Bromley, R. G. & Gale, A. S. The lithostratigraphy of the English Chalk Rock. Cretac. Res. 3, 273–306 (1982).Article
Google Scholar
Scholle, P. A., Arthur, M. A. & Ekdale, A. A. Pelagic environment. In Carbonate Depositional Environments (eds Scholle, P. A. et al.) 619–691 (Am. Ass. Petrol. Geol. Mem. 33, 1983).Chapter
Google Scholar
Gealy, E. L., Winterer, E. L. & Moberly, R. Methods, conventions, and general observations. Initial Rep. Deep Sea Drill. Proj. 7, 9–26 (1971).
Google Scholar
Kroenke, L. W. et al. Ocean Drilling Program. Proc. ODP, Init. Repts. 130, College Station (1991).Dunham, R. L. Classification of carbonate rocks according to depositional texture. Mem. Am. Assoc. Petrol. Geol. 1, 108–121 (1962).
Google Scholar
Quine, M. & Bosence, D. Stratal geometries, facies and sea-floor erosion in Upper Cretaceous chalk, Normandy, France. Sedimentology 38, 1113–1152 (1991).ADS
Article
Google Scholar
Røgen, B., Gommesen, L. & Fabricius, I. L. Grain size distributions of Chalk from Image analysis of electron micrographs. Comput. Geosci. 27, 1071–1080 (2001).ADS
Article
Google Scholar
Saïag, J. et al. Classifying chalk microtextures: Sedimentary versus diagenetic origin (Cenomanian–Santonian, Paris Basin, France). Sedimentology 66, 2976–3007 (2019).Article
CAS
Google Scholar
Scholle, P. A. Chalk diagenesis and its relation to petroleum exploration: Oil from chalks, a modern miracle?. Bull. Am. Assoc. Petrol. Geol. 61, 982–1009 (1977).CAS
Google Scholar
Tagliavento, M., John, C. M., Anderskouv, K. & Stemmerik, L. Towards a new understanding of the genesis of chalk: Diagenetic origin of micarbs confirmed by clumped isotope analysis. Sedimentology 68, 513–530 (2021).CAS
Article
Google Scholar
Bramlette, M. N. Significance of coccolithophorids in calcium-carbonate deposition. Bull. Geol. Soc. Am. 69, 121–126 (1958).Article
Google Scholar
Hattin, D. E. & Darko, D. A. Technique for determining coccolith abundance in shaly chalk of Greenhorn Limestone (Upper Cretaceous) of Kansas. Kansas Geol. Surv. Bull. 202, 1–11 (1971).
Google Scholar
Houghton, S. D. Calcareous nannofossils. In Calcareous algae and Stromatolites (ed. Riding, R.) 217–266 (Springer, 1991).Chapter
Google Scholar
Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. In Coccolithophores—From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 481–508 (Springer, 2004).
Google Scholar
Roth, P. H. Mesozoic paleoceanography of the North Atlantic and Tethys Oceans. In North Atlantic Paleoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Special Publications, 1986).
Google Scholar
Baumann, K.-H., Andruleit, H., Böckel, B., Geisen, M. & Kinkel, H. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity: A review. Paläontol. Z. 79, 93–112 (2005).Article
Google Scholar
Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).ADS
CAS
PubMed
Article
Google Scholar
Ando, A., Huber, B. T., MacLeod, K. G. & Watkins, D. K. Early Cenomanian “hot greenhouse” revealed by oxygen isotope record of exceptionally well-preserved foraminifera from Tanzania. Paleoceanography 30, 1556–1572 (2015).ADS
Article
Google Scholar
Ekdale, A. A. & Bromley, R. G. Comparative ichnology of shelf-sea and deep-sea chalk. J. Paleontol. 58, 322–332 (1984).
Google Scholar
Savrda, C. E. Chalk and related deep-marine carbonates. In Trace Fossils as Indicators of Sedimentary Environments (eds Knaust, D. & Bromley, R. G.) 777–806 (Elsevier, 2012).Chapter
Google Scholar
Savrda, C. E., Foster, C. & Fluegeman, R. A unique Lower Paleocene shelf-sea chalk in the eastern U.S. Gulf coastal plain (Clayton Formation, western Alabama): Implications for depositional environment, sea-level dynamics and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109439 (2020).Article
Google Scholar
Erba, E., Watkins, D. & Mutterlose, J. Campanian dwarf calcareous nannofossils from Wodejebato Guyot. In Proc. Ocean Drill. Program Sci. Results (eds Haggerty, J. A. et al.) 141–155 (Ocean Drilling Program, 1995).
Google Scholar
Hancock, J. M. The petrology of chalk. Proc. Geol. Assoc. 86, 499–535 (1975).Article
Google Scholar
Stanley, S. M. & Hardie, L. A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 3–19 (1998).Article
Google Scholar
Stanley, S. M., Ries, J. B. & Hardie, L. A. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology 33, 593–596 (2005).ADS
CAS
Article
Google Scholar
Pemberton, S. G. et al. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geol. Assoc. Can. Short Course Notes 15, 1–343 (2001).
Google Scholar
Buatois, L. A. & Mángano, M. G. Ichnology: Organism–Substrate Interactions in Space and Time (Cambridge Press University, 2011).Book
Google Scholar
Frey, R. W. & Bromley, R. G. Ichnology of American chalks: The Selma Group (Upper Cretaceous), western Alabama. Can. J. Earth Sci. 22, 801–828 (1985).ADS
Article
Google Scholar
Savrda, C. E. & Bottjer, D. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 49–74 (1989).Article
Google Scholar
Kennedy, W. J. Trace fossils in carbonate rocks. In The Study of Trace Fossils (ed. Frey, R. W.) 377–398 (Springer, 1975).Chapter
Google Scholar
Loucks, R. G., Gates, B. G. & Zahm, C. K. Depositional systems, lithofacies, nanopore to micropore matrix network, and reservoir quality of the Upper Cretaceous (Cenomanian) Buda Limestone in Dimmit County, southwestern Texas. Gulf Coast Assoc. Geol. Soc. 8, 281–300 (2019).
Google Scholar
Valencia, F. L. et al. Depositional environments and controls on the stratigraphic architecture of the Cenomanian Buda Limestone in west Texas, U.S.A. Mar. Petrol. Geol. 133, 105275 (2021).Article
Google Scholar
Valencia, F. L., Laya, J. C., Buatois, L. A., Mángano, M. G. & Valencia, G. L. Sedimentology and stratigraphy of the Cenomanian Buda Limestone in central Texas, U.S.A.: Implications on regional and global depositional controls. Cretac. Res. 137, 105231 (2022).Article
Google Scholar
Martin, K. G. Stratigraphy of the Buda Limestone, south-central Texas. In Comanchean (Lower Cretaceous) Stratigraphy and Paleontology of Texas (ed. Hendricks, L.) 287–299 (Permian Basin Section SEPM 67 (8), 1967).
Google Scholar
Mallon, A. J. & Swarbrick, R. E. Diagenetic characteristics of low permeability, non-reservoir chalks from the Central North Sea. Mar. Petrol. Geol. 25, 1097–1108 (2008).CAS
Article
Google Scholar
Brasher, J. E. & Vagle, K. R. Influence of lithofacies and diagenesis on Norwegian North Sea chalk reservoirs. Am. Assoc. Petrol. Geol. Bull. 80, 746–769 (1996).CAS
Google Scholar
Hentz, T. F. & Ruppel, S. C. Regional stratigraphic and rock characteristics of eagle ford shale in its play area: Maverick Basin to East Texas Basin. Am. Ass. Petrol. Geol. Search and Discovery 10325 (2011).Robinson, W. C. Petrography and depositional environments of the Buda Limestone, northern Coahuila, Mexico. MS Thesis. The University of Texas, 156 (1982).Reaser, D. F. & Robinson, W. C. Cretaceous Buda Limestone in west Texas and northern Mexico. In Cretaceous Stratigraphy and Paleoecology, Texas and Mexico (ed. Scott, R. W.) 337–373 (Perkins Memorial volume, GCSSEPM Foundation, Special Publications in Geology 1, 2003).
Google Scholar
Young, K. P. Cretaceous paleogeography: Implications of endemic ammonite faunas. Geol. Circ. (University of Texas at Austin, Bureau of Economic Geology) 72, 1–13 (1972).
Google Scholar
Buatois, L. A. & Mángano, M. G. Ichnodiversity and ichnodisparity: Significance and caveats. Lethaia 46, 281–292 (2013).Article
Google Scholar
Buatois, L. A., Wisshak, M., Wilson, M. A. & Mángano, M. G. Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth Sci. Rev. 164, 102–181 (2017).ADS
CAS
Article
Google Scholar
Swinbanks, D. D. & Luternauer, J. L. Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia. J. Paleontol. 61, 315–333 (1987).Article
Google Scholar
Carmona, N. B., Buatois, L. A. & Mángano, M. G. The trace fossil record of burrowing decapod crustaceans: Evaluating evolutionary radiations and behavioural convergence. In Trace Fossils in Evolutionary Palaeoecology (eds Webby, B. D. et al.) 141–153 (Wiley, 2004).
Google Scholar
Baucon, A. et al. Ethology of the trace fossil Chondrites: Form, function and environment. Earth Sci. Rev. 202, 102989 (2020).CAS
Article
Google Scholar
Pemberton, S. G. & Frey, R. W. Trace fossil nomenclature and the Planolites–Palaeophycus dilemma. J. Paleontol. 56, 843–881 (1982).
Google Scholar
Rodríguez-Tovar, F. J. & Pérez-Valera, F. Trace fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, Southern Spain: Characterization and environmental implications. Palaios 23, 78–86 (2008).ADS
Article
Google Scholar
Bown, T. M. & Kraus, M. J. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol 43, 95–128 (1983).Article
Google Scholar
Uchman, A. Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15, 3–115 (1995).
Google Scholar
Demírcan, H. & Uchman, A. The miniature trace fossil Bichordites kuzunensis isp. Nov., from early Oligocene prodelta sediments of the Mezardere Formation, Gökçeada Island, NW Turkey. Acta Geol. Pol. 62, 205–215 (2012).
Google Scholar
Plaziat, J.-C. & Mahmoudi, M. Trace fossils attributed to burrowing echinoids: A revision including new ichnogenus and ichnospecies. Geobios 21, 209–233 (1988).Article
Google Scholar
Chamberlain, C. K. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. J. Paleontol. 45, 212–246 (1971).
Google Scholar
Farrow, G. E. Bathymetric zonation of Jurassic trace fossils from the coast of Yorkshire, England. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2, 103–151 (1966).Article
Google Scholar
Mángano, M. G., Buatois, L. A., West, R. R. & Maples, C. G. Contrasting behavioral and feeding strategies recorded by tidal-flat bivalve trace fossils from the upper carboniferous of eastern Kansas. Palaios 13, 335–351 (1998).ADS
Article
Google Scholar
Pemberton, S. G., Frey, R. W. & Bromley, R. G. The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Can. J. Earth Sci. 25, 866–892 (1988).ADS
Article
Google Scholar
Nara, M. Rosselia socialis: A dwelling structure of a probable terebellid polychaete. Lethaia 28, 171–178 (1995).Article
Google Scholar
Wilson, M. A., Curran, H. A. & White, B. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31, 241–250 (1998).Article
Google Scholar
Santos, A., Mayoral, E., Marques da Silva, C., Cachão, M. & Kullberg, J. C. Trypanites ichnofacies: Palaeoenvironmental and tectonic implications. A case study from the Miocene disconformity at Foz da Fonte (Lower Tagus Basin, Portugal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 292, 35–43 (2010).Article
Google Scholar
Wilson, J. L. Carbonate Facies in Geological History (Springer, 1975).Book
Google Scholar
Tucker, M. E. & Wright, V. P. Carbonate Sedimentology (Blackwell Science, 1990).Book
Google Scholar
MacEachern, J. A. & Gingras, M. K. Recognition of brackish-water trace fossil assemblages in the Cretaceous western interior seaway of Alberta. In Sediment-Organism Interactions: A Multifaceted Ichnology (eds Bromley, R. G. et al.) 149–194 (Society for Sedimentary Geology Special Publication, 2007).
Google Scholar
MacEachern, J. A., Zaitlin, B. A. & Pemberton, S. G. High-resolution sequence stratigraphy of early transgressive deposits, Viking Formation, Joffre Field, Alberta, Canada. Bull. Am. Assoc. Petrol. Geol. 82, 729–756 (1998).
Google Scholar
Buatois, L. A., Netto, R. G. & Mángano, M. G. Ichnology of Permian marginal-marine to shallow-marine coal-bearing successions: Rio Bonito and Palermo formations, Parana Basin, Brazil. In Applied Ichnology (eds MacEachern, J. A. et al.) 167–177 (Society for Sedimentary Geology Short Course Notes, 2007).
Google Scholar
Buatois, L. A. et al. Colonization of brackish-water systems through time: Evidence from the trace-fossil record. Palaios 20, 321–347 (2005).ADS
Article
Google Scholar
Pemberton, S. G. & Wightman, D. M. Ichnological characteristics of brackish water deposits. In Applications of Ichnology to Petroleum Exploration: A Core Work-shop (ed. Pemberton, S. G.) 141–167 (Society of Economic Paleontologists and Mineralogists Core Workshop, 1992).Chapter
Google Scholar
Anderson, B. G. & Droser, M. L. Ichnofabrics and geometric configurations of Ophiomorpha within a sequence stratigraphic framework: An example from the Upper Cretaceous US western interior. Sedimentology 45, 379–396 (1998).ADS
Article
Google Scholar
Buatois, L. A., Mángano, M. G. & Pattison, S. A. J. Ichnology of prodeltaic hyperpycnite–turbidite channel complexes and lobes from the Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, USA. Sedimentology 66, 1825–1860 (2019).Article
Google Scholar
Bhattacharya, J. P. & MacEachern, J. A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res. 79, 184–209 (2009).ADS
Article
Google Scholar
Savrda, C. E. Ichnosedimentologic evidence for a noncatastrophic origin of Cretaceous-Tertiary boundary sand in Alabama. Geology 21, 1075–1078 (1993).ADS
Article
Google Scholar
Schlager, W. Accommodation and supply-a dual control on stratigraphic sequences. Sediment. Geol. 86, 111–136 (1993).ADS
Article
Google Scholar
Strasser, A. & Samankassou, E. Carbonate sedimentation rates today and in the past: Holocene of Florida Bay, Bahamas, and Bermuda vs. Upper Jurassic and Lower Cretaceous of the Jura Mountains (Switzerland and France). Geol. Croat. 56, 1–18 (2003).Article
Google Scholar
Moyano-Paz, D., Richiano, S., Varela, A. N., Gómez-Dacal, A. R. & Poire, D. G. Ichnological signatures from wave- and fluvial-dominated deltas: The La Anita Fromation, Upper Cretaceous, Austral-Magallanes Basin, Patagonia. Mar. Pet. Geol. 114, 104168 (2020).CAS
Article
Google Scholar
De Gibert, J. M. & Ekdale, A. A. Trace fossil assemblages reflecting stressed environments in the Middle Jurassic Carmel Seaway of Central Utah. J. Paleontol. 73, 711–720 (1999).Article
Google Scholar
Gingras, M. K., MacEachern, J. A. & Dashtgard, S. E. Process ichnology and the elucidation of physico-chemical stress. Sediment. Geol. 237, 115–134 (2011).ADS
CAS
Article
Google Scholar
Smith, C. R., Levin, L. A., Hoover, D. J., McMurty, G. & Gage, J. D. Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep-Sea Res. II 47, 227–257 (2000).ADS
CAS
Article
Google Scholar
Wignall, P. B., Newton, R. & Brookfield, M. E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 183–188 (2005).Article
Google Scholar
Kennedy, W. J. Burrows and surface traces from the Lower Chalk of southern England. Bull. Br. Mus. Nat. Hist. Geol. 15, 127–167 (1967).
Google Scholar
Kennedy, W. J. & Garrison, R. E. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22, 311–386 (1975).ADS
CAS
Article
Google Scholar
Bromley, R. G. Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Geol. Soc. Lond. Q. J. 123, 157–182 (1967).Article
Google Scholar
Bromley, R. G. Trace fossils at omission surfaces. In The Study of Trace Fossils (ed. Frey, R. W.) 399–428 (Springer, 1975).Chapter
Google Scholar
Hart, M. B., Harries, P. J. & Cárdenas, A. L. The Cretaceous/Paleogene boundary events in the Gulf Coast: Comparisons between Alabama and Texas. Gulf Coast Assoc. Geol. Trans. 63, 235–255 (2013).
Google Scholar
Al Balushi, S. A. K. & Macquaker, J. H. S. Sedimentological evidence for bottom-water oxygenation during deposition of the Natih-B Member intrashelf-basinal sediments: Upper Cretaceous carbonate source rock, Natih Formation, North Sultanate of Oman. GeoArabia 16, 47–84 (2011).Article
Google Scholar
Lasseur, E. et al. A relative water-depth model for the Normandy Chalk (Cenomanian–Middle Coniacian, Paris Basin, France) based on facies patterns of metre-scale cycles. Sediment. Geol. 213, 1–26 (2009).ADS
Article
Google Scholar
Dawson, W. C. & Reaser, D. F. Rhizocorallium in the upper Austin Chalk, Ellis County, Texas. Texas J. of Sci. 23, 207–214 (1980).
Google Scholar
Dawson, W. C. & Reaser, D. F. Ichnology and paleoenvironments of the middle and upper Austin Chalk (Upper Cretaceous), northeastern Texas. Trans. Am. Assoc. Pet. Geol. Southwest Sec. 1985, 47–67 (1985).
Google Scholar
Dawson, W. C. & Reaser, D. F. Trace fossils and paleoenvironments of lower and middle Austin Chalk (Upper Cretaceous), north-central Texas. Trans. Gulf Coast Assoc. Geol. Soc. 40, 161–173 (1990).
Google Scholar
Dawson, W. C. & Reaser, D. F. Ichnology and Paleosubstrates of Austin Chalk (Cretaceous) Outcrops: Southern Dallas and Ellis Counties, Texas. Am. Assoc. Pet. Geol. Search Discovery Article #91004 (1991).Fürsich, F. T., Kennedy, W. J. & Palmer, T. J. Trace fossils at a regional discontinuity surface: The Austin/Taylor (Upper Cretaceous) contact in central Texas. J. Paleontol. 55, 537–551 (1981).
Google Scholar
Morgan, R. F. A new ichnospecies of Gyrolithes from the Austin Chalk, Upper Cretaceous, Texas, USA. Ichnos 26, 1–7 (2018).Article
Google Scholar
Cooper, J. R., Godet, A. & Pope, M. C. Tectonic and eustatic impact on depositional features in the upper Cretaceous Austin Chalk Group of south-central Texas, USA. Sediment. Geol. 401, 105632 (2020).Article
Google Scholar
Loucks, R. G. et al. Geologic characterization of the type cored section for the Upper Cretaceous Austin Chalk Group in southern Texas: A combination fractured and unconventional reservoir. Am. Assoc. Pet. Geol. Bull. 104, 2209–2245 (2020).
Google Scholar
Loucks, R. G., Reed, R. M., Ko, L. T., Zahm, C. K. & Larson, T. E. Micropetrographic characterization of a siliciclastic-rich chalk; Upper Cretaceous Austin Chalk Group along the onshore northern Gulf of Mexico, USA. Sediment. Geol. 412, 105821 (2021).CAS
Article
Google Scholar
Bottjer, D. J. Paleoecology, Ichnology, and Depositional Environments of Upper Cretaceous Chalks (Annona Formation; chalk Member of Saratoga Formation), Southwestern Arkansas. PhD Dissertation, Indiana University, 424 (1978).Bottjer, D. J. Ichnology and depositional environments of Upper Cretaceous chalks, southwestern Arkansas (Annona Formation; chalk member, Saratoga Formation). Am. Assoc. Pet. Geol. Bull. 63, 422 (1979).
Google Scholar
Bottjer, D. J. Trace fossils and paleoenvironments of two Arkansas Upper Cretaceous discontinuity surfaces. J. Paleontol. 59, 282–298 (1985).
Google Scholar
Bottjer, D. J. Campanian-Maastrichtian chalks of southwestern Arkansas: Petrology, paleoenvironments and comparison with other North American and European chalks. Cretac. Res. 7, 161–196 (1986).Article
Google Scholar
Bayet-Goll, A., Neto de Carvalho, C., Monaco, P. & Sharafi, M. Sequence stratigraphic and sedimentologic significance of biogenic structures from chalky limestones of the Turonian-Campanian Abderaz Formation, Kopet-Dagh, Iran. In Cretaceous Period: Biotic Diversity and Biogeography (eds Khosla, A. & Lucas, S. G.) 19–43 (New Mex. Mus. Nat. His. Sci. Bull. 71, 2016).
Google Scholar
Locklair, R. E. & Savrda, C. E. Ichnology of rhythmically bedded Demopolis Chalk (Upper Cretaceous, Alabama): Implications for paleoenvironment, depositional cycle origins, and tracemaker behavior. Palaios 13, 423–438 (1998).ADS
Article
Google Scholar
Locklair, R. E. & Savrda, C. E. Ichnofossil tiering analysis of a rhythmically bedded chalk-marl sequence in the Upper Cretaceous of Alabama. Lethaia 31, 311–322 (1998).Article
Google Scholar
Kennedy, W. J. Trace fossils in the chalk environment. In Trace Fossils (eds Crimes, T. P. & Harper, J. C.) 263–282 (Geological Journal Special Issue 3, 1970).
Google Scholar
Mortimore, R. N. & Pomerol, B. Stratigraphy and eustatic implications of trace fossil events in the Upper Cretaceous Chalk of northern Europe. Palaios 6, 216–231 (1991).ADS
Article
Google Scholar
Foster, C. B. III. Geology of the Moscow Landing Section, Tombigbee River, Western Alabama, with Focus on Ichnologic Aspects of the Lower Paleocene Clayton Formation. M.Sc. Dissertation, Auburn University, 88 (2019).Gabdullin, R. R. Rhythmicity of the Upper Cretaceous Deposits of the East European Craton, Northwestern Caucasus and Southwestern Crimea: Structure, Classification, Formation Models (Mosk. Gos. Univ., 2002).
Google Scholar
Baraboshkin, E. Y. & Zibrov, I. A. Characteristics of the Middle Cenomanian Rhythmic Sequence from Mount Selbukhra in Southwest Crimea. Moscow Univ. Geol. Bull. 67, 176–184 (2012).Article
Google Scholar
Blinkenberg, K. H., Lauridsen, B. W., Knaust, D. & Stemmerik, L. New ichnofabrics of the Cenomanian-Danian Chalk Group. J. Sediment. Res. 90, 701–712 (2020).ADS
Article
Google Scholar
Ekdale, A. A. & Bromley, R. G. Trace fossils and ichnofabric in the Kjolby Gaard Marl, uppermost Cretaceous, Denmark. Bull. Geol. Soc. Denmark 31, 107–119 (1983).Article
Google Scholar
Ekdale, A. A. & Bromley, R. G. Cretaceous chalk ichnofacies in northern Europe. Geobios 8, 201–204 (1984).Article
Google Scholar
Ekdale, A. A. & Bromley, R. G. Analysis of composite ichnofabrics; An example in Uppermost Cretaceous chalk of Denmark. Palaios 6, 232–249 (1991).ADS
Article
Google Scholar
Surlyk, F. et al. The cyclic Rørdal Member—A new lithostratigraphic unit of chronostratigraphic and palaeoclimatic importance in the upper Maastrichtian of Denmark. Bull. Geol. Soc. Denmark 58, 89–98 (2010).Article
Google Scholar
Lauridsen, B. W., Surlyk, F. & Bromley, R. G. Trace fossils of a cyclic chalk marl succession; the upper Maastrichtian Rørdal Member, Denamrk. Cretac. Res. 32, 194–211 (2011).Article
Google Scholar
Frey, R. W. Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ. Kansas Paleontol. Contrib. 53, 52 (1970).
Google Scholar
Hattin, D. E. Stratigraphy and depositional environment of Smoky Hill Chalk Member, Niobrara Chalk (Upper Cretaceous) of the type area western Kansas. Kansas Geol. Surv. Bull. 225, 1–108 (1982).
Google Scholar
Savrda, C. E. Ichnocoenoses in the Niobrara Formation: Implications for benthic oxygenation histories. In Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA (eds Dean, W. E. & Arthur, M. A.) 137–151 (SEPM Society for Sedimentary Geology 6, 1998).Chapter
Google Scholar
Hattin, D. E. Widespread, synchronously deposited, burrow-mottled limestone beds in Greenhorn Limestone (Upper Cretaceous) of Kansas and southeastern Colorado. Am. Assoc. Pet. Geol. Bull. 55, 412–431 (1971).
Google Scholar
Hattin, D. E. Stratigraphy and depositional environment of Greenhorn Limestone (Upper Cretaceous) of Kansas. Kansas Geol. Surv. Bull. 209, 128 (1975).
Google Scholar
Savrda, C. E. Ichnology of the Bridge Creek Limestone: Evidence for temporal and spatial variations in paleo-oxygenation in the Western Interior Seaway. In Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA (eds Dean, W. E. & Arthur, M. A.) 127–136 (SEPM Society for Sedimentary Geology 6, 1998).Chapter
Google Scholar
Rasmussen, S. L. & Surlyk, F. Facies and ichnology of an Upper Cretaceous chalk contourite drift complex, eastern Denmark, and the validity of contourite facies models. J. Geol. Soc. Lond. 169, 435–447 (2012).Article
Google Scholar
Surlyk, F. et al. Upper Campanian-Maastrichtian holostratigraphy of the eastern Danish Basin. Cretac. Res. 46, 232–256 (2013).Article
Google Scholar
Boussaha, M., Thibault, N., Anderskouv, K., Moreau, J. & Stemmerik, L. Controls on upper Campanian-Maastrichtian chalk deposition in the eastern Danish Basin. Sedimentology 64, 1998–2030 (2017).Article
Google Scholar
Reolid, J. & Betzler, C. The ichnology of carbonate drifts. Sedimentology 66, 1427–1448 (2019).Article
Google Scholar
Nygaard, E. Bathichnus and Its Significance in the Trace Fossil Association of Upper Cretaceous Chalk, Mors, Denmark 107–113 (Danm. Geol. Unders. Årbog, 1983).
Google Scholar
Scholle, P. A., Albrechtsen, T. & Tirsgaard, H. Formation and diagenesis of bedding cycles in uppermost Cretaceous chalks of the Dan Field, Danish North Sea. Sedimentology 45, 223–243 (1998).ADS
CAS
Article
Google Scholar
Damholt, T. & Surlyk, F. Laminated–bioturbated cycles in Maastrichtian chalk of the North Sea: Oxygenation fluctuations within the Milankovitch frequency band. Sedimentology 51, 1323–1342 (2004).ADS
Article
Google Scholar
Anderskouv, K. & Surlyk, F. Upper Cretaceous chalk facies and depositional history recorded in the Mona-1 core, Mona Ridge, Danish North Sea. Geol. Surv. Denmark Greenland Bull. 25, 1–60 (2011).Article
Google Scholar
Maliva, R. G. & Dickson, J. A. D. Microfacies and diagenetic controls of porosity in Cretaceous/Tertiary chalks, Eldfisk Field, Norwegian North Sea. Am. Assoc. Pet. Geol. Bull. 76, 1825–1838 (1992).
Google Scholar
Knaust, D., Dorador, J. & Rodríguez-Tovar, F. J. Burrowed matrix powering dual porosity systems—A case study from the Maastrichtian chalk of the Gullfaks Field Norwegian North Sea. Mar. Petrol. Geol. 113, 104158 (2020).Article
Google Scholar
Phillips, C. & McIlroy, D. Ichnofabrics and biologically mediated changes in clay mineral assemblages from a deep-water, fine-grained, calcareous sedimentary succession: An example from the Upper Cretaceous Wyandot Formation, offshore Nova Scotia. Bull. Can. Petrol. Geol. 58, 203–218 (2010).Article
Google Scholar
Rodríguez-Tovar, F. J. & Hernández-Molina, F. J. Ichnological analysis of contourites: Past, present and future. Earth-Sci. Rev. 182, 28–41 (2018).ADS
Article
Google Scholar
Miguez-Salas, O. & Rodríguez-Tovar, F. J. Ichnofacies distribution in the Eocene-Early Miocene Petra Tou Romiou outcrop, Cyprus: Sea level dynamics and palaeoenvironmental implications in a contourite environment. Int. J. Earth Sci. 108, 2531–2544 (2019).CAS
Article
Google Scholar
Nelson, C. S. Bioturbation in middle bathyal, Cenozoic nannofossil oozes and chalks, southwest Pacific. In Initial Reports of the Deep Sea Drilling Project 90 (eds Kennett, J. P., von der Borch, C. C. et al.) 1189–1200 (Washington U.S. Government Printing Office, 1986).
Google Scholar
Fütterer, D. K. Bioturbation and trace fossils in deep sea sediments of the Walvis Ridge, southeastern Atlantic, Leg 74. In Initial Reports of the Deep Sea Drilling Project 74 (eds Moore, T. C., Rabinowitz, P. D. et al.) 543–555 (Government Printing Office, 1984).
Google Scholar
Wetzel, A. Ichnofabrics in Eocene to Maestrichtian sediments from Deep Sea Drilling Project Site 605, off the New Jersey coast. In Initial Reports of the Deep Sea Drilling Project 93 (eds. Hinte, J. E., Wise Jr., S. W. et al.) 825–835 (1987).Droser, M. L. & Bottjer, D. J. Trace fossils and ichnofabrics in Leg 119 cores. In Proceedings of the Ocean Drilling Program, Scientific Results 119 (eds. Barron, J., Larsen, B. et al.) 635–641 (1991).Desai, B. G. Ichnofabric analysis of bathyal chalks: The Miocene Inglis Formation of the Andaman and Nicobar Islands, India. J. Palaeogeogr. 10, 1–15 (2021).Article
Google Scholar
Warme, J. E., Kennedy, W. J. & Scheidermann, N. Biogenic sedimentary structures (trace fossils) in Leg 15 cores. In Initial Reports of the Deep Sea Drilling Project 15 (eds. Edgar, N. T., Saunders, J. B. et al.) 813–831 (1973).Maurrasse, F. Sedimentary structures of Caribbean Leg 15 sediments. In Initial Reports of the Deep-Sea Drilling Project 15 (eds. Edgar, T. et al.) (1974).Erba, E. & Premoli-Silva, I. Orbitally driven cycles in trace-fossil distribution from the Piobbico core (late Albian, central Italy). In Orbital Forcing and Cyclic Sequences, IAS Spec. Publ. 19 (eds De Boer, P. L. & Smith, D. G.) 211–225 (Blackwell Scientific, 1994).
Google Scholar
Chamberlain, C. K. Trace fossils in DSDP cores of the Pacific. J. Paleontol. 49, 1074–1096 (1975).
Google Scholar
Ekdale, A. A. Trace fossils in Deep Sea Drilling Project Leg 58 cores. In Initial Reports of the Deep Sea Drilling Project 58 (eds. de Vries Klein, G., Kobyashi, K. et al.) 601–605 (1980).Ekdale, A. A. Geologic history of the abyssal benthos: Evidence from trace fossils in Deep-Sea Drilling Project cores. PhD Dissertation, Rice University, 154 (1974).Ekdale, A. A. Abyssal trace fossils in worldwide Deep Sea Drilling Project cores. In Trace Fossils 2 (eds. Crimes, T. P. & Harper, J. C.) 163–182 (Geol. J., Spec. Iss. 9, 1977).Ekdale, A. A. & Berger, W. H. Deep-sea ichnofacies: Modern organism traces on and in pelagic carbonates of the western equatorial Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 23, 263–278 (1978).Article
Google Scholar
Ekdale, A. A., Muller, L. N. & Novak, M. T. Quantitative ichnology of modern pelagic deposits in the abyssal Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 189–223 (1984).CAS
Article
Google Scholar
Savrda, C. E. Limited ichnologic fidelity and temporal resolution in pelagic sediments: Paleoenvironmental and paleoecologic implications. Palaios 29, 210–217 (2014).ADS
Article
Google Scholar
Bromley, R. G. & Ekdale, A. A. Composite ichnofabrics and tiering of burrows. Geol. Mag. 123, 59–65 (1986).ADS
Article
Google Scholar
Griffin, J. N. et al. Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118, 1335–1342 (2009).Article
Google Scholar
Valentine, J. W. Overview of marine biodiversity. In Marine Macroecology (eds Witman, J. D. & Roy, K.) 3–28 (University of Chicago Press, 2009).Chapter
Google Scholar
Schlacher, T. A. et al. Soft-sediment benthic community structure in a coral reef lagoon—The prominence of spatial heterogeneity and “spot endemism”. Mar. Ecol. Prog. Ser. 174, 159–174 (1998).ADS
Article
Google Scholar
Hummel, H. et al. Geographic patterns of biodiversity in European coastal marine benthos. J. Mar. Biol. Assoc. U.K. 97, 507–523 (2017).Article
Google Scholar
Harborne, A. R., Mumby, P. J., Żychaluk, K., Hedley, J. D. & Blackwell, P. G. Modeling the beta diversity of coral reefs. Ecology 87, 2871–2881 (2006).PubMed
Article
Google Scholar
Christia, C., Giordani, G. & Papastergiadou, E. Environmental variability and macrophyte assemblages in coastal lagoon types of Western Greece (Mediterranean Sea). Water 10, 151 (2018).Article
CAS
Google Scholar
Dorador, J., Rodríguez-Tovar, F. J., IODP Expedition 339 Scientists. Digital image treatment applied to ichnological analysis of marine core sediments. Facies 60, 39–44 (2014).Article
Google Scholar
Dorador, J. & Rodríguez-Tovar, F. J. High-resolution image treatment in ichnological core analysis: Initial steps, advances and prospects. Earth-Sci. Rev. 177, 226–237 (2018).ADS
Article
Google Scholar
Taylor, A. M. & Goldring, R. Description and analysis of bioturbation and ichnofabric. J. Geol. Soc. 150, 141–148 (1993).ADS
Article
Google Scholar
Cao, Y. M., Curran, A. H. & Glumac, B. Testing the use of photoshop and imageJ for evaluating ichnofabrics. 2015 GSA Annual Meeting in Baltimore, Maryland, USA, Paper No. 128-11 (The Geol. Soc. of Am., 2015). More