Changes in soil carbon mineralization related to earthworm activity depend on the time since inoculation and their density in soil
Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).ADS
CAS
Article
Google Scholar
Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64(2), 161–182. https://doi.org/10.1111/ejss.12025 (2013).Article
Google Scholar
Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 9750. https://doi.org/10.7717/peerj.9750 (2020).Article
Google Scholar
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 6464. https://doi.org/10.1126/science.aax4851 (2019).CAS
Article
Google Scholar
Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).CAS
Article
Google Scholar
Angst, G. et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Commun. Biol. 2, UNSP 441 (2019).Article
Google Scholar
Bohlen, P. J. & Edwards, C. A. Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol. Biochem. 27, 341–348 (1995).CAS
Article
Google Scholar
Bossuyt, H., Six, J. & Hendrix, P. F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 37, 251–258 (2005).CAS
Article
Google Scholar
Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194 (2013).ADS
CAS
Article
Google Scholar
Huang, W., Gonzalez, G. & Zou, X. M. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. Appl. Soil Ecol. 150, 103473. https://doi.org/10.1016/j.apsoil.2019.103473 (2020).Article
Google Scholar
Kruck, S., Joschko, M., Schultz-Sternberg, R., Kroschewski, B. & Tessmann, J. A classification scheme for earthworm populations (Lumbricidae) in cultivated agricultural soils in Brandenburg, Germany. J. Plan Nutr. Soil Sci. 169, 651–660 (2006).Article
Google Scholar
Westernacher, E. & Raff, O. Orientation behaviour of earthworms (Lumbricidae) toward different crops. Biol. Fertil. Soils 3, 131–133 (1987).
Google Scholar
Coppens, F., Garnier, P., Degryze, S., Merckx, R. & Recous, S. Soil moisture, carbon and nitrogen dynamics following incorporation versus surface application of labelled residues in soil columns. Eur. J. Soil Sci. 57, 894–905 (2006).CAS
Article
Google Scholar
Angers, D. A. & Recous, S. Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 189, 197–203 (1997).CAS
Article
Google Scholar
Iqbal, A., Garnier, P., Lashermes, G. & Recous, S. A new equation to simulate the contact between soil and maize residues of different sizes during their decomposition. Biol. Fertil. Soils 50, 645–655 (2014).CAS
Article
Google Scholar
Šimek, M. & Pižl, V. Soil CO2 flux affected by Aporrectodea caliginosa earthworms. Cent. Eur. J. Biol. 5, 364–370 (2010).
Google Scholar
Potthoff, M., Joergensenb, R. G. & Woltersc, V. Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought. Soil Biol. Biochem. 33, 583–591 (2001).CAS
Article
Google Scholar
Bernard, L. et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 6, 213–122 (2012).CAS
Article
Google Scholar
Borken, W., Gründel, S. & Beese, F. Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol. Fertil. Soils 32, 142–148 (2000).CAS
Article
Google Scholar
Martin, A. Short-term and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol. Fertil. Soils 11, 234–238 (1991).Article
Google Scholar
Moreau-Valancogne, P., Bertrand, M., Holmstrup, M. & Roger-Estrade, J. Integration of thermal time and hydrotime models to describe the development and growth of temperate earthworms. Soil Biol. Biochem. 63, 50–60. https://doi.org/10.1016/j.soilbio.2013.03.022 (2013).CAS
Article
Google Scholar
Lubbers, I. M., van Groenigen, K. J., Brussaard, L. & van Groenigen, J. W. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity. Sci. Rep. 5, 13787 (2015).ADS
Article
Google Scholar
Joschko, M. et al. Spatial analysis of earthworm biodiversity at the regional scale. Agric. Ecosyst. Environ. 112, 367–380 (2006).Article
Google Scholar
Kanianska, R., Jad’ud’ova, J., Makovnikova, J. & Kizekova, M. Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability 8, 906 (2016).Article
Google Scholar
Chertov, O. et al. Romul_Hum model of soil organic matter formation coupled with soil biota activity. III Parameterisation of earthworm activity. Ecol. Model. 345, 140–149 (2017).CAS
Article
Google Scholar
Pelosi, C., Bertrand, M., Makowski, D. & Roger-Estrade, J. WORMDYN: A model of Lumbricus terrestris population dynamics in agricultural fields. Ecol. Model. 218, 219–234 (2008).Article
Google Scholar
Fisk, M. C., Fahey, T. J., Groffman, P. M. & Bohlen, P. J. Earthworm invasion, fine-root distributions, and soil respiration in north temperate forests. Ecosystems 7, 55–62 (2004).Article
Google Scholar
Rizhiya, E. et al. Earthworm activity as a determinant for N2O emission from crop residue. Soil Biol. Biochem. 39, 2058–2069 (2007).CAS
Article
Google Scholar
Snyder, B. A., Boots, B. & Hendrix, P. F. Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native north American millipedes (Pseudopolydesmus erasus, Polydesmidae): Effects on carbon cycling and soil structure. Soil Biol. Biochem. 41, 1442–1449 (2009).CAS
Article
Google Scholar
Chapuis-Lardy, L. et al. Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl. Soil Ecol. 45, 201–208 (2010).Article
Google Scholar
Bertora, C., van Vliet, P. C. J., Hummelink, E. W. J. & van Groenigen, J. W. Do earthworms increase N2O emissions in ploughed grassland?. Soil Biol. Biochem. 39, 632–640 (2007).CAS
Article
Google Scholar
Binet, F., Fayolle, L. & Pussard, M. Significance of earthworms in stimulating soil microbial activity. Biol. Fertil. Soils 27, 79–84 (1998).Article
Google Scholar
Butenschoen, O. et al. Endogeic earthworms alter carbon translocation by fungi at the soil–litter interface. Soil Biol. Biochem. 39, 2854–2864 (2007).CAS
Article
Google Scholar
Cortez, J., Hameed, R. & Bouche, M. B. C-transfer and N-transfer in soil with or without earthworms fed with C-14 labelled and N-15 labelled wheat straw. Soil Biol. Biochem. 21, 491–497 (1989).Article
Google Scholar
Marhan, S., Langel, R., Kandeler, E. & Scheu, S. Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae). Eur. J. Soil Biol. 43, S201–S208 (2007).CAS
Article
Google Scholar
Scheu, S. Effects of litter (beech and stinging nettle) and earthworms (Octolasion lacteum) on carbon and nutrient cycling in beech forests on a basalt-limestone gradient: A laboratory experiment. Biol. Fertil. Soils 24, 384–393 (1997).CAS
Article
Google Scholar
Wolters, V. & Schaefer, M. Effects of burrowing by the earthworm Aporrectodea caliginosa (Savigny) on beech litter decomposition in an agricultural and in a forest soil. Geoderma 56, 627–632 (1993).ADS
Article
Google Scholar More