Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article
CAS
PubMed
Google Scholar
Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article
Google Scholar
Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).Article
CAS
PubMed
Google Scholar
Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).Article
CAS
PubMed
Google Scholar
Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).Article
PubMed
PubMed Central
Google Scholar
van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).Article
Google Scholar
Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article
PubMed
Google Scholar
Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).Article
CAS
PubMed
Google Scholar
van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, E2549–E2549 (2016).
Google Scholar
Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).Article
CAS
PubMed
Google Scholar
Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).Article
PubMed
Google Scholar
Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).Article
Google Scholar
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).Article
CAS
PubMed
PubMed Central
Google Scholar
Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).Article
PubMed
PubMed Central
Google Scholar
Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).Article
PubMed
Google Scholar
Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).Article
PubMed
Google Scholar
Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).Article
PubMed
Google Scholar
Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).Article
CAS
PubMed
Google Scholar
Hagan, J. G., Vanschoenwinkel, B. & Gamfeldt, L. We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecol. Lett. 24, 2537–2548 (2021).Article
PubMed
Google Scholar
Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B 371, 20150267 (2016).Article
Google Scholar
Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).Article
Google Scholar
Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).Article
PubMed
Google Scholar
Ricotta, C. On beta diversity decomposition: trouble shared is not trouble halved. Ecology 91, 1981–1983 (2010).Article
PubMed
Google Scholar
Kraft, N. J. B. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).Article
CAS
PubMed
Google Scholar
Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. Lond. B 281, 20141358 (2014).
Google Scholar
Flynn, D. F. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).Article
PubMed
Google Scholar
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).Article
CAS
PubMed
Google Scholar
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).Article
CAS
PubMed
Google Scholar
Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).Article
PubMed
PubMed Central
Google Scholar
Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).Article
PubMed
PubMed Central
Google Scholar
Adl, S. M., Coleman, D. C. & Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 114, 323–334 (2006).Article
Google Scholar
Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).Article
PubMed
PubMed Central
Google Scholar
James, L. A. Legacy effects. Oxford Bibliographies in Environmental Science https://doi.org/10.1093/OBO/9780199363445-0019 (2015).Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11, 124017 (2016).Article
Google Scholar
Alsterberg, C. et al. Habitat diversity and ecosystem multifunctionality—the importance of direct and indirect effects. Sci. Adv. 3, e1601475 (2017).Article
PubMed
PubMed Central
Google Scholar
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article
Google Scholar
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).Article
PubMed
Google Scholar
Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article
Google Scholar
Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).Article
PubMed
Google Scholar
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).Article
PubMed
PubMed Central
Google Scholar
Mitchell, M. G. E., Bennett, E. M. & Gonzalez, A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16, 894–908 (2013).Article
Google Scholar
Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).Article
Google Scholar
Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).Article
Google Scholar
Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).Article
PubMed
PubMed Central
Google Scholar
Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).Article
PubMed
Google Scholar
Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).Article
Google Scholar
Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).Article
CAS
PubMed
Google Scholar
Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).Article
Google Scholar
Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).Article
PubMed
Google Scholar
Vickery, J. A. et al. The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J. Appl. Ecol. 38, 647–664 (2001).Article
Google Scholar
López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: implications for farmland bird conservation. Bird. Conserv. Int. 21, 328–341 (2011).Article
Google Scholar
Wells, K., Böhm, S. M., Boch, S., Fischer, M. & Kalko, E. K. Local and landscape-scale forest attributes differ in their impact on bird assemblages across years in forest production landscapes. Basic Appl. Ecol. 12, 97–106 (2011).Article
Google Scholar
Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20, 591–599 (2014).Article
Google Scholar
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article
PubMed
Google Scholar
Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B 365, 2047–2056 (2010).Article
CAS
Google Scholar
Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Change Biol. 20, 2708–2711 (2014).Article
Google Scholar
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 768 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).Article
PubMed
Google Scholar
Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).Article
Google Scholar
Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 55, 43–97 (2016).Article
Google Scholar
Gonzalez, A. et al. Scaling-up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article
PubMed
PubMed Central
Google Scholar
Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson, B. J. et al. Spatial covariance between biodiversity and other ecosystem service priorities. J. Appl. Ecol. 46, 888–896 (2009).Article
Google Scholar
Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).Article
Google Scholar
Metzger, J. P. et al. Considering landscape-level processes in ecosystem service assessments. Sci. Total Environ. 796, 149028 (2021).Article
CAS
PubMed
Google Scholar
Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).Article
Google Scholar
DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).Article
CAS
PubMed
Google Scholar
Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).Article
PubMed
Google Scholar
Schenk, N. et al. Assembled ecosystem measures from grassland EPs (2008–2018) for multifunctionality synthesis—June 2020. Version 40. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27087 (2022).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, HAI, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27568 (2020).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, Alb, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27569 (2020).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, SCH, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27570 (2020).Penone, C. et al. Assembled RAW diversity from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27707 (2021).Penone, C. et al. Assembled species information from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 3. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27706 (2021).Junge, X., Schüpbach, B., Walter, T., Schmid, B. & Lindemann-Matthies, P. Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. Landsc. Urban Plan. 133, 67–77 (2015).Article
Google Scholar
Lindemann-Matthies, P., Junge, X. & Matthies, D. The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biol. Conserv. 143, 195–202 (2010).Article
Google Scholar
Haines-Young, R. & Potschin, M. B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (2018)Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).Article
Google Scholar
Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).Article
Google Scholar
Ferraro, D. M. et al. The phantom chorus: birdsong boosts human well-being in protected areas. Proc. R. Soc. B 287, 20201811 (2020).Article
PubMed
PubMed Central
Google Scholar
Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).Article
CAS
PubMed
PubMed Central
Google Scholar
Chan, K. M. A., Satterfield, T. & Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 74, 8–18 (2012).Article
Google Scholar
Villamagna, A. M., Angermeier, P. L. & Bennett, E. M. Capacity, pressure, demand, and flow: a conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 15, 114–121 (2013).Article
Google Scholar
Bolliger, R., Prati, D., Fischer, M., Hoelzel, N. & Busch, V. Vegetation Records for Grassland EPs, 2008–2018. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24247 (2020).Le Provost, G. & Manning, P. Cover of all vascular plant species in representative 2×2 quadrats of the major surrounding homogeneous vegetation zones in a 75-m radius of the 150 grassland EPs, 2017–2018. Version 4. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27846 (2021).Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article
Google Scholar
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article
Google Scholar
Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).Thiele, J., Weisser, W. & Scherreiks, P. Historical land use and landscape metrics of grassland EP. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/25747 (2020).Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).Article
Google Scholar
Westphal, C., Steckel, J. & Rothenwöhrer, C. InsectScale / LANDSCAPES – Landscape heterogeneity metrics (grassland EPs, radii 500 m–2000 m, 2009) – shape files. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24046 (2019).Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article
PubMed
Google Scholar
Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Gessler, P. E., Moore, I. D., Mckenzie, N. J. & Ryan, P. J. Soil–landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).Article
Google Scholar
Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. Plant species numbers predicted by a topography-based groundwater flow index. Ecosystems 8, 430–441 (2005).Article
CAS
Google Scholar
Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).Article
Google Scholar
Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).Article
Google Scholar
Myers, M. C., Mason, J. T., Hoksch, B. J., Cambardella, C. A. & Pfrimmer, J. D. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy crops in Iowa, USA. J. Appl. Ecol. 52, 1176–1187 (2015).Article
Google Scholar
Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).Article
Google Scholar
Schöning, I., Klötzing, T., Schrumpf, M., Solly, E. & Trumbore, S. Mineral soil pH values of all experimental plots (EP) of the Biodiversity Exploratories project from 2011, Soil (core project). Version 8. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/14447 (2021).Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).Article
Google Scholar
Le Provost, G. et al. Aggregated environmental and land-use covariates of the 150 grassland EPs used in ‘Contrasting responses of above- and belowground diversity to multiple components of land-use intensity’. Version 5. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/31018 (2021).R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Grace, J. B. Structural equation modeling for observational studies. J. Wildl. Manag. 72, 14–22 (2008).Article
Google Scholar
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Softw. 48, 1–36 (2012).Article
Google Scholar
Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).Article
PubMed
PubMed Central
Google Scholar More