doi.org/10.3354/aei00356 (2020).Article 

    Google Scholar 
    Boncagni, P., Rakaj, A., Fianchini, A. & Vizzini, S. Preferential assimilation of seagrass detritus by two coexisting Mediterranean sea cucumbers: Holothuria polii and Holothuria tubulosa. Estuar. Coast. Shelf Sci. 231, 106464. https://doi.org/10.1016/j.ecss.2019.106464 (2019).Article 
    CAS 

    Google Scholar 
    Rakaj, A., and Fianchini, A. Mediterranean sea cucumbers—Biology, ecology, and exploitation, Chapter. In The World of Sea Cucumbers Challenges, Advances, and Innovations (Mercier, A., Hamel, J.-F, Suhrbier, A. & Pearce, C.) (2023)Massin, C. & Jangoux, M. Observations écologiques sur Holothuria tubulosa, Holothuria poli et Holothuria forskali (Echinodermata, Holothuroidea) et comportement alimentaire de H. tubulosa. Référ. Cah. Biol. Mar. 17, 45–59 (1976).
    Google Scholar 
    Coulon, P. & Jangoux, M. Feeding rate and sediment reworking by the holothuroid Holothuria tubulosa (Echinodermata) in a Mediterranean seagrass bed off Ischia Island, Italy. Mar. Ecol. Progr. Ser. 92, 201–204 (1993).Article 
    ADS 

    Google Scholar 
    Belbachir, N., Mezali, K. & Soualili, D. L. Selective feeding behaviour in some aspidochirotid holothurians (Echinodermata: Holothuroidea) at Stidia, Mostaganem Province, Algeria (2014).Grosso, L. et al. Trophic requirements of the sea urchin Paracentrotus lividus varies at different life stages: comprehension of species ecology and implications for effective feeding formulations. Front. Mar. Sci. 9, 865450. https://doi.org/10.3389/fmars.2022.865450 (2022).Article 

    Google Scholar 
    Sun, Z. L., Gao, Q. F., Dong, S. L., Shin, P. K. & Wang, F. Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope analysis: The role of metabolism and growth. Mar. Ecol. Prog. Ser. 457, 101–112. https://doi.org/10.3354/meps09760 (2012).Article 
    ADS 

    Google Scholar 
    Yuan, X. T. et al. Effects of aestivation on the energy budget of sea cucumber Apostichopus japonicus (Selenka) (Echinaodermata: Holothuroidea). Acta. Ecol. Sin. 27, 3155−3161. https://doi.org/10.1016/S1872-2032(07)60070-5 (2007).Article 

    Google Scholar 
    Liu, Y., Dong, S. L., Tian, X. L., Wang, F. & Gao, Q. F. Effects ofdietary sea mud and yellow soil on growth and energybudget of the sea cucumber Apostichopus japonicas (Selenka). Aquaculture 286, 266–270. https://doi.org/10.1016/j.aquaculture.2008.09.029 (2009).Article 

    Google Scholar 
    Brown, N. P. & Eddy, S. D. Echinoderm Aquaculture (Wiley, 2015).Book 

    Google Scholar 
    Qiu, T., Zhang, L., Zhang, T., Bai, Y. & Yang, H. Effect of culture methods on individual variation in the growth of sea cucumber Apostichopus japonicus within a cohort and family. Chin. J. Oceanol. Limnol. 32, 737–742. https://doi.org/10.1007/S00343-014-3131-5 (2014).Article 
    ADS 

    Google Scholar 
    Zappes, I. A. et al. New data on Weddell seal (Leptonychotes weddellii) colonies: A genetic analysis of a top predator from the Ross Sea, Antarctica. PLoS ONE 12, 0182922. https://doi.org/10.1371/journal.pone.0182922 (2017).Article 
    CAS 

    Google Scholar 
    Paltzat, D. L., Pearce, C. M., Barnes, P. A. & McKinley, R. S. Growth and production of California sea cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters (Crassostrea gigas Thunberg). Aquaculture 275, 124–137. https://doi.org/10.1016/j.aquaculture.2007.12.014 (2008).Article 

    Google Scholar 
    Dong, S. et al. Intra-specific effects of sea cucumber (Apostichopus japonicus) with reference to stocking density and body size. Aquac. Res. 41, 1170–1178. https://doi.org/10.1111/J.1365-2109.2009.02404.X (2010).Article 

    Google Scholar 
    Pei, S., Dong, S., Wang, F., Gao, Q. & Tian, X. Effects of stocking density and body physical contact on growth of sea cucumber, Apostichopus japonicus. Aquac. Res. 45, 629–636. https://doi.org/10.1111/ARE.12004 (2014).Article 

    Google Scholar 
    Xia, B., Ren, Y., Wang, J., Sun, Y. & Zhang, Z. Effects of feeding frequency and density on growth, energy budget and physiological performance of sea cucumber Apostichopus japonicus (Selenka). Aquaculture 466, 26–32. https://doi.org/10.1016/J.AQUACULTURE.2016.09.039 (2017).Article 

    Google Scholar 
    Domínguez-Godino, J. A. & González-Wangüemert, M. Does space matter? Optimizing stocking density of Holothuria arguinensis and Holothuria mammata. Aquac. Res. 49, 3107–3115. https://doi.org/10.1111/are.13773 (2018).Article 

    Google Scholar 
    Rugnini, L., Rossi, C., Antonaroli, S., Rakaj, A. & Bruno, L. The influence of light and nutrient starvation on morphology, biomass and lipid content in seven strains of green microalgae as a source of biodiesel. Microorganisms 8, 1254. https://doi.org/10.3390/microorganisms8081254 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    A comparative analysis of urban forests for storm-water management

    Rahman, M. A. et al. Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban For. Urban Green. 38, 22–32. https://doi.org/10.1016/j.ufug.2018.11.002 (2019).Article 

    Google Scholar 
    Zölch, T., Henze, L., Keilholz, P. & Pauleit, S. Regulating urban surface runoff through nature-based solutions – An assessment at the micro-scale. Environ. Res. 157, 135–144. https://doi.org/10.1016/j.envres.2017.05.023 (2017).Article 
    CAS 

    Google Scholar 
    Barron, O. V., Barr, A. D. & Donn, M. J. Effect of urbanisation on the water balance of a catchment with shallow groundwater. J. Hydrol. 485, 162–176. https://doi.org/10.1016/j.jhydrol.2012.04.027 (2013).Article 
    ADS 

    Google Scholar 
    Rosenzweig, B. R. et al. The value of urban flood modeling. Earth’s Future 9, e2020EF001739. https://doi.org/10.1029/2020EF001739 (2021).Article 
    ADS 

    Google Scholar 
    Pauleit, S., Fryd, O., Backhaus, A. & Jensen, M. B. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 1–29 (Springer, 2020).
    Google Scholar 
    Rahman, M. A. et al. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).Article 

    Google Scholar 
    Ziter, C. D., Pedersen, E. J., Kucharik, C. J. & Turner, M. G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 116, 7575–7580. https://doi.org/10.1073/pnas.1817561116 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Waldrop, M. M. News feature: The quest for the sustainable city. Proc. Natl. Acad. Sci. 116, 17134–17138. https://doi.org/10.1073/pnas.1912802116 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Cleugh, H. A., Bui, E., Simon, D., Xu, J. & Mitchell, V. G. The Impact of Suburban Design on Water Use and Microclimate (2005).Chan, F. K. S. et al. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 76, 772–778. https://doi.org/10.1016/j.landusepol.2018.03.005 (2018).Article 

    Google Scholar 
    Morgan, R. P. C. Soil Erosion and Conservation (Wiley, 2005).
    Google Scholar 
    Xu, C. et al. Surface runoff in urban areas: The role of residential cover and urban growth form. J. Clean. Prod. 262, 121421. https://doi.org/10.1016/j.jclepro.2020.121421 (2020).Article 

    Google Scholar 
    Ostoić, S. K. & van den Bosch, C. C. K. Exploring global scientific discourses on urban forestry. Urban For. Urban Green. 14, 129–138. https://doi.org/10.1016/j.ufug.2015.01.001 (2015).Article 

    Google Scholar 
    Rahman, M. A. et al. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric. For. Meteorol. 287, 107947. https://doi.org/10.1016/j.agrformet.2020.107947 (2020).Article 
    ADS 

    Google Scholar 
    Rötzer, T., Rahman, M. A., Moser-Reischl, A., Pauleit, S. & Pretzsch, H. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Sci. Total Environ. 676, 651–664. https://doi.org/10.1016/j.scitotenv.2019.04.235 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Grote, R. et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550. https://doi.org/10.1002/fee.1426 (2016).Article 

    Google Scholar 
    Pace, R. et al. A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. Int. J. Biometeorol. 65, 277–289. https://doi.org/10.1007/s00484-020-02030-8 (2021).Article 
    ADS 

    Google Scholar 
    Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology https://doi.org/10.1002/eco.1813 (2017).Article 

    Google Scholar 
    Rahman, M. A., Moser, A., Gold, A., Rötzer, T. & Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 633, 100–111. https://doi.org/10.1016/j.scitotenv.2018.03.168 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Rahman, M. A., Smith, J. G., Stringer, P. & Ennos, A. R. Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban For. Urban Green. 10, 185–192. https://doi.org/10.1016/j.ufug.2011.05.003 (2011).Article 

    Google Scholar 
    Schellekens, J., Scatena, F. N., Bruijnzeel, L. A. & Wickel, A. J. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico. J. Hydrol. 225, 168–184. https://doi.org/10.1016/S0022-1694(99)00157-2 (1999).Article 
    ADS 

    Google Scholar 
    Guevara-Escobar, A., González-Sosa, E., Véliz-Chávez, C., Ventura-Ramos, E. & Ramos-Salinas, M. Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area. J. Hydrol. 333, 532–541. https://doi.org/10.1016/j.jhydrol.2006.09.017 (2007).Article 
    ADS 

    Google Scholar 
    Xiao, Q. F. & McPherson, E. G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 45, 188–198. https://doi.org/10.2134/jeq2015.02.0092 (2016).Article 
    CAS 

    Google Scholar 
    Xiao, Q. F., McPherson, E. G., Ustin, S. L. & Grismer, M. E. A new approach to modeling tree rainfall interception. J. Geophys. Res. Atmos. 105, 29173–29188. https://doi.org/10.1029/2000jd900343 (2000).Article 
    ADS 

    Google Scholar 
    Carlyle-Moses, D. E. & Gash, J. H. C. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions (eds Levia, D. F. et al.) 407–423 (Springer, 2011).Chapter 

    Google Scholar 
    Hirano, T. et al. The difference in the short-term runoff characteristic between the coniferous catchment and the deciduous catchment: The effects of storm size on storm generation processes of small forested catchment. J. Jpn. Soc. Hydrol. Water Resour. 22, 24–39. https://doi.org/10.3178/jjshwr.22.24 (2009).Article 

    Google Scholar 
    Chandler, K. R. & Chappell, N. A. Influence of individual oak (Quercus robur) trees on saturated hydraulic conductivity. For. Ecol. Manage. 256, 1222–1229. https://doi.org/10.1016/j.foreco.2008.06.033 (2008).Article 

    Google Scholar 
    Stewart, I. D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 31, 200–217. https://doi.org/10.1002/joc.2141 (2011).Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 (2018).Article 

    Google Scholar 
    Moreno-de las Heras, M., Nicolau, J. M., Merino-Martín, L. & Wilcox, B. P. Plot-scale effects on runoff and erosion along a slope degradation gradient. Water Resour. Res. 46, W04503. https://doi.org/10.1029/2009WR007875 (2010).Article 
    ADS 

    Google Scholar 
    Wu, L., Peng, M., Qiao, S. & Ma, X.-Y. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil. Environ. Sci. Pollut. Res. 25, 3480–3487. https://doi.org/10.1007/s11356-017-0713-8 (2018).Article 

    Google Scholar 
    Rutter, A. J., Kershaw, K. A., Robins, P. C. & Morton, A. J. A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 9, 367–384. https://doi.org/10.1016/0002-1571(71)90034-3 (1971).Article 

    Google Scholar 
    Gash, J. H. C. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 105, 43–55. https://doi.org/10.1002/qj.49710544304 (1979).Article 
    ADS 

    Google Scholar 
    Véliz-Chávez, C., Mastachi-Loza, C. A., Gonzalez-Sosa, E., Becerril-Pia, R. & Ramos-Salinas, N. M. Canopy storage implications on interception loss modeling. Am. J. Plant Sci. 05, 3032–3048. https://doi.org/10.4236/ajps.2014.520320 (2014).Article 

    Google Scholar 
    Fan, J., Oestergaard, K. T., Guyot, A. & Lockington, D. A. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia. J. Hydrol. 515, 156–165. https://doi.org/10.1016/j.jhydrol.2014.04.066 (2014).Article 
    ADS 

    Google Scholar 
    Ghimire, C. P., Bruijnzeel, L. A., Lubczynski, M. W. & Bonell, M. Rainfall interception by natural and planted forests in the Middle Mountains of Central Nepal. J. Hydrol. 475, 270–280. https://doi.org/10.1016/j.jhydrol.2012.09.051 (2012).Article 
    ADS 

    Google Scholar 
    Pereira, F. L. et al. Modelling interception loss from evergreen oak Mediterranean savannas: Application of a tree-based modelling approach. Agric. For. Meteorol. 149, 680–688. https://doi.org/10.1016/j.agrformet.2008.10.014 (2009).Article 
    ADS 

    Google Scholar 
    Pypker, T. G., Bond, B. J., Link, T. E., Marks, D. & Unsworth, M. H. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agric. For. Meteorol. 130, 113–129. https://doi.org/10.1016/j.agrformet.2005.03.003 (2005).Article 
    ADS 

    Google Scholar 
    Ringgaard, R., Herbst, M. & Friborg, T. Partitioning forest evapotranspiration: Interception evaporation and the impact of canopy structure, local and regional advection. J. Hydrol. 517, 677–690. https://doi.org/10.1016/j.jhydrol.2014.06.007 (2014).Article 
    ADS 

    Google Scholar 
    Price, A. G. & Carlyle-Moses, D. E. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agric. For. Meteorol. 119, 69–85. https://doi.org/10.1016/S0168-1923(03)00117-5 (2003).Article 
    ADS 

    Google Scholar 
    Fathizadeh, O., Hosseini, S. M., Zimmermann, A., Keim, R. F. & Darvishi Boloorani, A. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 601–602, 1824–1837. https://doi.org/10.1016/j.scitotenv.2017.05.233 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Livesley, S. J., Baudinette, B. & Glover, D. Rainfall interception and stem flow by eucalypt street trees—the impacts of canopy density and bark type. Urban For. Urban Green. 13, 192–197. https://doi.org/10.1016/j.ufug.2013.09.001 (2014).Article 

    Google Scholar 
    Xiao, Q. & McPherson, E. G. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst. 6, 291–302. https://doi.org/10.1023/B:UECO.0000004828.05143.67 (2002).Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer (4.4), 2020).Team, R. C. (R Foundation for Statistical Computing, 2020).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. PNAS 115, 8400–8405. https://doi.org/10.1073/pnas.1800425115 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. PNAS 117, 1573–1579. https://doi.org/10.1073/pnas.1910023117 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    El Kateb, H., Zhang, H., Zhang, P. & Mosandl, R. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. CATENA 105, 1–10. https://doi.org/10.1016/j.catena.2012.12.012 (2013).Article 

    Google Scholar 
    Oliveira, P. T. S. et al. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrol. Earth Syst. Sci. 19, 2899–2910. https://doi.org/10.5194/hess-19-2899-2015 (2014).Article 
    ADS 

    Google Scholar 
    Hümann, M. et al. Identification of runoff processes – The impact of different forest types and soil properties on runoff formation and floods. J. Hydrol. 409, 637–649. https://doi.org/10.1016/j.jhydrol.2011.08.067 (2011).Article 
    ADS 

    Google Scholar 
    Sun, D. et al. Soil erosion and water retention varies with plantation type and age. For. Ecol. Manage. 422, 1–10. https://doi.org/10.1016/j.foreco.2018.03.048 (2018).Article 

    Google Scholar 
    Jost, G., Schume, H., Hager, H., Markart, G. & Kohl, B. A hillslope scale comparison of tree species influence on soil moisture dynamics and runoff processes during intense rainfall. J. Hydrol. 420–421, 112–124. https://doi.org/10.1016/j.jhydrol.2011.11.057 (2012).Article 

    Google Scholar 
    Sadeghi, S. M. M., Attarod, P., Van Stan, J. T. & Pypker, T. G. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran. Sci. Total Environ. 568, 845–855. https://doi.org/10.1016/j.scitotenv.2016.06.048 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. https://doi.org/10.1038/s41598-017-14831-w (2017).Article 

    Google Scholar 
    Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 232, 443–456. https://doi.org/10.1016/j.agrformet.2016.10.006 (2017).Article 
    ADS 

    Google Scholar 
    Nytch, C. J., Meléndez-Ackerman, E. J., Pérez, M. E. & Ortiz-Zayas, J. R. Rainfall interception by six urban trees in San Juan, Puerto Rico. Urban Ecosyst. 22, 103–115. https://doi.org/10.1007/s11252-018-0768-4 (2018).Article 

    Google Scholar 
    Rahman, M. A. et al. Comparative analysis of shade and underlying surfaces on cooling effect. Urban For. Urban Green. 63, 127223. https://doi.org/10.1016/j.ufug.2021.127223 (2021).Article 

    Google Scholar 
    Chen, L., Zhang, Z. & Ewers, B. E. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PLoS One https://doi.org/10.1371/journal.pone.0047882 (2012).Article 

    Google Scholar 
    Moser-Reischl, A., Rahman, M. A., Pauleit, S., Pretzsch, H. & Rötzer, T. Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landsc. Urban Plan. 183, 88–99. https://doi.org/10.1016/j.landurbplan.2018.11.004 (2019).Article 

    Google Scholar 
    Hao, M. et al. Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests. Sci. Rep. 9, 8372. https://doi.org/10.1038/s41598-019-44921-w (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Peters, E. B., McFadden, J. P. & Montgomery, R. A. Biological and environmental controls on tree transpiration in a suburban landscape. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009jg001266 (2010).Article 

    Google Scholar 
    Komatsu, H., Kume, T. & Otsuki, K. Increasing annual runoff—broadleaf or coniferous forests?. Hydrol. Process. 25, 302–318. https://doi.org/10.1002/hyp.7898 (2011).Article 
    ADS 

    Google Scholar 
    Li, X. et al. Process-based rainfall interception by small trees in Northern China: The effect of rainfall traits and crown structure characteristics. Agric. For. Meteorol. 218–219, 65–73. https://doi.org/10.1016/j.agrformet.2015.11.017 (2016).Article 
    ADS 

    Google Scholar 
    Lukaszkiewicz, J. & Kosmala, M. Determining the age of streetside trees with diameter at breast height-based multifactorial model. Arboricult. Urban For. 34, 137–143. https://doi.org/10.48044/jauf.2008.018 (2008).Article 

    Google Scholar 
    Buttle, J. M. & Farnsworth, A. G. Measurement and modeling of canopy water partitioning in a reforested landscape: The Ganaraska Forest, southern Ontario, Canada. J. Hydrol. 466–467, 103–114. https://doi.org/10.1016/j.jhydrol.2012.08.021 (2012).Article 

    Google Scholar 
    Yang, B., Lee, D. K., Heo, H. K. & Biging, G. The effects of tree characteristics on rainfall interception in urban areas. Landsc. Ecol. Eng. 15, 289–296. https://doi.org/10.1007/s11355-019-00383-w (2019).Article 
    CAS 

    Google Scholar 
    Klamerus-Iwan, A. & Witek, W. Variability in the Wettability and Water Storage Capacity of Common Oak Leaves (Quercus robur L). Water 10, 695. https://doi.org/10.3390/w10060695 (2018).Article 
    CAS 

    Google Scholar 
    Van Stan, J. T., Siegert, C. M., Levia, D. F. & Scheick, C. E. Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics. Agric. For. Meteorol. 151, 1277–1286. https://doi.org/10.1016/j.agrformet.2011.05.008 (2011).Article 
    ADS 

    Google Scholar 
    Selbig, W. R. et al. Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Sci. Total Environ. 806, 151296. https://doi.org/10.1016/j.scitotenv.2021.151296 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Centre for Watershed Protection. Review of the Available Literature and Data on the Runoff and Pollutant Removal Capabilities of Urban Trees (Center for Watershed Protection, 2017).
    Google Scholar 
    Berland, A. et al. The role of trees in urban stormwater management. Landsc. Urban Plan. 162, 167–177. https://doi.org/10.1016/j.landurbplan.2017.02.017 (2017).Article 

    Google Scholar 
    Pauleit, S. Urban street tree plantings: Indentifying the key requirements. Proc. Inst. Civ. Eng. Municipal Eng. 156, 43–50. https://doi.org/10.1680/muen.2003.156.1.43 (2003).Article 

    Google Scholar 
    Weller, M. Tree Inventory Data of Central European Cities—Studies on the Composition and Structure of Urban Tree Populations and Derivation of Ecosystem Services. MSC thesis, Technical University of Munich, Germany (2021). More

  • in

    As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network “RootDetector”

    DatasetsImage acquisitionFor this study, we assembled three datasets: one for training of the RootDetector Convolutional Neural Network (Training-Set), one for a performance comparison between humans and RootDetector in segmenting roots in minirhizotron images (Comparison-Set), and one for the validation of the algorithm (Validation-Set). The Training-Set contained 129 images comprised of 17 randomly selected minirhizotron images sampled in a mesocosm experiment (see “Mesocosm sampling” Section), 47 randomly selected minirhizotron images sampled in a field study (see “Field sampling” Section) as well as the 65 minirhizotron images of soy roots published by Wang et al.15. The Comparison-Set contained 25 randomly selected minirhizotron images from the field-study which all were not part of the images included in the Training- and Validation-Sets. The Validation-Set contained 10 randomly selected minirhizotron images from the same field study, which had not been used in the Training-Set. All images were recorded with 2550 ✕ 2273 pixels at 300 dpi with a CI-600 In-Situ Root Imager (CID Bio-Science Inc., Camas, WA, USA) and stored as .tiff files to reduce compression loss. For all training and evaluation purposes we used raw, unprocessed output images from the CI-600.Mesocosm samplingThe mesocosm experiment was established in 2018 on the premises of the Institute for Botany and Landscape Ecology of the University of Greifswald (Fig. S1). It features 108 heavy duty plastic buckets of 100 l each, filled to two thirds of their height with moderately decomposed sedge fen peat. Each mesocosm contained one minirhizotron (inner diameter: 64 mm, outer diameter: 70 mm, length: 650 mm) installed at a 45°angle and capped in order to avoid penetration by light. The mesocosms were planted with varying compositions of plant species that typically occur in north-east German sedge fens (Carex rostrata, Carex acutiformis, Glyceria maxima, Equisetum fluviatile, Juncus inflexus, Mentha aquatica, Acorus calamus and Lycopus europaeus). The mesocosms were subjected to three different water table regimes: stable at soil surface level, stable at 20 cm below soil surface and fluctuating between the two levels every two weeks. The minirhizotrons were scanned weekly at two levels of soil depth (0–20 cm and 15–35 cm) between April 2019 and December 2021, resulting in roughly 9500 minirhizotron images of 216 × 196 mm. Manual quantification of root length would, based on own experience, take approximately three hours per image, resulting in approximately 28,500 h of manual processing for the complete dataset. Specimens planted were identified by author Dr. Blume-Werry, however no voucher specimen were deposited. All methods were carried out in accordance with relevant institutional, national, and international guidelines and legislation.Field samplingThe field study was established as part of the Wetscapes project in 201716. The study sites were located in Mecklenburg-Vorpommern, Germany, in three of the most common wetland types of the region: alder forest, percolation fen and coastal fen (Fig. S2). For each wetland type, a pair of drained versus rewetted study sites was established. A detailed description of the study sites and the experimental setup can be found in Jurasinski et al.16. At each site, 15 minirhizotrons (same diameter as above, length: 1500 mm) were installed at 45° angle along a central boardwalk. The minirhizotrons have been scanned biweekly since April 2018, then monthly since January 2019 at two to four levels of soil depth (0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm), resulting in roughly 12,000 minirhizotron images of 216 × 196 cm, i.e. an estimated 36,000 h of manual processing for the complete dataset. Permission for the study was obtained from the all field owners. Figure 1Overview of the RootDetector system. The main component is a semantic segmentation network based on the U-Net architecture. The root length is estimated by skeletonizing the segmentation output and applying the formula introduced by Kimura et al.17. During training only, a weight map puts more emphasis on fine roots.Full size imageThe CNN RootDetectorImage annotationFor the generation of training data for the CNN, human analysts manually masked all root pixels in the 74 images of the Training-Set using GIMP 2.10.12. The resulting ground truth data are binary, black-and-white images in Portable Network Graphics (.png) format, where white pixels represent root structures and black pixels represent non-root objects and soil (Fig. 2b). All training data were checked and, if required, corrected by an expert (see “Selection of participants” for definition). The Validation-Set was created in the same way but exclusively by experts.Figure 2Example of segmentation and result of skeletonization. A 1000 by 1000 pixel input image (a), the manually annotated ground truth image (b), the RootDetector estimation image (c), the combined representation image (error map, d with green indicating true positives, red indicating false positive, blue indicating false negatives), the skeletonized RootDetector estimation image (e), and the skeletonized ground truth image (f).Full size imageArchitectureRootDetector’s core consists of a Deep Neural Network (DNN) based on the U-Net image segmentation architecture[27]nd is implemented in TensorFlow and Keras frameworks18. Although U-Net was originally developed for biomedical applications, it has since been successfully applied to other domains due to its generic design.RootDetector is built up of four down-sampling blocks, four up-sampling blocks and a final output block (Fig. 1). Every block contains two 3 × 3 convolutional layers, each followed by rectified linear units (ReLU). The last output layer instead utilizes Sigmoid activation. Starting from initial 64 feature channels, this number is doubled in every down-block and the resolution is halved via 2 × 2 max-pooling. Every up-block again doubles the resolution via bilinear interpolation and a 1 × 1 convolution which halves the number of channels. Importantly, after each up-sampling step, the feature map is concatenated with the corresponding feature map from the down-sampling path. This is crucial to preserve fine spatial details.Our modifications from the original architecture include BatchNormalization19 after each convolutional layer which significantly helps to speed up the training process and zero-padding instead of cropping as suggested by Ronneberger, Fischer, & Brox20 to preserve the original image size.In addition to the root segmentation network, we trained a second network to detect foreign objects, specifically the adhesive tape that is used as a light barrier on the aboveground part of the minirhizotrons. We used the same network architecture as above and trained in a supervised fashion with the binary cross-entropy loss. During inference, the result is thresholded (predefined threshold value: 0.5) and used without post-processing.TrainingWe pre-trained RootDetector on the COCO dataset21 to generate a starting point. Although the COCO dataset contains a wide variety of image types and classes not specifically related to minirhizotron images, Majurski et al.22 showed, that for small annotation counts, transfer-learning even from unrelated datasets may improve a CNNs performance by up to 20%. We fine-tuned for our dataset with the Adam optimizer23 for 15 epochs and trained on a total of 129 images from the Training-Set (17 mesocosm images, 47 field-experiment images, 65 soy root images). To enhance the dataset size and reduce over-fitting effects, we performed a series of augmentation operations as described by Shorten & Khoshgoftaar24. In many images, relatively coarse roots ( > 3 mm) occupied a major part of the positive (white) pixel space, which might have caused RootDetector to underestimate fine root details overall. Similarly, negative space (black pixels) between tightly packed, parallel roots was often very small and might have impacted the training process to a lesser extent when compared to large areas with few or no roots (Fig. 2). To mitigate both effects, we multiplied the result of the cross-entropy loss map with a weight map which emphasizes positive–negative transitions. This weight map is generated by applying the following formula to the annotated ground truth images:$$omega left( x right) = 1 – left( {tanh left( {2tilde{x} – 1} right)} right)^{2}$$
    (1)
    where ω(x) is the average pixel value of the annotated weight map in a 5 × 5 neighborhood around pixel x. Ronneberger, Fischer, & Brox20 implemented a similar weight map, however with stronger emphasis on space between objects. As this requires computation of distances between two comparatively large sets of points, we adapted and simplified their formula to be computable in a single 5 × 5 convolution.For the loss function we applied a combination of cross-entropy and Dice loss 25:$${mathcal{L}} = {mathcal{L}}_{CE} + lambda {mathcal{L}}_{Dice} = – frac{1}{N}sumnolimits_{i} {wleft( {x_{i} } right)y_{i} log left( {x_{i} } right) + lambda frac{{2sumnolimits_{i} {x_{i} y_{i} } }}{{sumnolimits_{i} {x_{i}^{2} sumnolimits_{i} {y_{i}^{2} } } }}}$$
    (2)

    where x are the predicted pixels, y the corresponding ground truth labels, N the number of pixels in an image and λ a balancing factor which we set to 0.01. This value was derived empirically. The Dice loss is applied per-image to counteract the usually high positive-to-negative pixel imbalance. Since this may produce overly confident outputs and restrict the application of weight maps, we used a relatively low value for λ.Output and post-processingRootDetector generates two types of output. The first type of output are greyscale .png files in which white pixels represent pixels associated with root structures and black pixels represent non-root structures and soil (Fig. 2c). The advantage of .png images is their lossless ad artifact-free compression at relatively small file sizes. RootDetector further skeletonizes the output images and reduces root-structures to single-pixel representations using the skeletonize function of scikit-image v. 0.17.1 (26; Fig. 2e,f). This helps to reduce the impact of large diameter roots or root-like structures such as rhizomes in subsequent analyses and is directly comparable to estimations of root length. The second type of output is a Comma-separated values (.csv) file, with numerical values indicating the number of identified root pixels, the number of root pixels after skeletonization, the number of orthogonal and diagonal connections between pixels after skeletonization and an estimation of the physical combined length of all roots for each processed image. The latter is a metric commonly used in root research as in many species, fine roots provide most vital functions such as nutrient and water transport3. Therefore, the combined length of all roots in a given space puts an emphasis on fine roots as they typically occupy a relatively smaller fraction of the area in a 2D image compared to often much thicker coarse roots. To derive physical length estimates from skeletonized images, RootDetector counts orthogonal- and diagonal connections between pixels of skeletonized images and employs the formula proposed by Kimura et al.17 (Eq. 3).$$L = left[ {N_{d}^{2} + left( {N_{d} + N_{o} /2} right)^{2} } right]^{{1/2}} + N_{o} /2$$
    (3)
    where Nd is the number of diagonally connected and No the number of orthogonally connected skeleton pixels. To compute Nd we convolve the skeletonized image with two 2 × 2 binary kernels, one for top-left-to-bottom-right connections and another for bottom-left-to-top-right connections and count the number of pixels with maximum response in the convolution result. Similarly, No is computed with a 1 × 2 and a 2 × 1 convolutional kernels.Performance comparisonSelection of participantsFor the performance comparison, we selected 10 human analysts and divided them into three groups of different expertise levels in plant physiology and with the usage of digital root measuring tools. The novice group consisted of 3 ecology students (2 bachelor’s, 1 master’s) who had taken or were taking courses in plant physiology but had no prior experience with minirhizotron images or digital root measuring tools. This group represents undergraduate students producing data for a Bachelor thesis or student assistants employed to process data. The advanced group consisted of 3 ecology students (1 bachelor’s, 2 master’s) who had already taken courses in plant physiology and had at least 100 h of experience with minirhizotron images and digital root measuring tools. The expert group consisted of 4 scientists (2 PhD, 2 PhD candidates) who had extensive experience in root science and at least 250 h of experience with digital root measuring tools. All methods were carried out in accordance with relevant institutional, national, and international guidelines and legislation and informed consent was obtained from all participants.Instruction and root tracingAll three groups were instructed by showing them a 60 min live demo of an expert tracing roots in minirhizotron images, during which commonly encountered challenges and pitfalls were thoroughly discussed. Additionally, all participants were provided with a previously generated, in-depth manual containing guidelines on the identification of root structures, the correct operation of the root tracing program and examples of often encountered challenges and suggested solutions. Before working on the Comparison-Set, all participants traced roots in one smaller-size sample image and received feedback from one expert.Image preparation and root tracingBecause the minirhizotron images acquired in the field covered a variety of different substrates, roots of different plant species, variance in image quality, and because tracing roots is very time consuming, we decided to maximize the number of images by tracing roots only in small sections, in order to cover the largest number of cases possible. To do this, we placed a box of 1000 × 1000 pixels (8.47 × 8.47 cm) at a random location in each of the images in the Comparison-Set and instructed participants to trace only roots within that box. Similarly, we provided RootDetector images where the parts of the image outside the rectangle were occluded. All groups used RootSnap! 1.3.2.25 (CID Bio-Science Inc., Camas, WA, USA;27), a vector based tool to manually trace roots in each of the 25 images in the comparison set. We decided on RootSnap! due to our previous good experience with the software and its’ relative ease of use. The combined length of all roots was then exported as a csv file for each person and image and compared to RootDetector’s output of the Kimura root length.ValidationWe tested the accuracy of RootDetector on a set of 10 image segments of 1000 by 1000 pixels cropped from random locations of the 10 images of the Validation-Set. These images were annotated by a human expert without knowledge of the estimations by the algorithm and were exempted from the training process. As commonly applied in binary classification, we use the F1 score as a metric to evaluate the performance RootDetector. F1 is calculated from precision (Eq. 4) and recall (Eq. 5) and represents their harmonic mean (Eq. 6). Ranging from 0 to 1, higher values indicate high classification (segmentation) performance. As one of the 10 image sections contained no roots and thus no F1 Score was calculable, it was excluded from the validation. We calculated the F1 score for each of the nine remaining image sections and averaged the values as a metric for overall segmentation performance.$$Precision;(P) = frac{{tp}}{{tp + fp}}$$
    (4)
    $$Recall;(R) = frac{{tp}}{{tp + fn}}$$
    (5)
    $$F1 = 2*frac{{P*R}}{{P + R}}$$
    (6)
    where P = precision, R = recall, tp = true positives; fp = false positives, fn = false negatives.Statistical analysisWe used R Version 4.1.2 (R Core Team, 2021) for all statistical analyses and R package ggplot2 Version 3.2.128 for visualizations. Pixel identification-performance comparisons were based on least-squares fit and the Pearson method. Root length estimation-performance comparisons between groups of human analysts (novice, advanced, expert) and RootDetector were based on the respective estimates of total root length plotted over the minirhizotron images in increasing order of total root length. Linear models were calculated using the lm function for each group of analysts. To determine significant differences between the groups and the algorithm, 95% CIs as well as 83% CIs were displayed and RootDetector root length outside the 95% CI were considered significantly different from the group estimate at α = 0.0529. The groups of human analysts were considered significantly different if their 83% CIs did not overlap, as the comparison of two 83% CIs approximates an alpha level of 5%30,31.This study is approved by Ethikkommission der Universitätsmedizin Greifswald, University of Greifswald, Germany. More

  • in

    Triassic stem caecilian supports dissorophoid origin of living amphibians

    Pardo, J. D., Lennie, K. & Anderson, J. S. Can we reliably calibrate deep nodes in the tetrapod tree? Case studies in deep tetrapod divergences. Front. Genet. 11, 1159 (2020).Article 

    Google Scholar 
    Rage, J.-C. & Roček, Z. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the early Triassic. Palaeontographica A 206, 1–16 (1989).
    Google Scholar 
    Evans, S. E. & Borsuk-Białynicka, M. A stem-group frog from the Early Triassic of Poland. Acta Palaeontol. Pol. 43, 573–580 (1998).Article 

    Google Scholar 
    Heckert, A. B., Mitchell, J. S., Schneider, V. P. & Olsen, P. E. Diverse new microvertebrate assemblage from the Upper Triassic Cumnock Formation, Sanford Subbasin, North Carolina, USA. J. Paleontol. 86, 368–390 (2012).Article 

    Google Scholar 
    Stocker, M. R. et al. The earliest equatorial record of frogs from the Late Triassic of Arizona. Biol. Lett. 15, 20180922 (2019).Article 

    Google Scholar 
    Schoch, R. R., Werneburg, R. & Voigt, S. A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. Proc. Natl Acad. Sci. USA 117, 11584–11588 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B. & Sumida, S. S. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 453, 515–518 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. S. Focal review: the origin(s) of modern amphibians. Evol. Biol. 35, 231–247 (2008).Article 

    Google Scholar 
    Sigurdsen, T. & Bolt, J. R. The Lower Permian amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians. J. Vertebr. Paleontol. 30, 1360–1377 (2010).Article 

    Google Scholar 
    Schoch, R. R. The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls. J. Paleontol. 93, 137–156 (2019).Article 

    Google Scholar 
    Jenkins, P. A. & Walsh, D. M. An Early Jurassic caecilian with limbs. Nature 365, 246–250 (1993).Article 
    ADS 

    Google Scholar 
    Jenkins, F. A., Walsh, D. M. & Carroll, R. L. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull. Mus. Comp. Zool. 158, 285–365 (2007).Article 

    Google Scholar 
    Maddin, H. C., Jenkins, F. A. Jr & Anderson, J. S. The braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the origin of caecilians. PLoS ONE 7, e50743 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Pardo, J. D., Small, B. J. & Huttenlocker, A. K. Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia. Proc. Natl Acad. Sci. USA 114, E5389–E5395 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Nussbaum, R. A. The evolution of a unique dual jaw‐closing mechanism in caecilians: (Amphibia: Gymnophiona) and its bearing on caecilian ancestry. J. Zool. 199, 545–554 (1983).Article 

    Google Scholar 
    Kleinteich, T., Haas, A. & Summers, A. P. Caecilian jaw-closing mechanics: integrating two muscle systems. J. R. Soc. Interface 5, 1491–1504 (2008).Article 

    Google Scholar 
    Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).Article 

    Google Scholar 
    Schmidt, A. & Wake, M. H. Olfactory and vomeronasal systems of caecilians (Amphibia: Gymnophiona). J. Morphol. 205, 255–268 (1990).Article 

    Google Scholar 
    Pincheira‐Donoso, D., Meiri, S., Jara, M., Olalla‐Tárraga, M. Á. & Hodgson, D. J. Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography 42, 1682–1690 (2019).Article 

    Google Scholar 
    San Mauro, D., Vences, M., Alcobendas, M., Zardoya, R. & Meyer, A. Initial diversification of living amphibians predated the breakup of Pangaea. Am. Nat. 165, 590–599 (2005).Article 

    Google Scholar 
    Padian, K. & Sues, H.-D. in Great Transformations in Vertebrate Evolution (eds Dial, K. P., Shubin, N. & Brainerd, E. L.) 351–374 (Univ. Chicago Press, 2021).Santos, R. O., Laurin, M. & Zaher, H. A review of the fossil record of caecilians (Lissamphibia: Gymnophionomorpha) with comments on its use to calibrate molecular timetrees. Biol. J. Linn. Soc. 131, 737–755 (2020).Article 

    Google Scholar 
    Evans, S. E. & Sigogneau‐Russell, D. A stem‐group caecilian (Lissamphibia: Gymnophiona) from the Lower Cretaceous of North Africa. Palaeontology 44, 259–273 (2001).Article 

    Google Scholar 
    Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. GSA Bull. 123, 2142–2159 (2011).Article 
    CAS 

    Google Scholar 
    Rasmussen, C. et al. U-Pb zircon geochronology and depositional age models for the Upper Triassic Chinle Formation (Petrified Forest National Park, Arizona, USA): implications for Late Triassic paleoecological and paleoenvironmental change. GSA Bull. 133, 539–558 (2021).Article 
    CAS 

    Google Scholar 
    Nordt, L., Atchley, S. & Dworkin, S. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. GSA Bull. 127, 1798–1815 (2015).Article 
    CAS 

    Google Scholar 
    Martz, J. W. & Parker, W. G. in Terrestrial Depositional Systems (eds Zeigler, K. E. & Parker, W. G.) 39–125 (Elsevier, 2017).Daza, J. D. et al. Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic feeders. Science 370, 687–691 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Gardner, J. D. Monophyly and affinities of albanerpetontid amphibians (Temnospondyli; Lissamphibia). Zool. J. Linn. Soc. 131, 309–352 (2001).Article 

    Google Scholar 
    Bolt, J. R. Lissamphibian origins: possible protolissamphibian from the Lower Permian of Oklahoma. Science 166, 888–891 (1969).Article 
    ADS 
    CAS 

    Google Scholar 
    Gardner, J. D. & Averianov, A. O. Albanerpetontid amphibians from the Upper Cretaceous of Middle Asia. Acta Palaeontol. Pol. 43, 453–476 (1998).
    Google Scholar 
    Carroll, R. L. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zool. J. Linn. Soc. 150, 1–140 (2007).Article 

    Google Scholar 
    Müller, H., Oommen, O. V. & Bartsch, P. Skeletal development of the direct-developing caecilian Gegeneophis ramaswamii (Amphibia: Gymnophiona: Caeciliidae). Zoomorphology 124, 171–188 (2005).Article 

    Google Scholar 
    Ahlberg, P. E. & Clack, J. A. Lower jaws, lower tetrapods—a review based on the Devonian genus Acanthostega. Earth Environ. Sci. Trans. R. Soc. Edinb. 89, 11–46 (1998).Article 

    Google Scholar 
    Bolt, J. R. & Lombard, R. E. The mandible of the primitive tetrapod Greererpeton, and the early evolution of the tetrapod lower jaw. J. Paleontol. 75, 1016–1042 (2001).Article 

    Google Scholar 
    Shishkin, M. A. & Sulej, T. The Early Triassic temnospondyls of the Czatkowice 1 tetrapod assemblage. Acta Palaeontol. Pol. 65, 31–77 (2009).
    Google Scholar 
    Anderson, J. S., Scott, D. & Reisz, R. R. The anatomy of the dermatocranium and mandible of Cacops aspidephorus Williston, 1910 (Temnospondyli: Dissorophidae), from the Lower Permian of Texas. J. Vertebr. Paleontol. 40, e1776720 (2020).Article 

    Google Scholar 
    Wilkinson, M., San Mauro, D., Sherratt, E. & Gower, D. J. A nine-family classification of caecilians (Amphibia: Gymnophiona). Zootaxa 2874, 41–64 (2011).Article 

    Google Scholar 
    Jared, C. et al. Skin gland concentrations adapted to different evolutionary pressures in the head and posterior regions of the caecilian Siphonops annulatus. Sci. Rep. 8, 3576 (2018).Article 
    ADS 

    Google Scholar 
    O’Reilly, J. C., Ritter, D. A. & Carrier, D. R. Hydrostatic locomotion in a limbless tetrapod. Nature 386, 269–272 (1997).Article 
    ADS 

    Google Scholar 
    Muttoni, G. & Kent, D. V. Jurassic monster polar shift confirmed by sequential paleopoles from Adria, promontory of Africa. J. Geophys. Res. 124, 3288–3306 (2019).Article 
    ADS 

    Google Scholar 
    Parsons, T. S. & Williams, E. E. The relationships of the modern Amphibia: a re-examination. Q. Rev. Biol. 38, 26–53 (1963).Article 

    Google Scholar 
    Marjanović, D. & Laurin, M. A reevaluation of the evidence supporting an unorthodox hypothesis on the origin of extant amphibians. Contrib. Zool. 77, 149–199 (2008).Article 

    Google Scholar 
    Jenkins, X. A. et al. Using manual ungual morphology to predict substrate use in the Drepanosauromorpha and the description of a new species. J. Vertebr. Paleontol. 40, e1810058 (2020).Article 

    Google Scholar 
    Kligman, B. T., Marsh, A. D., Nesbitt, S. J., Parker, W. G. & Stocker, M. R. New trilophosaurid species demonstrates a decline in allokotosaur diversity across the Adamanian–Revueltian boundary in the Late Triassic of western North America. Palaeodiversity 13, 25–37 (2020).Article 

    Google Scholar 
    Marsh, A. D., Smith, M. E., Parker, W. G., Irmis, R. B. & Kligman, B. T. Skeletal anatomy of Acaenasuchus geoffreyi Long and Murry, 1995 (Archosauria: Pseudosuchia) and its implications for the origin of the aetosaurian carapace. J. Vertebr. Paleontol. 40, e1794885 (2020).Article 

    Google Scholar 
    Marsh, A. D. & Parker, W. G. New dinosauromorph specimens from Petrified Forest National Park and a global biostratigraphic review of Triassic dinosauromorph body fossils. PaleoBios https://doi.org/10.5070/P9371050859 (2020).Kligman, B. T., Marsh, A. D., Sues, H.-D. & Sidor, C. A. A new non-mammalian eucynodont from the Chinle Formation (Triassic: Norian), and implications for the early Mesozoic equatorial cynodont record. Biol. Lett. 16, 20200631 (2020).Article 

    Google Scholar 
    Huttenlocker, A. K., Pardo, J. D., Small, B. J. & Anderson, J. S. Cranial morphology of recumbirostrans (Lepospondyli) from the Permian of Kansas and Nebraska, and early morphological evolution inferred by micro-computed tomography. J. Vertebr. Paleontol. 33, 540–552 (2013).Article 

    Google Scholar 
    Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, e5565 (2019).Article 

    Google Scholar 
    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).Article 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).Article 
    CAS 

    Google Scholar 
    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).Article 
    CAS 

    Google Scholar 
    Eltink, E., Schoch, R. R. & Langer, M. C. Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli). J. Iber. Geol. 45, 251–267 (2019).Article 

    Google Scholar 
    Bystrow, A. Dvinosaurus als neotenische Form der Stegocephalen. Acta Zool. 19, 209–295 (1938).Article 

    Google Scholar 
    Dutuit, J.-M. Introduction à l’étude paléontologique du Trias continental Marocain. Description des premiers stegocephales recueillis dans le couloir d’Argana (Atlas Occidental). Mémoires du Muséum National d’Histoire 36, 1–253 (1976).
    Google Scholar 
    Dias, E. V., Dias-da-Silva, S. & Schultz, C. L. A new short-snouted rhinesuchid from the Permian of southern Brazil. Revista Brasileira de Paleontologia 23, 98–122 (2020).Article 

    Google Scholar 
    Damiani, R. J. & Kitching, J. W. A new brachyopid temnospondyl from the Cynognathus Assemblage Zone, Upper Beaufort Group, South Africa. J. Vertebr. Paleontol. 23, 67–78 (2003).Article 

    Google Scholar 
    Schoch, R. R. & Witzmann, F. Cranial morphology of the plagiosaurid Gerrothorax pulcherrimus as an extreme example of evolutionary stasis. Lethaia 45, 371–385 (2012).Article 

    Google Scholar 
    Schoch, R. R. Studies on braincases of early tetrapods: Structure, morphological diversity, and phylogeny-1 Trimerorhacis and other prmitive temnospondyls. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 213, 233–259 (1999).Article 

    Google Scholar 
    Ruta, M. & Bolt, J. R. The brachyopoid Hadrokkosaurus bradyi from the early Middle Triassic of Arizona, and a phylogenetic analysis of lower jaw characters in temnospondyl amphibians. Acta Palaeontol. Pol. 53, 579–592 (2008).Article 

    Google Scholar 
    Bystrow, A. & Efremov, J. Benthosuchus sushkini Efr.—a labyrinthodont from the Eotriassic of Sharzhenga River. Trudy Paleontol. Inst. 10, 1–152 (1940).
    Google Scholar 
    Warren, A. Karoo tupilakosaurid: a relict from Gondwana. Earth Environ. Sci. Trans. R. Soc. Edinb. 89, 145–160 (1998).Article 

    Google Scholar 
    Holmes, R. B., Carroll, R. L. & Reisz, R. R. The first articulated skeleton of Dendrerpeton acadianum (Temnospondyli, Dendrerpetontidae) from the Lower Pennsylvanian locality of Joggins, Nova Scotia, and a review of its relationships. J. Vertebr. Paleontol. 18, 64–79 (1998).Article 

    Google Scholar 
    Steyer, J. S. The first articulated trematosaur ‘amphibian’ from the Lower Triassic of Madagascar: implications for the phylogeny of the group. Palaeontol. 45, 771–793 (2002).Article 

    Google Scholar 
    Englehorn, J., Small, B. J. & Huttenlocker, A. A redescription of Acroplous vorax (Temnospondyli: Dvinosauria) based on new specimens from the Early Permian of Nebraska and Kansas, USA. J. Vertebr. Paleontol. 28, 291–305 (2008).Article 

    Google Scholar 
    Warren, A. Laidleria uncovered: a redescription of Laidleria gracilis Kitching (1957), a temnospondyl from the Cynognathus Zone of South Africa. Zool. J. Linn. Soc. 122, 167–185 (1998).Article 

    Google Scholar 
    Bolt, J. R. & Chatterjee, S. A new temnospondyl amphibian from the Late Triassic of Texas. J. Paleontol. 74, 670–683 (2000).Article 

    Google Scholar 
    Milner, A. & Sequeira, S. The temnospondyl amphibians from the Viséan of east Kirkton, West Lothian, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 84, 331–361 (1993).
    Google Scholar 
    Schoch, R. R. & Milner, A. R. Encyclopedia of Paleoherpetology, Part 3A. Temnospondyli (Verlag Dr. Friedrich Pfeil, 2014).Damiani, R., Schoch, R. R., Hellrung, H., Werneburg, R. & Gastou, S. The plagiosaurid temnospondyl Plagiosuchus pustuliferus (Amphibia: Temnospondyli) from the Middle Triassic of Germany: anatomy and functional morphology of the skull. Zool. J. Linn. Soc. 155, 348–373 (2009).Article 

    Google Scholar 
    Chernin, S. A new brachyopid, Batrachosuchus concordi sp. nov. from the Upper Luangwa Valley, Zambia with a redescription of Batrachosuchus browni Broom, 1903. Palaeontol. Afr. 20, 87–109 (1977).
    Google Scholar 
    Sulej, T. Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Acta Palaeontol. Pol. 64, 29–139 (2007).
    Google Scholar  More

  • in

    Bimodality and alternative equilibria do not help explain long-term patterns in shallow lake chlorophyll-a

    Real-world dataThe dataset consisted of 2986 observations from 902 freshwater shallow lakes in Denmark and North America (data extracted from the LAGOSNE database on 22 February 2022 via R LAGOSNE package version 2.0.2)56 (Supplementary Fig. 9). The Danish lakes were sampled for one or several years from 1984 to 2020 (data extracted in October 2021 from https://odaforalle.au.dk/main.aspx) (Supplementary Fig. 10). Prerequisites for inclusion in the analysis were that lakes had been sampled for physical and chemical variables at least four times or at least three times over the growing season (May to September) for the Danish or North American lakes, respectively, had a mean depth of less than 3 m and were freshwater. Water chemistry samples were analysed using standard methods and data for total phosphorus (TP), total nitrogen (TN) and chlorophyll-a are included here57. The mean and range of TP, TN and chlorophyll-a for the combined sites is given in Table 1, along with the values for each region separately.To gain a longer-term perspective on the relationship between nutrients and chlorophyll-a, we calculated the across-year averages of the summer means of TP, TN and chlorophyll-a, sequentially increasing numbers of years included in the mean up to a total of a five-year mean, at which point there were only 99 lakes left in the dataset. In calculating the multi-year means we allowed a maximum gap of 2 years between observations (i.e. two observations could cover 3 years) to avoid including time series with too many missing years in between. Hence, only lakes with sufficient numbers of sequential data were included, resulting in a large drop in lake numbers as the length of the multi-year mean increased (Table 2).Numerical methodsDiagnostic tests or proxies of alternative equilibriaWe modelled the response of chlorophyll-a to TP and TN using generalised-linear models58 with Gamma distribution and an identity link on untransformed data for single-year and multiple-year means up to 5-year means. We used the Gamma distribution, as chlorophyll fit this significantly better than a normal or log-normal distribution. We used psuedo R2 of the model along with the patterns of residuals, and finally, we plotted the kernel density of the chlorophyll-a values as diagnostics of the presence, absence or prevalence of alternative equilibria in the simulated and real work data.To test how appropriate these diagnostics or proxies of alternative stable states in terms of how well they identify the existence of alternative stable states in randomly sampled multi-year data, we

    1.

    Simulated two scenarios for the main manuscript, with and without alternative stable states in the data, which were as close to the real-life data as possible. The results of these scenarios appear in the main text (please see details below in the “Data Simulation” section).

    2.

    We provide multiple scenarios with different degrees, or prevalence, of alternative stable states in the data, see simulations of alternative stable state scenarios. The results of these scenarios appear in Supplementary note 2.

    Hierarchical bootstrap approachThere are a large number of permutations of data, both real-world and simulated, that can provide a mean of the two to five sequential years from each lake in the time series data. It was vital to have a method that selects the data for analysis that provides a valid and comparable representation of both real work and simulated data and the models’ errors. In order to provide this we used a non-parametric hierarchical bootstrap procedure38. The flowchart shows the data preparation and data analysis steps of the hierarchical bootstrap procedure (Fig. 4). In the first step (step 1 in Fig. 4), all possible longer-term means are calculated for each lake. To keep as much data as possible, we decided to allow for up to 2 years of gap in the data between years. Taking the 5-year mean data as an example, if data from a lake existed for the years 1991 and 1994−1997, a 5-year mean would be calculated for the years 1991, 1994, 1995, 1996 and 1997. However, if the time series would contain a larger gap, e.g. data would only exist for the years 1991 and 1995–1998, no 5-year mean could be calculated. After the selection procedure, all the 2-year, 3-year and 5-year means are transferred into a new table (step 2 in Fig. 4).Fig. 4Data preparation and analysis steps of the hierarchical bootstrap procedure.Full size imageThe procedure is the same for each temporal scale from 2-year means to 5-year means. For the example of 5 mean years, lakes are randomly sampled from the full 5-year mean dataset in step 2 (Fig. 4) with replacement up to the number of lakes as in the original dataset, for the 5-year means 99 (step 3a). Here, the same lake can appear multiple times or not at all. This step is common for every bootstrap procedure59. However, since we have nested data (5-year means within lakes), we need a second step, in which for every resampled lake in step 3a, one 5-year mean is chosen (step 3b in Fig. 4). Then the three GLM models are produced from the randomly selected data in step 3c (Fig. 4). These steps are then repeated 1000 times to get a good representation of the uncertainties of the model. To ensure a fair comparison between single-year data and their equivalent multi-year mean data, we repeated the bootstrap procedure with single years only using only the lakes for which we also calculated multi-year means. To take the five-year mean as an example, there were 99 lakes where we could calculate at least one 5-year mean observation. First, we ran the bootstrap procedure to calculate 5-year mean values of TP, TN and chlorophyll-a (1000 times) and then took single years’ values of TP, TN and chlorophyll-a (1000 times) from exactly the same 99 lakes. With this approach, exactly the same datasets with the same lakes and observations within lakes are used for the calculation of the multi-year means and their single-year counterparts, making for a robust analysis. The GLM models did not always converge. If either the TP, TN or TP*TN model with interaction did not converge, the iteration was not used in further analysis. The number of converging models equal for each iteration of random samples is given in the results.The described hierarchical approach is the best way to reflect the structure of the original data. A simple, non-hierarchical bootstrap would favour lakes with more five-year means over lakes with fewer five-year means, simply because these make up a larger part of the data. Furthermore, sampling without replacement at the lake level would result in five-year means from lakes with few data dominating the produced random dataset, as every lake would be sampled every time, which then would result in high model leverage of 5-year means from lakes with less data. In contrast, the hierarchical procedure ensures that every lake has the same chance to end up in the randomly sampled bootstrap, in the second step, it ensures that of each sampled lake, every 5-year mean has the same chance to end up in the random dataset. These notions are in agreement with the findings of an assessment on how to properly resample hierarchical data by non-parametric bootstrap38.Data simulationGeneral approach of simulation assumptions and proceduresWe generated random scatter for the generalised-linear model based on Gamma distributions for two different “populations” of lakes with two different intercepts and slopes. At first, we calculated the linear equations for the two populations:For each population i and j, 99 samples (equalling the number of lakes in real-life data with 5-year means, nlake) were generated with a specific number of data points depending on the scenario (nyear) each, hence nlake = 1−99 for each population of lakes, e.g. with 20 years (nyear = 20) each.We found the real nutrient data to be normally distributed, with total nitrogen (TN) having a range between 0.33 and 4.93 mg/L and a constant coefficient of variation (CV, with a mean CV of 0.35) across this range (the same is true for total phosphorus (TP) at a shorter range). Hence, for each nlake, the x for the nyear = 20 were generated based on the mean range (mean per lake of the real-life data) and CV (0.35) from the real-life TN concentration data, hence with a range of 0.33 to 4.33 mg/L. Therefore the values and random variability of x in the simulations are close to the true values of the TN concentrations. The x is then fed into the linear equations above.To the resulting yi and yj we added random noise based on the Gamma distribution (using the rgamma function in R). We used a Gamma distribution because the Chlorophyll-a concentration also follows a Gamma distribution. The variability of a Gamma distribution is expressed by the shape variable. The variability of chlorophyll-a, its shape value, equals 2.63. This shape value was used in the Gamma distribution of yi and yj. The final calculated yi and yj had therefore a random rate calculated as shape/yi or shape/yj. Hence, their variability in the y dimension was close to the true chlorophyll-a variability.The data from both lake populations were then pooled and randomly sampled using the same hierarchical bootstrap procedure with 500 iterations for the scenarios in the supplementary materials and with 1000 iterations for main text simulation scenarios, which is identical to what was done for the real-world data.Simulation scenarios based on characteristics of real-world dataThe real-world 5-year mean data consisted of 99 lakes with 5–20 years of data for each lake. For the simulation scenario in the main text, we therefore randomly sampled between 5 and 20 data points for each of the 99 simulated lakes based on the x distribution described above. Intercepts and slopes of the simulation, resembled the range of the true data (see scatter plots in Fig. 2 of the main manuscript).In the alternative stable state scenario, we chose two slopes and intercepts for different populations of lakes:

    Population i: ai = 0, bi = 40

    Population j: aj = 50, bj = 120

    We based the slopes and intercepts of the ASS scenarios on the diagnostic combination defined by Scheffer and Carpenter7 which propose an abrupt shift in (a) the time series, (b) the multimodal distribution of states and (c) the dual relationship to a controlling factor. Here, the idea is that an ecosystem will jump from one state to the next at the same (nutrient) conditions (different intercept and/or slope, condition a within ref. 7), where any change in the nutrient will have different effects on algae or macrophytes (best represented by different slope, condition c), resulting in a multimodal distribution of the response (condition b). Hence, simulations are in line with what is predicted for ASS, but we took great lengths to also show other possibilities with the simulations in the Supplementary information to ensure we did not overlook any occasional occurrence of alternative equilibria.Here, the appearance of alternative stable states in the data could happen at any point in the time series of a single lake, or the entire time series could include only one of the two alternative stable states. To accommodate these alternative stable state constellations (for each of which we made a separate simulation scenario, (see Supplementary Note 2, “Simulations of alternative stable state constellations”), we forced the alternative stable state scenario to be constructed of 1/3 of data with one state, 1/3 of data with the second state and 1/3 of data where both alternative states could occur. In the latter case, the alternative stable state appeared after the first 20% but before the last 20% of the time series. Since the variability and range of x (nutrient) and y (chlorophyll -a response) is simulated as close as possible to the real-world data in all scenarios, the measures taken here (variable time series and combination of different alternative stable state scenario constellations) produce a simulation as close to the real-world data as possible. Specifically, we found the real-world nutrient data to be normally distributed, with total nitrogen (TN) having a range between 0.33 and 4.93 mg/L and a constant coefficient of variation (CV, with a mean CV of 0.35) across this range (the same is true for total phosphorus (TP) at a shorter range). Hence, for each simulated lake, the x were generated based on this mean range and CV. Furthermore, the resulting yi and yj were randomised by using a Gamma distribution (using the rgamma function in R). We used a Gamma distribution because the chlorophyll-a concentration also follows a Gamma distribution. The variability of a Gamma distribution is expressed by the shape variable. The variability of chlorophyll-a, its shape value, equals 2.63. This shape value was used in the Gamma distribution of yi and y. The final calculated yi and yj had, therefore a random rate calculated as shape/yi or shape/y. Hence, their variability in the y dimension was close to the true chlorophyll-a variability.For the scenario without alternative stable states, both populations of data had the same intercept and slope:

    Population i: ai = 0, bi = 40

    Population j: aj = 0, bj = 40.

    Please see Supplementary Note 2 for further simulations of different potential constellations of alternative states. There we show that our approach finds alternative stable states in response to nutrient concentration, even if they appear in time series from different lakes.Assessment of diagnostic tests or proxies of alternative equilibriaWe modelled the response of chlorophyll-a to TP and TN using generalised-linear models3 with Gamma distribution and an identity link on untransformed data for single-year and multiple-year means up to 5-year means. We used the Gamma distribution, as chlorophyll fit this significantly better than a normal or log-normal distribution. We used R2 of the model along with the patterns of residuals, and finally, we plotted the kernel density of the chlorophyll-a values as diagnostics of the presence, absence or prevalence of alternative equilibria in the simulated and real work data.The comparison of how the diagnostics/proxies of alternative stable states respond to the variation in the prevalence of alternative equilibria in the simulated datasets provides a robust assessment of their ability to identify both the presence and absence of alternative equilibria. It is the response of these diagnostic tests over time, with the increase in the temporal perspective as more years are added to the mean values of TP, TN and chlorophyll-a, that are key to the identification of the presence and or absence of alternative equilibria in a given dataset. The simulations show that a dataset which contains alternative equilibria will show (1) no improvement in R2 as the temporal perspective of the data increases (more years in the multi-year mean); (2) an increased bimodality in the residuals of the models of nutrients predicting chlorophyll-a will increase as more years are added to the multi-year mean and (3) the kernel density function of chlorophyll-a will display increasingly bimodality as more years are added to the mean. In the absence of alternative equilibria, the patterns differ with an R2, and increase in unimodality of residuals and a consistent unimodal pattern in the kernel density function. Thus, the diagnostic tests provide a robust test of both the presence and absence of alternative equilibria in a given dataset.Alternative stable state assessment for real data with limited data rangeIt could be the case that alternative stable states do not appear in the full dataset but only in a limited TN and TP concentration range. We filtered and re-analyzed the data, only keeping data points within the following two ranges: – TN concentration = 0.5−2 mg/L–TP concentration = 0.05−0.4 mg/L. In the filtered data, 1329 out of the original 2876 single-year data points, 289 out of 1028 3-year mean data points and 212 out of the 864 five-mean year data points remained. The filtered data consisted of data points from 550, 48 and 27 lakes for the single-year data, 3-year means and 5-year means, respectively. The smaller range resulted in lower R² of the models, yet the pattern that multi-year means result in higher R² compared to single-year data was largely consistent, apart from the 5-year mean TN models for which both, the single-year and mean data resulted in very low R² (Supplementary Fig. 6). Furthermore, due to the lower number of samples, the errors of all proxies are higher, making conclusions more difficult than for the full data. Still, we do not see any clear indication of alternative stable states in the scatter plots (two groups of dots are not appearing (Supplementary Fig. 5), the Kernel density plots (or model residuals (Supplementary Fig. 6)). i.e. no signs of bimodality in residuals or Kernel density plots. Please see details on this analysis in the supplementary material.Details and the R code for the steps for the random multi-year sampling can be found in the supplementary materials.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Diversity enables the jump towards cooperation for the Traveler’s Dilemma

    Game theory is a framework for analysing the outcome of the strategic interaction between decision makers1. The fundamental concept is that of a Nash equilibrium where no player can improve her payoff by a unilateral strategy change. Typically, the Nash equilibrium is considered to be the optimal outcome of a game, however in social dilemmas the individual optimal outcome is at odds with the collective optimal outcome2. This means that one player can improve her payoff at the expense of the other by unilaterally deviating, but if both deviate, they end up with lower payoffs. In this type of games, the mutually beneficial, but non-Nash equilibrium strategy is called cooperation. However, in this context cooperation should not be interpreted as an interest in the welfare of others, as players only aim to secure a high payoff for themselves.In this framework, payoff maximisation is considered to be rational, but when such rational players then seize every opportunity to gain at the opponent’s expense, they may counterintuitively both end up with low payoffs. A game that clearly exhibits this contradiction is the Traveler’s Dilemma. Since its formulation in 1994 by the economist Kaushik Basu3, the game has become one of the most studied in the economics literature. Additionally, it has been discussed in theoretical biology in the context of evolutionary game theory.In general, the dilemma relies on the individuals’ incentive to undercut the opponent. To be more specific, players are motivated to claim a lower value than their opponent to reach a higher payoff at the opponent’s expense. Such incentive leads players to a systematic mutual undercutting until the lowest possible payoff is reached, which is the unique Nash equilibrium. It seems paradoxical that players defined as rational in a game theoretical sense end up with such a poor outcome. Therefore, the question that naturally arises is how can this poor outcome be prevented and how cooperation can be achieved.To address these questions, it can be helpful to better understand price wars, which consist in the mutual undercutting of prices to gain market share. In addition, it can provide information about human behaviour, because economic experiments have shown that individuals prefer to choose the cooperative high payoff action, instead of the Nash equilibrium4.Our analysis focuses on showing that the Traveler’s Dilemma can be decomposed into a local and a global game. If the payoff optimisation is constrained to the local game, then players will inevitably end up in the Nash equilibrium. However, if players escape the local maximisation and optimise their payoff for the global game, they can reach the cooperative high payoff equilibrium.Here, we show that the cooperative equilibrium can be reached in a game like the Traveler’s Dilemma due to diversity, which we define as the presence of suboptimal strategies. The appearance of strategies far from those of the residents allows for the local maximisation process to be escaped, such that an optimisation at a global level takes place. Overall this can lead to cooperation because by considering “suboptimal strategies” that play against each other it is possible to reach higher payoffs, both collectively and individually.GameThe Traveler’s Dilemma is a two-player game. Player i has to choose a claim, (n_i), from the action space, consisting of all integers on the interval [L, U], where (0 le L < U). The payoffs are determined as follows: If both players, i and j, choose the same value ((n_i = n_j)), both get paid that value. There is a reward parameter (R >1), such that if (n_i < n_j), then i receives (n_i + R) and j gets (n_i- R) Thus, the payoff of player i playing against player j is$$begin{aligned} pi _{ij} = {left{ begin{array}{ll} n_i& text { if } n_i = n_j\ n_i + R& text { if } n_i < n_j\ n_j - R& text { if } n_i > n_j end{array}right. } end{aligned}$$
    (1)
    Thus, a player is better off by choosing a slightly lower value than the opponent: when j plays (n_j), then it is best for i to play (n_j-1). The iteration of this reasoning, which we will call the stairway to hell, leads to the only Nash equilibrium of the game, ({L,L}), where both players choose the lowest possible claim. The classical game theory method to arrive to this equilibrium is called iterative elimination of dominated strategies5.The game can be visualised through its payoff matrix (Fig. 1). For simplicity, we use the values from the original formulation: (L=2), (U=100) and (R=2). The payoff matrix shows that the Traveler’s Dilemma can be decomposed into a local and a global game. Let us begin with the local game. When the action space of the game is reduced to two adjacent actions n and (n+1) (black boxes in Fig. 1), the Traveler’s Dilemma with (R=2) is equivalent to the Prisoner’s Dilemma6. In general, for any value of R, the Traveler’s Dilemma becomes a Prisoner’s Dilemma for any pair of actions n and (n+s), where ( 1 le s le R-1 ). For example, for (R=4) the pair of actions n and (n+1), n and (n+2), n and (n+3) follow the same game structure as the Prisoner’s Dilemma. Therefore, the Traveler’s Dilemma consists of many embedded Prisoners’ Dilemmas. This means that at a local level the game is a Prisoner’s Dilemma.If we now consider actions that are distant from each other in the action space, e.g. 2 and 100, we can observe a coordination game structure (gray boxes in Fig. 1), where ({100,100}) is payoff and risk dominant7,8. In general, any pair of actions n and (n+s), where ( R le s le U-n), construct a coordination game. As a result, the Traveler’s Dilemma becomes a coordination game at a global level, which has different equilibria than the local game.Figure 1Payoff matrix of the Traveler’s Dilemma. Visualisation of the payoff scheme described by Eq. (1). For simplicity, the action space is ( {n_i in {mathbb {N}} mid 2 le n_i le 100}) and the reward parameter is (R=2). The Traveler’s Dilemma can be decomposed into a local and a global game. At a local level the game is a Prisoner’s Dilemma (black boxes). This happens when the action space is reduced to any pair of actions n and (n+s), where ( 1 le s le R-1 ). While at the global level, we can observe a coordination game (gray boxes). This level is defined as any pair of actions n and (n+s), where ( R le s le U-n).Full size imageParadoxSocial dilemmas appear paradoxical in the sense that self-interested competing players, when rationally playing the Nash equilibrium, end up with a payoff that clearly goes against their self-interest. But with the Traveler’s Dilemma, the paradox goes further, as suggested in its original formulation3. Classical game theory proposes ({L,L}) as the Nash equilibrium of the game. However, it seems unlikely and implausible that, with R being moderately low, say (R=2), for individuals to play the Nash equilibrium. This has been confirmed in economic experiments where individuals rather choose values close to the upper bound of the interval. Such experiments have also shown that the chosen value depends on the reward parameter (R), where an increasing value of R shifts players’ decision towards ({L,L})4. Nonetheless, classical game theory states that the Nash equilibrium of the game is independent of R.Consequently, the aim of this paper is to seek and explore simple mechanisms through which the apparent non-rational cooperative behaviour can come about. We also examine the effect of the reward parameter on the game’s outcome. Given that the Traveler’s Dilemma paradox emerges in the classical game theory framework, we analyse the game using evolutionary game theory tools5,9,10. This dynamical approach allows us to explore adaptive behaviour outside of the stationary classical game theory framework. To be more precise, for this approach individuals dynamically adjust their actions according to their payoffs.The key point of course is to understand how the system can converge to high claims. We show that this behaviour is possible because the Traveler’s Dilemma can be decomposed into a local and a global game. If the payoff maximisation is constrained to the local level, then the stairway to hell leads the system to the Nash equilibrium; given that locally the game is a Prisoner’s Dilemma. On the other hand, at a global level the game follows a coordination game structure, where the high claim actions are payoff dominant. Thus, for the system to reach a high claim equilibrium the maximisation process needs to jump from the local to the global level.Our analysis led us to identify the mechanism of diversity as responsible for enabling this jump and preventing players from going down the stairway to hell. This mechanism works on the idea that to reach a high claim equilibrium, players have to benefit from playing a high claim. For a population setting, it means that players need to have the chance to encounter opponents also playing high. From a learning model point of view, it refers to the belief that the opponent will also play high, at least with a certain probability. If the belief is shared by both players, they should both play high and reach the cooperative equilibrium. Here, we explore these two types of models to unveil the mechanism leading to cooperation.Population based models unveil diversity as the cooperative mechanism via the effect of mutations on the game’s outcome. This is shown for the replicator-mutator equation and the Wright–Fisher model. Similarly, a two-player learning model approach, more in line with human reasoning, shows that if players are free to adopt a higher payoff action from a diverse action set during their introspection process, they can reach the cooperative equilibrium. This result is obtained using introspection dynamics.Finally, we explain how diversity is the underlying mechanism that enables the convergence to high claims in previously proposed models. To be more precise, we show that diversity is required because it allows for the maximisation process to jump from the local to the global level. More

  • in

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Bradford, M. A. et al. Soil carbon science for policy and practice. Nat. Sustain. 2, 1070–1072 (2019).Article 

    Google Scholar 
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).Article 

    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).Article 

    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).Article 

    Google Scholar 
    Wang, B. R., An, S. S., Liang, C., Liu, Y. & Kuzyakov, Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 162, 108422 (2021).Article 

    Google Scholar 
    Kästner, M. & Miltner, A. in The Future of Soil Carbon (eds Garcia, C. et al.) Ch. 5 (Academic Press, 2018).Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).Article 

    Google Scholar 
    Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).Article 

    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).Article 

    Google Scholar 
    Emerson, J. B. et al. Schrödinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).Article 

    Google Scholar 
    Zhang, Y. et al. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model. Biogeosciences 18, 3147–3171 (2021).Article 

    Google Scholar 
    Ackermann, M., Stearns Stephen, C. & Jenal, U. Senescence in a bacterium with asymmetric division. Science 300, 1920–1920 (2003).Article 

    Google Scholar 
    Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nyström, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).Article 

    Google Scholar 
    Maheshwari, R. & Navaraj, A. Senescence in fungi: the view from Neurospora. FEMS Microbiol. Lett. 280, 135–143 (2008).Article 

    Google Scholar 
    See, C. R. et al. Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. 28, 2527–2540 (2022).Article 

    Google Scholar 
    Pusztahelyi, T. et al. Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiologica 51, 547–554 (2006).Article 

    Google Scholar 
    Bartoszewska, M. & Kiel, J. A. The role of macroautophagy in development of filamentous fungi. Antioxid. Redox Signal. 14, 2271–2287 (2011).Article 

    Google Scholar 
    Josefsen, L. et al. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 8, 326–337 (2012).Article 

    Google Scholar 
    Heaton, L. L., Jones, N. S. & Fricker, M. D. Energetic constraints on fungal growth. Am. Nat. 187, E27–E40 (2016).Article 

    Google Scholar 
    Taiz, L. & Zeiger, E. Plant Physiology 4th edn (Spektrum Akademischer Verlag, 2008).Bowman, E. J. & Bowman, B. J. in Cellular and Molecular Biology of Filamentous Fungi (eds Borkovich, K. & Ebbole, D.) 179–190 (ASM Press, 2010).Voigt, O. & Pöggeler, S. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl. Microbiol. Biotechnol. 97, 9277–9290 (2013).Article 

    Google Scholar 
    Grimmett, I. J., Shipp, K. N., Macneil, A. & Barlocher, F. Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol. 6, 493–500 (2013).Article 

    Google Scholar 
    Camenzind, T., Philipp Grenz, K., Lehmann, J. & Rillig, M. C. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol. Lett. 24, 208–218 (2021).Article 

    Google Scholar 
    Mason-Jones, K., Robinson, S. L., Veen, G. F., Manzoni, S. & van der Putten, W. H. Microbial storage and its implications for soil ecology. ISME J. 16, 617–629 (2022).Article 

    Google Scholar 
    Gow, N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5, FUNK-0035–2016 (2017).Article 

    Google Scholar 
    Steiner, U. K. Senescence in bacteria and its underlying mechanisms. Front. Cell Dev. Biol. 9, 668915 (2021).Article 

    Google Scholar 
    Allocati, N., Masulli, M., Di Ilio, C. & De Laurenzi, V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6, e1609 (2015).Article 

    Google Scholar 
    Peeters, S. H. & de Jonge, M. I. For the greater good: programmed cell death in bacterial communities. Microbiol. Res. 207, 161–169 (2018).Article 

    Google Scholar 
    Wang, J. & Bayles, K. W. Programmed cell death in plants: lessons from bacteria? Trends Plant Sci. 18, 133–139 (2013).Article 

    Google Scholar 
    Nagamalleswari, E., Rao, S., Vasu, K. & Nagaraja, V. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 45, 8423–8434 (2017).Article 

    Google Scholar 
    Kysela, D. T., Brown, P. J. B., Huang, K. C. & Brun, Y. V. Biological consequences and advantages of asymmetric bacterial growth. Annu. Rev. Microbiol. 67, 417–435 (2013).Article 

    Google Scholar 
    Bayles, K. W. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12, 63–69 (2014).Article 

    Google Scholar 
    Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).Article 

    Google Scholar 
    Coleman, D. C. & Wall, D. H. in Soil Microbiology, Ecology and Biochemistry 4th edn (ed. Paul, E. A.) Ch. 5 (Academic Press, 2015).Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021).Article 

    Google Scholar 
    Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).Article 

    Google Scholar 
    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).Article 

    Google Scholar 
    Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).Article 

    Google Scholar 
    Bonkowski, M. & Clarholm, M. J. A. P. Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool. 51, 237–247 (2012).
    Google Scholar 
    Potapov, A. M., Pollierer, M. M., Salmon, S., Šustr, V. & Chen, T.-W. Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. J. Anim. Ecol. 90, 1919–1933 (2021).Article 

    Google Scholar 
    Esteban, G. F. & Fenchel, T. M. in Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists (eds Esteban, G. F. & Fenchel, T. M.) 33–54 (Springer, 2020).Koksharova, O. A. Bacteria and phenoptosis. Biochemistry 78, 963–970 (2013).
    Google Scholar 
    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).Boddy, L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31, 185–194 (2000).Article 

    Google Scholar 
    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).Article 

    Google Scholar 
    Müller, S. et al. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl. Environ. Microbiol. 81, 203–210 (2015).Article 

    Google Scholar 
    Laskowska, E. & Kuczynska-Wisnik, D. New insight into the mechanisms protecting bacteria during desiccation. Curr. Genet. 66, 313–318 (2020).Article 

    Google Scholar 
    Rillig, M. C., Ryo, M. & Lehmann, A. Classifying human influences on terrestrial ecosystems. Glob. Change Biol. 27, 2273–2278 (2021).Article 

    Google Scholar 
    Dörr, T., Moynihan, P. J. & Mayer, C. Bacterial cell wall structure and dynamics. Front. Microbiol. 10, 02051 (2019).Article 

    Google Scholar 
    Corredor, B., Lang, B. & Russell, D. Effects of nitrogen fertilization on soil fauna in a global meta-analysis. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-1438491/v1 (2022).Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).Article 

    Google Scholar 
    Manzoni, S., Chakrawal, A., Spohn, M. & Lindahl, B. D. Modeling microbial adaptations to nutrient limitation during litter decomposition. Front. For. Glob. Change 4, 686945 (2021).Article 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article 

    Google Scholar 
    Gunina, A. & Kuzyakov, Y. From energy to (soil organic) matter. Glob. Change Biol. 28, 2169–2182 (2022).Article 

    Google Scholar 
    Fernandez, C. W. & Koide, R. T. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol. Biochem. 77, 150–157 (2014).Article 

    Google Scholar 
    Kästner, M., Miltner, A., Thiele-Bruhn, S. & Liang, C. Microbial necromass in soils—linking microbes to soil processes and carbon turnover. Front. Environ. Sci. 9, 756378 (2021).Article 

    Google Scholar 
    Buckeridge, K. M., Creamer, C. & Whitaker, J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Funct. Ecol. 36, 1396–1410 (2022).Article 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).Article 

    Google Scholar 
    Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 14, 1520–1532 (2020).Article 

    Google Scholar 
    Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E. & Grandy, A. S. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019).Article 

    Google Scholar 
    Liang, C. Soil microbial carbon pump: mechanism and appraisal. Soil Ecol. Lett. 2, 241–254 (2020).Article 

    Google Scholar 
    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).Article 

    Google Scholar 
    van Groenigen, J. W. et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ. Sci. Technol. 51, 4738–4739 (2017).Article 

    Google Scholar 
    Greenlon, A. et al. Quantitative stable-isotope probing (qSIP) with metagenomics links microbial physiology and activity to soil moisture in Mediterranean-climate grassland ecosystems (in the press).Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).Article 

    Google Scholar 
    Schaible, G. A., Kohtz, A. J., Cliff, J. & Hatzenpichler, R. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME Commun. 2, 52 (2022).Article 

    Google Scholar 
    See, C. R. et al. Distinct carbon fractions drive a generalisable two-pool model of fungal necromass decomposition. Funct. Ecol. 35, 796–806 (2021).Article 

    Google Scholar 
    Wang, C. et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol. Biochem. 141, 107687 (2020).Article 

    Google Scholar 
    Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).Article 

    Google Scholar 
    Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).Article 

    Google Scholar 
    Trap, J., Bonkowski, M., Plassard, C., Villenave, C. & Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 398, 1–24 (2016).Article 

    Google Scholar 
    Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).Article 

    Google Scholar 
    Muñoz-Leoz, B., Ruiz-Romera, E., Antigüedad, I. & Garbisu, C. Tebuconazole application decreases soil microbial biomass and activity. Soil Biol. Biochem. 43, 2176–2183 (2011).Article 

    Google Scholar 
    Meyer, M., Diehl, D., Schaumann, G. E. & Muñoz, K. Agricultural mulching and fungicides—impacts on fungal biomass, mycotoxin occurrence, and soil organic matter decomposition. Environ. Sci. Pollut. Res. 28, 36535–36550 (2021).Article 

    Google Scholar 
    Thiery, S. & Kaimer, C. The predation strategy of Myxococcus xanthus. Front. Microbiol. 11, 2 (2020).Article 

    Google Scholar 
    Laloux, G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus. Front. Microbiol. 10, 3136 (2020).Article 

    Google Scholar  More