More stories

  • in

    Host identity is the dominant factor in the assembly of nematode and tardigrade gut microbiomes in Antarctic Dry Valley streams

    Alpha diversity differences among communitiesNematode gut microbiomes were assigned into their respective species categories of E. antarcticus and P. murrayi based on 18S host data that was consistent with morphology (see Methods “Microinvertebrate haplotypes”). In contrast, due to recovery of three undiscernible 18S tardigrade haplotypes, the gut microbiomes were assigned to Tardigrada. Mat bacterial communities were significantly (Tukey’s HSD, P  0.65, χ2(1)  0.38, χ2(3)  More

  • in

    Biodiversity loss and climate extremes — study the feedbacks

    As humans warm the planet, biodiversity is plummeting. These two global crises are connected in multiple ways. But the details of the intricate feedback loops between biodiversity decline and climate change are astonishingly under-studied.It is well known that climate extremes such as droughts and heatwaves can have devastating impacts on ecosystems and, in turn, that degraded ecosystems have a reduced capacity to protect humanity against the social and physical impacts of such events. Yet only a few such relationships have been probed in detail. Even less well known is whether biodiversity-depleted ecosystems will also have a negative effect on climate, provoking or exacerbating weather extremes.For us, a group of researchers living and working mainly in Central Europe, the wake-up call was the sequence of heatwaves of 2018, 2019 and 2022. It felt unreal to watch a floodplain forest suffer drought stress in Leipzig, Germany. Across Germany, more than 380,000 hectares of trees have now been damaged (see go.nature.com/3etrrnp; in German), and the forestry sector is struggling with how to plan restoration activities over the coming decades1. What could have protected these ecosystems against such extremes? And how will the resultant damage further impact our climate?
    Nature-based solutions can help cool the planet — if we act now
    In June 2021, the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) published their first joint report2, acknowledging the need for more collaborative work between these two domains. And some good policy moves are afoot: the new EU Forest Strategy for 2030, released in July 2021, and other high-level policy initiatives by the European Commission, formally recognize the multifunctional value of forests, including their role in regulating atmospheric processes and climate. But much more remains to be done.To thoroughly quantify the risk that lies ahead, ecologists, climate scientists, remote-sensing experts, modellers and data scientists need to work together. The upcoming meeting of the United Nations Convention on Biological Diversity in Montreal, Canada, in December is a good opportunity to catalyse such collaboration.Buffers and responsesWhen lamenting the decline in biodiversity, most people think first about the tragedy of species driven to extinction. There are more subtle changes under way, too.For instance, a study across Germany showed that over the past century, most plant species have declined in cover, with only a few increasing in abundance3. Also affected is species functionality4 — genetic diversity, and the diversity of form and structure that can make communities more or less efficient at taking up nutrients, resisting heat or surviving pathogen attacks.When entire ecosystems are transformed, their functionality is often degraded. They are left with less capacity to absorb pollution, store carbon dioxide, soak up water, regulate temperature and support vital functions for other organisms, including humans5. Conversely, higher levels of functional biodiversity increase the odds of an ecosystem coping with unexpected events, including climate extremes. This is known as the insurance effect6.The effect is well documented in field experiments and modelling studies. And there is mounting evidence of it in ecosystem responses to natural events. A global synthesis of various drought conditions showed, for instance, that forests were more resilient when trees with a greater diversity of strategies for using and transporting water lived together7.

    Dead trees near Iserlohn, Germany, in April 2020 (left) and after felling in June 2021 (right).Credit: Ina Fassbender/AFP via Getty

    However, biodiversity cannot protect all ecosystems against all kinds of impacts. In a study this year across plots in the United States and Canada, for example, mortality was shown to be higher in diverse forest ecosystems8. The proposed explanation for this unexpected result was that greater biodiversity could also foster more competition for resources. When extreme events induce stress, resources can become scarce in areas with high biomass and competition can suddenly drive mortality, overwhelming the benefits of cohabitation. Whether or not higher biodiversity protects an ecosystem from an extreme is highly site-specific.Some plants respond to drought by reducing photosynthesis and transpiration immediately; others can maintain business as usual for much longer, stabilizing the response of the ecosystem as a whole. So the exact response of ecosystems to extremes depends on interactions between the type of event, plant strategies, vegetation composition and structure.Which plant strategies will prevail is hard to predict and highly dependent on the duration and severity of the climatic extreme, and on previous extremes9. Researchers cannot fully explain why some forests, tree species or individual plants survive in certain regions hit by extreme climate conditions, whereas entire stands disappear elsewhere10. One study of beech trees in Germany showed that survival chances had a genomic basis11, yet it is not clear whether the genetic variability present in forests will be sufficient to cope with future conditions.And it can take years for ecosystem impacts to play out. The effects of the two consecutive hot drought years, 2018 and 2019, were an eye-opener for many of us. In Leipzig, tree growth declined, pathogens proliferated and ash and maple trees died. The double blow, interrupted by a mild winter, on top of the long-term loss of soil moisture, led to trees dying at 4–20 times the usual rate throughout Germany, depending on the species (see go.nature.com/3etrrnp; in German). The devastation peaked in 2020.Ecosystem changes can also affect atmospheric conditions and climate. Notably, land-use change can alter the brightness (albedo) of the planet’s surface and its capacity for heat exchange. But there are more-complex mechanisms of influence.Vegetation can be a source or sink for atmospheric substances. A study published in 2020 showed that vegetation under stress is less capable of removing ozone than are unstressed plants, leading to higher levels of air pollution12. Pollen and other biogenic particles emitted from certain plants can induce the freezing of supercooled cloud droplets, allowing ice in clouds to form at much warmer temperatures13, with consequences for rainfall14. Changes to species composition and stress can alter the dynamics of these particle emissions. Plant stress also modifies the emission of biogenic volatile organic gases, which can form secondary particles. Wildfires — enhanced by drought and monocultures — affect clouds, weather and climate through the emission of greenhouse gases and smoke particles. Satellite data show that afforestation can boost the formation of low-level, cooling cloud cover15 by enhancing the supply of water to the atmosphere.Research prioritiesAn important question is whether there is a feedback loop: will more intense, and more frequent, extremes accelerate the degradation and homogenization of ecosystems, which then, in turn, promote further climate extremes? So far, we don’t know.One reason for this lack of knowledge is that research has so far been selective: most studies have focused on the impacts of droughts and heatwaves on ecosystems. Relatively little is known about the impacts of other kinds of extremes, such as a ‘false spring’ caused by an early-season bout of warm weather, a late spring frost, heavy rainfall events, ozone maxima, or exposure to high levels of solar radiation during dry, cloudless weather.Researchers have no overview, much less a global catalogue, of how each dimension of biodiversity interacts with the full breadth of climate extremes in different combinations and at multiple scales. In an ideal world, scientists would know, for example, how the variation in canopy density, vegetation age, and species diversity protects against storm damage; and whether and how the diversity of canopy structures controls atmospheric processes such as cloud formation in the wake of extremes. Researchers need to link spatiotemporal patterns of biodiversity with the responses of ecosystem processes to climate extremes.
    Biodiversity needs every tool in the box: use OECMs
    Creating such a catalogue is a huge challenge, particularly given the more frequent occurrence of extremes with little or no precedent16. Scientists will also need to account for the increasing likelihood of pile-ups of climate stressors. The ways in which ecosystems respond to compound events17 could be quite different. Researchers will have to study which facets of biodiversity (genetic, physiological, structural) are required to stabilize ecosystems and their functions against these onslaughts.There is at least one piece of good news: tools for data collection and analysis are improving fast, with huge advances over the past decade in satellite-based observations for both climate and biodiversity monitoring. The European Copernicus Earth-observation programme, for example — which includes the Sentinel 1 and 2 satellite fleet, and other recently launched missions that cover the most important wavelengths of the electromagnetic spectrum — offer metre-scale resolution observations of the biochemical status of plants and canopy structure. Atmospheric states are recorded in unprecedented detail, vertically and in time.Scientists must now make these data interoperable and integrate them with in situ observations. The latter is challenging. On the ground, a new generation of data are being collected by researchers and by citizen scientists18. For example, unique insights into plant responses to stress are coming from time-lapse photography of leaf orientation; accelerometer measures of movement patterns of stems have been shown to provide proxies for the drought stress of trees19.High-quality models are needed to turn these data into predictions. The development of functional ‘digital twins’ of the climate system is now in reach. These models replicate hydrometeorological processes at the metre scale, and are fast enough to allow for rapid scenario development and testing20. The analogous models for ecosystems are still in a more conceptual phase. Artificial-intelligence methods will be key here, to study links between climate extremes and biodiversity.Researchers can no longer afford to track global transformations of the Earth system in disciplinary silos. Instead, ecologists and climate scientists need to establish a joint agenda, so that humanity is properly forewarned: of the risks of removing biodiversity buffers against climate extremes, and of the risk of thereby amplifying these extremes. More

  • in

    Memory for own actions in parrots

    Zimmer, H. D. et al. Memory for Action: A Distinct Form of Episodic Memory? (Oxford University Press, 2001).
    Google Scholar 
    Goswami, U. The Wiley-Blackwell Handbook of Childhood Cognitive Development (Wiley, 2013).
    Google Scholar 
    Fujita, K., Morisaki, A., Takaoka, A., Maeda, T. & Hori, Y. Incidental memory in dogs (Canis familiaris): Adaptive behavioral solution at an unexpected memory test. Anim. Cogn. 15, 1055–1063 (2012).Article 
    PubMed 

    Google Scholar 
    Lind, J., Enquist, M. & Ghirlanda, S. Animal memory: A review of delayed matching-to-sample data. Behav. Processes 117, 52–58 (2015).Article 
    PubMed 

    Google Scholar 
    Kuczaj, S. A. II. & Eskelinen, H. C. (2014) The “creative dolphin” revisited: What do dolphins do when asked to vary their behavior. Anim. Behav. Cogn. 1, 66–77 (2014).Article 

    Google Scholar 
    Tulving, E. Episodic and semantic memory. Organ. Mem. 1, 381–403 (1972).
    Google Scholar 
    Tulving, E. How many memory systems are there?. Am. Psychol. 40, 385 (1985).Article 

    Google Scholar 
    Fugazza, C., Pongrácz, P., Pogány, Á., Lenkei, R. & Miklósi, Á. Mental representation and episodic-like memory of own actions in dogs. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: What is it, who has it, and how did it evolve?. Science 298, 1569–1579 (2002).Article 
    PubMed 

    Google Scholar 
    Conway, M. A. Memory and the self. J. Mem. Lang. 53, 594–628 (2005).Article 

    Google Scholar 
    Scagel, A. & Mercado, E. III. Do that again! Memory for self-performed actions in dogs (Canis familiaris). J. Comp. Psychol. 20, 25 (2022).
    Google Scholar 
    Mercado, E., Murray, S. O., Uyeyama, R. K., Pack, A. A. & Herman, L. M. Memory for recent actions in the bottlenosed dolphin (Tursiops truncatus): Repetition of arbitrary behaviors using an abstract rule. Learn. Behav. 26, 210–218 (1998).Article 

    Google Scholar 
    Paukner, A., Anderson, J. R., Donaldson, D. I. & Ferrari, P. F. Cued repetition of self-directed behaviors in macaques (Macaca nemestrina). J. Exp. Psychol. Anim. Behav. Process. 33, 139 (2007).Article 
    PubMed 

    Google Scholar 
    Smeele, S. Q. et al. Memory for own behaviour in pinnipeds. Anim. Cogn. 20, 1–12 (2019).
    Google Scholar 
    Clayton, N. S. Episodic-like memory and mental time travel in animals. (2017).Clayton, N. S., Griffiths, D. P. & Dickinson, A. Declarative and episodic-like memory in animals: Personal musings of a Scrub Jay (2000).Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).Article 
    PubMed 

    Google Scholar 
    Tulving, E. Episodic memory and autonoesis: Uniquely human. Missing Link Cogn. Orig. Self-Reflect. Conscious 20, 3–56 (2005).
    Google Scholar 
    Suddendorf, T. & Corballis, M. C. Mental time travel and the evolution of the human mind. Genet. Soc. Gen. Psychol. Monogr. 123, 133–167 (1997).PubMed 

    Google Scholar 
    Suddendorf, T. & Corballis, M. C. The evolution of foresight: What is mental time travel, and is it unique to humans?. Behav. Brain Sci. 30, 299–313 (2007).Article 
    PubMed 

    Google Scholar 
    Crystal, J. D. Evaluating evidence from animal models of episodic memory. J. Exp. Psychol. Anim. Learn. Cogn. 47, 337 (2021).Article 
    PubMed 

    Google Scholar 
    Mercado, E. III., Uyeyama, R. K., Pack, A. A. & Herman, L. M. Memory for action events in the bottlenosed dolphin. Anim. Cogn. 2, 17–25 (1999).Article 

    Google Scholar 
    Zentall, T. R. Coding of stimuli by animals: Retrospection, prospection, episodic memory and future planning. Learn. Motiv. 41, 225–240 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fugazza, C., Pogány, Á. & Miklósi, Á. Recall of others’ actions after incidental encoding reveals episodic-like memory in dogs. Curr. Biol. 26, 3209–3213 (2016).Article 
    PubMed 

    Google Scholar 
    Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019).Article 

    Google Scholar 
    Emery, N. J. Cognitive ornithology: The evolution of avian intelligence. Philos. Trans. R. Soc. B Biol. Sci. 361, 23–43 (2006).Article 

    Google Scholar 
    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl. Acad. Sci. 113, 7255–7260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emery, N. J. & Clayton, N. S. Evolution of the avian brain and intelligence. Curr. Biol. 15, R946–R950 (2005).Article 
    PubMed 

    Google Scholar 
    Bradbury, J. W. & Balsby, T. J. The functions of vocal learning in parrots. Behav. Ecol. Sociobiol. 70, 293–312 (2016).Article 

    Google Scholar 
    Baciadonna, L., Cornero, F. M., Emery, N. J. & Clayton, N. S. Convergent evolution of complex cognition: Insights from the field of avian cognition into the study of self-awareness. Learn. Behav. 49, 9–22 (2021).Article 
    PubMed 

    Google Scholar 
    Osvath, M., Kabadayi, C. & Jacobs, I. Independent evolution of similar complex cognitive skills (2014).Zentall, T. R., Clement, T. S., Bhatt, R. S. & Allen, J. Episodic-like memory in pigeons. Psychon. Bull. Rev. 8, 685–690 (2001).Article 
    PubMed 

    Google Scholar 
    Zentall, T. R., Singer, R. A. & Stagner, J. P. Episodic-like memory: Pigeons can report location pecked when unexpectedly asked. Behav. Processes 79, 93–98 (2008).Article 
    PubMed 

    Google Scholar 
    Healy, S. D. & Hurly, T. A. Spatial learning and memory in birds. Brain. Behav. Evol. 63, 211–220 (2004).Article 
    PubMed 

    Google Scholar 
    Taylor, A. H. Corvid cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 361–372 (2014).Article 
    PubMed 

    Google Scholar 
    Boeckle, M. & Bugnyar, T. Long-term memory for affiliates in ravens. Curr. Biol. 22, 801–806 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marzluff, J. M., Walls, J., Cornell, H. N., Withey, J. C. & Craig, D. P. Lasting recognition of threatening people by wild American crows. Anim. Behav. 79, 699–707 (2010).Article 

    Google Scholar 
    Pepperberg, I. M. & Pepperberg, I. M. The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots (Harvard University Press, 2009).Book 

    Google Scholar 
    Emery, N. J. & Clayton, N. S. Effects of experience and social context on prospective caching strategies by scrub jays. Nature 414, 443–446 (2001).Article 
    PubMed 

    Google Scholar 
    Herzog, S. K. et al. First systematic sampling approach to estimating the global population size of the Critically Endangered Blue-throated Macaw Ara glaucogularis. Bird Conserv. Int. 31, 293–311 (2021).Article 

    Google Scholar 
    Auersperg, A. M. & von Bayern, A. M. Who’sa clever bird—now? A brief history of parrot cognition. Behaviour 156, 391–407 (2019).Article 

    Google Scholar 
    Tassin de Montaigu, C., Durdevic, K., Brucks, D., Krasheninnikova, A. & von Bayern, A. Blue-throated macaws (Ara glaucogularis) succeed in a cooperative task without coordinating their actions. Ethology 126, 267–277 (2020).Article 

    Google Scholar 
    Auersperg, A. M. et al. Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proc. R. Soc. B Biol. Sci. 281, 20140972 (2014).Article 

    Google Scholar 
    Brucks, D. & von Bayern, A. M. Parrots voluntarily help each other to obtain food rewards. Curr. Biol. 30, 292–297 (2020).Article 
    PubMed 

    Google Scholar 
    Krasheninnikova, A., Höner, F., O’Neill, L., Penna, E. & von Bayern, A. M. Economic decision-making in parrots. Sci. Rep. 8, 1–10 (2018).Article 

    Google Scholar 
    Jarvis, E. D. et al. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159 (2005).Article 
    PubMed 

    Google Scholar 
    Gutiérrez-Ibáñez, C., Iwaniuk, A. N. & Wylie, D. R. Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Sci. Rep. 8, 1–11 (2018).Article 

    Google Scholar 
    Smeele, S. Q. et al. Coevolution of relative brain size and life expectancy in parrots. Proc. R. Soc. B 289, 20212397 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirsch, J. A., Güntürkün, O. & Rose, J. Insight without cortex: Lessons from the avian brain. Conscious. Cogn. 17, 475–483 (2008).Article 
    PubMed 

    Google Scholar 
    Dunbar, R. I. & Shultz, S. Evolution in the social brain. Science 317, 1344–1347 (2007).Article 
    PubMed 

    Google Scholar 
    Wright, A. A. & Katz, J. S. Mechanisms of same/different concept learning in primates and avians. Behav. Processes 72, 234–254 (2006).Article 
    PubMed 

    Google Scholar 
    Smirnova, A. A., Obozova, T. A., Zorina, Z. A. & Wasserman, E. A. How do crows and parrots come to spontaneously perceive relations-between-relations?. Curr. Opin. Behav. Sci. 37, 109–117 (2021).Article 

    Google Scholar 
    Schusterman, R. J. & Kastak, D. A California sea lion (Zalophus californianus) is capable of forming equivalence relations. Psychol. Rec. 43, 823–839 (1993).Article 

    Google Scholar 
    Kastak, D. & Schusterman, R. J. Transfer of visual identity matching-to-sample in two California sea lions (Zalophus californianus). Anim. Learn. Behav. 22, 427–435 (1994).Article 

    Google Scholar 
    Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. & Rattermann, M. J. Concept learning in animals. Comp. Cogn. Behav. Rev. 20, 25 (2008).
    Google Scholar 
    Marino, L. Convergence of complex cognitive abilities in cetaceans and primates. Brain. Behav. Evol. 59, 21–32 (2002).Article 
    PubMed 

    Google Scholar 
    Huber, L., Range, F. & Virányi, Z. Dog imitation and its possible origins. In Domestic dog Cognition and Behavior 79–100 (Springer, 2014).Chapter 

    Google Scholar 
    Schmidjell, T., Range, F., Huber, L. & Virányi, Z. Do owners have a Clever Hans effect on dogs? Results of a pointing study. Front. Psychol. 3, 558 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hare, B., Brown, M., Williamson, C. & Tomasello, M. The domestication of social cognition in dogs. Science 298, 1634–1636 (2002).Article 
    PubMed 

    Google Scholar 
    Lindqvist, C. & Jensen, P. Domestication and stress effects on contrafreeloading and spatial learning performance in red jungle fowl (Gallus gallus) and White Leghorn layers. Behav. Processes 81, 80–84 (2009).Article 
    PubMed 

    Google Scholar 
    Pack, A. A., Herman, L. M. & Roitblat, H. L. Generalization of visual matching and delayed matching by a California sea lion (Zalophus californianus). Anim. Learn. Behav. 19, 37–48 (1991).Article 

    Google Scholar 
    Bennett, M. S. Five breakthroughs: A first approximation of brain evolution from early bilaterians to humans. Front. Neuroanat. 15, 25 (2021).Article 

    Google Scholar 
    Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toft, C. A. & Wright, T. F. Parrots of the wild. Nat. Hist. World’s Most Captiv. Birds 20, 25 (2015).
    Google Scholar 
    Merkle, J. A., Sigaud, M. & Fortin, D. To follow or not? How animals in fusion–fission societies handle conflicting information during group decision-making. Ecol. Lett. 18, 799–806 (2015).Article 
    PubMed 

    Google Scholar 
    Stevens, J. R. & Gilby, I. C. A conceptual framework for nonkin food sharing: Timing and currency of benefits. Anim. Behav. 67, 603–614 (2004).Article 

    Google Scholar 
    Kamil, A. C. & Roitblat, H. L. The ecology of foraging behavior—Implications for animal learning and memory. Annu. Rev. Psychol. 36, 141–169 (1985).Article 
    PubMed 

    Google Scholar 
    Ortiz, S. T., Castro, A. C., Balsby, T. J. S. & Larsen, O. N. Problem-solving in a cooperative task in peach-fronted conures (Eupsittula aurea). Anim. Cogn. 23, 265–275 (2020).Article 

    Google Scholar 
    Krasheninnikova, A., Brucks, D., Blanc, S. & von Bayern, A. M. Assessing African grey parrots’ prosocial tendencies in a token choice paradigm. R. Soc. Open Sci. 6, 190696 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krasheninnikova, A. et al. Parrots do not show inequity aversion. Sci. Rep. 9, 1–12 (2019).Article 

    Google Scholar 
    Clayton, N. S., Griffiths, D. P., Emery, N. J. & Dickinson, A. Elements of episodic–like memory in animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1483–1491 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall, 2020).Book 

    Google Scholar  More

  • in

    Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts

    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (Blackwell Publishing, 2007).Book 

    Google Scholar 
    Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).Article 

    Google Scholar 
    Wessel, P., Sandwell, D. T. & Kim, S.-S. The global seamount census. Oceanography 23, 24–33 (2010).Article 

    Google Scholar 
    Etnoyer, P. J. et al. BOX 12|How large is the seamount biome?. Oceanography 23, 206–209 (2010).Article 

    Google Scholar 
    De Forges, B. R., Koslow, J. A. & Pooro, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).Article 
    PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: Fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).Article 

    Google Scholar 
    Pinheiro, H. T. et al. Fish biodiversity of the Vitória-Trindade seamount chain, southwestern Atlantic: An updated database. PLoS ONE 10, 1–17 (2015).Article 

    Google Scholar 
    Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. PNAS 107, 9711 (2010).Article 

    Google Scholar 
    Rowden, A. A. et al. A test of the seamount oasis hypothesis: Seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31, 95–106 (2010).Article 

    Google Scholar 
    Busch, K. et al. On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 17, 3471–3486 (2020).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Virioplankton distribution in the tropical western Pacific Ocean in the vicinity of a seamount. Microbiol Open 9, e1031 (2020).Article 

    Google Scholar 
    Arístegui, J. et al. Plankton metabolic balance at two North Atlantic seamounts. Deep-Sea Res. II 56, 2646–2655 (2009).Article 

    Google Scholar 
    Dower, J. F. & Mackast, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep-Sea Res. I 43, 837–858 (1996).Article 

    Google Scholar 
    O’Hara, T. D., Rowden, A. A. & Bax, N. J. A Southern Hemisphere bathyal fauna is distributed in latitudinal bands. Curr. Biol. 21, 226–230 (2011).Article 
    PubMed 

    Google Scholar 
    Williams, A., Althaus, F., Clark, M. R. & Gowlett-Holmes, K. Composition and distribution of deep-sea benthic invertebrate megafauna on the Lord Howe Rise and Norfolk Ridge, southwest Pacific Ocean. Deep-Sea Res. II 58, 948–958 (2011).Article 
    CAS 

    Google Scholar 
    Bridges, A. E. H., Barnes, D. K. A., Bell, J. B., Ross, R. E. & Howell, K. L. Benthic assemblage composition of South Atlantic seamounts. Front. Mar. Sci. 8, 660648 (2021).Article 

    Google Scholar 
    Lapointe, A. E., Watling, L., France, S. C. & Auster, P. J. Megabenthic assemblages in the lower bathyal (700–3000 m) on the New England and corner rise seamounts Northwest Atlantic. Deep-Sea Res. I 165, 103366 (2020).Article 

    Google Scholar 
    Clark, M. R. & Bowden, D. A. Seamount biodiversity: High variability both within and between seamounts in the Ross Sea region of Antarctica. Hydrobiologia 761, 161–180 (2015).Article 
    CAS 

    Google Scholar 
    McClain, C. R., Lundsten, L., Barry, J. & DeVogelaere, A. Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount. Mar. Ecol. 31, 14–25 (2010).Article 

    Google Scholar 
    Long, D. J. & Baco, A. R. Rapid change with depth in megabenthic structure-forming communities of the Makapu’u deep-sea coral bed. Deep-Sea Res. II 99, 158–168 (2014).Article 

    Google Scholar 
    Thresher, R. et al. Strong septh-related zonation of megabenthos on a rocky continental margin (∼ 700–4000 m) off southern Tasmania Australia. PLoS ONE 9, e85872 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Hara, T. D., Consalvey, M., Lavrado, H. P. & Stocks, K. I. Environmental predictors and turnover of biota along a seamount chain. Mar. Ecol. 31, 84–94 (2010).Article 

    Google Scholar 
    Boschen, R. E. et al. Megabenthic assemblage structure on three New Zealand seamounts: Implications for seafloor massive sulfide mining. Mar. Ecol. Prog. Ser. 523, 1–14 (2015).Article 

    Google Scholar 
    Caratori Tontini, F. et al. Crustal magnetization of brothers volcano, New Zealand, measured by autonomous underwater vehicles: Geophysical expression of a submarine hydrothermal system. Econ. Geol. 107, 1571–1581 (2012).Article 

    Google Scholar 
    Rex, M. A., Etter, R. J., Clain, A. J. & Hill, M. S. Bathymetric patterns of body size in deep-sea gastropods. Evolution (N Y) 53, 1298–1301 (1999).
    Google Scholar 
    O’Hara, T. D. Seamounts: Centres of endemism or species richness for ophiuroids?. Glob. Ecol. Biogeogr. 16, 720–732 (2007).Article 

    Google Scholar 
    Clark, M. R. et al. The ecology of seamounts: Structure, function, and human impacts. Ann. Rev. Mar. Sci. 2, 253–278 (2010).Article 
    PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).Article 
    PubMed 

    Google Scholar 
    Levin, L. A. & Thomas, C. L. The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts. Deep Sea Res. A 36, 1897–1915 (1989).Article 

    Google Scholar 
    Puerta, P. et al. Variability of deep-sea megabenthic assemblages along the western pathway of the Mediterranean outflow water. Deep-Sea Res. I 185, 103791 (2022).Article 

    Google Scholar 
    Tapia-Guerra, J. M. et al. First description of deep benthic habitats and communities of oceanic islands and seamounts of the Nazca Desventuradas Marine Park Chile. Sci. Rep. 11, 6209 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgan, N. B., Goode, S., Roark, E. B. & Baco, A. R. Fine scale assemblage structure of benthic invertebrate megafauna on the North Pacific seamount Mokumanamana. Front. Mar. Sci. 6, 715 (2019).Article 

    Google Scholar 
    Perez, J. A. A., Kitazato, H., Sumida, P. Y. G., Sant’Ana, R. & Mastella, A. M. Benthopelagic megafauna assemblages of the Rio Grande Rise (SW Atlantic). Deep-Sea Res. I 134, 1–11 (2018).Article 

    Google Scholar 
    Poore, G. C. B. et al. Invertebrate diversity of the unexplored marine western margin of Australia: Taxonomy and implications for global biodiversity. Mar. Biodivers. 45, 271–286 (2015).Article 

    Google Scholar 
    Henry, L. A., Moreno Navas, J. & Roberts, J. M. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences 10, 2737–2746 (2013).Article 

    Google Scholar 
    Meyer, K. S. et al. Rocky islands in a sea of mud: Biotic and abiotic factors structuring deep-sea dropstone communities. Mar. Ecol. Prog. Ser. 556, 45–57 (2016).Article 

    Google Scholar 
    Stratmann, T., Soetaert, K., Kersken, D. & van Oevelen, D. Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains. Sci. Rep. 11, 12238 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61 (1986).Article 

    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 1979(312), 543–547 (2006).Article 

    Google Scholar 
    Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA-Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).Article 

    Google Scholar 
    Beazley, L., Kenchington, E. L., Murillo, F. J. & Sacau, M. D. M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).Article 

    Google Scholar 
    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).Article 

    Google Scholar 
    Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Res. I 58, 442–453 (2011).Article 

    Google Scholar 
    ICES. Report of the ICES-NAFO Working Group on Deep-Water Ecology (WGDEC), 9–13 March 2009, ICES CM2009ACOM:23. 2009.Cárdenas, P. & Rapp, H. T. Demosponges from the Northern mid-Atlantic ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J. Mar. Biol. Assoc. U.K. 95, 1475–1516 (2015).Article 

    Google Scholar 
    Cárdenas, P. et al. Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region. Zool. J. Linn. Soc. 169, 251–311 (2013).Article 

    Google Scholar 
    Roberts, E. M. et al. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep-Sea Res. I 138, 98–113 (2018).Article 

    Google Scholar 
    Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).Article 

    Google Scholar 
    Morganti, T. M. et al. Giant sponge grounds of central Arctic seamounts are associated with extinct seep life. Nat. Commun. 13, 638 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morganti, T. M. et al. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic. Curr. Biol. 31, R368–R370 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep-Sea Res. I 153, 103137 (2019).Article 

    Google Scholar 
    McIntyre, F. D., Drewery, J., Eerkes-Medrano, D. & Neat, F. C. Distribution and diversity of deep-sea sponge grounds on the Rosemary bank seamount NE Atlantic. Mar. Biol. 163, 143 (2016).Article 

    Google Scholar 
    Buhl-Mortensen, P. & Buhl-Mortensen, L. Diverse and vulnerable deep-water biotopes in the Hardangerfjord. Mar. Biol. Res. 10, 253–267 (2014).Article 

    Google Scholar 
    de Clippele, L. H. et al. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef Norway. Coral Reefs 37, 253–266 (2018).Article 
    PubMed 

    Google Scholar 
    Dunlop, K., Harendza, A., Plassen, L. & Keeley, N. Epifaunal habitat Associations on mixed and hard bottom substrates in coastal waters of Northern Norway. Front. Mar. Sci. 7, 568802 (2020).Article 

    Google Scholar 
    Fiore, C. L. & Cox Jutte, P. Characterization of macrofaunal assemblages associated with sponges and tunicates collected off the southeastern United States. Biology 129, 105–120 (2010).
    Google Scholar 
    Murillo, F. J. et al. Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): Distribution and species composition. Mar. Biol. Res. 8, 842–854 (2012).Article 

    Google Scholar 
    Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51 (2013).Article 

    Google Scholar 
    Klitgaard, A. B. & Tendal, O. S. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).Article 

    Google Scholar 
    Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (porifera, demospongiae) at the faroe islands, northeastern Atlantic. Sarsia 80, 1–22 (1995).Article 

    Google Scholar 
    Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodivers. 49, 163–174 (2019).Article 

    Google Scholar 
    Schejter, L., Chiesa, I. L., Doti, B. L. & Bremec, C. Mycale (Aegogropila) magellanica (Porifera: Demospongiae) in the southwestern Atlantic Ocean: Endobiotic fauna and new distributional information. Sci. Mar. 76, 753–761 (2012).
    Google Scholar 
    Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).Article 

    Google Scholar 
    Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean coast. Front. Mar. Sci. 7, 612779 (2021).Article 

    Google Scholar 
    Kersken, D. et al. The infauna of three widely distributed sponge species (Hexactinellida and Demospongiae) from the deep Ekström Shelf in the Weddell Sea Antarctica. Deep-Sea Res. II 108, 101–112 (2014).Article 

    Google Scholar 
    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep Sea Res. 1 Oceanogr. Res. Pap. 153, 103137 (2019).Article 

    Google Scholar 
    Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A Deep-Sea Sponge Loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 1979(342), 108–110 (2013).Article 

    Google Scholar 
    Pawlik, J. R. & Mcmurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. (2019) https://doi.org/10.1146/annurev-marine-010419Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: Preliminary results. Polar Biol. 33, 1641–1650 (2010).Article 

    Google Scholar 
    Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).Article 

    Google Scholar 
    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).Article 

    Google Scholar 
    Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClain, C. R., Lundsten, L., Ream, M., Barry, J. & DeVogelaere, A. Endemicity, biogeography, composition, and community structure on a Northeast Pacific seamount. PLoS ONE 4, e4141 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walter, M., Köhler, J., Myriel, H., Steinmacher, B. & Wisotzki, A. Physical oceanography measured on water bottle samples during POLARSTERN cruise PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.871927 (2017).van Appen, W.-J., Latarius, K. & Kanzow, T. Physical oceanography and current meter data from mooring F6–17. PANGAEA https://doi.org/10.1594/PANGAEA.870845 (2017).Ruhl, H. A. & Smith, K. L. Shifts in deep-sea community structure linked to climate and food supply. Science 1979(305), 513–515 (2004).Article 

    Google Scholar 
    Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 1979(339), 1430–1432 (2013).Article 

    Google Scholar 
    Rybakova, E., Kremenetskaia, A., Vedenin, A., Boetius, A. & Gebruk, A. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS ONE 14, e0211009 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhulay, I., Bluhm, B. A., Renaud, P. E., Degen, R. & Iken, K. Functional pattern of benthic epifauna in the Chukchi borderland Arctic deep sea. Front. Mar. Sci. 8, 609956 (2021).Article 

    Google Scholar 
    Boetius, A. & Purser, A. The expedition PS101 of the research vessel Polarstern to the Arctic Ocean in 2016. Berichte zur Polar-und Meeresforschung = Rep Polar Mar Res https://doi.org/10.2312/BzPM_0706_2017 (2017).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 1–13 (2019).Article 

    Google Scholar 
    Zhulay, I., Iken, K., Renaud, P. E. & Bluhm, B. A. Epifaunal communities across marine landscapes of the deep Chukchi Borderland (Pacific Arctic). Deep Sea Res. 1 Oceanogr. Res. Pap. 151, 103065 (2019).Article 

    Google Scholar 
    Åström, E. K. L., Sen, A., Carroll, M. L. & Carroll, J. L. Cold seeps in a warming Arctic: Insights for benthic ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00244 (2020).Article 

    Google Scholar 
    Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 1, 1–6 (2010).Article 
    CAS 

    Google Scholar 
    Åström, E. K. L. et al. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, S209–S231 (2018).Article 

    Google Scholar 
    Rybakova Goroslavskaya, E., Galkin, S., Bergmann, M., Soltwedel, T. & Gebruk, A. Density and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea) based on image analysis. Biogeosciences 10, 3359–3374 (2013).Article 

    Google Scholar 
    Sweetman, A. K., Levin, L. A., Rapp, H. T. & Schander, C. Faunal trophic structure at hydrothermal vents on the southern mohn’s ridge, arctic ocean. Mar. Ecol. Prog. Ser. 473, 115–131 (2013).Article 

    Google Scholar 
    Decker, C. & Olu, K. Does macrofaunal nutrition vary among habitats at the Hakon Mosby mud volcano?. Cah. Biol. Mar. 51, 361–367 (2010).
    Google Scholar 
    Macdonald, I. R., Bluhm, B. A., Iken, K., Gagaev, S. & Strong, S. Benthic macrofauna and megafauna assemblages in the Arctic deep-sea Canada Basin. Deep-Sea Res. II 57, 136–152 (2010).Article 

    Google Scholar 
    Taylor, J., Krumpen, T., Soltwedel, T., Gutt, J. & Bergmann, M. Dynamic benthic megafaunal communities: Assessing temporal variations in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015. Deep Sea Res. 1 Oceanogr. Res. Pap. 122, 81–94 (2017).Article 

    Google Scholar 
    Vedenin, A. A. et al. Uniform bathymetric zonation of marine benthos on a Pan-Arctic scale. Prog. Oceanogr. 202, 102764 (2022).Article 

    Google Scholar 
    Bart, M. C. et al. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    Guihen, D., White, M. & Lundälv, T. Temperature shocks and ecological implications at a cold-water coral reef. ANZIAM J. https://doi.org/10.1017/S1755267212000413 (2014).Article 

    Google Scholar 
    Strand, R. et al. The response of a boreal deep-sea sponge holobiont to acute thermal stress. Sci. Rep. 7, 1660 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanz, U. et al. The important role of sponges in carbon and nitrogen cycling in a deep-sea biological hotspot. Funct. Ecol. 36, 2188–2199 (2022).Article 
    CAS 

    Google Scholar 
    Maier, S. R. et al. Reef communities associated with ‘dead’ cold-water coral framework drive resource retention and recycling in the deep sea. Deep-Sea Res. I 175, 103574 (2021).Article 
    CAS 

    Google Scholar 
    Bart, M. C. et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. https://doi.org/10.1002/lno.11652 (2020).Article 

    Google Scholar 
    Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    Maier, S. R. et al. Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci. Rep. 10, 9942 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    International Hydrographic Bureau. 16th meeting of the GEBCO sub-committee on undersea feature names (SCUFN). Preprint at (2003).Torres-Valdés, S., Morische, A. & Wischnewski, L. Revision of nutrient data from Polarstern expedition PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.908179 (2019).Purser, A. et al. Ocean floor observation and bathymetry system (OFOBS): A new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 44, 87–99 (2019).Article 

    Google Scholar 
    Marcon, Y. & Purser, A. PAPARA(ZZ)I : An open-source software interface for annotating photographs of the deep-sea. SoftwareX 6, 69–80 (2017).Article 

    Google Scholar 
    Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Spec. Pap.: Geol. Assoc. Canada 47, 141–155 (2007).
    Google Scholar 
    Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).Article 

    Google Scholar 
    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application (Cambridge University Press, 1997).Book 
    MATH 

    Google Scholar 
    Rodgers, J. L. The bootstrap, the jackknife, and the randomization test: A sampling taxonomy. Multivar. Behav. Res. 34, 441–456 (1999).Article 
    CAS 

    Google Scholar 
    Crowley, P. H. Resampling methods for computation-intensive data analysis in ecology and evolution. Annu. Rev. Ecol. Syst. 23, 405–447 (1992).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    R-Core Team. R: A language and environment for statistical computing. Preprint at https://www.r-project.org/ (2017).Oksanen, J. et al. vegan: Community ecology package. Preprint at (2017).Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).Article 

    Google Scholar 
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Kluijver, A. Fatty acid analysis sponges. protocols.io 1, 1–14. https://doi.org/10.17504/protocols.io.bhnpj5dn (2021).Article 

    Google Scholar 
    de Kluijver, A. et al. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 16, e0241095 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Sustainable palm oil puts grasslands at risk

    Austin, K. G. et al. Land Use Policy 69, 41–48 (2017).Article 

    Google Scholar 
    Busch, J. et al. Environ. Res. Lett. 17, 014035 (2022).Article 
    CAS 

    Google Scholar 
    Fleiss, S. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01941-6 (2022).Qaim, M. et al. Annu. Rev. Resour. Econ. 12, 321–344 (2020).Article 

    Google Scholar 
    Haupt, F. et al. Progress on Corporate Commitments and their Implementation (Tropical Forest Alliance, 2018).Brooks, T. et al. Nat. Ecol. Evol. 1, 0099 (2017).Article 

    Google Scholar 
    Buisson, E. et al. Biol. Rev. 94, 590–609 (2019).Article 
    PubMed 

    Google Scholar 
    López-Ricaurte, L. et al. Biol. Conserv. 213, 225–233 (2017).Article 

    Google Scholar 
    Furumo, P. R. & Aide, T. M. Environ. Res. Lett. 12, 024008 (2017).Article 

    Google Scholar 
    RTRS Standard for Responsible Soy Production Version 3.1 (RTRS, 2017). More

  • in

    Statistical optimization of a sustainable fertilizer composition based on black soldier fly larvae as source of nitrogen

    United Nations. [World population prospects 2019]. United Nations. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).Consortium, I. & Commission, E. The circular Bio-society in 2050. (2018).Ramaswami, A., Russell, A. G., Culligan, P. J., Rahul Sharma, K. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science (1979) 352, 940–943 (2016).CAS 

    Google Scholar 
    Cooper, C. M., Troutman, J. P., Awal, R., Habibi, H. & Fares, A. Climate change-induced variations in blue and green water usage in U.S. urban agriculture. J. Clean. Prod. 348, 567–579 (2022).Article 

    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).Article 
    CAS 

    Google Scholar 
    Paul, S., Dutta, A., Defersha, F. & Dubey, B. Municipal food waste to biomethane and biofertilizer: A circular economy concept. Waste Biomass Valorizat. 9, 601–611 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bergstrand, K. J. Organic fertilizers in greenhouse production systems—A review. Sci. Hortic. 295, 1–8 (2022).Article 

    Google Scholar 
    Chiaregato, C. G., França, D., Messa, L. L., dos Santos Pereira, T. & Faez, R. A review of advances over 20 years on polysaccharide-based polymers applied as enhanced efficiency fertilizers. Carbohydr. Polym. 279, 1–10 (2022).Article 

    Google Scholar 
    Timilsena, Y. P. et al. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 95, 1131–1142 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, J. et al. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 613–614, 829–839 (2018).Article 
    PubMed 

    Google Scholar 
    Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J. & Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 164, 32–52 (2013).Article 
    CAS 

    Google Scholar 
    Lv, G. et al. Biochar-based fertilizer enhanced Cd immobilization and soil quality in soil-rice system. Ecol. Eng. 171, 1–12 (2021).Article 

    Google Scholar 
    Clark, M. J. & Zheng, Y. Fertilizer rate influences production scheduling of sedum-vegetated green roof mats. Ecol. Eng. 71, 644–650 (2014).Article 

    Google Scholar 
    Samoraj, M. et al. Biochar in environmental friendly fertilizers—Prospects of development products and technologies. Chemosphere 296, 1–7 (2022).Article 

    Google Scholar 
    Dimkpa, C. O., Fugice, J., Singh, U. & Lewis, T. D. Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives. Sci. Total Environ. 731, 1–9 (2020).Article 

    Google Scholar 
    Fertahi, S., Ilsouk, M., Zeroual, Y., Oukarroum, A. & Barakat, A. Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J. Control. Release 330, 341–361 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    García-Garizábal, I., Causapé, J. & Abrahao, R. Nitrate contamination and its relationship with flood irrigation management. J. Hydrol. (AMST) 442–443, 15–22 (2012).Article 

    Google Scholar 
    Adu-Poku, D., Ackerson, N. O. B., Devine, R. N. O. A. & Addo, A. G. Climate mitigation efficiency of nitrification and urease inhibitors: Impact on N2O emission—A review. Sci. Afr. 16, 1–7 (2022).
    Google Scholar 
    Ding, W., Qin, H., Yu, S. & Yu, S. L. The overall and phased nitrogen leaching from a field bioretention during rainfall runoff events. Ecol. Eng. 179, 1–9 (2022).Article 

    Google Scholar 
    Li, X. et al. Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain—A field study in a modern agricultural park. Ecol. Eng. 169, 1–10 (2021).Article 

    Google Scholar 
    Michalsky, R. & Pfromm, P. H. Thermodynamics of metal reactants for ammonia synthesis from steam, nitrogen and biomass at atmospheric pressure. AIChE J. 58, 3203–3213 (2012).Article 
    CAS 

    Google Scholar 
    Pleissner, D. Decentralized utilization of wasted organic material in urban areas: A case study in Hong Kong. Ecol. Eng. 86, 120–125 (2016).Article 

    Google Scholar 
    Masullo, A. Organic wastes management in a circular economy approach: Rebuilding the link between urban and rural areas. Ecol. Eng. 101, 84–90 (2017).Article 

    Google Scholar 
    Zeng, Y., de Guardia, A., Ziebal, C., de Macedo, F. J. & Dabert, P. Nitrogen dynamic and microbiological evolution during aerobic treatment of digested sludge. Waste Biomass Valorizat. 5, 441–450 (2014).CAS 

    Google Scholar 
    Nagarajan, S., Eswaran, P., Masilamani, R. P. & Natarajan, H. Chicken feather compost to promote the plant growth activity by using Keratinolytic Bacteria. Waste Biomass Valorizat. 9, 531–538 (2018).Article 
    CAS 

    Google Scholar 
    Bhat, S. A., Singh, J. & Vig, A. P. Earthworms as organic waste managers and biofertilizer producers. Waste Biomass Valorizat. 9, 1073–1086 (2018).Article 
    CAS 

    Google Scholar 
    Mekki, A., Arous, F., Aloui, F. & Sayadi, S. Treatment and valorization of agro-wastes as biofertilizers. Waste Biomass Valorizat. 8, 611–619 (2017).Article 
    CAS 

    Google Scholar 
    Liu, T. et al. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. Sci. Total Environ. 833, 1–10 (2022).Article 

    Google Scholar 
    Siddiqui, S. A. et al. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag. 140, 1–13 (2022).Article 
    PubMed 

    Google Scholar 
    Bortolini, S. et al. Hermetia illucens (L.) larvae as chicken manure management tool for circular economy. J. Clean. Prod. 262, 1–10 (2020).Article 

    Google Scholar 
    Diener, S., Studt Solano, N. M., Roa Gutiérrez, F., Zurbrügg, C. & Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorizat. 2, 357–363 (2011).Article 
    CAS 

    Google Scholar 
    Cai, M. et al. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora. Environ. Microbiol. 20, 4051–4062 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yang, C. et al. Characteristics and mechanisms of ciprofloxacin degradation by black soldier fly larvae combined with associated intestinal microorganisms. Sci. Total Environ. 811, 1–8 (2022).Article 

    Google Scholar 
    Pang, W. et al. The influence on carbon, nitrogen recycling, and greenhouse gas emissions under different C/N ratios by black soldier fly. Environ. Sci. Pollut. Res. 27, 42767–42777 (2020).Article 
    CAS 

    Google Scholar 
    Beskin, K. v. et al. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions. Waste Manag. 74, 213–220 (2018).Gligorescu, A. et al. Pilot scale production of Hermetia illucens (L.) larvae and frass using former foodstuffs. Clean Eng. Technol. 10, 1–10 (2022).Rosa, R. et al. Life cycle assessment of chemical vs enzymatic-assisted extraction of proteins from black soldier fly prepupae for the preparation of biomaterials for potential agricultural use. ACS Sustain. Chem. Eng. 8, 14752–14764 (2020).Article 
    CAS 

    Google Scholar 
    Surendra, K. C. et al. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). Waste Manag. 117, 58–80 (2020).Hasnol, S. et al. A review on insights for green production of unconventional protein and energy sources derived from the larval biomass of black soldier fly. Processes 8, 1–13 (2020).Article 

    Google Scholar 
    Wong, C. Y. et al. Rhizopus oligosporus-assisted valorization of coconut endosperm waste by black soldier fly larvae for simultaneous protein and lipid to biodiesel production. Processes 9, 1–14 (2021).Article 

    Google Scholar 
    Raksasat, R. et al. Blended sewage sludge–palm kernel expeller to enhance the palatability of black soldier fly larvae for biodiesel production. Processes 9, 1–13 (2021).Article 

    Google Scholar 
    Dortmans B.M.A., Diener S. & Verstappen B.M. Black Soldier Fly Biowaste Processing A Step-by-Step Guide. (2017).European Parliament. Regulation (EC) No 767/2009 of the European Parliament and of the council. (2009).Italian Government. Norme in materia ambientale. (Dlgs, 2006).European Parliament. Regulation (EC) No 178/2002 of the European Parliament and of the Council. Official Journal of the European Communities (2002).Palma, L., Fernandez-Bayo, J., Niemeier, D., Pitesky, M. & VanderGheynst, J. S. Managing high fiber food waste for the cultivation of black soldier fly larvae. NPJ Sci. Food 3, 1–7 (2019).Article 

    Google Scholar 
    Righi, C. et al. Suitability of porous inorganic materials from industrial residues and bioproducts for use in horticulture: A multidisciplinary approach. Appl. Sci. 12, 5437 (2022).Article 
    CAS 

    Google Scholar 
    Barbi, S. et al. Preliminary study on sustainable NPK slow-release fertilizers based on byproducts and leftovers: A design-of-experiment approach. ACS Omega 5, 27154–27163 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macavei, L. I., Benassi, G., Stoian, V. & Maistrello, L. Optimization of Hermetia illucens (L.) egg laying under different nutrition and light conditions. PLoS ONE 15, 1–12 (2020).Article 

    Google Scholar 
    Leni, G., Maistrello, L., Pinotti, G., Sforza, S. & Caligiani, A. Production of carotenoid-rich Hermetia illucens larvae using specific agri-food by-products. J. Insects Food Feed 1, 1–12 (2022).
    Google Scholar 
    Caligiani, A. et al. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res. Int. 105, 812–820 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Montgomery, D. C. Design and Analysis of Experiments Eighth Edition. Design vol. 2 (2012).Barbi, S., Messori, M., Manfredini, T., Pini, M. & Montorsi, M. Rational design and characterization of bioplastics from Hermetia illucens prepupae proteins. Biopolymers 110–118, (2019).Eriksson, L., Johansson, E., Kettaneh-Wold, N., WikstrÄom, C. & Wold, S. Design of Experiments: Principles and Applications. (2008).Morris, P. & John, P. W. M. Statistical Design and Analysis of Experiments. Math. Gaz. 83, 189–200 (1999).Article 

    Google Scholar 
    Kros, J. F. & Mastrangelo, C. M. Comparing multi-response design methods with mixed responses. Qual Reliab Eng Int 20, 527–539 (2004).Article 

    Google Scholar 
    Fernandez Pulido, C. R., Caballero, J., Bruns, M. A. & Brennan, R. A. Recovery of waste nutrients by duckweed for reuse in sustainable agriculture: Second-year results of a field pilot study with sorghum. Ecol Eng 168, 1–8 (2021).Kaya, M. et al. Biological, mechanical, optical and physicochemical properties of natural chitin films obtained from the dorsal pronotum and the wing of cockroach. Carbohydr. Polym. 163, 162–169 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaya, M. et al. On chemistry of γ-chitin. Carbohydr. Polym. 176, 177–186 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Poerio, A. et al. Extraction and physicochemical characterization of chitin from cicada orni sloughs of the south-eastern French mediterranean basin. Molecules 25, 1–12 (2020).Article 

    Google Scholar 
    Sagheer, F. A. A., Al-Sughayer, M. A., Muslim, S. & Elsabee, M. Z. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410–419 (2009).Article 

    Google Scholar 
    Waśko, A. et al. The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int. J. Biol. Macromol. 92, 316–320 (2016).Article 
    PubMed 

    Google Scholar 
    Wang, K. et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage. Cellulose 27, 1845–1852 (2020).Article 
    CAS 

    Google Scholar 
    Morin, A. & Dufresne, A. Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly(caprolactone). Macromolecules 35, 2190–2199 (2002).Article 
    CAS 

    Google Scholar 
    George Socrates. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. (John Wiley & Sons, 2004).Chen, P. & Zhang, L. New evidences of glass transitions and microstructures of soy protein plasticized with glycerol. Macromol. Biosci. 5, 237–245 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Robertson, N.-L.M., Nychka, J. A., Alemaskin, K. & Wolodko, J. D. Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites. J. Appl. Polym. Sci. 130, 969–980 (2013).Article 
    CAS 

    Google Scholar 
    Chavez, M. The sustainability of industrial insect mass rearing for food and feed production: Zero waste goals through by-product utilization. Curr. Opin. Insect. Sci. 48, 44–49 (2021).Article 
    PubMed 

    Google Scholar 
    Fisher, H. J. et al. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture 521, 1–12 (2020).Article 

    Google Scholar 
    Figueiredo, L. R. F., Nepomuceno, N. C., Melo, J. D. D. & Medeiros, E. S. Glycerol-based polymer adhesives reinforced with cellulose nanocrystals. Int. J. Adhes. Adhes. 110, (2021). More

  • in

    Experiment on monitoring leakage of landfill leachate by parallel potentiometric monitoring method

    Simulation experimental set upLaboratory monitoring of leakage migration process can provide an important basis for field tests. The designed and improved ERT device can better describe the migration range of leakage in soil41. In this experiment, a parallel potential monitoring device was used to improve the monitoring of leakage fluid migration. The simulation experiment in the laboratory is carried out in a (100 cm*100 cm*50 cm) plexiglass tank. Sand and clay shall be screened with a 2.36 mm square sieve, watered and compacted with a board to ensure that the soil layer is in close contact with the measuring electrode.Electrode arrangementThe ground wire of high-density electrical method instrument is connected to the electrodes arranged around the bottom of the tank as the power electrode C2, as shown in Fig. 2a. The host is connected to the electrode system. The electrode system consists of 47 electrode grids with a spacing of 0.08 m. The measuring electrode P1 is connected to the mainframe through a wire 0.05 m below the grid center. The geomembrane is located 0.03 m above the measuring electrode P1. The collection device is used as a monitoring system for various leachate. The arrangement of electrodes is shown in Fig. 2b. The power supply electrode C1 is placed at a certain depth in the middle of the saturated sand to provide a constant current. The location of electrode C1 and leakage point is shown in Fig. 2c. The layers from the bottom of the tank are silty clay, geomembrane, silty clay and saturated sand, as shown in Fig. 2d.Figure 2Set-up of leachate migration simulation experiment: (a) Schematic diagram of electrode C2 layout; (b) Schematic diagram of electrical system laying; (c) Position of electrode C1 and leakage point; (d) Schematic diagram of simulated experimental soil layer.Full size imageComposition of monitoring systemThe electrode system is used to monitor the background electric field and artificial electric field of the landfill site. In the experiment, the electrode system is laid in the clay layer under the geomembrane. It is composed of detection electrodes distributed in a grid at a certain distance.The electrical signal conversion system adjusts the measurement mode, sampling accuracy, acquisition frequency and other parameters of the electrode in the field according to the instructions of the mainframe, and transmits the collected electrical signal to the mainframe.The mainframe can control the operation of the monitoring system. The possible leachate points and their pollution range are determined by collecting data. The system mainly includes mainframe and its software system, power supply, etc., as shown in Fig. 3.Figure 3Se2432 parallel electric method instrument.Full size imageLeachate devicePlace 4 leakage bottles above the tank. No.1 and No.4 bottled water are used to simulate the leakage liquid formed by the direct infiltration of rainwater in slag through geomembrane and as a reference. Because Cl-1 is a typical pollutant in the landfill. No. 2 bottle containing 20 g/L NaCl solution is used to simulate inorganic salt leakage in urban life. No. 3 bottle containing 20 ml/L ethanol solution is used to simulate the leakage liquid containing a large amount of organic matter in municipal solid waste. The characteristics of leachate have been summarized in Table1.Table 1 The characteristics of leachate.Full size tableBefore the experiment, configure four solutions, close the injection, use an electric meter to check the conductivity of each measuring point. After each measuring point has no open circuit, supply power to the soil layer through the mainframe to measure the background electric field of the soil. Then open the injection, adjust the flow rate, release the solution at a fixed flow rate, record the soil electric field in the process of leakage every half an hour, collect the potential values of each measuring point, process the data through the potentiometry and potential difference method, and form the relevant potential horizontal profile and longitudinal section of the soil.Principle of potentiometric detection technologyWhen there are leakage points in the landfill, power is supplied to the landfill, and the current forms a current loop through the geomembrane. If there are n (n = 1,2,3…) leakage points in the geomembrane, the power supply current is I, and the artificial electric field will form a leakage electric field at the leakage point, which can be used as a point power supply.$$I = int dI = int j cdot dS$$
    (1)
    where I is the current intensity, j is the current density vector, and S is the area passing through the current.When there are n leakage points, I will be shunted. If a leakage point is regarded as a finite surface, the current intensity I as:$$I = {I_1} + {I_2} + cdot cdot cdot + {I_{text{n}}} = sumlimits_{i = 1}^n {int_{S_i} {jdS} }$$
    (2)
    Generally, the power supply current field of landfill site will be affected by the formation medium structure. It is assumed that the formation medium structure is composed of three layers, each layer has uniform properties and stable conductivity, and the layers from top to bottom are: landfill layer, with resistivity of ρ1. The saturated leakage liquid layer above the geomembrane has a resistivity of ρ2. The clay layer under the geomembrane has a resistivity of ρ3. The electrode C1 is arranged in the garbage layer for power supply, and the electrode C2 is arranged at the lower part of the geomembrane away from the electrode system area. The electrode C2 can be regarded as a far pole.Because of the ρ1  > ρ2, the conductivity of the saturated leakage liquid layer at the upper part of the geomembrane is better than that of the landfill layer, so that there is almost no reflected current between the ρ1 layer and the ρ2 layer, that is, the current generated by the power supply electrode C1 is all transmitted to the ρ2 layer. Because of the ρ3  > ρ2, it can be considered that the interface between ρ2 layer and ρ3 layer has both a reflection current, and a transmission current through the leakage point. The potential generated at the detection electrode P1 under the geomembrane is formed by the action of transmission current. The total potential of point P1 is obtained by the superposition of the potential of point power supply passing through n leakage points at P1.$${U_{P1}} = sumlimits_{i = 1}^n {frac{{{I_i}{rho_3}}}{{2pi {{text{r}}_{iP1}}}}}$$
    (3)
    Parallel potential difference methodThe test adopts pole–pole arrangement, and the calculation formula of apparent resistivity is as follows:$$rho = 2pi {text{aR}}$$
    (4)
    where ρ is apparent resistivity; a is the distance between electrodes C1 and P1; R is measuring resistivity.When there are loopholes in the geomembrane of the landfill, the leakage liquid will gradually penetrate into the soil layer under the geomembrane through the loopholes, resulting in the change of the conductivity of the soil layer under the geomembrane. The pole-pole acquisition mode of Se2432 parallel electrical instrument is used to obtain the original data (potential difference) of each measuring point on the grid. After current normalization, the apparent resistivity of the soil layer is obtained. The electrical properties of different depths of the soil layer can be obtained by inversion of the apparent resistivity data of the soil layer, so as to determine the occurrence point and distribution range of leakage.The monitoring grid is 5 × 5. The spacing between measuring points is 0.08 m. The measurement method adopted by Se2432 parallel electric method instrument is cross diagonal measurement method. Figure 4 shows that it only needs to measure the potential values on the measuring points on the horizontal, vertical and 45° diagonal lines.Figure 4Schematic diagram of cross-diagonal measurement method.Full size imageTheoretical calculation of test modelTheoretical results of 10 × 10 grid monitoringAccording to the experimental model and statistical data, the resistivity of the clay layer under the geomembrane is assumed ρ = 10 Ω· m, the resistivity ratio of tap water, NaCl solution and ethanol solution after penetrating into the soil layer ρNo.1:ρNo.2:ρNo.3 = 5:3:10. If the four leakage points set by the model are regarded as four conductive resistors, the ratio of the current passing through the four leakage points is INo. 1:INo. 2:INo. 3:INo. 4 = 6:10:3:6.The calculation model is 10 × 10 grid, and the spacing of measuring points is 0.05 m. The potential value on each measuring point is calculated according to Eq. 3, and the obtained data is processed with surfer software to obtain the potential contour map, as shown in Fig. 5. Among them, points 1, 2, 3 and 4 are the leakage positions of water, NaCl solution, ethanol solution and water respectively, and the spacing between leakage points is 0.15 m.Figure 510 × 10 Grid theory detection potential contour map.Full size imageFigure 5 shows that the leakage fields formed by the four kinds of leaking liquids interfere with each other from the theoretical calculation results. The leachate current at point 2 is larger, the high potential closed loop is obvious, and its center corresponds to the leakage center. The reason for this is that the NaCl solution contains conductive particles that increase the conductivity of the leak point. Point 1 and 4 are the same as water, and the leakage electric field is almost the same. Its closed loop is obvious, and the high potential center also corresponds to their leakage position. There is almost no closed loop effect at point 3 under the influence of 1, 2 and 4. The results show that the leakage field formed by high resistance leakage liquid is not easy to be detected by potentiometric detection, and low resistance leakage is suitable to be detected by potentiometric detection.Theoretical results of 12 × 12 grid monitoringThe resistivity of the clay layer under the geomembrane is assumed ρ = 10Ω·m. In consideration of the mutual influence between the leachate and appropriately reduce its influence effect, the resistivity ratio of water, NaCl solution, and ethanol solution after penetrating into the soil layer is set as ρNo.1:ρNo.2:ρNo.3 = 20:15:24, the ratio of the current passing through the four leakage points is INo.1:INo.2:INo.3:INo.4 = 6:8:5:6. And adjust the distance between the two points to 0.28 m. 12 × 12 grid was used for detection, and the spacing of detection points is 0.04 m. Calculate the potential value of each detection point according to Eq. 3, and use Surfer to obtain the detection contour map of four kinds of leakage, as shown in Fig. 6.Figure 612 × 12 Grid theory detection potential contour map.Full size imageTheoretical calculation results show that when the distance between the leakage points is large and the distance between the detection points is small, the potentiometric method can detect the leakage position of various leachates well. At the same time, the diffusion range of different leachates in the same plane is roughly the same, and they all gradually diffuse outward from the center of the leakage point, and the potential value gradually decrease. Point 2 has the largest potential closed loop range, which also has a certain impact on the leakage points of adjacent points 1 and 3. Point 1 and point 4 are water leakage. Affected by different leakage liquids, the leakage electric field of the two same leakage liquids is obviously different. The potential closed loop range of point 1 is larger than that of point 4. Point 3 is the leakage of ethanol solution. Because its resistance is the largest, the range of potential closed loop is the smallest.Figure 7 shows that the leakage fields around the leachates are funnel-shaped, and its size is related to the type of leachate. Therefore, different network density should be designed for different types of leakage liquid, so as to use the most economical scheme to detect the leakage point.Figure 712 × 12 Grid theory detects potential 3d view.Full size imageInterpretation and discussion of resultsLaboratory simulation experiment researchFigure 8a shows the background electric field potential of soil layer. The four injection pipes are opened at the same time and adjusted to the same flow rate. Under the condition of continuous leakage, monitor the leakage field potential at an interval of 1 h. Figure 8b shows the leakage electric field potential value for 1 h. Reduce the injection pipes flow rate to 1/2 of the initial value. Figure 8c shows the monitoring results of 2 h soil layer leakage field potential. Figure 8d shows the soil leakage field potential monitored after 30 min of sealing the injection pipes.Figure 8Leakage field potential diagram of soil layer: (a) Background electric field of soil layer; (b) Potential distribution of soil layer after 1 h of leakage; (c) Potential distribution of soil layer after 2 h of leakage; (d) Potential distribution of soil layer after closing the injection tube for 30 min.Full size imageFigure 8a shows that the background potential contour of the experimental soil layer is at a lower value. Few current lines pass through the monitoring area. A dense closed potential circle of high potential value is formed at point 2. The current flow at point 2 is greater than the other points 1, 3 and 4. The analysis result may be that in the process of watering and compaction, the clay layer under the geomembrane is not uniform, and the compaction degree of the soil layer is different, resulting in different potential values ​​obtained by monitoring. The permeability at point 2 is better than other points, so when the flow rate of the leakage liquid is large, the leakage liquid under the geomembrane gathers near point 2 and spreads out around. After the clay is watered and compacted, the soil compaction is small and the pore water content is large, resulting in a high potential abnormal area in the lower left corner of point 3.Point 2 forms a closed loop of anomaly potential contour much higher than the background electric field, while the value of potential contour coil at leakage point 3 is lower than the surrounding value. It can be analyzed that positions 2 and 3 are leakage points. The leachate at point 2 is a high concentration NaCl solution containing more conductive particles, which will reduce the resistivity of the soil layer under the geomembrane at point 2. Thus, the passing current is increased to form a high potential closed loop. The leachate at point 3 is ethanol solution, which will increase the resistivity of the soil layer under the geomembrane at point 3. So as to reduce the passing current and form a low potential closed loop. Figure 8b shows that the potential contour is consistent with the influence of NaCl solution and ethanol solution on the soil layer under the geomembrane. It can be concluded that point 2 and point 3 are leakage points. The electric field formed after water leakage at point 1 and point 4 cannot clearly distinguish the leakage points.During the monitoring process, the leachate was continuously released from the injection pipe, and the results reflected the dynamic characteristics. Figure 8b shows the phenomenon that the leachate from point 1 and point 4 aggregates around point 2, which is consistent with the inference of better permeability at point 2. Figure 8b,c show that when the flow rate of the leachate is changed and the flow rate of the injection pipe is reduced, the high-potential region of the entire electric field is reduced. Under the influence of gravity, the leachate will migrate longitudinally, and the closed-loop abnormally high-potential regions and abnormally low-potential regions at points 2 and 3 also decrease.Compared with the surrounding potential contours, the difference is more obvious. Figure 8d shows that when the injection pipe stops leaking for a period of time, the leachate migrates longitudinally along the leakage point. At this time, the electric field of the soil layer is similar to the original background electric field, but the potential value is higher than the background electric field, indicating that the leachate is stagnant in the pores of the soil layer, it is the result of changing the electrical properties of the soil layer. The parallel potential method can collect the potential value of each point in the field at one time, which provides a basis for real-time monitoring of landfill leachate.Figure 9 shows the inversion results of the horizontal section of the experimental model. The blue area corresponds to the distribution range of the low resistance anomaly. There are no jump or distortion points in the profile. The resistivity in the longitudinal direction basically shows a change from low to high. The upper layer seepage liquid migrates, and the bottom soil layer is characterized by low humidity and high resistivity. The low-resistance areas formed by the leakage of NaCl solution are widely distributed in the horizontal section. The distribution range is 0–0.28 m, and the migration scale of the leakage liquid can be clearly seen. The morphological characteristics of water leakage in different parts are basically the same. The distribution range is 0–0.18 m. The leakage of ethanol solution is only reflected at 0–0.06 m, and the distribution range is the smallest at the same depth. The ethanol solution also had the slowest migration rate.Figure 9Inversion map of plane section at different depths.Full size imageFigure 10 shows the inversion results of the X–Z longitudinal section of the test model. The two apparent resistivity profiles at Y = 0.24 m and Y = 0.32 m show that there is no low-resistance area in the shallow layer on the soil layer, indicating that the geomembrane in this area is not damaged. The low resistance zone in the middle is caused by the lateral migration of leakage fluid. The low-resistance anomaly area at the top of the profile can be judged as a leak point or formed by the migration of nearby leachate. Combined with the horizontal section, the leakage depth is similar, and the lateral migration speed of leachate is faster than the longitudinal migration speed. Four leak points can be distinguished, delineating the general location of the leak.Figure 10X–Z longitudinal section on different Y axes.Full size imagePhysical model experimentThe potential value of each electrode was monitored after 2 h of leakage, and the resistivity profiles at different positions were obtained by the potential difference method.It can be seen from Fig. 11 that the potential difference method can monitor the leakage of leachate in different directions. The morphological features of the plume formed by the downward migration of the leak point are approximately funnel-shaped in longitudinal section. The affected area of ​​the soil layer can be obtained in time. Figure 11b shows that the potential difference at the monitoring point is very different on both sides. After 2 h of leakage, a large amount of leakage liquid exists in the soil layer. When the water content in the soil layer increases, the diffusion rate of the ethanol solution increases, showing high resistance characteristics. At the same time, due to the action of gravity, there is a lot of vertical migration, and the potential value changes greatly. The profile clearly shows that the distribution area of ​​high potential difference is large, and the distribution of low potential is small. Figure 11c shows that since the migration rate of leachate in the horizontal direction is greater than that in the vertical direction, the potential difference of the monitoring point in the middle region is smaller, and a closed region of a high-potential circle is formed in the middle. The difference between the two results in a smaller potential difference area. Figure 11d shows that almost all the low-potential areas on the monitoring point are on the left side, because the leakage rate of NaCl solution in the horizontal direction is similar to that in the vertical direction under the condition of good soil compaction. At this time, a large number of conductive particles are contained, resulting in a large high-potential region. The difference between the two forms a large area of ​​low potential difference on the left. This is in good agreement with the lower resistance characteristics of the NaCl solution. Figure 11e shows that the two low-resistance regions correspond to the two leakage centers. The low potential difference region is formed by migration around the leak point. The migration speed in the horizontal direction is similar to that in the vertical direction, and the water migration speed on the left is slower than that of the sodium chloride solution on the right. Figure 11e,f show that the monitoring results are the same, but the resulting potential difference is also increased. This is affected by the distance between the monitoring point and the leak point. When the monitored point and the leakage point are located on the same section, the soil layer is the most severely affected area by leakage. Through the change of the potential difference, the leakage range and the location of the leakage point can be better judged.Figure 11Electrical resistivity tomograms of profile: (a) Resistivity of the slitting profile Y = 0; (b) Resistivity of the slitting profile Y = 0.08; (c) Resistivity of the slitting profile Y = 0.16; (d) Resistivity of the slitting profile Y = 0.24; (e) Resistivity of the slitting profile Y = 0.32; (f) Resistivity of the slitting profile Y = 0.4.Full size image More

  • in

    Developing an inclusive culture at South Africa’s research institutions

    Phakamani M’Afrika Xaba speaks at a botanical workshop.Credit: Nong Nooch/Tropical Botanical Garden

    For Black communities in today’s South Africa, the legacies of colonialism and apartheid still prevail, shaping social structure and limiting access to opportunities. Colonialism displaced Black South Africans from the mid-seventeenth century, eroding cultural and social systems.From the 1950s, apartheid legalized systematic racial discrimination against disenfranchised, mainly Black, people. It limited their economic opportunities and social standing, prescribing an inferior education system to deliberately shape a poor quality of life. The policy fuelled systemic sexism, sexual-orientation discrimination, ageism, and the use of ethnicity as a divide-and-conquer strategy.Seventy years later, even after more than 25 years of democracy following the end of apartheid in 1994, schools and suburbs are still predominantly segregated, with government funding unevenly allocated in terms of facilities and quality of education.Former South African president Nelson Mandela once said, “In Africa there is a concept known as ubuntu — the profound sense that we are human only through the humanity of others; that if we are to accomplish anything in this world, it will in equal measure be due to the work and achievement of others.”As three past and present employees of the South African National Biodiversity Institute (SANBI), a conservation organization founded in 2004 to manage the country’s biodiversity resources, we have been advocating for a culture of treating others in the way we want to be treated: by applying universal shared human values, redefining institutional culture and systems to be inclusive, and opening safe spaces for a diversity of ideas. We have proposed a ground-up approach that aims to focus on holistic transformation at different levels in our organization.Our approach was to initiate a platform to identify inclusivity challenges, foster awareness and collaboration among staff and collectively develop innovative ideas and solutions. These would be aligned to existing organizational values, such as ubuntu, growth, respect and tolerance, excellence, accountability and togetherness. We strive to bring about institutional cultural change through facilitated, constructive conversations, by strengthening connections and cohesion among staff and through creative and proactive problem-solving across our institution.Mentorship that thrivesInstitutional culture needs to enable successful mentoring by creating a safe space. For example, SANBI’s mentoring programme for interns, students and early-career scientists involves quarterly meetings between them and dedicated human-resources staff — check-ins that provide a space to engage with programme coordinators without early-career researchers’ supervisors being present. In addition to sharing feedback on institutional policies and procedures, early-career scientists have the opportunity to discuss challenges they might face because of their supervisor or work placement. When issues are identified early, transfers or exchanges between work programmes can be arranged.Every year, we each sign up to mentor junior researchers to provide a supportive environment for guidance, counselling and the transfer of skills. We develop structured workplans with specific goals and outputs, and we discuss expectations with our protégés. In addition, we offer shared workspaces for interns and encourage peer learning, so that interns can form a peer support network. In these relationships, trust is crucial and can be a gateway to broader professional and personal networks.

    Early-career researchers doing fieldwork training at the Stellenbosch University Experimental Farms in South Africa.Credit: Tlou Masehela

    Institutions should recruit outside of their walls, if necessary, to ensure that appropriately skilled mentors are paired with early-career researchers. For mentorship to thrive, institutions must also create an enabling environment. In non-supportive environments, staff — particularly those from under-represented groups — who remain inadequately skilled and work without guidance become frustrated. Some can even feel they don’t belong because they see themselves as lagging behind their peers.Institutions often focus too strongly on outputs — such as publications, products or technologies — at the expense of reflecting on the values that uphold the institution. These values might be outdated and out of touch with those of staff, or with those held by partners, stakeholders or society at large. If staff cannot relate to the institutional culture and systems, job satisfaction and retention rates can suffer.Until a few years ago, for example, venues at our organization were named after former staff, as a way of acknowledging their contributions. Inevitably, these were mostly white, male, senior staff, such as Harold Pearson, the first director of Kirstenbosch National Botanical Garden, and Brian Rycroft, who served as director in the 1950s. But the contributions of staff who were employed in junior positions for 20–30 years also needed to be acknowledged. After an outcry around 2014, then-chief-executive Tanya Abrahamse, the first Black woman to hold the post, decided to acknowledge contributions of staff no matter their position. As a result, we now have Richard Crowie Hall, an exhibition space named after one of SANBI’s longest-serving staff members.The protracted legacy of apartheid in South Africa means that if institutional implicit biases are left unaddressed, they can create a fertile ground for racial, ethnic, tribal, financial and gender tensions. We urge more institutional recognition of the contributions of all.Fostering safe spacesThrough our engagements with each other, we have discovered a set of shared values, aligned with those of our institution, and have set out to establish a space to build our vision of a supportive, safe environment based on these values. Safe spaces are required for expressing controversial or uncomfortable views and to do the hard work of finding solutions to inequities. Confidentiality and trust cultivate such safe spaces, which can be created initially in small groups, then expanded to constructive formal or informal spaces. The conversations and suggestions of informal discussion groups about staff development and transformation can be elevated to management for implementation.
    Decolonizing science toolkit
    Safe spaces are a necessity for institutions that wish to truly address their legacies of racism and colonialism. Policies alone will not create these spaces — they require dedicated staff, too. Such spaces should ensure that those who speak up can do so without fear of being labelled as troublemakers or victimized.As a first step in pursuing this vision, we met with the senior teams at our organization to share ideas around the need for and benefits of an inclusive culture. We highlighted that inclusivity improves work–life balance, productivity and mental well-being for all employees.Any change, transformative or otherwise, is a process that takes perseverance, patience and determination. For any individual scientist to grow and flourish, they need a supportive environment, rich mentorship, a safe space and an enabling culture. It’s time for those factors to apply to all scientists equitably, no matter their gender, race, ethnicity or tribe. By fostering this mindset, we aim to reframe the narrative of our history and, in doing so, give all South African scientists their chance to thrive. More