More stories

  • in

    Humans pressure wetland multifunctionality

    Daskalova, G. N. et al. Science 368, 1341–1347 (2020).CAS 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    Hector, A. & Bagchi, R. Nature 448, 188–190 (2007).CAS 
    Article 

    Google Scholar 
    Fanin, N. et al. Nat. Ecol. Evol. 2, 269–278 (2018).Article 

    Google Scholar 
    Duffy, J. E. Front. Ecol. Environ. 7, 437–444 (2009).Article 

    Google Scholar 
    Manning, P. et al. Adv. Ecol. Res. 61, 323–356 (2019).Article 

    Google Scholar 
    Lefcheck, J. S. et al. Nat. Commun. 6, 6936 (2015).CAS 
    Article 

    Google Scholar 
    Soliveres, S. et al. Nature 536, 456–459 (2016).CAS 
    Article 

    Google Scholar 
    Moi, D. A. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01827-7 (2022).Article 

    Google Scholar 
    Venter, O. et al. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Allan, E. et al. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    Article 

    Google Scholar 
    Manning, P. et al. Nat. Ecol. Evol. 2, 427–436 (2018).Article 

    Google Scholar 
    Gamfeldt, L. et al. Nat. Commun. 4, 1340 (2013).Article 

    Google Scholar 
    Schuldt, A. et al. Nat. Commun. 9, 2989 (2018).Article 

    Google Scholar 
    Jochum, M. et al. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 

    Google Scholar 
    Dudgeon, D. et al. Biol. Rev. 81, 163–182 (2005).Article 

    Google Scholar 
    Blois, J. L. et al. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).CAS 
    Article 

    Google Scholar 
    França, F. et al. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Ewers, R. M. et al. Nat. Commun. 6, 6836 (2015).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Science 336, 589–592 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Human pressure drives biodiversity–multifunctionality relationships in large Neotropical wetlands

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 

    Google Scholar 
    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinctions risk. Nat. Commun. 9, 4621 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).CAS 
    PubMed 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).CAS 
    PubMed 

    Google Scholar 
    Schuldt, A. et al. Biodiversity across trophic levels drive multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 211–220 (2020).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 

    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).PubMed 

    Google Scholar 
    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 

    Google Scholar 
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).PubMed 

    Google Scholar 
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    PubMed 

    Google Scholar 
    Moi, D. A. et al. Regime shifts in a shallow lake over 12 years: consequences for taxonomic and functional diversities, and ecosystem multifunctionality. J. Anim. Ecol. 91, 551–565 (2022).PubMed 

    Google Scholar 
    Moi, D. A. et al. Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct. Ecol. 35, 942–954 (2021).CAS 

    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
    Google Scholar 
    Li, F. et al. Human activitiesʼ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Change Biol. 26, 6867–6879 (2020).
    Google Scholar 
    Enquist, B. J. et al. The megabiota are disproportionately importante for biosphere functioning. Nat. Commun. 11, 699 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Agostinho, A. A., Thomaz, S. M. & Gomes, L. C. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol. Hydrobiol. 4, 255–268 (2004).
    Google Scholar 
    Chiaravalloti, R. M., Homewood, K. & Erikson, K. Sustainability and land tenure: who owns the floodplain in the Pantanal, Brazil? Land Use Policy 64, 511–524 (2017).
    Google Scholar 
    Pelicice, F. M. et al. Large-scale degradation of the Tocantins–Araguaia River Basin. Environ. Manag. 68, 445–452 (2021).
    Google Scholar 
    Malekmohammadi, B. & Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 82, 293–303 (2017).
    Google Scholar 
    McIntyre, P. B. et al. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Natl Acad. Sci. USA 104, 4461–4466 (2006).
    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Google Scholar 
    Heino, J. et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 96, 89–106 (2020).PubMed 

    Google Scholar 
    Bridgewater, P. & Kim, R. E. The Ramsar conservation on wetlands at 50. Nat. Ecol. Evol. 5, 268–270 (2020).
    Google Scholar 
    Romero, G. Q. et al. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol. Lett. 17, 20210137 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lansac-Tôha, F. M. et al. Scale-depedent patterns of metacommunity structuring in aquatic organisms across floodplain systems. J. Biogeogr. 48, 872–885 (2021).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Weiss, K. C. B. & Ray, C. A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42, 2012–2020 (2019).
    Google Scholar 
    Laliberté, E. & Legendre, R. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 

    Google Scholar 
    Mackereth, F. J. H, Heron, J & Talling, J. F. Water Analysis: Some Revised Methods for Limnologists. Publication No. 36 (Freshwater Biological Association, 1978).Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwaters (Blackwell Scientific Publications, 1978).Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).
    Google Scholar 
    Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankt. Res. 25, 1331–1346 (2003).
    Google Scholar 
    Froese, R. & Pauly, D. FishBase (2018); www.fishbase.orgPorter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora1. Limnol. Oceanogr. 25, 943–948 (1980).
    Google Scholar 
    Manning, P. et al. Redifining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).PubMed 

    Google Scholar 
    Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. R version 2.0–12 https://rspatial.org/raster (2012).World Urbanization Prospects: The 2020 Revision: Highlights (United Nations, 2020).Junk, W. J. et al. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshwater Ecosyst. 24, 5–22 (2013).
    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R version 3.1.137 https://CRAN.Rproject.org/package=nlme (2018).K. Barton, MuMIn: Model selection and model averaging based on information criteria (AICc and alike). R version 1–1 https://CRAN.R-project.org/package=MuMIn (2014).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Schielzeth, H. Simple means to improve the interpretability ofregression coefficients. Meth. Ecol. Evol. 1, 103–113 (2010).
    Google Scholar 
    Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions (Sage Publications, 1991).Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2015).
    Google Scholar 
    Grace, J. B. & Bollen, K. A. Representing general theoretical concepts in structural equation models: the role of composite variables. Environ. Ecol. Stat. 15, 191–213 (2008).
    Google Scholar 
    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    More than half of data deficient species predicted to be threatened by extinction

    Cardillo, M. & Meijaard, E. Are comparative studies of extinction risk useful for conservation? Trends Ecol. Evol. 27, 167–171 (2012).PubMed 
    Article 

    Google Scholar 
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Sci. (80-.). 366, eaax3100 (2019).Article 
    CAS 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Sci. (80-.) 353, 288–291 (2016).CAS 
    Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Sci. (80-.). 344, 1246752–1246752 (2014).CAS 
    Article 

    Google Scholar 
    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo (2019) https://doi.org/10.5281/zenodo.3831674.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, A., Pilgrim, J., Lamoreux, J., Hoffmann, M. & Brooks, T. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 
    Article 

    Google Scholar 
    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bachman, S. P. et al. Progress, challenges and opportunities for Red Listing. Biol. Conserv. 234, 45–55 (2019).Article 

    Google Scholar 
    Rondinini, C., Di Marco, M., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN red list. Conserv. Lett. 7, 126–130 (2014).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-2. https://www.iucnredlist.org (2021).Cazalis, V. et al. Bridging the research-implementation gap in IUCN Red List assessments. Trends Ecol. Evol. 37, 359–370 (2022).PubMed 
    Article 

    Google Scholar 
    IUCN Standards and Petitions Committee. Guidelines for using the IUCN Red List Categories and Criteria. Prepared by the Standards and Petitions Committee. Downloadable from https://www.iucnredlist.org/documents/RedListGuidelines.pdf vol. 15 (2022).Bland, L. M. et al. Toward reassessing data‐deficient species. Conserv. Biol. 31, 531–539 (2017).PubMed 
    Article 

    Google Scholar 
    Butchart, S. H. M. & Bird, J. P. Data Deficient birds on the IUCN Red List: What don’t we know and why does it matter? Biol. Conserv. 143, 239–247 (2010).Article 

    Google Scholar 
    Zhao, L. et al. Spatial knowledge deficiencies drive taxonomic and geographic selectivity in data deficiency. Biol. Conserv. 231, 174–180 (2019).Article 

    Google Scholar 
    Parsons, E. C. M. Why IUCN should replace “Data Deficient” conservation status with a precautionary “Assume Threatened” Status—A Cetacean Case Study. Front. Mar. Sci. 3, 2015–2017 (2016).
    Google Scholar 
    Roberts, D. L., Taylor, L. & Joppa, L. N. Threatened or Data Deficient: assessing the conservation status of poorly known species. Divers. Distrib. 22, 558–565 (2016).Article 

    Google Scholar 
    Jetz, W. & Freckleton, R. P. Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140016 (2015).Article 

    Google Scholar 
    Howard, S. D. & Bickford, D. P. Amphibians over the edge: silent extinction risk of Data Deficient species. Divers. Distrib. 20, 837–846 (2014).Article 

    Google Scholar 
    Jarić, I., Courchamp, F., Gessner, J. & Roberts, D. L. Potentially threatened: a Data Deficient flag for conservation management. Biodivers. Conserv. 25, 1995–2000 (2016).Article 

    Google Scholar 
    Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).PubMed 
    Article 

    Google Scholar 
    Butchart, S. H. M. et al. Measuring Global Trends in the status of biodiversity: red list indices for birds. PLoS Biol. 2, e383 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (2015).Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B Biol. Sci. 360, 255–268 (2005).CAS 
    Article 

    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).Article 

    Google Scholar 
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for Phylogenetic Conservation Prioritization. PLoS One 3, e3700 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Runting, R. K., Phinn, S., Xie, Z., Venter, O. & Watson, J. E. M. Opportunities for big data in conservation and sustainability. Nat. Commun. 11, 2003 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. 35, 502–509 (2021).PubMed 
    Article 

    Google Scholar 
    Hino, M., Benami, E. & Brooks, N. Machine learning for environmental monitoring. Nat. Sustain 1, 583–588 (2018).Article 

    Google Scholar 
    Wearn, O. R., Freeman, R. & Jacoby, D. M. P. Responsible AI for conservation. Nat. Mach. Intell. 1, 72–73 (2019).Article 

    Google Scholar 
    Bland, L. M. et al. Cost-effective assessment of extinction risk with limited information. J. Appl. Ecol. 52, 861–870 (2015).Article 

    Google Scholar 
    Bland, L. M. & Böhm, M. Overcoming data deficiency in reptiles. Biol. Conserv. 204, 16–22 (2016).Article 

    Google Scholar 
    Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed 
    Article 

    Google Scholar 
    Luiz, O. J., Woods, R. M., Madin, E. M. P. & Madin, J. S. Predicting IUCN extinction risk categories for the World’s Data Deficient Groupers (Teleostei: Epinephelidae). Conserv. Lett. 9, 342–350 (2016).Article 

    Google Scholar 
    Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. Using coarse-scale species distribution data to predict extinction risk in plants. Divers. Distrib. 23, 435–447 (2017).Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Tracking the rising extinction risk of sharks and rays in the Northeast Atlantic Ocean and Mediterranean Sea. Sci. Rep. 11, 15397 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 108459 (2020).Article 

    Google Scholar 
    IUCN. Species Information Service. Version 2020-3. https://www.iucnredlist.org/resources/spatial-data-download (2021).IUCN. The IUCN Red List of Threatened Species. Version 2020-3. https://www.iucnredlist.org (2020).Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, 1–34 (2014).Article 

    Google Scholar 
    Selig, E. R. et al. Global priorities for Marine biodiversity conservation. PLoS One 9, e82898 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    O’Hara, C. C., Afflerbach, J. C., Scarborough, C., Kaschner, K. & Halpern, B. S. Aligning marine species range data to better serve science and conservation. PLoS One 12, e0175739 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mittermeier, R. A., Goetsch Mittermeier, C., Gil, P. R. & Wilson, E. O. Megadiversity: Earth’s Biologically Wealthiest Nations. CEMEX (2005).Chamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0. (2020).GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).OBIS. Ocean Biodiversity Information System. Intergovernmental Oceanographic Commission of UNESCO. www.obis.org. (2021).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).Provoost, P. & Bosch, S. robis: Ocean Biodiversity Information System (OBIS) Client. R package version 2.3.9. https://CRAN.R-project.org/package=robis. (2020).Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 25, 811–826 (2019).PubMed 
    Article 

    Google Scholar 
    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Sci. (80-.) 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Tuanmu, M. N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).Article 

    Google Scholar 
    Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Byers, L. et al. A Global Database of Power Plants. World Resour. Inst. 1–18 (2019).Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).Article 

    Google Scholar 
    Barbarossa, V. et al. Erratum: FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Sci. Data 5, 180078 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. 117, 3648–3655 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).PubMed 
    Article 

    Google Scholar 
    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163 (2006).PubMed 
    Article 

    Google Scholar 
    Schlossberg, S., Chase, M. J., Gobush, K. S., Wasser, S. K. & Lindsay, K. State-space models reveal a continuing elephant poaching problem in most of Africa. Sci. Rep. 10, 10166 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burn, R. W., Underwood, F. M. & Blanc, J. Global trends and factors associated with the illegal killing of Elephants: a hierarchical Bayesian Analysis of Carcass Encounter Data. PLoS One 6, e24165 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hauenstein, S., Kshatriya, M., Blanc, J., Dormann, C. F. & Beale, C. M. African elephant poaching rates correlate with local poverty, national corruption and global ivory price. Nat. Commun. 10, 2242 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    UNDP. Human Development Report 2020. The Next Frontier: Human Development and the Anthropocene. New York. http://hdr.undp.org/en/content/human-development-report-2020. (2020).Transparency International. Corruption Perceptions Index 2020. (2020).Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Sci. (80-.) 319, 948–952 (2008).CAS 
    Article 

    Google Scholar 
    Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).Article 

    Google Scholar 
    Zizka, A., Silvestro, D., Vitt, P. & Knight, T. M. Automated conservation assessment of the orchid family with deep learning. Conserv. Biol. 35, 897–908 (2021).PubMed 
    Article 

    Google Scholar 
    Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning. The Elements of Statistical Learning vol. 27 (Springer New York, 2001).Kampichler, C., Wieland, R., Calmé, S., Weissenberger, H. & Arriaga-Weiss, S. Classification in conservation biology: a comparison of five machine-learning methods. Ecol. Inform. 5, 441–450 (2010).Article 

    Google Scholar 
    LeDell, E. et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package version 3.36.0.4. https://github.com/h2oai/h2o-3 (2022).H2O.ai. H2O AutoML. https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html (2022).Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 
    Article 

    Google Scholar 
    Kuhn, M. Building Predictive Models in R using the caret Package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    Harrell Jr, F. E. Hmisc: Harrell miscellaneous. R package version 4.5-0. (2021).van der Laan, M. J., Polley, E. C. & Hubbard, A. E. Super Learner. Stat. Appl. Genet. Mol. Biol. 6 (2007).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).RStudio Team. RStudio: integrated development environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).Pebesma, E. Simple features for R: standardized support for Spatial Vector Data. R. J. 10, 439 (2018).Article 

    Google Scholar 
    Ross, N. Fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3. https://CRAN.R-project.org/package=fasterize (2020).Microsoft Corporation & Weston, S. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R package version 1.0.16. https://CRAN.R-project.org/package=doParallel (2020).Wickham, H. stringr: simple, consistent wrappers for common string operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr (2019).Tuszynski, J. caTools: tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc. R package version 1.18.1. https://CRAN.R-project.org/package=caTools (2021).Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686 (2019).Dragulescu, A. & Arendt, C. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.5. (2020).Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl (2019).ESRI. ArcGIS Pro version 2.9.0. https://www.esri.com/en-us/home (2022).Kuhn, M. caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer, NY (2016).Wilke, C. O. ggridges: Ridgeline Plots in ‘ggplot2’. R package version 0.5.3. https://CRAN.R-project.org/package=ggridges (2021).South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. https://CRAN.R-project.org/package=rnaturalearth (2017).Garnier, S. viridis: Default Color Maps from ‘matplotlib’. R package version 0.5.1. https://CRAN.R-project.org/package=viridis (2018).Borgelt, J. jannebor/dd_forecast: Code for study ‘More than half of Data Deficient species predicted to be threatened by extinction’ (v1.0.1). https://doi.org/10.5281/zenodo.6627688.Zenodo (2022). More

  • in

    Proximity to small-scale inland and coastal fisheries is associated with improved income and food security

    Study designWe used a food systems framing to conceptually position our research to investigate how small-scale fisheries shape two key aspects of food environments – physical access to food via living in proximity to small-scale fisheries (fish as food pathway), and economic access to food via small-scale fisheries livelihoods (fish as income pathway).We examined food system components of supply chains (small-scale fisheries livelihoods related to harvesting, processing and trade), food environments (proximity to small-scale fisheries and livelihoods), income poverty status, and household diets (fish consumption and annual food security) (Supplementary Fig 7)40,41. Small-scale fisheries are notably recognised for their safety net function during times of shocks and extreme events, increasing the ability of households to recover, exit poverty and afford food over the longer-term42.Country selection and household survey dataWe selected Malawi, Tanzania and Uganda, given these countries represent a region where small-scale fisheries provides the main supply of fish and are important for rural inland and coastal livelihoods24,43, and yet substantial data gaps remain in valuing small-scale fisheries in the regional food system. Small-scale fisheries, particularly inland fisheries, in this region are known to be highly productive with a linear increasing trend in catches over the last three decades25,35. On average 70% of the total catches consist of small pelagic species, which are largely driven by climate, and are highly productive, resilient, and under-exploited34. However, challenges do exist in fisheries governance and signs of over-exploitation of some few fish stocks44, as well as high post-harvest fish waste and loss across value-chains undermine the potential benefits from the sector23. We analysed the World Bank’s Living Standards Measurement Surveys and its Integrated Surveys on Agriculture (LSMS-ISA) from Malawi, Tanzania and Uganda. The LSMS-ISA surveys conducted in these countries collected georeferenced household-level data and had been designed and implemented with a dedicated fishery module39 which contained questions on household fish consumption (frequency, quantity, and form of fresh or dried fish) and small-scale fisheries livelihoods across value chains (harvesting, processing and trading). The fishery module was collected across different years in Malawi (2016–17), Tanzania (2014–15) and Uganda (2010–11), and accordingly these are the years analysed in this study. The LSMS-ISA surveys collects consumption data over a period of 12 months so that the indicator captures the intrinsic variability due to seasonality, such as low and high periods of food consumption.Geospatial data and distance to fishing groundsGeoreferenced household data from LSMS-ISA surveys were matched with geospatial data on the location of inland water bodies and coastlines (Supplementary Table 11) to investigate geographic correlates (e.g., distance to fishing grounds – water bodies where fisheries occur) of poverty and food security. Data on inland water bodies were from the Global Lakes and Wetlands Database (GLWD)45, and the European Space Agency GlobCover databases for coastlines46. Inland water bodies from the GLWD database include permanent, open water bodies (e.g., lakes, reservoirs, rivers) with a surface area ≥0.1 km2 for each country, including cross-border water bodies. We selected water bodies to represent types of water bodies known to support fisheries, based on catch data24,43. We assume the entire coastline of Tanzania was accessible and used for marine small-scale fisheries. We use the term ‘water body’ to mean either freshwater or marine waters.Distance between water bodies and households was calculated as the shortest, straight line, distance from the household location (identified through the GPS coordinates of the households) to any point of the nearest water body. The distance was expressed in km.In our descriptive statistics, a cut-off threshold of 5 km from fishing grounds was used to compare the key indicators presented in this study (e.g., percent of poor and food insecure households, frequency and quantity of fish consumption, etc), for households proximate and distant (≤5 km was considered close and >5 km was considered far) from fished water bodies, as well as between fishing and non-fishing households. The choice of the cut-off threshold used for our descriptive statistics was guided by other studies16,17, in addition to reflecting the distribution of households by quintile of distance to water bodies. Concerning the latter, we found that the average distance from fishing ground of the first quintile was always lower than 5 km in all countries.In the regression analyses, the distance to water bodies was included as a continuous variable (in km). This choice reflects the need to better understand dynamics for households that tend to live more distant from fishing grounds. These dynamics were captured by measuring the marginal increase in the probability of being poor or food insecure for a one-unit increase (1 km) from the mean distance to fishing grounds.We acknowledge two limitations behind the calculation of the straight-line distance to water bodies. First, using the straight-line distance to water bodies may introduce biases in the statistical analyses presented, especially for households located in any particular landscapes within the country. The walking or travel time distance over a road network would provide a better alternative, however there is lack of data on road networks. Despite the straight-line distance to water bodies encompasses some limitations, we still believe that this method of calculation provides a good proxy to categorize household in relation to their distance to water bodies, and the results from the analyses should not deviate substantially from other method of calculation. For example, a study51 found that the straight-line distance tends to be highly correlated (R  > 0.91) with both walking and travel time distance.Second, an additional bias in the presented analyses may be introduced due to the modification strategy of the households GPS coordinates. This strategy was implemented before dissemination of household level data to avoid the risk of disclosure of sampled households. In its essence, the modification strategy relies on random offset of cluster center-point within a specified range. For urban areas a range of 0–2 km is used. In rural areas, where risk of disclosure may be higher due to more dispersed communities, a range of 0–5 km offset was used. While we had no control over this modification strategy, we believe that the modification of the GPS coordinates does not affect the way households are classified in relation to their distance to fishing grounds: considering that the modification strategy was applied to both distant and proximate households, we expect that the distribution between households close and distant to water bodies has remained unchanged and, hence, the presented statistics are still valid for the analysis.Variable constructionWe used a range of socio-economic indicators across food system components (Supplementary Table 11). As a measure of physical and economic access to food we used two indicators of small-scale fisheries: proximity to fishing grounds and fishing households. Household livelihoods were assigned according to whether households primarily, but not exclusively, engaged in small-scale fisheries (fishing, harvesting, processing and/or trading which varied by survey), agriculture (e.g., crop or livestock), or neither fisheries or agriculture. For each country survey, households were categorised according to their engagement in fishing and/or agriculture activities in the prior 12 months. Households in which one or more member engaged in fish-related activities were defined as ‘fishing households’. Fish-related livelihood activities were defined as fish harvesting, processing, and trading in Malawi and Tanzania, whilst in Uganda they were defined only as fishing. Households with one or more member engaged in agriculture, but not in fish-related activities, were defined as ‘agriculture households’. Through data exploration of livelihood categories, we found that 96% of all fishing households in our study combine fish-related and agricultural activities, with only 4% engaging exclusively in small-scale fisheries. Examination of diverse livelihood typologies within fishing household category (e.g., fisher-farmer, which is common in the region or exclusive fisher) was deemed out of the scope of this study and not feasible due to the small number of observations of exclusive fishers.Household poverty was measured using the per-capita monthly expenditure (equivalized using the adult equivalent scale). Poor households were defined as those households with a per-capita monthly expenditure below the national poverty line. The national poverty line –which was defined by national authorities in the three countries analysed–is a country-specific monetary threshold below which a household (and its members) cannot meet their basic needs. The poverty metric, as defined above, was used across physical, natural and human capital: asset wealth, distance to markets, access to land and education level of head of household. Since the asset wealth captures the typologies and number of assets owned by the household (durable goods – radio, bicycle, TV; utilities and infrastructure – access to protected water source and electricity), we developed an index for assets using the principal component analysis. This technique reduced the multi-dimensionality of the asset’s variables, and it allowed the data to identify the linear combinations of the assets components that explain the greatest share of the variation in wealth. As the final wealth index was standardised across households, this index allowed providing a ranking of households which reflected their ownership of assets.Food security was measured using two indicators; household-level food consumption profile – using the Food Consumption Score (FCS) index20, and subjective food insecurity defined as the number of months during a year that a household reported not having enough food to feed the household. Together, these indicators provide a more comprehensive understanding of household food security over a longer period than other surveys (e.g. Demographic and Health)47,48,49. The LSMS-ISA surveys collects food consumption data over a 7-day recall period. To capture seasonal variation in the food consumption indicators, sampled households were interviewed over a 12-month period: for each month of the year, a different portion of sampled households was interviewed so that the derived indicators reflect the intrinsic variability in food consumption, which may be due to seasonality. We used the FCS index as a food security indicator as it is akin to the data collected via the LSMS-ISA surveys, and that there was a need for comparison across select countries. The FCS index measures the frequency (number of days) and diversity of food groups consumed over a 7-day recall period, with weights given to groups based on nutritional value. The FCS index is validated as a proxy for energy sufficiency (quantity of food) and food access, and is associated with other household-level diet diversity measures (e.g. household dietary diversity score (HDDS))20,48. The difference between FCS and other indicators such as HDDS is the recall period (7-days versus 24 h), diversity of groups, weights assigned based on nutrition, and use of frequency together with diversity of groups consumed. The FCS with a longer recall period can show more habitual consumption but can also have limitations with people’s recall reliability. Although it has not been validated yet as an indicator for micronutrient intake, it does provide weights to nutrient-rich food groups and accounts for frequency of consumption, which other indicators do not. Fish consumption was described in terms of the (i) quantity (kg of wet weight equivalent per household per week), (ii) form (fresh, dried, smoked, other) and (iii) source (purchased, own consumption, gift) of fish consumed. The share of households reporting consumption of other animal source foods was also calculated to examine the relative role of fish in overall diets.We also examined the prices of foods consumed to investigate the accessibility of fish as food in terms of affordability compared to animal source foods. The LSMS-ISA survey collects data on the value and volume of food that were purchased and consumed. Those two variables were further used to construct the average price for each food item. To control for price level differences between countries, food prices data calculated from the survey were converted from local currency unit to international USD, using the Purchase power parity conversion factor corresponding to the year of the survey (Source: World Development Indicators database, World Bank). Moreover, since the surveys were conducted in different years, nominal prices corresponding to the years of the surveys were converted into real, inflation-adjusted prices using the Consumer Price Index (CPI, base year: 2010). This allowed to control for potential inflation patterns within countries and provide a better comparison of food prices per Kg. across the three countries analyzed (Source: World Development Indicators database, World Bank).Finally, we drew upon nutritional databases (food composition tables, FishBase and Illuminating Hidden Harvest Initiative) to understand the relative nutritional value of fish; by species, size (small or large) and form (e.g., fresh or dried), compared to other animal source foods (Supplementary Table 12). This enables us to contextualise the nutritional importance of consumption patterns.Descriptive statisticsWe created a harmonized multi-country dataset for Malawi, Tanzania and Uganda with 18,715 nationally representative household-level observations. The sample included in this study represents more than 19 million households corresponding to a population of 93.8 million people across the three countries (Supplementary Information).Descriptive statistics were calculated to compare poverty and food security indicators among households proximate and distant from fished water bodies, and between fishing and non-fishing households (see full details in Supplementary Information). For this analysis, households distant and proximate from fished water bodies were clustered into two groups based on a cut-off threshold of 5 km (distant  > 5 km; proximate ≤5 km). The Welch’s t-test was then used throughout to assess the statistical significance of mean statistics between these two groups.Econometric modelThe estimated probabilities of being poor (household living below the national poverty line) and food insecure (household with a poor food consumption profile) were modelled through two separate probit regression models, where the outcome variable was equal to 1 for poor and food insecure households and 0 otherwise. The independent variables in both models included the household’s distance to water bodies and the distance to food market. Both variables are expressed as continuous variables (in km), reflecting the need to measure the marginal increase in the probability of being poor or food insecure (i.e., the estimated β coefficients) given a one-unit change (1 km) in the distance to fishing ground (or food markets) from its mean. Both models also included an interaction variable which measured the household’s distance to water bodies but restricted to only those households who were unable to reach the food market. We tested this interaction as we expected that living in proximity to water bodies could mitigate the negative effects on poverty and food insecurity when households are unable to access food markets. In order to measure the conditional difference in the average probability to be poor and food insecure between households who engaged in fisheries and households who engaged in other non-fishing activities, we constructed a categorical variable that classified households according to their main livelihood activity, namely (1) neither fishing, nor agriculture households (i.e., the reference baseline household category), (2) fishing households and (3) agriculture households. This categorical variable was further restricted to only households living in proximity to water bodies to better measure for which typology of household the proximity to fishing grounds is most beneficial. Both models were controlled for the age, sex and the highest level of education attained by the head of the household, as well as the total number of household members employed (over total household members) and the wealth index of the household.For each model (poverty and food insecurity), we examined associations at the cross-country, national and rural levels (Tables 1 and 2, also available as Supplementary Data 1 and 2). Stata 15 was used for all statistical analyses. Both descriptive statistics and the regression coefficients were estimated using the household probability weight, the latter instrumental to make the derived indicators from the surveys representative of the population of interest thus allowing general inference for the three countries.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Seedling ectomycorrhization is central to conifer forest restoration: a case study from Kashmir Himalaya

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 4, 599–610 (2018).Article 

    Google Scholar 
    Verdone, M. & Seidl, A. Time, space, place, and the Bonn Challenge global forest restoration target. Restor. Ecol. 25, 903–911 (2017).Article 

    Google Scholar 
    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanturf, J. A., Palik, B. J. & Dumroese, R. K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 331, 292–323 (2014).Article 

    Google Scholar 
    Wang, J. et al. Use of direct seeding and seedling planting to restore Korean pine (Pinus koraiensis Sieb. Et Zucc.) in secondary forests of Northeast China. For. Ecol. Manag. 493, 119243 (2021).Article 

    Google Scholar 
    Han, A. R., Kim, H. J., Jung, J. B. & Park, P. S. Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. For. Ecol. Manag. 429, 579–588 (2018).Article 

    Google Scholar 
    Thomas, E. et al. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 333, 66–75 (2014).Article 

    Google Scholar 
    Hawkins, B. J., Jones, M. D. & Kranabetter, J. M. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New For. 46, 747–771 (2015).Article 

    Google Scholar 
    Perry, D. A., Molina, R. & Amaranthus, M. P. Mycorrhizae, mycorrhizospheres, and reforestation: Current knowledge and research needs. Can. J. For. Res. 17, 929–940 (1987).Article 

    Google Scholar 
    Duñabeitia, M. K. et al. Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14, 11–18 (2004).PubMed 
    Article 

    Google Scholar 
    Rincón, A., De Felipe, M. R. & Fernández-Pascual, M. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18, 23–32 (2007).PubMed 
    Article 

    Google Scholar 
    Sanchez-Zabala, J. et al. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23, 627–640 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa, N. R., Franco, A. R., Oliveira, R. S. & Castro, P. M. Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. For. Ecol. Manag. 320, 50–55 (2014).Article 

    Google Scholar 
    Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. & Bhatnagar, J. M. Back to roots: The role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).Article 

    Google Scholar 
    Jones, M. D., Durall, D. M. & Cairney, J. W. G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157, 399–422 (2003).PubMed 
    Article 

    Google Scholar 
    Policelli, N., Bruns, T. D., Vilgalys, R. & Nuñez, M. A. Suilloid fungi as global drivers of pine invasions. New Phytol. 222, 714–725 (2019).PubMed 
    Article 

    Google Scholar 
    Visser, S. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol. 129, 389–401 (1995).Article 

    Google Scholar 
    Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders pinaceae invasions. Ecology 90, 2352–2359 (2009).PubMed 
    Article 

    Google Scholar 
    Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 130, 173–183 (2020).Article 

    Google Scholar 
    Grossnickle, S. C. & Reid, C. P. P. The use of ectomycorrhizal conifer seedlings in the revegetation of a high-elevation mine site. Can. J. For. Res. 12, 354–361 (1982).Article 

    Google Scholar 
    Teste, F. P., Schmidt, M. G., Berch, S. M., Bulmer, C. & Egger, K. N. Effects of ectomycorrhizal inoculants on survival and growth of interior Douglas-fir seedlings on reforestation sites and partially rehabilitated landings. Can. J. For. Res. 34, 2074–2088 (2004).Article 

    Google Scholar 
    Trappe, J. M. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu. Rev. Phytopathol. 15, 203–222 (1977).Article 

    Google Scholar 
    van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Finlay, R. D., Frostegård, Å. & Sonnerfeldt, A. M. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl ex. Loud. New Phytol. 120, 105–115 (1992).Article 

    Google Scholar 
    Keller, G. Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol. Res. 100, 989–998 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Hatakeyama, T. & Ohmasa, M. Mycelial growth of strains of the genera Suillus and Boletinus in media with a wide range of concentrations of carbon and nitrogen sources. Mycoscience 45, 169–176 (2004).CAS 
    Article 

    Google Scholar 
    Itoo, Z. A. & Reshi, Z. A. Effect of different nitrogen and carbon sources and concentrations on the mycelial growth of ectomycorrhizal fungi under in-vitro conditions. Scand. J. For. Res. 29, 619–628 (2014).Article 

    Google Scholar 
    Lazarević, J., Stojičić, D. & Keča, N. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest. For. Syst. 25, 3 (2016).
    Google Scholar 
    Valdés, R. C., Villarreal, R. M., García, F. G., Morales, S. G. & Peña, S. S. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. South. For. 81, 23–30 (2019).Article 

    Google Scholar 
    Daza, A. et al. Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.: Fr.) Pers. Mycorrhiza 16, 133–136 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wani, A. A., Joshi, P. K., Singh, O. & Shafi, S. Multi-temporal forest cover dynamics in Kashmir Himalayan region for assessing deforestation and forest degradation in the context of REDD+ policy. J. Mt. Sci. 13, 1431–1441 (2016).Article 

    Google Scholar 
    Chung, H. C., Kim, D. H. & Lee, S. S. Mycorrhizal formations and seedling growth of Pinus desiflora by in vitro synthesis with the inoculation of ectomycorrhizal fungi. Mycobiology 30, 70–75 (2002).Article 

    Google Scholar 
    Barroetaveña, C., Cázares, E. & Rajchenberg, M. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: A comparison of species richness in native western North American forests and Patagonian plantations from Argentina. Mycorrhiza 17, 355–373 (2007).PubMed 
    Article 

    Google Scholar 
    Ekwebelam, S. A. Effect of mycorrhizal fungi on the growth and yield of Pinus oocarpa and Pinus caribaea var. bahamensis seedlings. E. Afr. Agric. For. J. 45, 290–295 (1980).
    Google Scholar 
    Kasuya, M. C. M. & Igarashi, T. In vitro ectomycorrhizal formation in Picea glehnii seedlings. Mycorrhiza 6, 451–454 (1996).Article 

    Google Scholar 
    Wang, E. J., Jeon, S. M., Jang, Y. & Ka, K. H. Mycelial growth of edible ectomycorrhizal fungi according to nitrogen sources. Korean J. Mycol. 44, 166–170 (2016).CAS 

    Google Scholar 
    Dar, A. R. & Dar, G. H. Taxonomic appraisal of conifers of Kashmir Himalaya. Pak. J. Biol. Sci. 9, 859–867 (2006).Article 

    Google Scholar 
    Adeleke, R. A., Nunthkumar, B., Roopnarain, A. & Obi, L. Applications of plant-microbe interactions in agro-ecosystems. In Microbiome in Plant Health and Disease 1–34 (Springer, 2019).
    Google Scholar 
    Yamanaka, T. Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor. Mycol. Res. 103, 811–816 (1999).CAS 
    Article 

    Google Scholar 
    Berredjem, A., Garnier, A., Putra, D. P. & Botton, B. Effect of nitrogen and carbon sources on growth and activities of NAD and NADP dependent isocitrate dehydrogenases of Laccaria bicolor. Mycol. Res. 102, 427–434 (1998).CAS 
    Article 

    Google Scholar 
    Cairney, J. W. G. Intra-specific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9, 125–135 (1999).Article 

    Google Scholar 
    France, R. C. & Reid, C. P. P. Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microb. Ecol. 10, 187–195 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kibar, B. & Peksen, A. Nutritional and environmental requirements for vegetative growth of edible ectomycorrhizal mushroom Tricholoma terreum. Zemdirb. Agric. 4, 409–414 (2011).
    Google Scholar 
    Nygren, C. M. R. et al. Growth on nitrate and occurrence of nitrate reductase encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol. 180, 875–889 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rangel-Castro, I. J., Danell, E. & Taylor, A. F. Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12, 131–137 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenkins, M. L., Cripps, C. L. & Gains-Germain, L. Scorched Earth: Suillus colonization of Pinus albicaulis seedlings planted in wildfire-impacted soil affects seedling biomass, foliar nutrient content, and isotope signatures. Plant Soil 425, 113–131 (2018).CAS 
    Article 

    Google Scholar 
    Taudière, A., Richard, F. & Carcaillet, C. Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For. Ecol. Manag. 391, 446–457 (2017).Article 

    Google Scholar 
    Bigelow, H. E. & Smith, A. H. The status of Lepista: A new section of Clitocybe. Brittonia 21, 144–177 (1969).Article 

    Google Scholar 
    Kuo, M. Clitocybe Nuda. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/clitocybe_nuda.html (2010).Mycobank. www.mycobank.org. Accessed on Jan 28, 2020. (2020).Peck, C. H. Report of the Botanist 1869. Annu. Rep. N.Y. State Mus. Nat. Hist. 23, 27–135 (1873).
    Google Scholar 
    Kuo, M. Cortinarius Distans. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/cortinarius_distans.html (2011).Losinger, W. C. Germination and Growth of Some Ectomycorrhizal Basidiomycetes in Culture. Doctoral dissertation, Kalamazoo College (1980).Norvell, L. L. & Exeter, R. L. Ectomycorrhizal epigeous basidiomycete diversity in Oregon Coast Range Pseudotsuga menziesii forests-preliminary observations. Memoirs 89, 159–190 (2004).
    Google Scholar  More

  • in

    Author Correction: Mapping peat thickness and carbon stocks of the central Congo Basin using field data

    School of Geography, University of Leeds, Leeds, UKBart Crezee, Greta C. Dargie, Timothy R. Baker, Andy J. Baird, Paul J. Morris & Simon L. LewisFaculté de Gestion des Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. Ewango & Joseph Kanyama T.Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. Ewango & Jean-Bosco N. NdjangoSchool of GeoSciences, University of Edinburgh, Edinburgh, UKEdward T. A. MitchardDépartement de Biologie, Géographie et Gestion de l’environnement, Institut Supérieur Pédagogique de Mbandaka, Mbandaka, Democratic Republic of the CongoOvide Emba B. & Pierre BolaSchool of Water, Energy and Environment, Cranfield University, Cranfield, UKNicholas T. GirkinLaboratoire de Botanique et Ecologie, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the CongoYannick E. BockoÉcole Normale Supérieure, Département des Sciences et Vie de la Terre, Laboratoire de Télédétection et d’Ecologie Forestière, Université Marien Ngouabi, Brazzaville, Republic of the CongoSuspense A. IfoDepartment of Environment, Laboratory of Wood Technology, Ghent University, Ghent, BelgiumWannes HubauService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumWannes HubauDepartment of Archaeology, Ghent University, Ghent, BelgiumDirk SeidenstickerDépartement des Sciences de l’Environnement, Université du Cinquantenaire de Lwiro, Kabare, Democratic Republic of the CongoRodrigue BatumikeDépartement de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of the CongoGérard ImaniDepartment of Environment and Geography, University of York, York, UKAida Cuní-SanchezDepartment of International Environmental and Development Studies (NORAGRIC), Norwegian University of Life Sciences, Ås, NorwayAida Cuní-SanchezInstitute for the Advanced Study of Culture and the Environment, University of South Florida, Tampa, FL, USAChristopher A. KiahtipesInstitute of Prehistoric Archaeology, University of Cologne, Köln, GermanyJudicaël Lebamba & Hans-Peter WotzkaDépartement de Biologie, Université des Sciences et Techniques de Masuku, Franceville, GabonJudicaël LebambaSchool of Geography, Geology and the Environment, University of Leicester, Leicester, UKHollie Bean, Arnoud Boom & Susan E. PageSchool of Geography and Sustainable Development, University of St Andrews, St Andrews, UKIan T. LawsonDepartment of Geography, University College London, London, UKSimon L. Lewis More

  • in

    The role of gene expression and symbiosis in reef-building coral acquired heat tolerance

    Larvae display conserved gene expression response to heat stressLarval gene expression (GE) was quantified to assess if plastic responses in gene expression to heat stress varied depending on site of origin or parental identity. Larval survival under heat stress varied between crosses, with larvae produced from dams sourced from far Northern GBR sites exhibiting higher thermal tolerance (Fig. 1b). The cross with the lowest thermal tolerance (LSxSB) did not have any larvae survive the heat treatment (Fig. 1b, Supplementary Fig. 2). GE was examined in aposymbiotic larvae experiencing ambient conditions prior to the heat treatment (“pre”), larvae after exposure to simulated heat stress (35.5 °C for 56 hours, “post heat”), and a simultaneous control temperature of 27 °C (“post ambient”). Therefore, the “pre” larval treatment provided transcriptomic baselines of GE between genetic crosses while “post heat” and “post ambient” comparisons show a baseline for cross-specific heat responses without the confounding effect of symbiosis found in the post-metamorphic phase. Using a principal coordinates analysis (PCoA), we find that GE patterns in larvae were driven by treatment (“pre”, “post ambient”, “post heat”), explaining 29.2% of the variation in survival (padonis  More

  • in

    Linking personality traits and reproductive success in common marmoset (Callithrix jacchus)

    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 
    Article 

    Google Scholar 
    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    Gasparini, C., Speechley, E. M. & Polverino, G. The bold and the sperm: Positive association between boldness and sperm number in the guppy. R. Soc. Open Sci. 6, 190474 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jokela, M., Alvergne, A., Pollet, T. V. & Lummaa, V. Reproductive behavior and personality traits of the five factor model. Eur. J. Pers. 25, 487–500 (2011).Article 

    Google Scholar 
    Schuett, W., Dall, S. R. X. & Royle, N. J. Pairs of zebra finches with similar ‘personalities’ make better parents. Anim. Behav. 81, 609–618 (2011).Article 

    Google Scholar 
    Vetter, S. G. et al. Shy is sometimes better: Personality and juvenile body mass affect adult reproductive success in wild boars, Sus scrofa. Anim. Behav. 115, 193–205 (2016).Article 

    Google Scholar 
    Weiss, A. Personality traits: A view from the animal kingdom. J. Pers. 86, 12–22 (2018).PubMed 
    Article 

    Google Scholar 
    Bergmüller, R. & Taborsky, M. Animal personality due to social niche specialisation. Trends Ecol. Evol. 25, 504–511 (2010).PubMed 
    Article 

    Google Scholar 
    Montiglio, P. O., Wey, T. W., Chang, A. T., Fogarty, S. & Sih, A. Correlational selection on personality and social plasticity: Morphology and social context determine behavioural effects on mating success. J. Anim. Ecol. 86, 213–226 (2017).PubMed 
    Article 

    Google Scholar 
    Wolf, M. & McNamara, J. M. On the evolution of personalities via frequency-dependent selection. Am. Nat. 179, 679–692 (2012).PubMed 
    Article 

    Google Scholar 
    Munson, A. A., Jones, C., Schraft, H. & Sih, A. You’re just my type: Mate choice and behavioral types. Trends Ecol. Evol. 35, 823–833 (2020).PubMed 
    Article 

    Google Scholar 
    Muller, H. & Chittka, L. Animal personalities: The advantage of diversity. Curr. Biol. 18, 961–963 (2008).Article 
    CAS 

    Google Scholar 
    Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).PubMed 
    Article 

    Google Scholar 
    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. B 271, 847–852 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boon, A. K., Réale, D. & Boutin, S. The interaction between personality, offspring fitness and food abundance in North American red squirrels. Ecol. Lett. 10, 1094–1104 (2007).PubMed 
    Article 

    Google Scholar 
    Nicolaus, M., Tinbergen, J. M., Ubels, R., Both, C. & Dingemanse, N. J. Density fluctuations represent a key process maintaining personality variation in a wild passerine bird. Ecol. Lett. 19, 478–486 (2016).PubMed 
    Article 

    Google Scholar 
    Altschul, D. M. et al. Personality links with lifespan in chimpanzees. eLife 7, e33781 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Réale, D., Martin, J., Coltman, D. W., Poissant, J. & Festa-Bianchet, M. Male personality, life-history strategies and reproductive success in a promiscuous mammal. J. Evol. Biol. 22, 1599–1607 (2009).PubMed 
    Article 

    Google Scholar 
    Brent, L. J. N. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).PubMed 
    Article 

    Google Scholar 
    Rangassamy, M., Dalmas, M., Féron, C., Gouat, P. & Rödel, H. G. Similarity of personalities speeds up reproduction in pairs of a monogamous rodent. Anim. Behav. 103, 7–15 (2015).Article 

    Google Scholar 
    Schuett, W., Tregenza, T. & Dall, S. R. X. Sexual selection and animal personality. Biol. Rev. 85, 217–246 (2010).PubMed 
    Article 

    Google Scholar 
    Carlstead, K., Fraser, J., Bennett, C. & Kleiman, D. G. Black rhinoceros (Diceros bicornis) in US zoos: II. Behavior, breeding success, and mortality in relation to housing facilities. Zoo Biol. 18, 35–52 (1999).Article 

    Google Scholar 
    Martin-Wintle, M. S. et al. Do opposites attract? Effects of personality matching in breeding pairs of captive giant pandas on reproductive success. Biol. Conserv. 207, 27–37 (2017).Article 

    Google Scholar 
    Fox, R. A. & Millam, J. R. Personality traits of pair members predict pair compatibility and reproductive success in a socially monogamous parrot breeding in captivity. Zoo Biol. 33, 166–172 (2014).PubMed 
    Article 

    Google Scholar 
    Choi, S., Grocutt, E., Erlandsson, R. & Angerbjörn, A. Parent personality is linked to juvenile mortality and stress behavior in the arctic fox (Vulpes lagopus). Behav. Ecol. Sociobiol. 73, 162 (2019).Article 

    Google Scholar 
    Kappeler, P. M. & van Schaik, C. P. Evolution of primate social systems. Int. J. Primatol. 23, 707–740 (2002).Article 

    Google Scholar 
    Tardif, S. D. et al. Reproduction in captive common marmosets (Callithrix jacchus). Comp. Med. 53, 364–368 (2003).CAS 
    PubMed 

    Google Scholar 
    Marini, R., Wachtman, L., Tardif, S., Mansfield, K. & Fox, J. The Common Marmoset in Captivity and Biomedical Research (Academic Press, 2019). https://doi.org/10.1016/C2016-0-00861-6.Book 

    Google Scholar 
    Arruda, M. D. F., Yamamoto, M. E., Pessoa, D. M. A. & Araujo, A. Taxonomy and Natural History. In The Common Marmoset in Captivity and Biomedical Research (eds Marini, R. et al.) 3–15 (Academic Press, 2019). https://doi.org/10.1016/B978-0-12-811829-0.00001-7.Chapter 

    Google Scholar 
    Buchanan-Smith, H. M. Marmosets and tamarins. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (eds Hubrecht, R. & Kirkwood, J.) (Wiley-Blackwell, 2010). https://doi.org/10.1002/9781444318777.ch36.Chapter 

    Google Scholar 
    Smucny, D. A. et al. Reproductive output, maternal age, and survivorship in captive common marmoset females (Callithrix jacchus). Am. J. Primatol. 64, 107–121 (2004).PubMed 
    Article 

    Google Scholar 
    Ash, H. & Buchanan-Smith, H. M. Long-term data on reproductive output and longevity in captive female common marmosets (Callithrix jacchus). Am. J. Primatol. 76, 1062–1073 (2014).PubMed 
    Article 

    Google Scholar 
    Frye, B. M. et al. After short interbirth intervals, captive callitrichine monkeys have higher infant mortality. iScience 25, 103724 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaquish, C. E., Tardif, S. D. & Cheverud, J. M. Interactions between infant growth and survival: Evidence for selection on age-specific body weight in captive common marmosets (Callithrix jacchus). Am. J. Primatol. 42, 269–280 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, S. D. & Jaquish, C. E. Number of ovulations in the marmoset monkey (Callithrix jacchus): Relation to body weight, age and repeatability. Am. J. Primatol. 42, 323–329 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poole, T. B. & Evans, R. G. Reproduction, infant survival and productivity of a colony of common marmosets (Callithrix jacchus jacchus). Lab. Anim. 16, 88–97 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, S. D., Richter, C. B. & Carson, R. L. Effects of sibling-rearing experience on future reproductive success in two species of callitrichidae. Am. J. Primatol. 6, 377–380 (1984).PubMed 
    Article 

    Google Scholar 
    Rothe, H., Koenig, A. & Darms, K. Infant survival and number of helpers in captive groups of common marmosets (Callithrix jacchus). Am. J. Primatol. 30, 131–137 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koski, S. E., Buchanan-Smith, H. M., Burkart, J. M., Bugnyar, T. & Weiss, A. Common marmoset (Callithrix jacchus) personality. J. Comp. Psychol. 131, 326–336 (2017).PubMed 
    Article 

    Google Scholar 
    Šlipogor, V., Burkart, J. M., Martin, J. S., Bugnyar, T. & Koski, S. E. Personality method validation in common marmosets (Callithrix jacchus): Getting the best of both worlds. J. Comp. Psychol. 134, 52–70 (2020).PubMed 
    Article 

    Google Scholar 
    Weiss, A., Yokoyama, C., Hayashi, T. & Inoue-Murayama, M. Personality, subjective well-being, and the serotonin 1a receptor gene in common marmosets (Callithrix jacchus). PLoS ONE 16, e0238663 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freeman, H., Gosling, S. D. & Schapiro, S. J. Comparison of methods for assessing personality in nonhuman primates. In Personality and Temperament in Nonhuman Primates (eds Weiss, A. et al.) 17–40 (Springer, 2011).Chapter 

    Google Scholar 
    Finkenwirth, C. & Burkart, J. M. Why help? Relationship quality, not strategic grooming predicts infant-care in group-living marmosets. Physiol. Behav. 193, 108–116 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haines, J. A. et al. Sex- and context-specific associations between personality and a measure of fitness but no link with life history traits. Anim. Behav. 167, 23–39 (2020).Article 

    Google Scholar 
    Carlstead, K., Mellen, J. & Kleiman, D. G. Black rhinoceros (Diceros bicornis) in US zoos: I. Individual behavior profiles and their relationship to breeding success. Zoo Biol. 18, 17–34 (1999).Article 

    Google Scholar 
    Berg, V., Lummaa, V., Lahdenperä, M., Rotkirch, A. & Jokela, M. Personality and long-term reproductive success measured by the number of grandchildren. Evol. Hum. Behav. 35, 533–539 (2014).Article 

    Google Scholar 
    Silva, H. P. A. & Sousa, M. B. C. The pair-bond formation and its role in the stimulation of reproductive function in female common marmosets (Callithrix jacchus). Int. J. Primatol. 18, 387–400 (1997).Article 

    Google Scholar 
    Cavanaugh, J., Mustoe, A. C., Taylor, J. H. & French, J. A. Oxytocin facilitates fidelity in well-established marmoset pairs by reducing sociosexual behavior toward opposite-sex strangers. Psychoneuroendocrinology 49, 1–10 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, I. L., Nævdal, E. & Bøe, K. E. Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (Sus scrofa). Behav. Ecol. Sociobiol. 65, 1159–1167 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnstone-Yellin, T. L., Shipley, L. A., Myers, W. L. & Robinson, H. S. To twin or not to twin? Trade-offs in litter size and fawn survival in mule deer. J. Mammal. 90, 453–460 (2009).Article 

    Google Scholar 
    Ariyomo, T. O. & Watt, P. J. The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish. Anim. Behav. 83, 41–46 (2012).Article 

    Google Scholar 
    Patterson, L. D. & Schulte-Hostedde, A. I. Behavioural correlates of parasitism and reproductive success in male eastern chipmunks, Tamias striatus. Anim. Behav. 81, 1129–1137 (2011).Article 

    Google Scholar 
    Mutzel, A., Dingemanse, N. J., Araya-Ajoy, Y. G. & Kempenaers, B. Parental provisioning behaviour plays a key role in linking personality with reproductive success. Proc. R. Soc. B 280, 20131019 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costa, T. S. O. et al. Individual behavioral differences and health of golden-headed lion tamarins (Leontopithecus chrysomelas). Am. J. Primatol. 82, e23118 (2020).PubMed 
    Article 

    Google Scholar 
    Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).Article 

    Google Scholar 
    Tardif, S. D., Power, M., Oftedal, O. T., Power, R. A. & Layne, D. G. Lactation, maternal behavior and infant growth in common marmoset monkeys (Callithrix jacchus): Effects of maternal size and litter size. Behav. Ecol. Sociobiol. 51, 17–25 (2001).Article 

    Google Scholar 
    Mills, D. A., Windle, C. P., Baker, H. F. & Ridley, R. M. Analysis of infant carrying in large, well-established family groups of captive marmosets (Callithrix jacchus). Primates 45, 259–265 (2004).PubMed 
    Article 

    Google Scholar 
    Leutenegger, W. Maternal-fetal weight relationships in primates. Folia Primatol. 20, 280–293 (1973).CAS 
    Article 

    Google Scholar 
    Schultz-Darken, N., Ace, L. & Ash, H. Behavior and behavioral management. In The Common Marmoset in Captivity and Biomedical Research (eds Marini, R. et al.) 109–117 (Academic Press, 2019). https://doi.org/10.1016/b978-0-12-811829-0.00007-8.Chapter 

    Google Scholar 
    Bardi, M. & Petto, A. J. Parental failure in captive common marmosets (Callithrix jacchus): A comparison with tamarins. Folia Primatol. 73, 46–48 (2002).Article 

    Google Scholar 
    Barbosa, M. N. & da Silva Mota, M. T. Alloparental responsiveness to newborns by nonreproductive, adult male, common marmosets (Callithrix jacchus). Am. J. Primatol. 75, 145–152 (2013).PubMed 
    Article 

    Google Scholar 
    Rutherford, J. N. et al. Womb to womb: Maternal litter size and birth weight but not adult characteristics predict early neonatal death of offspring in the common marmoset monkey. PLoS ONE 16, e0252093 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkenwirth, C., Martins, E., Deschner, T. & Burkart, J. M. Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys. Horm. Behav. 80, 10–18 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards, H. A., Dugdale, H. L., Richardson, D. S., Komdeur, J. & Burke, T. Extra-pair parentage and personality in a cooperatively breeding bird. Behav. Ecol. Sociobiol. 72, 37 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schürch, R. & Heg, D. Variation in helper type affects group stability and reproductive decisions in a cooperative breeder. Ethology 116, 257–269 (2010).Article 

    Google Scholar 
    Class, B. & Dingemanse, N. J. A variance partitioning perspective of assortative mating: Proximate mechanisms and evolutionary implications. J. Evol. Biol. 35, 483–490 (2022).PubMed 
    Article 

    Google Scholar 
    Scherer, U., Godin, J. G. J. & Schuett, W. Do female rainbow kribs choose males on the basis of their apparent aggression and boldness? A non-correlational mate choice study. Behav. Ecol. Sociobiol. 74, 34 (2020).Article 

    Google Scholar 
    Schuett, W., Godin, J.-G.J. & Dall, S. R. X. Do female zebra finches, Taeniopygia guttata, choose their mates based on their ‘personality’?. Ethology 117, 908–917 (2011).Article 

    Google Scholar 
    Ophir, A. G., Crino, O. L., Wilkerson, Q. C., Wolff, J. O. & Phelps, S. M. Female-directed aggression predicts paternal behavior, but female prairie voles prefer affiliative males to paternal males. Brain. Behav. Evol. 71, 32–40 (2008).PubMed 
    Article 

    Google Scholar 
    Lazaro-Perea, C. Intergroup interactions in wild common marmosets, Callithrix jacchus: Territorial defence and assessment of neighbours. Anim. Behav. 62, 11–21 (2001).Article 

    Google Scholar 
    Koski, S. E. & Burkart, J. M. Common marmosets show social plasticity and group-level similarity in personality. Sci. Rep. 5, 8878 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Norman, M., Rowden, L. J. & Cowlishaw, G. Potential applications of personality assessments to the management of non-human primates: A review of 10 years of study. PeerJ 9, e12044 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gorsuch, R. L. Factor Analysis 2nd edn. (Lawrence Erlbaum Associates, 1983).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    Christensen, R. H. B. Ordinal—Regression Models for Ordinal Data. R package version 2019.4-25. (2019).Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer-Verlag, 2002). https://doi.org/10.1007/b97636.Book 
    MATH 

    Google Scholar 
    Bartoń, K. Mu-MIn: Multi-model inference. R package version 2019 1.43.6. (2019).Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richards, S. A. Dealing with overdispersed count data in applied ecology. J. Appl. Ecol. 45, 218–227 (2008).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.7 (2020).Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.2 (2020)du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).Article 
    CAS 

    Google Scholar  More