Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species
Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).ADS
CAS
PubMed
PubMed Central
Google Scholar
Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed
Google Scholar
Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).ADS
CAS
PubMed
Google Scholar
Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).CAS
PubMed
Google Scholar
Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio 11, e02901-19 (2020).Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, e00031-18 (2018).Minich, J. J. et al. Temporal, environmental, and biological drivers of the mucosal microbiome in a wild marine fish, Scomber japonicus. mSphere 5, e00401-20 (2020).Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21, 3363–3378 (2012).PubMed
Google Scholar
Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).ADS
PubMed
PubMed Central
Google Scholar
Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303 (2021).PubMed
PubMed Central
Google Scholar
McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed
PubMed Central
Google Scholar
Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
Ross, A. A., Müller, K. M., Weese, J. S. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl Acad. Sci. USA 115, E5786–E5795 (2018).ADS
CAS
PubMed
PubMed Central
Google Scholar
Hobbie, J. E., Daley, R. J. & Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228 (1977).ADS
CAS
PubMed
PubMed Central
Google Scholar
Prussin, A. J. 2nd, Garcia, E. B. & Marr, L. C. Total virus and bacteria concentrations in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015).CAS
PubMed
PubMed Central
Google Scholar
Gomez, D., Sunyer, J. O. & Salinas, I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish. Shellfish Immunol. 35, 1729–1739 (2013).CAS
PubMed
PubMed Central
Google Scholar
Lowrey, L., Woodhams, D. C., Tacchi, L. & Salinas, I. Topographical mapping of the Rainbow Trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol. 81, 6915–6925 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
Minich, J. J. et al. Microbial ecology of Atlantic Salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl. Environ. Microbiol. 86, 20 (2020).Minich, J. J. et al. Impacts of the marine hatchery built environment, water and feed on mucosal microbiome colonization across ontogeny in Yellowtail Kingfish, Seriola lalandi. Front. Mar. Sci. 0, 676731 (2021).Minich, J. J. et al. The Southern Bluefin Tuna mucosal microbiome is influenced by husbandry method, net pen location, and anti-parasite treatment. Front. Microbiol. 11, 2015 (2020).PubMed
PubMed Central
Google Scholar
Ruiz-Rodríguez, M. et al. Host species and body site explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microb. Ecol. 80, 212–222 (2020).PubMed
Google Scholar
Tarnecki, A. M., Burgos, F. A., Ray, C. L. & Arias, C. R. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J. Appl. Microbiol. 123, 2–17 (2017).CAS
PubMed
Google Scholar
Liu, H. et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 6, 24340 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).PubMed
PubMed Central
Google Scholar
Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).PubMed
PubMed Central
Google Scholar
Karachle, P. K. & Stergiou, K. I. Gut length for several marine fish: relationships with body length and trophic implications. Mar. Biodivers. Rec. 3, 1–10 (2010).Ghilardi, M. et al. Phylogeny, body morphology, and trophic level shape intestinal traits in coral reef fishes. Ecol. Evol. 11, 13218–13231 (2021).PubMed
PubMed Central
Google Scholar
Clements, K. D., Angert, E. R., Linn Montgomery, W. & Howard Choat, J. Intestinal microbiota in fishes: what’s known and what’s not. Mol. Ecol. 23, 1891–1898 (2014).PubMed
Google Scholar
Zhu, D., Delgado-Baquerizo, M., Ding, J., Gillings, M. R. & Zhu, Y.-G. Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome 9, 189 (2021).CAS
PubMed
PubMed Central
Google Scholar
Minich, J. J. et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 3, e00218-17 (2018).Davis, C. Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J. Microbiol. Methods 103, 9–17 (2014).CAS
PubMed
Google Scholar
Rastogi, G., Tech, J. J., Coaker, G. L. & Leveau, J. H. J. A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments. J. Microbiol. Methods 83, 127–132 (2010).CAS
PubMed
Google Scholar
Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).PubMed
PubMed Central
Google Scholar
Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 45, e23 (2017).PubMed
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed
PubMed Central
Google Scholar
Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).ADS
PubMed
PubMed Central
Google Scholar
Louca, S., Doebeli, M. & Parfrey, L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6, 41 (2018).PubMed
PubMed Central
Google Scholar
Smith, N. C., Rise, M. L. & Christian, S. L. A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 10, 2292 (2019).CAS
PubMed
PubMed Central
Google Scholar
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS
Google Scholar
Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS
PubMed
Google Scholar
Chong-Seng, K. M., Mannering, T. D., Pratchett, M. S., Bellwood, D. R. & Graham, N. A. J. The influence of coral reef benthic condition on associated fish assemblages. PLoS ONE 7, e42167 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
Yahel, G. et al. Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments. Mar. Ecol. Prog. Ser. 372, 195–209 (2008).ADS
CAS
Google Scholar
Glover, C. N., Bucking, C. & Wood, C. M. The skin of fish as a transport epithelium: a review. J. Comp. Physiol. B 183, 877–891 (2013).CAS
PubMed
Google Scholar
León-Zayas, R., McCargar, M., Drew, J. A. & Biddle, J. F. Microbiomes of fish, sediment and seagrass suggest connectivity of coral reef microbial populations. PeerJ 8, e10026 (2020).PubMed
PubMed Central
Google Scholar
Hess, S., Wenger, A. S., Ainsworth, T. D. & Rummer, J. L. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: impacts on gill structure and microbiome. Sci. Rep. 5, 10561 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
Sparagon, W. J. et al. Fine scale transitions of the microbiota and metabolome along the gastrointestinal tract of herbivorous fishes. Anim. Microbiome 4, 33 (2022).CAS
PubMed
PubMed Central
Google Scholar
Edward Stevens, C. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System (Cambridge University Press, 2004).Wilson, J. M. & Castro, L. F. C. Morphological diversity of the gastrointestinal tract in fishes. Fish Physiol. 1–55 https://doi.org/10.1016/s1546-5098(10)03001-3 (2010).Shirakashi, S. et al. Morphology and distribution of blood fluke eggs and associated pathology in the gills of cultured Pacific bluefin tuna, Thunnus orientalis. Parasitol. Int. 61, 242–249 (2012).PubMed
Google Scholar
Ogawa, K. & Fukudome, M. Mass mortality caused by Blood Fluke(Paradeontacylix) among Amberjack(Seriola dumeili) imported to Japan. Fish. Pathol. 29, 265–269 (1994).
Google Scholar
Wilson, J. M. & Laurent, P. Fish gill morphology: inside out. J. Exp. Zool. 293, 192–213 (2002).PubMed
Google Scholar
Huang, Q. et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol. Ecol. 29, 5019–5034 (2020).CAS
PubMed
PubMed Central
Google Scholar
Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).CAS
PubMed
Google Scholar
Lall, S. P. & Tibbetts, S. M. Nutrition, feeding, and behavior of fish. Vet. Clin. North Am. Exot. Anim. Pract. 12, 361–372 (2009). xi.PubMed
Google Scholar
Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).CAS
PubMed
Google Scholar
Day, R. D., German, D. P. & Tibbetts, I. R. Why can’t young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 158, 23–29 (2011).
Google Scholar
Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. Biol. Sci. 287, 20192900 (2020).PubMed
PubMed Central
Google Scholar
Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669 (2013).ADS
CAS
PubMed
Google Scholar
Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, e00097-18 (2018).Ross, A. A., Rodrigues Hoffmann, A. & Neufeld, J. D. The skin microbiome of vertebrates. Microbiome 7, 79 (2019).PubMed
PubMed Central
Google Scholar
Javůrková, V. G. et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 13, 2363–2376 (2019).PubMed
PubMed Central
Google Scholar
Doane, M. P. et al. The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome 8, 93 (2020).PubMed
PubMed Central
Google Scholar
Chiarello, M. et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome 6, 147 (2018).PubMed
PubMed Central
Google Scholar
Sylvain, F.-É. et al. Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl. Environ. Microbiol. 86, e00789-20 (2020).Smith, C. C. R., Snowberg, L. K., Gregory Caporaso, J., Knight, R. & Bolnick, D. I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9, 2515–2526 (2015).CAS
PubMed
PubMed Central
Google Scholar
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS
Google Scholar
Choat, J. H. & Clements, K. D. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29, 375–403 (1998).
Google Scholar
Sale, P. F. Reef fish communities: open nonequilibrial systems. In The Ecology of Fishes on Coral Reefs. 564–598. https://doi.org/10.1016/b978-0-08-092551-6.50024-6 (Academic Press Inc., San Diego, 1991).Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio 9, e01294-18 (2018).Press, C. McL & Evensen, Ø. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 9, 309–318 (1999).Koppang, E. O., Kvellestad, A. & Fischer, U. Fish mucosal immunity: gill. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 93–133. https://doi.org/10.1016/b978-0-12-417186-2.00005-4 (Elsevier Inc., 2015).Esteban, M. Á. & Cerezuela, R. Fish mucosal immunity: skin. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 67–92. https://doi.org/10.1016/b978-0-12-417186-2.00004-2 (Elsevier Inc., 2015).Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1, e00021-16 (2016).Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS
CAS
PubMed
Google Scholar
Love, M. S., Bizzarro, J. J., Maria Cornthwaite, A., Frable, B. W. & Maslenikov, K. P. Checklist of marine and estuarine fishes from the Alaska–Yukon Border, Beaufort Sea, to Cabo San Lucas, Mexico. Zootaxa 5053, 1–285 (2021).PubMed
Google Scholar
Allen, L. G. & Horn, M. H. The Ecology of Marine Fishes: California and Adjacent Waters (University of California Press, 2006).Al-Hussaini, A. H. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits; anatomy and histology. Q. J. Microsc. Sci. 90(Pt. 2), 109–139 (1949).PubMed
Google Scholar
Maddock, L., Bone, Q. & Rayner, J. M. V. (eds). In Mechanics and Physiology of Animal Swimming (Press Syndicate-of the University of Cambridge, 1994).Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).CAS
PubMed
PubMed Central
Google Scholar
Cruz, G. N. F., Christoff, A. P. & de Oliveira, L. F. V. Equivolumetric protocol generates library sizes proportional to total microbial load in 16S amplicon sequencing. Front. Microbiol. 12, 638231 (2021).PubMed
PubMed Central
Google Scholar
Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4, e00186-19 (2019).Minich, J. J. et al. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems 3, e00166-18 (2018).Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS
PubMed
PubMed Central
Google Scholar
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed
Google Scholar
McDonald, D. et al. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat. Methods 15, 847–848 (2018).CAS
PubMed
PubMed Central
Google Scholar
Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS
CAS
PubMed
PubMed Central
Google Scholar
Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Google Scholar
Minich, J. J. et al. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). Microbiologyopen 7, e00716 (2018).PubMed
PubMed Central
Google Scholar
Van Doan, H. et al. Host-associated probiotics: a key factor in sustainable aquaculture. Rev. Fish. Sci. Aquac. 28, 16–42 (2020).
Google Scholar
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS
PubMed
Google Scholar More