More stories

  • in

    As elephant poaching falls in Africa, instate more ivory bans

    The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) last month released its annual report on elephant poaching. It reveals a downward trend across African range states, based on data from its Monitoring the Illegal Killing of Elephants programme. The decline correlates with reduced ivory trading over the period, particularly in the Chinese market.
    Competing Interests
    The author declares no competing interests. More

  • in

    Aquaculture rearing systems induce no legacy effects in Atlantic cod larvae or their rearing water bacterial communities

    Bacterial density and growth potential in the rearing water were related to the microbial carrying capacityQuantifying the bacterial density in each tank verified that we obtained a higher bacterial load in the systems with added organic material. The bacterial density was, on average, 7.8× higher in the systems with high compared to low bacterial carrying capacity. This difference was particularly evident at 2 (34.8×, Kruskal–Wallis p = 0.0008) and 9 DPH (9.1×, Kruskal–Wallis p = 0.0007) (Fig. 1). The bacterial density increased throughout the experiment for the tanks with low microbial carrying capacity (treatment group MMS−, FTS−), reflecting increased larval feeding and defecation. Contrastingly, the bacterial density was relatively stable over time in the MMS+ treatment and even decreased over time in the FTS+ treatment. When averaging the densities at 11 and 15 DPH within each rearing treatment, we observed that the ‘MMS+ to FTS+’ had a considerable difference in the bacterial density between incoming and rearing water (24.2×). In contrast, this difference was below 8.2× in all other treatment tanks. Such differences in density indicated that some communities were below the microbial carrying capacity of the systems. We thus investigated the growth potential to determine if carrying capacity was reached in the rearing water.Figure 1Bacterial density (million bacterial cells mL−1) at various days post-hatching (DPH) in incoming and rearing tank water. Note that the y-axis is log scaled. Colours indicate the rearing treatment, and shape signifies rearing (filled circle) and incoming water (filled triangle).Full size imageThe bacterial net growth potential in the intake and rearing water was quantified as the number of cell doublings after incubation for 3 days11. Generally, the FTS− and MMS− rearing water had net growth potential with an average of 0.2 and 0.1, respectively (Supplementary Fig. 2). In contrast, the rearing water of the FTS+ and MMS+ had a negative net growth potential with averages of −0.2 and −0.06, respectively. In the case of negative net growth potential, the bacterial density decreased during the incubation. A negative net growth potential suggested that the rearing water bacterial communities were at the tank’s microbial carrying capacity at the time of sampling. Thus, the bacterial communities were at the carrying capacity of the high (+) carrying capacity systems and below in the low (−) systems. To gain a deeper understanding of the bacterial community characteristics the 16S rRNA gene of the bacterial community was sequenced at 1 and 9 DPH.Initial rearing condition did not leave a legacy effect on bacterial α-diversityThe bacterial α-diversity of the rearing water was investigated at 1 and 12 DPH (Fig. 2). At 1 DPH, the richness was comparable between the FTS−, FTS+ and MMS+ treatments, but on average, 1.5× higher for the MMS− treatment (307 vs 205 ASVs, Tukey’s test p  More

  • in

    Record-breaking fires in the Brazilian Amazon associated with uncontrolled deforestation

    G.M., L.O.A., L.V.G. and L.E.O.C.A. thank the São Paulo Research Foundation (FAPESP) for funding (grants 2019/25701-8, 2020/08916-8, 2016/02018-2 and 2020/15230-5, respectively). L.O.A. and L.E.O.C.A. thank the National Council for Scientific and Technological Development (CNPq) for funding (grants 314473/2020-3 and 314416/2020-0, respectively). G.d.O. thanks the University of South Alabama Faculty Development Council Grant for funding (grant 279600-2022). More

  • in

    Influence of urbanisation on phytodiversity and some soil properties in riverine wetlands of Bamenda municipality, Cameroon

    Description of the study areaThe study covers urban, peri-urban and rural wetlands in the Bamenda Municipality of the North West Region of Cameroon that have evolved concomitantly with different stages of urbanization (Fig. 1). In this study, urbanisation is considered a loose term that is aimed at giving a geographical expression to the variation in the economic, social and cultural practices in the milieu. The central town with many economic activities is termed the urban, the fringe area with sprawls is termed peri-urban while the rural has typical peasant activities and make-shift structures. From the variation of human activities in the three sub-zones, a variety of chemical substances are discharged into drains, playing a substantial role in soil quality, and therefore plant macrophyte diversity. The Plants studied were ubiquitous in the area and verification of their IUCN conservation status in the red data book of plants of Cameroon confirmed their abundance14. Information on protected sites in Cameroon does not place the study area under conservation status. In line with that, permits are not required to undertake academic and research studies as well as do a responsible collection of plants in the study area. The urbanization rate of Bamenda is 42%, and the population grew from 48,111 inhabitants in 1976 to 488,883 inhabitants in 201015, with 150–200 inhabitants/km2.Figure 1Relief Map of Bamenda showing the Bamenda escarpment, topography and the location for quadrat sites.Full size imageThe study area is part of the Bamenda escarpment that is located between latitudes 5° 55″ N and 6° 30″ N and longitudes 10° 25″ E and 10° 67″ E. The town shows an altitudinal range of 1200–1700 m and is divided into two parts by escarpments—a low-lying and gently undulating part with altitudes ranging from 1200 to 1400 m, with many flat areas that are usually inundated for most parts of the year, and an elevated part that range from 1400 to 1700 m altitude. Most of the streams take their rise from this elevated part (Fig. 1).This area experiences two seasons—a rainy season (mid-March to mid-October) and a short dry season (mid-October to mid-March). The thermic and hyperthermic temperature regimes dominate in the area. The mean annual temperature stands at 19.9 °C. January and February are the hottest months with mean monthly temperatures of 29.1 and 29.7 °C, respectively. This area is dominated by the Ustic and Udic moisture regimes with the Udic extending to the south9. Annual rainfall ranges from 1300 to 3000 mm16. The area has a rich hydrographical network with intense human activities and a dense population along different water courses in the watershed. The area is bounded on the West, North and East by the Cameroon Volcanic Line (made up of basalts, trachytes, rhyolites and numerous salt springs). The geologic history of this area originates from the Precambrian era when there was a vast formation of geosynclinal complexes, which became filled with clay-calcareous, and sandstone sediments9. These materials, crossed by intrusions of crystalline rocks, were folded in a generally NE-SW direction and underwent variable metamorphism9. The Rocks in the area are thus of igneous (granitic and volcanic) and metamorphic (migmatites) origin17, which gives rise to ferralitic soils18.Agriculture is the principal human activity in and around this region18. The area equally harbours the commercial center that has factories ranging from soap production, and mechanic workshops to metallurgy, which may be potential sources of pollutants that can influence wetland Geochemistry. Raffia farinifera bush, which is largely limited to the wetlands, is an important vegetation type in this area. R. farinifera provides raffia wine, a vital economic resource to the inhabitants who are fighting against the cultivation of these wetlands by vegetable farmers.Methods of the studyMacrophyte diversity studyThe plant diversity of the wetlands was evaluated using quadrats in the dry season for accessibility reasons. For each of the three wetlands (the urban, peri-urban and rural areas), three transects were established on which representative quadrats, each measuring 10 m × 10 m, were mapped out in uncultivated areas for the determination of plant species cover-abundance and diversity. It is perceived that the different zones receive different mixtures of chemical substances and thus influence macrophyte diversity differently.According to a publication by14 on the vascular plants of Cameroon and a taxonomic checklist with IUCN assessment, the plants of the area are placed under the Least Concern Category(LC), and therefore not in the risky category. Diversity studies involved the identification of a specific area called “relevé” by progressively increasing test quadrat size and sampling for specific diversity until the smallest area with adequate species representation was reached. The relevé size determined here was 1 m2, making a total of 300 sub-quadrats (relevé) in the entire study ie. 100 in each main quadrat). For each site (main quadrat), 10 representative relevés were sampled and all plant species were enumerated. Most plant species in each of them were identified in the field by the Botanist, Dr Ndam Lawrence Monah using visual observation of the morphology of the leaves and flowers, a self-made field guide, the Flora of West Africa and the Flora of Cameroon. 10 unidentified plants were appropriately collected where there were in abundance, placed onto a conventional plant press and dried in the field. Voucher specimens were tagged and transported to the Limbe Botanic Gardens (SCA: Southern Cameroon, the code of the Limbe Botanic Gardens Herbarium) for identification. Mr Elias Ndive, the Taxonomist of the Limbe Botanic Gardens compared unidentified specimens with authentic herbarium specimens and other taxonomic guides and finally identified them. Voucher specimens of the 10 plants were given identification numbers and deposited in the Herbarium of the Limbe Botanic Gardens.The Braun–Banquet method was used19 for the assessment of species cover abundance. Relative abundance and abundance ratings were determined using the Braun–Banquet rating scheme (Table 1).Table 1 Braun-Blanquet rating scheme for vegetation cover-abundance, Source19.Full size tableSimpson’s diversity indexSpecies richness was evaluated using Simpson’s diversity index (D), which takes into account both species richness and the Braun-Blanquet rating scheme for vegetation cover abundance and evenness of abundance among the species present. In essence, D measures the probability that two individuals that are randomly selected from an area will belong to the same species. The formula for calculating D is presented as:$${text{D}} = frac{{sum {{text{n}}_{i} left( {{text{n}}_{i} – 1} right)} }}{{{text{N}}({text{N}} – 1)}}$$where ni = the total number of each species; N = the total number of individuals of all species.The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and 1 represents no diversity. That is, the larger the value the lower the diversity.Alternatively, Simpson’s Diversity Index, = 1–D,1-D was used as a measure of diversity because it is more logical and less likely to cause confusion. The scale then gives a score from 0 to 1 with higher scores showing higher diversity (instead of being associated with low scores).The Simpson index is a dominance index because it gives more weight to common or dominant species. In this case, a few rare species with only a few representatives will not affect the diversity.
    Soil sampling and analysisSoil sampling was done in and around the three quadrats laid in the urban, peri-urban and rural wetlands for macrophytes sampling. Twenty-one (21) composite samples (0–25 cm) were randomly collected (Fig. 2) and taken to the laboratory in black plastic bags. Each composite sample was a collection of 5 dried core soil samples. Due to the observed greater heterogeneity in the urban sector, the sampling density was intensified. The soil samples were air-dried and screened through a 2-mm sieve. They were analyzed in duplicate for their physicochemical properties in the Environmental and Analytical Chemistry Laboratory of the University of Dschang, Cameroon. Particle size distribution, cation exchange capacity (CEC), exchangeable bases, electrical conductivity (EC) and pH were determined by standard procedures20. Soil pH was measured both in water and KCl (1:2.5 soil/water mixture) using a glass electrode pH meter. Part of the soil was ball-milled for organic carbon (Walkley–Black method) and total nitrogen (Macro-Kjeldahl method) as largely described by20. Available phosphorus (P) was determined by Bray I method. Exchangeable cations were extracted using 1 N ammonium acetate at pH 7. Potassium (K) and sodium (Na) in the extract were determined using a flame photometer and magnesium (Mg) and calcium (Ca) were determined by complexiometric titration. Exchange acidity was extracted with 1 M KCl followed by quantification of Al and H by titration20. Effective cation exchange capacity (ECEC) was determined as the sum of bases and exchanged acidity.Figure 2Adapted from the 1980 land use map of the Bamenda City Area showing soil sampling points: Source Bamenda City Council.Map of the study area in freshwater wetlands of Bamenda Municipality.Full size imageApparent CEC (CEC at pH 7) was determined directly as outlined by20. Based on critical values of nutrients established for vegetables, nutrients were declared sufficient or deficient.
    Statistical analysisThe data were subjected to statistical analysis using Microsoft Excel 2007 and SPSS statistical package 20.0. Soil properties were assessed for their variability using the coefficient of variation (CV) and compared with variability classes (Table 2).$$CV=frac{Sd}{X}X 100$$where: Sd = standard deviation; = X arithmetic mean of soil properties.Table 2 Grouping coefficient of variation into variability classes.Full size tableThe hierarchical cluster analysis (HCA) was used to group the area under managing units. The main goal of the hierarchical agglomerative cluster analysis is to spontaneously classify the data into groups of similarity (clusters). This is done by searching objects in the n-dimensional space that is located in the closest neighborhood and separating a stable cluster from other clusters. The sampling sites were considered objects for classification. Each object was determined by a set of variables (chemical concentrations of the soils in this case). More

  • in

    Influence of tillage systems and sowing dates on the incidence of leaf spot disease in Telfairia occidentalis caused by Phoma sorghina in Cameroon

    ResultsSoil physiochemical propertiesThe preliminary status of the soil analyzed before the commencement of the field preparatory activities revealed that the soil was subtlety fertile with regard to the physical and chemical properties (Table 1).Table 1 Physicochemical properties of the soil.Full size tableAssessment of disease incidence at sowing dates during each year in the trial studyIn the trial study, very low and statistically significant (p  More

  • in

    Nasal microbiome disruption and recovery after mupirocin treatment in Staphylococcus aureus carriers and noncarriers

    Study population and study designThis is a prospective interventional cohort study of healthy S. aureus carriers and noncarriers in the Netherlands. All experiments were performed in accordance with the Dutch Medical Research Involving Human Subjects Act (WMO). The study protocol was approved by the local Medical Ethical Committee of the Erasmus University Medical Centre Rotterdam, The Netherlands (MEC-2018-091). Written informed consent was obtained for all participants. Participants were recruited through advertisements at Dutch universities and the research teams social networks. Exclusion criteria were age  8 CFU/mL for each culture. Noncarriers were defined as 2 S. aureus-negative cultures. Intermittent S. aureus carriers were excluded from further participation in the study. Eligible volunteers were enrolled on a first-come, first-served basis.Eligible participants were asked to fill out a questionnaire regarding risk factors for S. aureus acquisition. All participants received decolonization treatment. Decolonization consisted of mupirocin nasal ointment (2%, GlaxoSmithKline BV, Zeist, the Netherlands) twice daily and chlorhexidine gluconate cutaneous solution (4%w/v, Regent Medical Overseas Limited, Oldham, UK) once daily, both for 5 days.Nasal samples were taken 1 day before decolonization (D0) and 2 days (D7), 1 month (M1), 3 months (M3) and 6 months (M6) after decolonization. All participants received a personal demonstration for nasal sampling by the executive researcher. Thereafter, all specimens were taken by the participants by inserting a swab (ESwab, 490CE.A, Copan Italia, Brescia, Italy) into one nostril and rotating 5 times, repeating this in the second nostril using the same swab. Swabs were collected in a container filled with 1 ml modified Liquid Amies, a collection and transport solution, and sent through regular mail service (non-temperature controlled) or deposited at the laboratory personally.
    Staphylococcus aureus quantitative cultureQuantitative S. aureus cultures were conducted to examine the dynamics of S. aureus carriage over the 6-month follow-up period after decolonization. Swab containers were vortexed for 20 s before plating. Serial dilutions of Amies medium were plated onto phenol mannitol salt agar (PHMA) and incubated for 2 days at 37 °C. Swabs were placed in phenol mannitol salt broth (PHMB) and incubated for 7 days at 37 °C for enrichment. S. aureus growth was confirmed by a latex agglutination test (Staph Plus Latex Kit, Diamondial, Vienna, Austria). Morphologically different S. aureus colonies were selected for spa typing and methicillin resistance screening using BBL CHROMagar MRSA II agar (BD, Breda, The Netherlands).
    Spa typingMolecular typing of S. aureus isolates was performed to infer whether recolonization with S. aureus in decolonized carriers involved the same spa-type. Typing was limited to the last S. aureus positive culture moment and the last S. aureus positive culture moment after decolonization in recolonised carriers. S. aureus DNA lysates were prepared by boiling in 10 mM Tris–HCl, 1 mM disodium EDTA, pH 8.0 or extraction with the QIAamp DNA Mini Kit (QIAGEN, Venlo, The Netherlands) according to the manufacturer’s instructions. Amplification of the S. aureus protein A (spa) repeat region was performed by PCR with 2 sets of primers. One set consisted of forward primer spa-1113, 5′-TAAAGACGATCCTTCGGTGAGC-3′ and reverse primer spa-1514, 5′-CAGCAGTAGTGCCGTTTGCTT-3′24. The other set consisted of forward primers spa-F1, 5′-AACAACGTAACGGCTTCATCC-3′ and spa-F2 5′-AGACGATCCTTCAGTGAGC-3′ and reverse primer spa-R1 5′-GCTTTTGCAATGTCATTTACTG-3′. Amplicons were purified with ExoSAP-IT (Applied Biosystems) according to the manufacturer’s instructions and sent for sequence analysis (Baseclear, Leiden, The Netherlands). Resulting sequences were analysed using BioNumerics v7.6 (Applied Maths NV, Sint-Martens-Latem, Belgium) and the spa types were assigned by use of the RidomStaphType database (Ridom GmbH, Würzburg, Germany).16S ribosomal RNA sequencing of nasal microbiotaThe impact of decolonization on the nasal microbiome and the recovery of the microbiome structure after decolonization were examined by means of 16S rRNA metabarcoding. Amies medium from each nasal swab container was stored at − 80 °C on the day of receipt at the study laboratory in Rotterdam, NL, then sent at − 80 °C to the microbiome analysis laboratory in Lyon, FR. To properly capture the impact of decolonization on the living microbiota, metabarcoding used RNA-based 16S ribosomal RNA (rRNA, which is preserved in living cells but quickly cleared after cell death or lysis) rather than the DNA coding sequence, as DNA can persist for prolonged time periods after cell death25,26,27,28. RNA was extracted using the Mag Bind® Total RNA 96 Kit (Omega Bio-tek) tissue protocol from 150 µL of samples’ material. Cell lysis was performed using beads (Disruptor plate C plus—Omega Bio-tek) and proteinase K for 15 min at 2600 rpm, followed by 10 min at room temperature without agitation, and finished with a DNase I digestion of 20 min at room temperature. RNA was quantified using QuantiFluor RNA kit on Tecan Safire (TECAN). 10 ng total RNA was used for reverse transcription using FIREScript RT cDNA synthesis kit (Solis Biodyne) with random primers, then cDNA was purified with SPRIselect reagent (Beckman coulter) and quantified.The rRNA V1–V3 region was PCR amplified using the 5× HOT BIOAmp® BlendMaster Mix 12,5 mM MgCl 2 (Biofidal), 10× GC rich Enhancer (Biofidal) and BSA 20 mg/mL. The PCR reaction consisted of 30 cycles at 56 °C using the forward primer 27F, 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG AGAGTTTGATCCTGGCTCAG-3′ and reverse primer 534R, 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTACCGCGGCTGCTGG-3′ in 25 µL of solution. PCR products were purified using SPRIselect beads (Beckman Coulter) in 20 µL nuclease-free water and quantified using QuantiFluor dsDNA (Promega). Samples were indexed with lllumina’s barcodes with the same PCR reagents during a 12 cycles PCR, then purified and quantified as previously mentioned. Samples were normalized and pooled, then sequenced using Illumina MiSeq V3 Flow Cell following the constructor’s recommendations for a 2 × 300 bp paired-end application. A mean of 130 k proofread reads per sample was obtained.Experiment buffers were used as negative controls to detect contamination by out-of-sample bacterial RNA. RNA extraction was controlled using an in-house mix of live Staphylococcus aureus ATCC29213 and Escherichia coli ATCC25922 in equal proportions, allowing for assessing extraction bias in Gram-positive and -negative bacteria. PCR amplification bias was controlled using a commercial DNA mix of 8 bacterial species (ZymoBIOMICS™ Microbial Community DNA Standard).Bioinformatics and statistical analysesSequencing reads were quality checked and trimmed. Paired-ended read pairs were merged using BBMap version 38.49 (available at https://sourceforge.net/projects/bbmap/), with default options besides a minimum single size of 150 bp with an average Phred quality score higher than 10, and a total pair size of minimum 400 bp. PCR adapters were removed with cutadapt v.2.1 (Martin 2011) then dereplicated using vsearch v.2.12.029 with the sizeout option. For species assignment, reads were aligned to sequences of NCBI blast 16S_ribosomal_RNA database (version date 03.12.2020) using Blastn v.2.11.0+30,31, keeping a maximum of 20 reference targets. Read counts per bacterial species were normalized to account for taxon-specific variations of the copy number of 16S rRNA genes using NCBI rrnDB-5.5 database based on the mean gene copy number in the taxon.To optimize the resolution of sequencing read taxonomic assignment, we used in-house bioinformatic software publicly available at https://github.com/rasigadelab/taxonresolve. Briefly, when a read matches sequences from several species with identical alignment scores, taxonomic assignment pipelines typically output the higher taxonomic level such as the genus (e.g., Staphylococcus spp. when a read matches S. aureus and S. epidermidis). This loss of information can be problematic when species-level discrimination is important. To prevent losing species-level information, the taxonresolve software assigns reads with uncertain species to groups of species rather than to genera.Bacterial species deemed present from contaminating sources such as kits reagents and found in negative controls, mostly from the Bacillus genera, were removed. A total of 1376 species or group of species were retained. The rarefaction curves corresponding to the sequencing effort to assess the species richness within samples are shown in Supplementary Fig. 3. Most samples reached a plateau after 40,000 sequences.Given the small sample size compared to the number of variables and species considered in this study, no hypothesis testing was performed, and we provide a descriptive assessment of the results. In figures, 95% confidence intervals of the means were computed based on normal approximation, after log transformation for CFU/mL and log odds transformation for quantities restricted to the [0, 1] interval, such as proportions.In microbial diversity analyses, we retained the 9 most prevalent bacterial species and pooled the other species into an ‘Others’ category. To assess the disruption and possible recovery of the microbiota, the divergence of sampled microbiota relative to the initial, pre-treatment microbiota (D0) was assessed using the Bray–Curtis dissimilarity at each sampling time point relative to the first sample of the same patient.Software code of the analyses are available at https://github.com/rasigadelab/macotra-metabarcoding. Data are available at https://zenodo.org/record/6382657. Analyses and figures used R software v3.6.032 with packages dplyr33, ggplot234, vegan35, and MicrobiomAnalyst available at https://www.microbiomeanalyst.ca36,37. More

  • in

    The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets

    Tsai, C.-W., Lai, C.-F., Chao, H.-C. & Vasilakos, A. V. Big data analytics: a survey. J. Big Data 2, 21 (2015).
    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).ADS 
    CAS 

    Google Scholar 
    Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).CAS 

    Google Scholar 
    Lichtman, J. W., Pfister, H. & Shavit, N. The big data challenges of connectomics. Nat. Neurosci. 17, 1448–1454 (2014).CAS 

    Google Scholar 
    Altaf-Ul-Amin, M., Afendi, F. M., Kiboi, S. K. & Kanaya, S. Systems biology in the context of big data and networks. Biomed. Res. Int. 2014, 428570 (2014).
    Google Scholar 
    Xia, J., Wang, J. & Niu, S. Research challenges and opportunities for using big data in global change biology. Glob. Change Biol. 26, 6040–6061 (2020).ADS 

    Google Scholar 
    Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).ADS 
    CAS 

    Google Scholar 
    Hussey, N. E. et al. Ecology. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348, 1255642 (2015).
    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
    Google Scholar 
    Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 531–542 (2017).
    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).CAS 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 89, 161–172 (2020).
    Google Scholar 
    Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S. & Elliott, K. A comparison of techniques for classifying behavior from accelerometers for two species of seabird. Ecol. Evol. 9, 3030–3045 (2019).
    Google Scholar 
    Masello, J. F. et al. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov. Ecol. 9, 24 (2021).
    Google Scholar 
    Shepard, E. L. C. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312 (2013).
    Google Scholar 
    Elliott, K. H., Le Vaillant, M., Kato, A., Speakman, J. R. & Ropert-Coudert, Y. Accelerometry predicts daily energy expenditure in a bird with high activity levels. Biol. Lett. 9, 20120919 (2013).
    Google Scholar 
    Nickel, B. A., Suraci, J. P., Nisi, A. C. & Wilmers, C. C. Energetics and fear of humans constrain the spatial ecology of pumas. Proc. Natl. Acad. Sci. USA 118, e2004592118 (2021).
    Eisaguirre, J. M., Booms, T. L., Barger, C. P., Lewis, S. B. & Breed, G. A. Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds. J. Anim. Ecol. 89, 2567–2583 (2020).
    Google Scholar 
    Wittemyer, G., Northrup, J. M. & Bastille-Rousseau, G. Behavioural valuation of landscapes using movement data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180046 (2019).
    Google Scholar 
    Chimienti, M. et al. The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data. Ecol. Evol. 6, 727–741 (2016).
    Google Scholar 
    Hounslow, J. L. et al. Assessing the effects of sampling frequency on behavioural classification of accelerometer data. J. Exp. Mar. Bio. Ecol. 512, 22–30 (2019).
    Google Scholar 
    Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Accounting for unknown behaviors of free-living animals in accelerometer-based classification models: Demonstration on a wide-ranging mesopredator. Ecol. Inf. 60, 101152 (2020).
    Google Scholar 
    Wang, Y. et al. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov. Ecol. 3, 2 (2015).
    Google Scholar 
    Chakravarty, P., Cozzi, G., Ozgul, A. & Aminian, K. A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13172 (2019).Article 

    Google Scholar 
    Clarke, T. M. et al. Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish. Mov. Ecol. 9, 26 (2021).
    Google Scholar 
    Zhang, J., O’Reilly, K. M., Perry, G. L. W., Taylor, G. A. & Dennis, T. E. Extending the functionality of behavioural change-point analysis with k-Means clustering: a case study with the little penguin (Eudyptula minor). PLoS ONE 10, e0122811 (2015).
    Google Scholar 
    Korpela, J. et al. Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun. Biol. 3, 633 (2020).
    Google Scholar 
    Jeantet, L. et al. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. R. Soc. Open Sci. 7, 200139 (2020).ADS 

    Google Scholar 
    Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inf. 49, 69–76 (2019).
    Google Scholar 
    Dunford, C. E. et al. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions (Puma concolor). Mov. Ecol. 8, 34 (2020).
    Google Scholar 
    Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. & Trites, A. W. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct. Ecol. 31, 377–386 (2017).
    Google Scholar 
    Hicks, O. et al. Acceleration predicts energy expenditure in a fat, flightless, diving bird. Sci. Rep. 10, 21493 (2020).ADS 
    CAS 

    Google Scholar 
    Dentinger, J. E. et al. A probabilistic framework for behavioral identification from animal-borne accelerometers. Ecol. Model. 464, 109818 (2022).
    Google Scholar 
    Chakravarty, P., Maalberg, M., Cozzi, G., Ozgul, A. & Aminian, K. Behavioural compass: animal behaviour recognition using magnetometers. Mov. Ecol. 7, 28 (2019).
    Google Scholar 
    Hammond, T. T., Palme, R. & Lacey, E. A. Ecological specialization, variability in activity patterns and response to environmental change. Biol. Lett. 14, 20180115 (2018).
    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie Penguin. Auk 131, 457–466 (2014).
    Google Scholar 
    Riaz, J., Bestley, S., Wotherspoon, S., Freyer, J. & Emmerson, L. From trips to bouts to dives: temporal patterns in the diving behaviour of chick-rearing Adélie penguins East Antarctica. Mar. Ecol. Prog. Ser. 654, 177–194 (2020).ADS 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Mar. Biol. 154, 813–821 (2008).
    Google Scholar 
    Little Penguin (Eudyptula minor) – BirdLife species factsheet. at Carroll, G., Harcourt, R., Pitcher, B. J., Slip, D. & Jonsen, I. Recent prey capture experience and dynamic habitat quality mediate short-term foraging site fidelity in a seabird. Proc. Biol. Sci. 285, 20180788 (2018).
    Google Scholar 
    Meyer, X. et al. Oceanic thermal structure mediates dive sequences in a foraging seabird. Ecol. Evol. 10, 6610–6622 (2020).
    Google Scholar 
    Cavallo, C. et al. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Funct. Ecol. https://doi.org/10.1111/1365-2435.13605 (2020).Article 

    Google Scholar 
    Ropert-Coudert, Y., Chiaradia, A. & Kato, A. An exceptionally deep dive by a Little Penguin Eudyptula minor. Mar. Ornithol 34, 71–74 (2006).
    Google Scholar 
    Ropert-Coudert, Y., Kato, A., Wilson, R. P. & Cannell, B. Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar. Biol. 149, 139–148 (2006).
    Google Scholar 
    Rodríguez, A., Chiaradia, A., Wasiak, P., Renwick, L. & Dann, P. Waddling on the dark side: ambient light affects attendance behavior of little penguins. J. Biol. Rhythms 31, 194–204 (2016).
    Google Scholar 
    Ropert-Coudert, Y. et al. Happy feet in a hostile world? the future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).
    Google Scholar 
    Shuert, C. R., Pomeroy, P. P. & Twiss, S. D. Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal. Anim. Biotelemetry 6, 14 (2018).
    Google Scholar 
    Dickinson, E. R. et al. Limitations of using surrogates for behaviour classification of accelerometer data: refining methods using random forest models in Caprids. Mov. Ecol. 9, 28 (2021).
    Google Scholar 
    Conway, A. M., Durbach, I. N., McInnes, A. & Harris, R. N. Frame-by-frame annotation of video recordings using deep neural networks. Ecosphere 12, e03384 (2021).
    Google Scholar 
    Ravindran, S. Five ways deep learning has transformed image analysis. Nature 609, 864–866 (2022).ADS 
    CAS 

    Google Scholar 
    Del Caño, M. et al. Fine-scale body and head movements allow to determine prey capture events in the Magellanic Penguin (Spheniscus magellanicus). Mar. Biol. 168, 84 (2021).
    Google Scholar 
    Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance. J. Big Data 6, 27 (2019).
    Google Scholar 
    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).
    Google Scholar 
    Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).ADS 

    Google Scholar 
    Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. https://doi.org/10.1111/gcb.15735 (2021).Article 

    Google Scholar 
    Bonar, M. et al. Geometry of the ideal free distribution: individual behavioural variation and annual reproductive success in aggregations of a social ungulate. Ecol. Lett. 23, 1360–1369 (2020).
    Google Scholar 
    Michelot, C., Kato, A., Raclot, T. & Ropert-Coudert, Y. Adélie penguins foraging consistency and site fidelity are conditioned by breeding status and environmental conditions. PLoS ONE 16, e0244298 (2021).CAS 

    Google Scholar 
    Mahoney, P. J. et al. Navigating snowscapes: scale-dependent responses of mountain sheep to snowpack properties. Ecol. Appl. 28, 1715–1729 (2018).
    Google Scholar 
    Watanabe, Y. Y., Ito, K., Kokubun, N. & Takahashi, A. Foraging behavior links sea ice to breeding success in Antarctic penguins. Sci. Adv. 6, eaba4828 (2020).ADS 

    Google Scholar 
    Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055 (2010).
    Google Scholar 
    Zimmer, I., Ropert-Coudert, Y., Kato, A., Ancel, A. & Chiaradia, A. Does foraging performance change with age in female little penguins (Eudyptula minor)?. PLoS ONE 6, e16098 (2011).ADS 
    CAS 

    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Dickinson, E. R., Stephens, P. A., Marks, N. J., Wilson, R. P. & Scantlebury, D. M. Best practice for collar deployment of tri-axial accelerometers on a terrestrial quadruped to provide accurate measurement of body acceleration. Anim. Biotelemetry 8, 9 (2020).
    Google Scholar 
    Garde, B. et al. Ecological inference using data from accelerometers needs careful protocols. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13804 (2022).Article 

    Google Scholar 
    Watanabe, Y. Y., Ito, M. & Takahashi, A. Testing optimal foraging theory in a penguin-krill system. Proc. Biol. Sci. 281, 20132376 (2014).
    Google Scholar 
    Grémillet, D. et al. Energetic fitness: Field metabolic rates assessed via 3D accelerometry complement conventional fitness metrics. Funct. Ecol. 32, 1203–1213 (2018).
    Google Scholar 
    Chimienti, M. et al. Quantifying behavior and life-history events of an Arctic ungulate from year-long continuous accelerometer data. Ecosphere 12, e03565 (2021).
    Google Scholar 
    Sutton, G. J., Botha, J. A., Speakman, J. R. & Arnould, J. P. Y. Validating accelerometry-derived proxies of energy expenditure using the doubly-labelled water method in the smallest penguin species. Biol. Open 10, bio055475 (2021).
    Google Scholar 
    Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).
    Google Scholar 
    Ballance, L. T., Ainley, D. G., Ballard, G. & Barton, K. An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J. Avian Biol. 40, 279–288 (2009).
    Google Scholar 
    Wilson, R. P. et al. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 25, 101–106 (1997).
    Google Scholar 
    Shepard, E. L. C. et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47–60 (2008).ADS 

    Google Scholar 
    Kato, A., Ropert-Coudert, Y., Grémillet, D. & Cannell, B. Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar. Ecol. Prog. Ser. 308, 293–301 (2006).ADS 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://url.org/www.R-project.org/ (2021).
    Ainley, D. The Adélie Penguin: Bellwether of Climate Change (New York: Columbia University Press) (2006).Langrognet, F. et al. Rmixmod: Classification with Mixture Modelling. (2020).Bishop, C. M. Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New
    York, NY. (2006).Amélineau, F. et al. Intra- and inter-individual changes in little penguin diving and isotopic composition over the breeding season. Mar. Biol. 168, 62 (2021).
    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. https://www.tidymodels.org (2020).Wright, M. N. & Ziegler, A. Ranger : A fast implementation of random forests for high dimensional data in C++ andR. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar  More

  • in

    Climate change will redefine taxonomic, functional, and phylogenetic diversity of Odonata in space and time

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 
    PubMed 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diamond, S. E. Contemporary climate‐driven range shifts: putting evolution back on the table. Functional Ecol. 32, 1652–1665 (2018).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    Nelson, E. J. et al. Climate change’s impact on key ecosystem services and the human well‐being they support in the US. Front. Ecol. Environ. 11, 483–893 (2013).Article 

    Google Scholar 
    Prather, C. M. et al. Invertebrates, ecosystem services and climate change. Biol. Rev. 88, 327–348 (2013).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. World scientists’ warning of a climate emergency 2021. BioScience 71, 894–898 (2021).Article 

    Google Scholar 
    Gallagher, R. V., Hughes, L. & Leishman, M. R. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531–540 (2013).Article 

    Google Scholar 
    Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 1–8 (2020).Article 

    Google Scholar 
    Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).Article 
    PubMed 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 
    CAS 

    Google Scholar 
    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).Article 
    PubMed 

    Google Scholar 
    Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).Article 
    PubMed 

    Google Scholar 
    Cardoso, P. et al. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J. Biogeogr. 41, 749–761 (2014).Article 

    Google Scholar 
    Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshwater Sci. 34, 1040–1049 (2015).Article 

    Google Scholar 
    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Global Ecol. Biogeogr. 22, 403–409 (2013).Article 

    Google Scholar 
    Moore, M. P. et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.2101458118 (2021).Castillo-Pérez, E. U., Suárez-Tovar, C. M., González-Tokman, D., Schondube, J. E. & Córdoba-Aguilar, A. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J. Thermal Biol. 103, 103164 (2022).Article 

    Google Scholar 
    May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).Article 
    PubMed Central 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change biology 11, 502–506 (2005).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450–455 (2006).Heino, J., Virkkala, R. & Toivonen, H. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39–54 (2009).Article 
    PubMed 

    Google Scholar 
    Mustonen, K. R. et al. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages. Global Change Biol. 24, 2434–2446 (2018).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Wong, J. S. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).Article 

    Google Scholar 
    Strecker, A. L., Olden, J. D., Whittier, J. B. & Paukert, C. P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 (2011).Article 

    Google Scholar 
    Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 1–3 (2019).Article 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).Article 

    Google Scholar 
    Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).Article 

    Google Scholar 
    Thomas, C. D. The development of Anthropocene biotas. Philos. Trans. R. Soc. B 375, 20190113 (2020).Article 

    Google Scholar 
    Krosby, M. et al. Climate-induced range overlap among closely related species. Nat. Clim. Change 5, 883–886 (2015).Article 

    Google Scholar 
    Sánchez-Guillén, R. A., Wellenreuther, M., Cordero-Rivera, A. & Hansson, B. Introgression and rapid species turnover in sympatric damselflies. BMC Evol. Biol. 11, 1–17 (2011).Article 

    Google Scholar 
    Bybee, S. et al. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front. Zool. 13, 1–20 (2016).Article 

    Google Scholar 
    Tobias, N. & Monika, W. Does taxonomic homogenization imply functional homogenization in temperate forest herb layer communities? Plant Ecol. 213, 431–443 (2012).Article 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).Article 
    PubMed 

    Google Scholar 
    Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiversity Conserv. 23, 2107–2126 (2014).Article 

    Google Scholar 
    McGoff, E., Solimini, A. G., Pusch, M. T., Jurca, T. & Sandin, L. Does lake habitat alteration and land-use pressure homogenize European littoral macroinvertebrate communities? J. Appl. Ecol. 50, 1010–1018 (2013).Article 

    Google Scholar 
    Vilenica, M., Kerovec, M., Pozojević, I. & Mihaljević, Z. Odonata assemblages in anthropogenically impacted lotic habitats. J. Limnol. 80, 1968 (2021).Mammola, S. et al. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Diversity Distrib. 27, 2596–2614 (2021).Article 

    Google Scholar 
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol. Biogeogr. 27, 245–256 (2018).Article 

    Google Scholar 
    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018). .Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Miller, J. A. & Holloway, P. Incorporating movement in species distribution models. Progr. Phys. Geogr. 39, 837–849 (2015).Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. 115, 11982–11987 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Pinkert, S. et al. Evolutionary processes, dispersal limitation and climatic history shape current diversity patterns of European dragonflies. Ecography 41, 795–804 (2018).Article 

    Google Scholar 
    Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 1–9 (2014).Article 

    Google Scholar 
    Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Ann. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).Article 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the R‐package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corbet, P. S. The life-history of the emperor dragonfly Anax imperator Leach (Odonata: Aeshnidae). J. Animal Ecol. 1–69. https://doi.org/10.2307/1781 (1957).Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8(9), 993–1009 (2005).Article 
    PubMed 

    Google Scholar 
    Peterson, A. T. et al. Ecological niches and geographic distributions (MPB-49) (Princeton University Press, 2011).Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2010).Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography 44(2), 199–205 (2021).Article 

    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, M. P. et al. Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquat. Conserv. Marine Freshwater Ecosyst. 26, 639–659 (2016).Ficetola, G. F., Thuiller, W. & Padoa‐Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity Distrib. 15, 108–116 (2009).Article 

    Google Scholar 
    Wang, Y., Xie, B., Wan, F., Xiao, Q. & Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Sci. 15, 365 (2007).Article 

    Google Scholar 
    Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Diversity Distrib. 27, 1035–1050 (2021).Article 

    Google Scholar 
    Guyennon, A. et al. Colonization and extinction dynamics and their link to the distribution of European trees at the continental scale. J. Biogeogr. 49, 117–129 (2022).Article 

    Google Scholar 
    Pritchard, G. & Leggott, M. A. Temperature, incubation rates and origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
    Google Scholar 
    Clausnitzer, V. et al. Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol. Conserv. 142, 1864–1869 (2009).Article 

    Google Scholar 
    Córdoba-Aguilar, A. (Ed.). Dragonflies and damselflies: model organisms for ecological and evolutionary research (OUP Oxford, 2008).Corbet, P. S. et al. Dragonflies: behaviour and ecology of Odonata (Harley books, 1999).Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PloS One 11, e0148949 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harabiš, F. & Dolný, A. The effect of ecological determinants on the dispersal abilities of central European dragonflies (Odonata). Odonatologica 40, 17 (2011).
    Google Scholar 
    Boudot, J. P. & Kalkman, V. J. (eds) Atlas of the European dragonflies and damselflies (KNNV publishing, 2015).Dijkstra, K. D. & Schröter, A. Field guide to the dragonflies of Britain and Europe (Bloomsbury Publishing, 2020).Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PloS One 12, e0189577 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inf. 19, 10–15 (2014).Article 

    Google Scholar 
    Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burgman, M. A. & Fox, J. C. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning, Animal Conservation Forum (6, No. 1, pp. 19–28 (Cambridge University Press, 2003). https://doi.org/10.1017/S1367943003003044Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. Raster: geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2020).Hijmans, R. J., Phillips S., Leathwick J. & Elith J. Dismo: species distribution modeling. https://CRAN.R-project.org/package=dismo (2020).Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Mukaka, M. M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24, 69–71 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions–the ‘business as usual’story is misleading https://doi.org/10.1038/d41586-020-00177-3 (2020)Mammola, S., Milano, F., Vignal, M., Andrieu, J. & Isaia, M. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Global Ecol. Biogeogr. 28, 1325–1335 (2019).Article 

    Google Scholar 
    Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41(1), 233–243 (2018).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models (Routledge, 2017).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3-4), 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).https://doi.org/10.1145/1015330.1015412 (2004).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Animal Ecol. 77, 802–813 (2008).Article 
    CAS 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).Article 
    PubMed 

    Google Scholar 
    Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecol. Appl. 19, 181–197 (2009).Article 
    PubMed 

    Google Scholar 
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Zhang, Z. et al. Lineage‐level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity Distrib. 27, 684–695 (2021).Article 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).Article 

    Google Scholar 
    Martín‐Vélez, V. & Abellán, P. Effects of climate change on the distribution of threatened invertebrates in a Mediterranean hotspot. Insect Conserv. Divers. https://doi.org/10.1111/icad.12563 (2022).Qiao, H., Soberon, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136 (2015).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).Article 
    PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61(1), 1–10 (1992).Article 

    Google Scholar 
    Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).Article 
    PubMed 

    Google Scholar 
    Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).Article 
    PubMed 

    Google Scholar 
    Corbet, P. S. ‘Biology of Odonata’. Ann. Rev. Entomol. 25, 189–217 (1980).Article 

    Google Scholar 
    Mitchell. Dragonfly locomotion: Ecology, form and function. PhD thesis, (University of Leeds, 2018). https://etheses.whiterose.ac.uk/21211/.The GIMP Development Team. GIMP (version 2.10.12). https://www.gimp.org (2019).Weller, H. Colordistance: distance metrics for image color similarity. https://CRAN.R-project.org/package=colordistance (2020).R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.R-project.org/.de Bello, F., Botta‐Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).Article 

    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Acquah‐Lamptey, D., Brändle, M., Brandl, R. & Pinkert, S. Temperature‐driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol. Evol. 10, 8936–8948 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North‐American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).Article 

    Google Scholar 
    Rundle, S. D., Bilton, D. T., Abbott, J. C. & Foggo, A. Range size in North American Enallagma damselflies correlates with wing size. Freshwater Biol. 52, 471–477 (2007).Article 

    Google Scholar 
    Finlayson, C. M. et al. The second warning to humanity–providing a context for wetland management and policy. Wetlands 39, 1–5 (2019).Article 

    Google Scholar 
    Okude, G. & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14–20 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mani, M. S. Ecology and biogeography of high altitude insects, vol. 4. (Springer Science & Business Media, 2013).Suárez‐Tovar, C. M., Guillermo‐Ferreira, R., Cooper, I. A., Cezário, R. R. & Córdoba‐Aguilar, A. Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. J. Zool. https://doi.org/10.1111/jzo.12963 (2022).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article 
    PubMed 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS 
    PubMed 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, P., Stefano, M., Francois, R. & Jose, C. C. BAT: biodiversity assessment tools. https://CRAN.R-project.org/package=BAT (2021).Robert J. H. geosphere: spherical trigonometry. R package version 1.5-14. https://CRAN.R-project.org/package=geosphere (2021).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 217–223 https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 (2018).Silva, L. F. et al. Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecol. Indic. 133, 108367 (2021).Article 

    Google Scholar  More