More stories

  • in

    Phylogeographic and phenotypic divergence between two subspecies of Testudo graeca (T. g. buxtoni and T. g. zarudnyi) across their contact zone in Iran

    Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 

    Google Scholar 
    Vamberger, M. et al. Differences in gene flow in a twofold secondary contact zone of pond turtles in southern Italy (Testudines: Emydidae: Emys orbicularis galloitalica, E. o. hellenica, E. trinacris). Zool. Scr. 44, 233–249 (2015).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: Old complex divergence in North Africa and recent arrival in Europe. Amphib. Reptil. 30, 63–80 (2009).Article 

    Google Scholar 
    Fritz, U. et al. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex;Testudines, Testudinidae). Amphib. Reptil. 28, 97–121 (2007).Article 

    Google Scholar 
    Mikulíček, P., Jandzik, D., Fritz, U., Schneider, C. & Široký, P. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108, 151–160 (2013).Article 

    Google Scholar 
    Parham, J. F. et al. Genetic evidence for premature taxonomic inflation in Middle Eastern tortoises. Proc. Calif. Acad. Sci. 57, 955–964 (2006).
    Google Scholar 
    Javanbakht, H. et al. Genetic diversity and Quaternary range dynamics in Iranian and Transcaucasian tortoises. Biol. J. Linn. Soc. 121, 627–640 (2017).Article 

    Google Scholar 
    Mashkaryan, V. et al. Gene flow among deeply divergent mtDNA lineages of Testudo graeca (Linnaeus, 1758) in Transcaucasia. Amphib. Reptilia. 34, 337–351 (2013).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Lavin, B. R., Bardakcı, F. & Parham, J. F. Morphological and mitochondrial variation of spur-thighed tortoises, Testudo graeca, Turkey. Herpetol. J. 28, 1–9 (2017).
    Google Scholar 
    Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines:Testudinidae). Biol. J. Linn. Soc. 121(3), 641–654 (2017).Article 

    Google Scholar 
    Harris, D. J., Znari, M., Macé, J. C. & Carretero, M. A. Genetic variation in Testudo graeca from Morocco estimated using 12S rRNA sequencing. Rev. Esp. Herpetol. 17, 5–9 (2003).
    Google Scholar 
    Van Der Kuyl, A. C., Ballasina, D. L. P. & Zorgdrager, F. Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East. BMC Evol. Biol. 5, 29 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Highfield, A. C. Tortoises of north Africa; taxonomy, nomenclature, phylogeny and evolution with notes on field studies in Tunisia. J. Chelonian. Herpetol. 1, 1–56 (1990).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität der Maurischen Landschildkröten (Testudo graeca Linnaeus, 1758–Komplex) im zentralen und nordwestlichen Marokko mit Beschreibung zweier neuer Taxa. Herpetozoa 17, 19–47 (2004).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität von Testudo graeca Linnaeus, 1758 im östlichen Nordafrika mit Beschreibung eines neuen Taxons von der Cyrenaika (Nordostlibyen). Herpetozoa 15, 3–28 (2002).
    Google Scholar 
    Pieh, A. Testudo graeca soussensis, eine neue Unterart der Maurischen Landschildkröte aus dem Sousstal (Nordwest Marokko). Salamandra 36, 209–222 (2000).
    Google Scholar 
    Arakelyan, M., Türkozan, O., Hezaveh, N. & Parham, J. F. Ecomorphology of tortoises (Testudo graeca complex) from the Araks river valley. Russ. J. Herpetol. 25, 245–252 (2018).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Parham, J. F., Olgun, K. & Taskavak, E. A quantitative reassessment of morphology based taxonomic schemes for Turkish tortoises. Amphib. Reptil. 31, 69–83 (2010).Article 

    Google Scholar 
    Van Dijk, P. P., Corti, C., Mellado, V. P. & Cheylan, M. Testudo graeca. The IUCN Red List of Threatened Species. Retrieved from https://www.iucnredlist.org/species. Version 12/2004 (2004).Bohm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Pringle, R. M., Webb, J. K. & Shine, R. Canopy structure, microclimate, and habitat selection by a nocturnal snake (Hoplocephalus bungaroides). Ecology 84, 2668–2679 (2003).Article 

    Google Scholar 
    Rastegar-Pouyani, N. et al. Sustainable management of the Herpetofauna of the Iranian Plateau and coastal Iran. Amphib. Reptil. Conserv. 9, 1–15 (2015).
    Google Scholar 
    Rouag, R., Ziane, N. & Benyacoub, S. Home range of the spur-thighed tortoise, Testudo graeca (Testudines, Testudinidae), in the national park of El-Kala, Algeria. Vestn. Zool. 51, 45–52 (2017).Article 

    Google Scholar 
    Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, 721–735 (2020).Article 
    CAS 

    Google Scholar 
    Frankham, R., Ballou, J., Briscoe, D., & McInnes, K. Frontmatter. In A Primer of Conservation Genetics I–Iv (Cambridge University Press, 2004).Rhodin, A. G. J., Iverson, J. B., Bour, R., Fritz, U., Georges, A., Shaffer, H. B. & van Dijk, P.P. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (9th Ed.) (2021).Heshmati, G. A. Vegetation characteristics of four ecological zones of Iran. Int. J. Plant Prod. 2, 215–224 (2007).
    Google Scholar 
    Graciá, E. et al. Human-mediated secondary contact of two tortoise lineages results in sex-biased introgression. Sci. Rep. 7, 4019 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vamberger, M., Corti, C., Stuckas, H. & Fritz, U. Is the imperilled Spur-thighed tortoise (Testudo graeca) native in Sardinia? Implications from population genetics and for conservation. Amphib. Reptil. 32, 9–25 (2011).Article 

    Google Scholar 
    Allen, M., Jackson, J. & Walker, R. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and longterm deformation rates. Tectonics 23, TC2008. https://doi.org/10.1029/2003TC001530 (2004).ADS 
    Article 

    Google Scholar 
    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: Ten years of progress following the revolution. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    Golubovi, A., Tomovi, L. & Ivanovi, A. Geometry of self righting: the case of Hermann’s tortoises. Zool. Anz. 254, 99–105 (2015).Article 

    Google Scholar 
    Arakelyan, M., Parham J. F., Türkozan, O., & Danielyan, F. Sympatrisches Vorkommen Zweier For men von Testudo graeca. In Armenien und der Republik Nagorno-Karabakh Marginata 26–30 (2008).Guyot, G. & Devaux, B. Variation in shell morphology and color of Hermann’s tortoise, Testudo hermanni, in southern Europe. Chelonian Res. Found. 2, 390–395 (1997).
    Google Scholar 
    Macale, D., Venchi, A. & Scalici, M. Shell shape and size variation in the Egyptian tortoise Testudo kleinmanni (Testudinidae, Testudines). Folia Zool. 60, 167–175 (2011).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography and subspecies of the wide-ranging sub-Saharan leopard tortoise Stigmochelys pardalis (Testudines: Testudinidae)—A case study for the pitfalls of pseudogenes and GenBank sequences. J. Zool. Syst. Evol. 48, 348–359 (2010).Article 

    Google Scholar 
    Fritz, U. et al. Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. Zool. Scr. 41, 220–232 (2012).Article 

    Google Scholar 
    Fritz, U., Široký, P., Kami, H. & Wink, M. Environmentally caused dwarfism or a valid species—Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Mol. Phylogenet. Evol. 37, 389–401 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carretero, M. A., Znari, M., Harris, D. J. & Macé, J. C. Morphological divergence among populations of Testudo graeca from west-central Morocco. Anim. Biol. 55, 259–279 (2005).Article 

    Google Scholar 
    Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372 (2001).Article 

    Google Scholar 
    Ljubisavljević, K., Džukić, G., Vukov, T. D. & Kalezić, M. L. Morphological variability of the Hermann’s tortoise (Testudo hermanni) in the Central Balkans. Acta Herpetol. 7, 253–262 (2012).
    Google Scholar 
    Casacci, L. P., Barbero, F. & Balletto, E. The evolutionarily significant unit concept and its applicability in biological conservation. Ital. J. Zool. 81, 182–193 (2014).Article 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Bio. 18, e3000411 (2020).CAS 
    Article 

    Google Scholar 
    Dutton, P. & Balazs, G. H. Simple biopsy technique for sampling skin for DNA analysis of sea turtles. M.T.N. 69, 9–10 (1995).
    Google Scholar 
    Filippi, E., Rugiero, L., Capula, M., Burke, R. L. & Luiselli, L. Population and thermal ecology of Testudo hermanni hermanni in the Tolfa Mountains of Central Italy. Chelonian Conserv. Biol. 9, 54–60 (2010).Article 

    Google Scholar 
    Fritz, U. et al. A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zool. Scr. 35, 531–543 (2006).Article 

    Google Scholar 
    Spinks, P. Q., Shaffer, H. B., Iverson, J. B. & McCord, W. P. Phylogenetic hypotheses for the turtle family Geoemydidae. Mol. Phylogenet. Evol. 32, 164–182 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia, X. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 108, 431–437 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partition Finder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elliott, N. G., Haskard, K. & Koslow, J. A. Morphometric analysis of orange roughy (Huplustetlius atlanticus) off the continental slope of southern Australia. J. Fish Biol. 46, 202–220 (1995).Article 

    Google Scholar 
    Anadón, J. D. et al. Individualistic response to past climate changes: Niche differentiation promotes diverging Quaternary range dynamics in the subspecies of Testudo graeca. Ecography 38, 956–966 (2015).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    McKenzie, J. D. Minitab Student Release 14: Statistical Software for Education (Pearson Addison-Wesley, 2004).
    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix 26, 9–12 (2015).
    Google Scholar 
    Rohlf, F. J. & Slice, D. E. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).Article 

    Google Scholar 
    Zelditch, M., Swiderski, D., Sheets, D. H. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2004).MATH 

    Google Scholar 
    Klingeberg, C. P. Morpho J: An integrated software package for geometric morphometric. Mol. Ecol. Resour. 11, 353–357 (2011).Article 

    Google Scholar  More

  • in

    Effects of oceanographic environment on the distribution and migration of Pacific saury (Cololabis saira) during main fishing season

    NPFC. 8th Meeting of the Small Scientific Committee on Pacific Saury Report. NPFC-2021-SSC PS08-Final Report. Preprint at https://www.npfc.int/meetings/8th-ssc-ps-meeting (2021).Hubbs, C. L. & Wisner, R. L. Revision of the sauries (Pisces, Scomberesocidae) with descriptions of two new genera and one new species. Fish. Bull. 77, 521–566 (1980).
    Google Scholar 
    Tian, Y., Akamine, T. & Suda, M. Variations in the abundance of Pacific saury (Cololabis saira) from the northwestern Pacific in relation to oceanic-climate changes. Fish. Res. 60, 439–454 (2003).Article 

    Google Scholar 
    Huang, W. B. Comparisons of monthly and geographical variations in abundance and size composition of Pacific saury between the high-seas and coastal fishing grounds in the northwestern Pacific. Fish. Sci. 76, 21–31 (2010).CAS 
    Article 

    Google Scholar 
    Watanabe, Y., Builer, J. L. & Mori, T. Growth of Pacific saury, Cololabis saira, in the northeastern and northwestern Pacific Ocean. Fish. Bull. 86, 489–498 (1988).
    Google Scholar 
    Nakaya, M. et al. Growth and maturation of Pacific saury Cololabis saira under laboratory conditions. Fish. Sci. 76, 45–53 (2010).CAS 
    Article 

    Google Scholar 
    Kosaka, S. Life history of Pacific saury Cololabis saira in the Northwest Pacific and consideration of resource fluctuation based on it. Bull. Tohoku Natl. Fish. Res. Inst. 63, 1–96 (2000).
    Google Scholar 
    Suyama, S. Study on the age, growth, and maturation process of Pacific saury Cololabis saira (Brevoort) in the north Pacific. Bull. Fish. Res. Agen. 5, 68–113 (2002).
    Google Scholar 
    Huang, W. B., Lo, N. C. H., Chiu, T. S. & Chen, C. S. Geographical distribution and abundance of Pacific saury fishing stock in the Northwestern Pacific in relation to sea temperature. Zool. Stud. 46, 705–716 (2007).
    Google Scholar 
    Liu, S. et al. Using novel spawning ground indices to analyze the effects of climate change on Pacifc saury abundance. J. Mar. Syst. 191, 13–23 (2019).Article 

    Google Scholar 
    Tian, Y., Akamine, T. & Suda, M. Long-term variability in the abundance of Pacific Saury in the Northwestern Pacific Ocean and climate changes during the last century. Bull. Jpn. Soc. Fish. Oceanogr. 66, 16–25 (2002).
    Google Scholar 
    Tian, Y., Ueno, Y., Suda, M. & Akamine, T. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century. J. Mar. Syst. 52, 235–257 (2004).Article 

    Google Scholar 
    Yasuda, I. & Watanabe, T. Chlorophyll a variation in the Kuroshio Extension revealed with a mixed-layer tracking float: Implication on the long-term change of Pacific saury (Cololabis saira). Fish. Oceanogr. 16, 482–488 (2007).Article 

    Google Scholar 
    Fuji, T., Kurita, Y., Suyama, S. & Ambe, D. Estimating the spawning ground of Pacific saury Cololabis saira by using the distribution and geographical variation in maturation status of adult fish during the main spawning season. Fish. Oceanogr. 30, 382–396 (2020).Article 

    Google Scholar 
    Yasuda, I. & Watanabe, Y. On the relationship between the Oyashio front and saury fishing grounds in the northewestern Pacific: A forecasting method for fishing ground locations. Fish. Oceanogr. 3, 172–181 (1994).Article 

    Google Scholar 
    Kuroda, H. & Yokouchi, K. Interdecadal decrease in potential fishing areas for Pacific saury off the southeastern coast of Hokkaido, Japan. Fish. Oceanogr. 26, 439–454 (2017).Article 

    Google Scholar 
    Fukushima, S. Synoptic analysis of migration and fishing conditions of saury in the northwestern Pacific Ocean. Bull. Tohoku. Reg. Fish. Res. Lab 41, 1–70 (1979).
    Google Scholar 
    Sugisaki, H. & Kurita, Y. Daily rhythm and seasonal variation of feeding habit of Pacific saury (Cololabis saira) in relation to their migration and oceanographic conditions off Japan. Fish. Oceanogr. 13, 63–73 (2004).Article 

    Google Scholar 
    Huang, W. B. & Huang, Y. C. Maturity characteristics of Pacific saury during fishing season in the Northwest pacific. J. Mar. Sci. Tech. 23, 819–826 (2015).
    Google Scholar 
    Tseng, C. T. et al. Influence of climate-driven sea surface temperature increase on potential habitats of the Pacific saury (Cololabis saira). ICES J. Mar. Sci. 68, 1105–1113 (2011).Article 

    Google Scholar 
    Tseng, C. T. et al. Sea surface temperature fronts affect distribution of Pacific saury (Cololabis saira) in the Northwestern Pacific Ocean. Deep Sea Res II Top. Stud. Oceanogr. 107, 15–21 (2014).ADS 
    Article 

    Google Scholar 
    Hua, C., Li, F., Zhu, Q., Zhu, G. & Meng, L. Habitat suitability of Pacific saury (Cololabis saira) based on a yield-density model and weighted analysis. Fish. Res. 221, 105408. https://doi.org/10.1016/j.fishres.2019.105408 (2020).Article 

    Google Scholar 
    Mugo, R., Saitoh, S. I., Nihira, A. & Kuroyama, T. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 19, 382–396 (2010).Article 

    Google Scholar 
    Yu, W., Chen, X., Chen, Y., Yi, Q. & Zhang, Y. Effects of environmental variations on the abundance of western winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Acta Oceanol. Sin. 34, 43–51 (2015).CAS 
    Article 

    Google Scholar 
    Kakehi, S. et al. Forecasting Pacific saury (Cololabis saira) fishing grounds off Japan using a migration model driven by an ocean circulation model. Ecol. Model. 431, 109150. https://doi.org/10.1016/j.ecolmodel.2020.109150 (2020).Article 

    Google Scholar 
    Swain, D. P. & Wade, E. J. Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): Tests of predictions of the ideal free distribution. Can. J. Fish. Aquat. Sci. 60, 897–909 (2003).Article 

    Google Scholar 
    Chang, Y. J. et al. Modelling the impacts of environmental variation on habitat suitability for Pacific saury in the Northwestern Pacific Ocean. Fish. Oceanogr. 28, 291–304 (2018).Article 

    Google Scholar 
    Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).Article 

    Google Scholar 
    Oozeki, Y., Watanabe, Y. & Kitagawa, D. Environmental factors affecting larval growth of Pacific saury, Cololabis saira, in the northwestern Pacific Ocean. Fish. Oceanogr. 13, 44–53 (2004).Article 

    Google Scholar 
    Ito, S. I. et al. Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fish. Oceanogr. 13, 111–124 (2004).Article 

    Google Scholar 
    Miyamoto, H. et al. Geographic variation in feeding of Pacific saury Cololabis saira in June and July in the North Pacific Ocean. Fish. Oceanogr. 29, 558–571 (2020).CAS 
    Article 

    Google Scholar 
    Tseng, C. T. et al. Spatial and temporal variability of the Pacific saury (Cololabis saira) distribution in the northwestern Pacific Ocean. ICES J. Mar. Sci. 70, 991–999 (2013).Article 

    Google Scholar 
    Ichii, T. et al. Oceanographic factors affecting interannual recruitment variability of Pacific saury (Cololabis saira) in the central and western North Pacific. Fish. Oceanogr. 27, 445–457 (2018).Article 

    Google Scholar 
    Coletto, J. L., Pinho, M. P. & Madureira, L. S. P. Operational oceanography applied to skipjack tuna (Katsuwonus pelamis) habitat monitoring and fishing in south-western Atlantic. Fish. Oceanogr. 28, 82–93 (2018).Article 

    Google Scholar 
    Shi, Y., Zhu, Q., Hua, C. & Zhang, Y. Evaluation of saury stick-held net performance between model test and on-sea measurements. Haiyang Xuebao 41, 123–133 (2019).CAS 

    Google Scholar 
    Semedi, B., Saitoh, S., Saitoh, K. & Yoneta, K. Application of multi-sensor satellite remote sensing for determining distribution and movement of Pacific saury, Cololabis saira. Fish. Sci. 68, 1781–1784 (2002).Article 

    Google Scholar 
    Syah, A. F., Saitoh, S. I., Alabia, I. D. & Hirawake, T. Detection of potential fishing zone for Pacific saury (Cololabis saira) using generalized additive model and remotely sensed data. IOP Conf. Ser. Earth Env. Sci. 54, 012074. https://doi.org/10.1088/1755-1315/54/1/012074 (2017).Article 

    Google Scholar 
    Xing, Q. et al. Application of a fish habitat model considering mesoscale oceanographic features in evaluating climatic impact on distribution and abundance of Pacific saury (Cololabis saira). Prog. Oceanogr. 201, 102743. https://doi.org/10.1016/j.pocean.2022.102743 (2022).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Prants, S. V., Budyansky, M. V. & Uleysky, M. Y. Identifying Lagrangian fronts with favourable fishery conditions. Deep Sea Res. Part I Oceanogr. Res. Pap. 90, 27–35 (2014).ADS 
    Article 

    Google Scholar 
    Saito, H., Tsuda, A. & Kasai, H. Nutrient and plankton dynamics in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Res. II Top. Stud. Oceanogr. 49, 5463–5486 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Watanabe, Y., Kurita, Y., Noto, M., Oozeki, Y. & Kitagawa, D. Growth and survival of Pacific Saury Cololabis saira in the Kuroshio-Oyashio transitional waters. J. Oceanogr. 59, 403–414 (2003).Article 

    Google Scholar 
    Bakun, A. Ocean eddies, predator pits and bluefin tuna: Implications of an inferred ‘low risk-limited payoff’ reproductive scheme of a (former) archetypical top predator. Fish Fish. 14, 424–438 (2013).Article 

    Google Scholar 
    Iwahashi, M., Isoda, Y., Ito, S. I., Oozeki, Y. & Suyama, S. Estimation of seasonal spawning ground locations and ambient sea surface temperatures for eggs and larvae of Pacific saury (Cololabis saira) in the western North Pacific. Fish. Oceanogr. 15, 128–138 (2006).Article 

    Google Scholar 
    Oozeki, Y., Okunishi, T., Takasuka, A. & Ambe, D. Variability in transport processes of Pacific saury Cololabis saira larvae leading to their broad dispersal: Implications for their ecological role in the western North Pacific. Prog. Oceanogr. 138, 448–458 (2015).ADS 
    Article 

    Google Scholar 
    Polovina, J. J., Kleiber, P. & Kobayashi, D. R. Application of TOPEX-Poseidon satellite altimetry to simulate transport dynamics of larvae of spiny lobster, Panulirus marginatus, in the Northwestern Hawaiian Islands, 1993–1996. Fish. Bull. 97, 132–143 (1999).
    Google Scholar 
    Kawai, H. Hydrography of the Kuroshio extension. In Kuroshio—Its Physical Aspects (eds Stommel, H. & Yoshida, K.) 235–352 (University of Tokyo, 1972).
    Google Scholar 
    Yamada, F. & Sekine, Y. Variations in sea surface temperature and 500 hPa height over the north Pacific with reference to the occurrence of anomalous southward Oyashio intrusion east of Japan. J. Meteorol. Soc Jpn. Ser. II 75, 995–1000 (1997).Article 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).PubMed 
    Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Stat. Sci. 1, 297–310 (1986).MathSciNet 
    MATH 

    Google Scholar 
    Litzow, M. A., Hobday, A. J., Frusher, S. D., Dann, P. & Tuck, G. N. Detecting regime shifts in marine systems with limited biological data: An example from southeast Australia. Prog. Oceanogr. 141, 96–108 (2016).ADS 
    Article 

    Google Scholar 
    Pang, Y. et al. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 208, 22–33 (2018).Article 

    Google Scholar  More

  • in

    A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia

    Lee, J.-W. & McKibbin, W. J. Globalization and disease: the case of SARS. Asian Economic Pap. 3, 113–131 (2004).Article 

    Google Scholar 
    Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peiris, J. S. M., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nat. Med. 10, S88–S97 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raj, V. S., Osterhaus, A. D. M. E., Fouchier, R. A. M. & Haagmans, B. L. MERS: emergence of a novel human coronavirus. Curr. Opin. Virol. 5, 58–62 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhou, L. et al. The re-emerging of SADS-CoV infection in pig herds in Southern China. Transbound. Emerg. Dis. 66, 2180–2183 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daszak, P., Keusch, G. T., Phelan, A. L., Johnson, C. K. & Osterholm, M. T. Infectious disease threats: a rebound to resilience. Health Aff. 40, 204–211 (2021).Article 

    Google Scholar 
    Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8, e00373-17 (2017).Li, W. D. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wang, L. F. & Eaton, B. T. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission (eds J. E. Childs, J. S. Mackenzie, & J. A. Richt) 325–344 (Springer Berlin Heidelberg, 2007).Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. MERS-CoV spillover at the camel-human interface. eLife 7, e31257 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Li, H. et al. Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosaf. Health 1, 84–90 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, N. et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sin. 33, 104–107 (2018).Article 

    Google Scholar 
    Wasik, B. R. et al. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 374, 20190017 (2019).CAS 
    Article 

    Google Scholar 
    Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Gray, G. C., Robie, E. R., Studstill, C. J. & Nunn, C. L. Mitigating future respiratory virus pandemics: new threats and approaches to consider. Viruses 13, 637 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    McFarlane, R., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9, 24–35 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-1, https://www.iucnredlist.org (2021).Ruiz-Aravena, M. et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 20, 299–314 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coker, R. J., Hunter, B. M., Rudge, J. W., Liverani, M. & Hanvoravongchai, P. Emerging infectious diseases in southeast Asia: regional challenges to control. Lancet 377, 599–609 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horby, P. W., Pfeiffer, D. & Oshitani, H. Prospects for emerging infections in East and Southeast Asia 10 years after severe acute respiratory syndrome. Emerg. Infect. Dis. 19, 853–860 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).CAS 
    Article 

    Google Scholar 
    Delaune, D. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12, 6563 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    World Health Organization. WHO-convened global study of origins of SARS-CoV-2: China Part. (2021).Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 

    Google Scholar 
    Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160129 (2017).Article 

    Google Scholar 
    Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Petrovan, S. O. et al. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol. Rev. 96, 2694–2715 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roche, B. et al. Was the COVID-19 pandemic avoidable? A call for a “solution-oriented” approach in pathogen evolutionary ecology to prevent future outbreaks. Ecol. Lett. 23, 1557–1560 (2020).PubMed 
    Article 

    Google Scholar 
    Naguib, M. M., Ellström, P., Järhult, J. D., Lundkvist, Å. & Olsen, B. Towards pandemic preparedness beyond COVID-19. Lancet Microbe 1, e185–e186 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muylaert, R. L. et al. Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Proc. Roy. Soc. B., 289, 20220397 (2022).Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e2193 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, L.-L. et al. A novel SARS-CoV-2 related coronavirus with complex recombination isolated from bats in Yunnan province, China. Emerg. Microbes Infect. 10, 1683–1690 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pormohammad, A. et al. Comparison of confirmed COVID-19 with SARS and MERS cases – Clinical characteristics, laboratory findings, radiographic signs and outcomes: A systematic review and meta-analysis. Rev. Med. Virol. 30, e2112 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brehm, T. T. et al. Comparison of clinical characteristics and disease outcome of COVID-19 and seasonal influenza. Sci. Rep. 11, 5803 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wolfe, N. D. et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc. Natl Acad. Sci. USA 102, 7994–7999 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Nikolay, B. et al. Transmission of Nipah virus—14 Years of investigations in Bangladesh. N. Engl. J. Med. 380, 1804–1814 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, A. W. et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open 10, e039856 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wolfe, N. D. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937 (2004).PubMed 
    Article 

    Google Scholar 
    Mildenstein, T., Tanshi, I. & Racey, P. A. Exploitation of bats for bushmeat and medicine. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 12, 325–375 (Springer International Publishing, 2016).Low, M.-R. et al. Bane or blessing? Reviewing cultural values of bats across the Asia-Pacific region. J. Ethnobiol. 41, 18–34 (2021).Article 

    Google Scholar 
    Kingston, T. Cute, creepy, or crispy—How values, attitudes, and norms shape human behavior toward bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 571–595 (Springer International Publishing, 2016).Li, H. et al. Knowledge, attitude, and practice regarding zoonotic risk in wildlife trade, Southern China. EcoHealth 18, 95–106 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, K. & Threlfall, C. G. Urbanisation and its effects on bats—A global meta-analysis. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 2, 13–33 (Springer International Publishing, 2016).Latinne, A. et al. Characterizing and quantifying the wildlife trade network in Sulawesi, Indonesia. Glob. Ecol. Conserv. 21, e00887 (2020).Article 

    Google Scholar 
    Huong, N. Q. et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLOS ONE 15, e0237129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Virachith, S. et al. Low seroprevalence of COVID-19 in Lao PDR, late 2020. Lancet Regional Health – West. Pac. 13, 100197 (2021).Article 

    Google Scholar 
    Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swadling, L. et al. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 601, 110–117 (2022).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Liu, K. et al. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 184, 3438–3451.e3410 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Philavong, C. et al. Perception of health risks in Lao market vendors. Zoonoses Public Health 67, 796–804 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, C. J. et al. The future of zoonotic risk prediction. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200358 (2021).CAS 
    Article 

    Google Scholar 
    Bell, D., Roberton, S. & Hunter, P. R. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 359, 1107–1114 (2004).Article 

    Google Scholar 
    He, J. F. et al. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    Tu, C. et al. Antibodies to SARS-Coronavirus in Civets. Emerg. Infect. Dis. 10, 2244–2248 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Freuling, C. et al. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg. Infect. Dis. 26, 2982–2985 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    OIE-World Organisation for Animal Health. Infection with SARS-CoV-2 in animals. https://www.oie.int/app/uploads/2021/11/en-factsheet-sars-cov-2-20211025.pdf (2021).Oreshkova, N. et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 25, 2001005 (2020).PubMed Central 
    Article 

    Google Scholar 
    Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Daszak, P. et al. Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services. (Bonn, Germany, 2020).Chinese Academy of Engineering. Report on sustainable development strategy of China’s wildlife farming industry. (2017).Becker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. The Lancet Microbe, https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).Wacharapluesadee, S. et al. Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand. Virol. J. 15, 38 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, Y. et al. Longitudinal surveillance of Betacoronaviruses in fruit bats in Yunnan Province, China during 2009–2016. Virologica Sin. 33, 87–95 (2018).CAS 
    Article 

    Google Scholar 
    Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Epstein, J. H. et al. Nipah virus dynamics in bats and implications for spillover to humans. Proc. Natl Acad. Sci. USA 117, 29190 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, C. W. et al. Preserve a voucher specimen! The critical need for integrating natural history collections in infectious disease studies. mBio 12, e02698–02620 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phelps, K. L. et al. Bat research networks and viral surveillance: gaps and opportunities in Western Asia. Viruses 11, 240 (2019).PubMed Central 
    Article 

    Google Scholar 
    Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Robertson, K. et al. Rabies-related knowledge and practices among persons at risk of bat exposures in Thailand. Plos Negl. Trop. Dis. 5, e1054 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wacharapluesadee, S. et al. Group C Betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1352 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suwannarong, K. et al. Risk factors for bat contact and consumption behaviors in Thailand; a quantitative study. BMC Public Health 20, 841 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valitutto, M. T. et al. Detection of novel coronaviruses in bats in Myanmar. PLoS ONE 15, e0230802 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phelps, K., Jose, R., Labonite, M. & Kingston, T. Assemblage and species threshold responses to environmental and disturbance gradients shape bat diversity in disturbed cave landscapes. Diversity 10, 55 (2018).Article 

    Google Scholar 
    Quibod, M. N. R. M. et al. Diversity and threats to cave-dwelling bats in a small island in the southern Philippines. J. Asia-Pac. Biodivers. 12, 481–487 (2019).Article 

    Google Scholar 
    Furey, N. M. & Racey, P. A. Conservation ecology of cave bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds C. C. Voigt & T. Kingston) 463–500 (Springer International Publishing, 2016).Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types (Version 001), https://doi.org/10.5281/zenodo.3666246 (2020).Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat: dilution or amplification. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160173 (2017).Article 

    Google Scholar 
    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).Article 

    Google Scholar 
    Hassell, J. M. et al. Towards an ecosystem model of infectious disease. Nat. Ecol. Evol. 5, 907–918 (2021).PubMed 
    Article 

    Google Scholar 
    Winter, D. J. rentrez: An R package for the NCBI eUtils API. R. J. 9, 520–526 (2017).Article 

    Google Scholar 
    South, A. rworldmap: A New R package for Mapping Global Data. R. J. 3, 35–43 (2011).Article 

    Google Scholar 
    Olival, K. J. et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLOS Pathog. 16, e1008758 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evolution 3, vex012 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murakami, S. et al. Detection and characterization of Bat Sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg. Infect. Dis. 26, 3025–3029 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, L. et al. Multilocus phylogeny and species delimitation within the philippinensis group (Chiroptera: Rhinolophidae). Zoologica Scr. 47, 655–672 (2018).Article 

    Google Scholar 
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats. (Lynx Edicions, 2019).Srinivasulu, B. & Srinivasulu, C. In plain sight: Bacular and noseleaf morphology supports distinct specific status of Roundleaf Bats Hipposideros pomona Andersen, 1918 and Hipposideros gentilis Andersen, 1918 (Chiroptera: Hipposideridae). J. Threatened Taxa 10, 12018–12026 (2018).Article 

    Google Scholar 
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2633–2641 (2011).Article 

    Google Scholar 
    IUCN. Habitats Classification Scheme (Version 3.1), https://www.iucnredlist.org/resources/habitat-classification-scheme (2021).Williams, P. & Fong, Y. T. World Map of Carbonate Rock Outcrops v3.0 (ed The University of Auckland) (2010).Ross, N. fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3 (2020).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4-5. (2020).Chamberlain, S. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5, https://doi.org/10.7287/peerj.preprints.3304v1 (2017).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0 (2022).GBIF.org. GBIF Occurrence Download, https://doi.org/10.15468/dl.8w26d8 (2021).Feng, X. et al. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019).PubMed 
    Article 

    Google Scholar 
    Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).Article 

    Google Scholar 
    WorldPop. Unconstrained global mosaic 2020 (1km resolution), https://doi.org/10.5258/SOTON/WP00647 (2018).Greenberg, J. A. & Mattiuzzi, M. gdalUtils: Wrappers for the Geospatial Data Abstraction Library (GDAL) Utilities. R package version 2.0.3.2. (2020).Carnell, R. lhs: Latin Hypercube Samples. R package version 1.1.1. (2020).Signorell, A. et al. DescTools: Tools for Descriptive Statistics v. 0.99.41 (2021).Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R Package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).Article 

    Google Scholar 
    Tan, C. W. et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 38, 1073–1078 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tang, F. et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186, 7264 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Computers Simul. 55, 271–280 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. sensitivity: Global Sensitivity Analysis of Model Outputs. R package version 1.25.0. (2021).Monod, H., Naud, C. & Makowski, D. Uncertainty and sensitivity analysis for crop models. In Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications (eds Wallach, D., Makowski, D. & Jones, J.) (Elsevier Science, 2006).Janon, A., Klein, T., Lagnoux, A., Nodet, M. & Prieur, C. Asymptotic normality and efficiency of two Sobol index estimators. ESAIM: Probab. Stat. 18, 342–364 (2014).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Nitrogen cycling and microbial cooperation in the terrestrial subsurface

    Distribution of nitrogen-cycling pathways in groundwaterDifferences in nitrogen-cycling processes based on oxygen and nitrate concentrationsSixteen metagenomes (Table S4) were obtained from duplicate wells at four sites (A–D) from two unconfined alluvial aquifers (Canterbury, Fig. S1). These sites encompassed varied nitrate (0.45–12.6 g/m3), DO (0.37–7.5 mg/L), and dissolved organic carbon (DOC) (0–26 g/m3) concentrations (Fig. 1A; Table S1). Nitrate concentrations were pristine (site C) to N-contaminated (sites A, B, D) [4]. Sites A–C were oxic and had low DOC (typical of groundwaters), whereas site D was dysoxic with relatively high DOC. Metagenomes from groundwater wells comprised pairs, representing the planktonic and sediment-attached fractions. Over 70 Gbp of raw sequence was generated per site (390 Gbp overall, 322 Gbp trimmed). However, 2Kb long and only 0.64–8.14% of reads (3.8% on average) mapped to MAGs (Table S4), reflecting the complexity of microbial communities in the terrestrial subsurface [11]. To capture this diversity, metagenomic reads are first used here to determine the distribution of N metabolisms.Fig. 1: Geochemistry and protein-coding sequences (based on reads) involved in nitrogen cycling that are significantly different among sites used for metagenomics.A Bar plots showing geochemical data from groundwater samples, coloured according to site. Solid bar colour = groundwater samples. Grid lines = attached-fraction enriched groundwater. All samples from site D were characterized as dysoxic, although gwj15-16 contained 0.37 mg/L DO, which are near suboxic levels (i.e. More

  • in

    Potato-gene wrangler

    All crops have been modified through some form of improvement, whether to enhance yield, taste, resilience or another factor. My passion is to continue accelerating the development of crop varieties that are more resistant to climate change and pests. This will make food supplies more secure and will also improve the quality of life for small-hold farmers in Africa and Asia, whose livelihoods can be devastated by crop failure.The goal of crop breeding is not only to develop new varieties, but also to produce genetically superior parents with a range of desirable traits that will be useful in future generations. Complex traits, such as yield or climate resilience, are often regulated by many genes. To speed up crop breeding for those traits, we use genomic data to select the best parental combinations, and then cameras and digital tools to identify the best progeny.In this photo, I’m in a greenhouse in Peru owned by my employer, the International Potato Center (CIP), inspecting potential sweet potato (Ipomoea batatas) breeding parents for cross-pollination. CIP is one of 13 gene banks and research facilities around the world, known collectively as One CGIAR, which protect and utilize crop genetic diversity. I’ve worked at CIP since 2016; before then, I worked in industry, where I developed crops such as drought-tolerant corn hybrids.Because potatoes don’t have seeds that can be preserved for decades, we must reproduce them by growing small parts of plant organs, such as a root, a tuber or part of a stem, in tissue culture. Nearly 85% of the unique potato populations stored at CIP are also cryopreserved in liquid nitrogen to maintain a long-term backup.I can’t think of a nobler mission than working on food security. I hope that more young scientists — especially women — will focus their talents on crop breeding for the future. More

  • in

    Don’t dilute the term Nature Positive

    Nature Positive is an aspirational term that is increasingly being used by businesses, governments and NGOs, but there is a danger that its meaning is being diluted away from measurable overall net gain in biodiversity towards merely any action that benefits nature, argues E.J. Milner-Gulland.The term is appealing because it suggests an optimistic, intuitive and clear summary of where society needs to get to, and it can be used equally by business, government and civil society to describe their aspirations to protect and recover nature. However, once terms start gaining traction, particularly relatively general terms like Nature Positive, there is a risk of slippage and loss of meaning. It is already starting to feel like any actions that increase biodiversity anywhere, and by any amount, can be called Nature Positive. This trend has to be resisted. More

  • in

    Cascading effects of habitat loss on ectoparasite-associated bacterial microbiomes

    Alroy J. Effects of habitat disturbance on tropical forest biodiversity. Proc Natl Acad Sci USA. 2017;114:6056–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gatti LV, Basso LS, Miller JB, Gloor M, Gatti Domingues L, Cassol HLG, et al. Amazonia as a carbon source linked to deforestation and climate change. Nature. 2021;595:388–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JM, Veiga ABGDA, Spilki FR, et al. Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Cienc. 2020;92:e20191375.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morand S, Lajaunie C. Outbreaks of vector-borne and zoonotic diseases are associated with changes in forest cover and oil palm expansion at global scale. Front Vet Sci. 2021;8:661063.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manage. 2015;352:9–20.Article 

    Google Scholar 
    Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, et al. From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation. 2018;16:208–14.Article 

    Google Scholar 
    Yarwood SA. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol Ecol. 2018;94: https://doi.org/10.1093/femsec/fiy175.Kock RA, Orynbayev M, Robinson S, Zuther S, Singh NJ, Beauvais W, et al. Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv. 2018;4:eaao2314.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB. Temperature alters Plasmodium blocking by Wolbachia. Sci Rep. 2014;4:3932.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacArthur RH, Wilson EO. An equilibrium theory of insular zoogeography. Evolution. 1963;17:373–87.Article 

    Google Scholar 
    Krasnov BR, Shenbrot GI, Medvedev SG. Host–habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology. 1997;114:159–73.Poulin R. Are there general laws in parasite ecology? Parasitology 2007;134:63–776Speer KA, Dheilly NM, Perkins SL. Microbiomes are integral to conservation of parasitic arthropods. Biol Conserv. 2020;250:108695.Bell T, Ager D, Song J-I, Newman JA, Thompson IP, Lilley AK, et al. Larger islands house more bacterial taxa. Science. 2005;308:1884.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zinger L, Boetius A, Ramette A. Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol. 2014;23:954–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carbonero F, Oakley BB, Purdy KJ. Metabolic flexibility as a major predictor of spatial distribution in microbial communities. PLoS One. 2014;9:e85105.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.PubMed 
    Article 

    Google Scholar 
    Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gupta A, Nair S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol. 2020;11:1357.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dick CW, Dittmar K. Parasitic bat Flies (Diptera: Streblidae and Nycteribiidae): Host specificity and potential as vectors. In: Klimpel S, Mehlhorn H (eds). Bats (Chiroptera) as Vectors of Diseases and Parasites. 2014. Springer, Berlin, Heidelberg, pp 131–55.Speer KA, Luetke E, Bush E, Sheth B, Gerace A, Quicksall Z, et al. A fly on the cave wall: Parasite genetics reveal fine-scale dispersal patterns of bats. 2019;105:555-66.Patterson BD, Dick CW, Dittmar K. Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). J Trop Ecol. 2008;24:387–96.Article 

    Google Scholar 
    Hiller T, Brändel SD, Honner B, Page RA, Tschapka M. Parasitization of bats by bat flies (Streblidae) in fragmented habitats. Biotropica. 2020;72:617.
    Google Scholar 
    Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, et al. Collapse of insect gut symbiosis under simulated climate change. MBio. 2016;7:e01578-16.Thapa S, Zhang Y, Allen MS. Effects of temperature on bacterial microbiome composition in Ixodes scapularis ticks. Microbiologyopen. 2019;8:e00719.PubMed 
    Article 
    CAS 

    Google Scholar 
    Teixeira TSM. Bats in a fragmented world. 2019. Queen Mary University of London.Emmons L, Feer F. Neotropical rainforest mammals: a field guide. 1997. sidalc.net.Reis NR, Fregonezi MN, Peracchi AL, Shibatta OA. Morcegos do Brasil: guia de campo. 2013. Technical Books Editora.Sikes RS, Care A, of Mammalogists UC of TAS. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97:663–88.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wenzel RL. The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin. Biological Series. 1976;20:1.
    Google Scholar 
    Graciolli G, de Carvalho CJB. Moscas ectoparasitas (Diptera, Hippoboscoidea) de morcegos (Mammalia, Chiroptera) do Estado do Paraná. 11. Streblidae. Chave pictórica para gêneros e espécies 1. RevIa bras Zool. 2001;18:907–60.Article 

    Google Scholar 
    Graciolli G, de Carvalho CJB. Moscas ectoparasitas (Diptera, Hippoboscoidea, Nycteribiidae) de morcegos (Mammalia, Chiroptera) do Estado do Paraná, Brasil. I. Basilia, taxonomia e chave pictórica para as espécies 1. RevIa bras Zool. 2001;18:33–49.Article 

    Google Scholar 
    Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.CAS 
    PubMed 

    Google Scholar 
    Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences. 2003;270:313–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gustafson EJ, Parker GR. Relationships between landcover proportion and indices of landscape spatial pattern. Landsc Ecol. 1992;7:101–10.Article 

    Google Scholar 
    McGarigal K, Cushman SA, Neel MC, Ene E. FRAGSTATS: spatial pattern analysis program for categorical maps. 2002. University of Massachusetts.Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, et al. Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci. 2010;3:243–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. BMC Biol. 2014;12:69.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12.Article 

    Google Scholar 
    Katoh K, Misawa K, Kuma K-I, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh K, Kuma K-I, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh K, Toh H. PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics. 2007;23:372–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M, Meng X-Y, et al. Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J. 2012;6:577–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duron O, Schneppat UE, Berthomieu A, Goodman SM, Droz B, Paupy C, et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol Ecol. 2014;23:2105–17.PubMed 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.PubMed 
    Article 
    CAS 

    Google Scholar 
    Nováková E, Hypsa V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bressan A, Terlizzi F, Credi R. Independent origins of vectored plant pathogenic bacteria from arthropod-associated Arsenophonus endosymbionts. Microb Ecol. 2012;63:628–38.PubMed 
    Article 

    Google Scholar 
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R. Tracking down the sources of experimental contamination in microbiome studies. Genome Biol. 2014;15:564.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 2019;27:105–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberdi A, Aizpurua O, Gilbert MTP, Bohmann K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol Evol. 2018;9:134–47.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac Symp Biocomput 2012; 235–46.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.4–4. 2017. 2018.Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016. Springer.Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016;62:692–703.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsilimigras MCB, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol. 2016;26:330–5.PubMed 
    Article 

    Google Scholar 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 2017;8:2224.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silverman JD, Washburne AD, Mukherjee S, David LA. A phylogenetic transform enhances analysis of compositional microbiota data. Elife 2017;6.Xia Y, Sun J. Hypothesis testing and statistical analysis of microbiome. Genes Dis. 2017;4:138–48.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.Article 

    Google Scholar 
    Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL (eds). Wiley StatsRef: Statistics Reference Online. 2014. John Wiley & Sons, Ltd, Chichester, UK, pp 1–15.Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu H, Roeder K, Wasserman L. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Adv Neural Inf Process Syst. 2010;24:1432–40.PubMed 
    PubMed Central 

    Google Scholar 
    Röttjers L, Faust K. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Freeman LC. Centrality in social networks conceptual clarification. Soc Networks. 1978;1:215–39.Article 

    Google Scholar 
    Brandes U. A faster algorithm for betweenness centrality. J Math Sociol. 2001;25:163–77.Article 

    Google Scholar 
    Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. Complex Systems. 2006;1695:1–9.
    Google Scholar 
    Newman MEJ. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74:036104.CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmas E, Besson M, Brice M-H, Burkle LA, Dalla Riva GV, Fortin M-J, et al. Analysing ecological networks of species interactions: Analyzing ecological networks. Biol Rev. 2019;94:16–36.Article 

    Google Scholar 
    Fortunato S, Hric D. Community detection in networks: A user guide. arXiv [physics.soc-ph]. 2016.Singh A, Humphries MD. Finding communities in sparse networks. Sci Rep. 2015;5:8828.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yaveroğlu ÖN, Malod-Dognin N, Davis D, Levnajic Z, Janjic V, Karapandza R, et al. Revealing the hidden language of complex networks. Sci Rep. 2014;4:4547.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Przulj N. Biological network comparison using graphlet degree distribution. Bioinformatics. 2007;23:e177–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hočevar T, Demšar J. Computation of graphlet orbits for nodes and edges in sparse graphs. J Stat Softw 2016;71.Müller CL, Bonneau R, Kurtz Z. Generalized stability approach for regularized graphical models. arXiv [statME]. 2016.Mahana D, Trent CM, Kurtz ZD, Bokulich NA, Battaglia T, Chung J, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med. 2016;8:48.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruiz VE, Battaglia T, Kurtz ZD, Bijnens L, Ou A, Engstrand I, et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat Commun. 2017;8:518.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013;7:1344–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front Microbiol. 2016;7:1753.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker CG, Longo AV, Haddad CFB, Zamudio KR. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc Biol Sci 2017;284.Ingala MR, Becker DJ, Bak Holm J, Kristiansen K, Simmons NB. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol Evol. 2019;9:6508–23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aksoy E, Telleria EL, Echodu R, Wu Y, Okedi LM, Weiss BL, et al. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol. 2014;80:4301–12.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mello RM, Laurindo RS, Silva LC, Pyles MV, Mancini MCS, Dáttilo W, et al. Landscape configuration and composition shape mutualistic and antagonistic interactions among plants, bats, and ectoparasites in human-dominated tropical rainforests. Acta Oecol. 2021;112:103769.Article 

    Google Scholar 
    Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011;10:307–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sassera D, Epis S, Pajoro M, Bandi C. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health. 2013;107:285–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 2013;9:e1003318.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Obame-Nkoghe J, Rahola N, Bourgarel M, Yangari P, Prugnolle F, Maganga GD, et al. Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: diversity, dynamics and potential role in Polychromophilus melanipherus transmission. Parasit Vectors. 2016;9:333.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW. Compartments revealed in food-web structure. Nature. 2003;426:282–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stouffer DB, Bascompte J. Understanding food-web persistence from local to global scales. Ecol Lett. 2010;13:154–61.PubMed 
    Article 

    Google Scholar 
    Trowbridge RE, Dittmar K, Whiting MF. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J Invertebr Pathol. 2006;91:64–68.PubMed 
    Article 

    Google Scholar 
    Morse SF, Bush SE, Patterson BD, Dick CW, Gruwell ME, Dittmar K. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Appl Environ Microbiol. 2013;79:2952–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkinson DA, Duron O, Cordonin C, Gomard Y, Ramasindrazana B, Mavingui P, et al. The bacteriome of bat flies (Nycteribiidae) from the Malagasy Region: a community shaped by host ecology, bacterial transmission mode, and host-vector specificity. Appl Environ Microbiol. 2016;82:1778–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graciolli G, Dick CW. Checklist of World Nycteribiidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322579074_CHECKLIST_OF_WORLD_NYCTERIBIIDAE_DIPTERA_HIPPOBOSCOIDEA.Graciolli G, Dick CW. Checklist of World Streblidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322578987_CHECKLIST_OF_WORLD_STREBLIDAE_DIPTERA_HIPPOBOSCOIDEA.Breitschwerdt EB, Kordick DL. Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev. 2000;13:428–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiggins FM. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics. 2003;164:5–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA. 2010;107:769–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lack JB, Nichols RD, Wilson GM, Van Den Bussche RA. Genetic signature of reproductive manipulation in the phylogeography of the bat fly, Trichobius major. J Hered. 2011;102:705–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, et al. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol. 2012;12:1717–23.PubMed 
    Article 

    Google Scholar 
    Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stuckey MJ, Chomel BB, de Fleurieu EC, Aguilar-Setién A, Boulouis H-J, Chang C-C. Bartonella, bats and bugs: A review. Comp Immunol Microbiol Infect Dis. 2017;55:20–29.PubMed 
    Article 

    Google Scholar 
    Gibson CM, Hunter MS. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett. 2010;13:223–34.PubMed 
    Article 

    Google Scholar  More

  • in

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Forest Advanced Computing and Artificial Intelligence Laboratory (FACAI), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USAJingjing Liang, Mo Zhou & Akane O. AbbasiForestry Division, Food and Agriculture Organization of the United Nations, Rome, ItalyJavier G. P. Gamarra & Antonello SalisGIP ECOFOR, Paris, FranceNicolas PicardDepartment of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USABryan Pijanowski, Douglass F. Jacobs & Minjee ParkInstitute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USAPeter B. ReichDepartment of Forest Resources, University of Minnesota, St. Paul, MN, USAPeter B. ReichHawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, AustraliaPeter B. ReichCrowther Lab, Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, SwitzerlandThomas W. CrowtherWageningen Environmental Research, Wageningen University and Research, Wageningen, NetherlandsGert-Jan NabuursForest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, NetherlandsGert-Jan Nabuurs, Frans Bongers, Mathieu Decuyper, Marc Parren, Lourens Poorter & Douglas SheilDepartment of Crop and Forest Sciences, University of Lleida, Lleida, SpainSergio de-MiguelJoint Research Unit CTFC—Agrotecnio—CERCA, Solsona, SpainSergio de-Miguel & Albert MoreraInstitute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Evironmental Sciences, Peking University, Beijing, ChinaJingyun FangNorthern Research Station, USDA Forest Service, Durham, NH, USAChristopher W. WoodallCenter for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, DenmarkJens-Christian SvenningSection for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, DenmarkJens-Christian SvenningSchool of Biological Sciences, University of Bristol, Bristol, UKTommaso JuckerTERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Gembloux, BelgiumJean-Francois BastinManaaki Whenua Landcare Research, Lincoln, New ZealandSusan K. WiserEnvironmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei DarussalamFerry SlikCentre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, FranceBruno HéraultINP-HB (Institut National Polytechnique Félix Houphouet-Boigny), University of Montpellier, Yamoussoukro, Ivory CoastBruno HéraultDepartment of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, ItalyGiorgio AlbertiFaculty of Science and Technology, Free University of Bolzano, Bolzano, ItalyGiorgio AlbertiInstitute of Bioeconomy, CNR, Sesto, ItalyGiorgio AlbertiNatural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Adelaide, South Australia, AustraliaGunnar KeppelBiometris, Wageningen University and Research, Wageningen, NetherlandsGeerten M. HengeveldWageningen University & Research, Forest and Nature Conservation Policy Group, Wageningen, NetherlandsGeerten M. HengeveldCentre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Eberswalde, GermanyPierre L. IbischSchool of Forest, Fisheries, and Geomatics Sciences, Institute of Food & Agricultural Sciences, University of Florida, Gainesville, FL, USACarlos A. Silva, Eben N. Broadbent & Carine KlaubergNaturalis Biodiversity Center, Leiden, NetherlandsHans ter SteegeInstituto Nacional de Tecnología Agropecuaria (INTA), Santa Cruz, ArgentinaPablo L. PeriDepartment of Plant Sciences, University of Cambridge, Cambridge, UKDavid A. CoomesFaculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, CanadaEric B. Searle & Han Y. H. ChenUniversity of Göttingen, Göttingen, GermanyKlaus von GadowBeijing Forestry University, Beijing, ChinaKlaus von GadowUniversity of Stellenbosch, Stellenbosch, South AfricaKlaus von GadowBiałowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, PolandBogdan JaroszewiczSwiss National Forest Inventory/Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, SwitzerlandMeinrad AbeggUFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Ivory CoastYves C. Adou Yao & Anny E. N’GuessanEnvironmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UKJesús Aguirre-GutiérrezBiodiversity Dynamics, Naturalis Biodiversity Center, Leiden, NetherlandsJesús Aguirre-GutiérrezCenter for Latin American Studies, University of Florida, Gainesville, FL, USAAngelica M. Almeyda ZambranoInstitute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czech RepublicJan Altman & Jiri DolezalFaculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Praha-Suchdol, Czech RepublicJan Altman & Miroslav SvobodaEscuela ECAPMA, National Open University and Distance (Colombia) | UNAD, Bogotá, ColombiaEsteban Alvarez-DávilaDepartamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela, Lugo, SpainJuan Gabriel Álvarez-GonzálezCenter for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USALuciana F. AlvesUniversité Jean Lorougnon Guédé, Daloa, Ivory CoastBienvenu H. K. AmaniUniversité Officielle de Bukavu, Bukavu, Democratic Republic of CongoChristian A. AmaniSilviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Goettingen, GermanyChristian Ammer & Peter SchallInstitut National pour l’Etude et la Recherche Agronomiques, Kinshasa, Democratic Republic of CongoBhely Angoboy IlondeaNorwegian Institute of Bioeconomy Research (NIBIO), Division of Forestry and Forest Resources, Ås, NorwayClara Antón-FernándezEuropean Commission, Joint Research Centre, Ispra, ItalyValerio AvitabileCompensation International Progress S.A., Bogotá, ColombiaGerardo A. AymardLaboratory of Applied Ecology, University of Abomey-Calavi, Cotonou, BeninAkomian F. AzihouScientific Services, South African National Parks, Knysna, South AfricaJohan A. Baard & Graham P. DurrheimSchool of Geography, University of Leeds, Leeds, UKTimothy R. Baker, Simon L. Lewis & Oliver L. PhillipsDepartment of Geomatics, Forest Research Institute, Sekocin Stary, Raszyn, PolandRadomir Balazy & Krzysztof J. StereńczakProceedings of the National Academy of Sciences, Washington, DC, USAMeredith L. BastianDepartment of Evolutionary Anthropology, Duke University, Durham, NC, USAMeredith L. BastianDepartment of Environment, Universtité du Cinquantenaire de Lwiro, Bukavu, Democratic Republic of CongoRodrigue BatumikeDepartment of Environment, Ghent University, Ghent, BelgiumMarijn BautersDepartment of Green Chemistry and Technology, Ghent University, Ghent, BelgiumMarijn Bauters & Pascal BoeckxService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumHans Beeckman, Thales de Haulleville & Wannes HubauBalai Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan, Manokwari, IndonesiaNithanel Mikael Hendrik Benu & Relawan KuswandiInstitute of Tropical Forest Conservation, Mbarara University of Science and Technology, Mbarara, UgandaRobert BitarihoUniversité de Liège, Gembloux Agro-Bio Tech, Gembloux, BelgiumJan Bogaert & Thales de HaullevilleIntegrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), University Stefan cel Mare of Suceava, Suceava, RomaniaOlivier BouriaudDepartment of Forestry Sciences, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, BrazilPedro H. S. Brancalion, Ricardo G. César & Vanessa S. MorenoBavarian State Institute of Forestry, Freising, GermanySusanne BrandlDepartment of Natural Sciences, Manchester Metropolitan University, Manchester, UKFrancis Q. Brearley, Giacomo Sellan & Martin J. P. SullivanFacultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, MexicoJaime Briseno-Reyes, José Javier Corral-Rivas & Daniel José Vega-NievaInstitute of Biology and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), GermanyHelge BruelheideGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, GermanyHelge BruelheideDevelopment Economics Group, Wageningen University, Wageningen, NetherlandsErwin BulteRosen Center for Advanced Computing (RCAC), Purdue University, West Lafayette, IN, USAAnn Christine Catlin, Lev Gorenstein, Geoffrey Lentner & Xiao ZhuDepartment of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, ItalyRoberto Cazzolla GattiInstitute of Integrative Biology, ETH Zürich, Zürich, SwitzerlandChelsea ChisholmIFER – Institute of Forest Ecosystem Research, Jilove u Prahy, Czech RepublicEmil CiencialaGlobal Change Research Institute of the CAS, Brno, Czech RepublicEmil CiencialaPrograma de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas CEP, Biologia, BrazilGabriel D. CollettaDirección Nacional de Bosques (DNB), Ministerio de Ambiente y Desarrollo Sostenible (MAyDS), Ciudad Autónoma de Buenos Aires, Buenos Aires, ArgentinaAnibal CuchiettiDepartment of International Environment and Development Studies (Noragric), Faculty of Landscape and Society, Norwegian University of Life Sciences (NMBU), Ås, NorwayAida Cuni-SanchezDepartment of Environment and Geography, University of York, York, UKAida Cuni-SanchezDepartment of Environmental Science, School of Engineering and Sciences, SRM University-AP, Guntur, IndiaJavid A. DarDepartment of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Madhya Pradesh, IndiaJavid A. Dar & Subashree KothandaramanDepartment of Ecology and Environmental Sciences, Pondicherry University, Puducherry, IndiaJavid A. Dar, Subashree Kothandaraman, Narayanaswamy Parthasarathy & Somaiah SundarapandianCentre for Structural and Functional Genomics & Quebec Centre for Biodiversity Science, Biology Department, Concordia University, Montreal, Quebec, CanadaSelvadurai DayanandanDepartment of Ecology, Faculty of Science, Charles University, Prague, Czech RepublicSylvain Delabye, Stepan Janecek, Yannick Klomberg, Vincent Maicher & Robert TropekBiology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech RepublicSylvain Delabye, Tom M. Fayle, Vincent Maicher & Robert TropekCirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French GuianaGéraldine Derroire, Aurélie Dourdain & Eric MarconDepartment of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, CanadaBen DeVriesNational Forest Authority, Kampala, UgandaJohn DiisiDepartment of Silviculture Foundation, Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, VietnamTran Van DoDepartment of Botany, Faculty of Science, University of South Bohemia, Bohemia, Czech RepublicJiri DolezalIPHAMETRA, IRET, CENAREST, Libreville, GabonNestor Laurier Engone ObiangFaculté de Gestion de Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of CongoCorneille E. N. Ewango, Faustin M. Mbayu & Eric Katembo WasingyaQueensland Herbarium, Department of Environment and Science, Toowong, Queensland, AustraliaTeresa J. Eyre, Victor J. Neldner & Michael R. NgugiSchool of Biological and Behavioural Sciences, Queen Mary University of London, London, UKTom M. FayleDepartment of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, CameroonLethicia Flavine N. Feunang, Banoho L. P. R. Kabelong, Moses B. Libalah, Louis N. Nforbelie, Emile Narcisse N. Njila & Melanie C. NyakoNatural Resources Institute Finland, Joensuu, FinlandLeena FinérInstitute of Plant Sciences, University of Bern, Bern, SwitzerlandMarkus FischerDepartment of Forest Resource Management, Swedish University of Agricultural Sciences, Umea, SwedenJonas Fridman & Bertil WesterlundResearch and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, ItalyLorenzo Frizzera, Damiano Gianelle & Mirco RodeghieroHerbário Dr. Roberto Miguel Klein, Universidade Regional de Blumenau, Blumenau, BrazilAndré L. de GasperGlick Designs, LLC, Hadley, MA, USAHenry B. GlickCIIDIR Durango, Instituto Politécnico Nacional, Durango, MexicoMaria Socorro Gonzalez-ElizondoDépartement des Sciences et Technologies de l’Environnement, Université du Burundi, Bujumbura, BurundiRichard HabonayoFaculté des Sciences, Evolutionary Biology and Ecology Unit, Université Libre de Bruxelles, Brussels, BelgiumOlivier J. HardyRoyal Botanic Garden Edinburgh, Edinburgh, UKDavid J. Harris & Axel Dalberg PoulsenDepartment of Plant Sciences, University of Oxford, Oxford, UKAndrew HectorDepartment of Plant Systematics, Bayreuth University, Bayreuth, GermanyAndreas HempHelmholtz GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing and Geoinformatics, Potsdam, GermanyMartin HeroldWild Chimpanzee Foundation, Liberia Representation, Monrovia, LiberiaAnnika HillersCentre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UKAnnika HillersDepartment of Environment, Laboratory for Wood Technology (UGent-Woodlab), Ghent University, Ghent, BelgiumWannes HubauAMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceThomas IbanezDepartment of Forest Science, Tokyo University of Agriculture, Tokyo, JapanNobuo ImaiBiology Department, Université Officielle de Bukavu, Bukavu, Democratic Republic of CongoGerard ImaniInstitute of Dendrology, Polish Academy of Sciences, Kórnik, PolandAndrzej M. Jagodzinski & Jacek OleksynPoznan University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Game Management and Forest Protection, Poznan, PolandAndrzej M. JagodzinskiDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, DenmarkVivian Kvist Johannsen & Sebastian Kepfer-RojasPlant Biology Department, Biology Institute, University of Campinas (UNICAMP), Campinas, BrazilCarlos A. JolyDepartment of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USABlaise JumbamInstitute of Agricultural Research for Development (IRAD), Nkolbisson, Ministry of Scientific Research and Innovation, Yaounde, CameroonBlaise JumbamDepartment of Food and Resource Economics, University of Copenhagen, Copenhagen, DenmarkGoytom Abraha KahsayForestry Faculty, Bauman Moscow State Technical University, Mytischi, RussiaViktor Karminov & Olga MartynenkoIntegrative Research Center, The Field Museum, Chicago, IL, USAKuswata KartawinataLabo Botanique, Université Félix Houphouët-Boigny, Abidjan, Ivory CoastJustin N. KassiComputational and Applied Vegetation Ecology Lab, Ghent University, Ghent, BelgiumElizabeth Kearsley & Hans VerbeeckDepartment of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USADeborah K. KennardDepartment of Botany, Dr. Harisingh Gour Vishwavidalaya (A Central University), Sagar, IndiaMohammed Latif KhanKenya Forestry Research Institute, Department of Forest Resource Assessment, Nairobi, KenyaJohn N. KigomoDepartment of Forest Sciences, Seoul National University, Seoul, Republic of KoreaHyun Seok KimInterdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, Republic of KoreaHyun Seok KimNational Center for Agro Meteorology, Seoul, Republic of KoreaHyun Seok KimResearch Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of KoreaHyun Seok KimInstitute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, EstoniaHenn Korjus & Mait LangInternational Institute for Applied Systems Analysis, Laxenburg, AustriaFlorian Kraxner, Dmitry Schepaschenko & Anatoly Z. ShvidenkoDepartment of Geoinformatics, Central University of Jharkhand, Ranchi, IndiaAmit KumarTartu Observatory, University of Tartu, Tõravere, EstoniaMait LangSchool of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South AfricaMichael J. LawesDepartment of Forest Engineering, Federal University of Viçosa (UFV), Viçosa, BrazilRodrigo V. LeiteDepartment of Geography, University College London, London, UKSimon L. LewisPlant Systematics and Ecology Laboratory (LaBosystE), Higher Teacher’s Training College, University of Yaoundé I, Yaoundé, CameroonMoses B. LibalahLaboratoire d’Écologie et Aménagement Forestier, Département d’Ecologie et de Gestion des Ressources Végétales, Université de Kisangani, Kisangani, Democratic Republic of CongoJanvier LisingoInstituto de Silvicultura e Industria de la Madera, Universidad Juarez del Estado de Durango, Durango, MexicoPablito Marcelo López-Serrano & Maria Guadalupe Nava-MirandaFaculty of Forestry, Qingdao Agricultural University, Qingdao, ChinaHuicui LuCenter for Forest Ecology and Productivity RAS (CEPF RAS), Moscow, RussiaNatalia V. LukinaDepartment of Ecoscience, Aarhus University, Silkeborg, DenmarkAnne Mette LykkeNicholas School of the Environment, Duke University, Durham, NC, USAVincent Maicher & John R. PoulsenDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrian S. MaitnerAgroParisTech, UMR AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceEric MarconUniversity of the Sunshine Coast, Sippy Downs, Queensland, AustraliaAndrew R. MarshallUniversity of York, York, UKAndrew R. MarshallFlamingo Land Ltd., North Yorkshire, UKAndrew R. MarshallDepartment of Wildlife Management, College of African Wildlife Management, Mweka, TanzaniaEmanuel H. MartinKenya Forestry Research Institute, Headquarters, Nairobi, KenyaMusingo T. E. MbuviDepartamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, MexicoJorge A. MeaveEcology and Evolutionary Biology, University of Connecticut, Storrs, CT, USACory MerowDepartment of Forest Management and Forest Economics, Warsaw University of Life Sciences, Warsaw, PolandStanislaw MiscickiTropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, AustraliaSharif A. Mukul & Alain S. K. NguteFieldstation Fabrikschleichach, Julius-Maximilians University Würzburg, Würzburg, GermanyJörg C. MüllerBavarian Forest Nationalpark, Grafenau, GermanyJörg C. MüllerFakultas Kehutanan, Universitas Papua, Jalan Gunung Salju Amban, Manokwari Papua Barat, IndonesiaAgustinus MurdjokoLimbe Botanic Garden, Limbe, CameroonLitonga Elias NdiveInstitute of Forestry, Belgrade, SerbiaRadovan V. NevenicTropical Plant Exploration Group (TroPEG), Buea, CameroonMichael L. Ngoh & Moses Nsanyi SaingeDepartment of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USAMichael L. NgohApplied Biology and Ecology Research Unit, University of Dschang, Dschang, CameroonAlain S. K. NguteDepartment of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USAThomas O. OchuodhoUQAM, Centre for Forest Research, Montreal, Quebec, CanadaAlain PaquetteV.N. Sukachev Forest Institute of FRC KSC SB RAS, Krasnoyarsk, RussiaElena I. Parfenova, Dmitry Schepaschenko & Nadja TchebakovaUrban Management and Planning, School of Social Sciences, Western Sydney University, Penrith, New South Wales, AustraliaSebastian PfautschInstituto Nacional de Pesquisas da Amazônia—INPA, Grupo Ecologia. Monitoramento e Uso Sustentável de Áreas Úmidas MAUA, Manaus, BrazilMaria T. F. Piedade, Jochen Schöngart & Natalia TarghettaCentro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Ilhéus, BrazilDaniel Piotto & Samir G. RolimDepartment of Agriculture, Food, Environment and Forestry, University of Firenze, Firenze, ItalyMartina Pollastrini & Federico SelviTechnical University of Munich, School of Life Sciences Weihenstephan, Chair of Forest Growth and Yield Science, Munich, GermanyHans PretzschCentro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele all’Adige, ItalyMirco RodeghieroDepartment of Biology, University of Florence, Sesto Fiorentino, ItalyFrancesco RoveroMUSE—Museo delle Scienze, Trento, ItalyFrancesco RoveroInfoflora c/o Botanical Garden of Geneva, Geneva, SwitzerlandErvan RutishauserAgricultural Research, Education and Extension Organization (AREEO), Research Institute of Forests and Rangelands (RIFR), Tehran, IranKhosro Sagheb-TalebiDepartment of Environmental Sciences, Central University of Jharkhand, Ranchi, IndiaPurabi SaikiaInstitute of International Education Scholar Rescue Fund (IIE-SRF), One World Trade Center, New York, NY, USAMoses Nsanyi SaingeCentro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, Santiago, ChileChristian Salas-EljatibVicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, ChileChristian Salas-EljatibDepartamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, ChileChristian Salas-EljatibРeoples Friendship University of Russia (RUDN University), Moscow, RussiaDmitry SchepaschenkoUniversity of Freiburg, Faculty of Biology, Freiburg, GermanyMichael Scherer-LorenzenInstitution with City, Department of Geography, University of Zurich, Zurich, SwitzerlandBernhard SchmidNational Forest Centre, Zvolen, Slovak RepublicVladimír ŠebeňCNRS-UMR LEEISA, Campus Agronomique, Kourou, French GuianaGiacomo SellanUniversite de Lorraine, AgroParisTech, INRA, Nancy, FranceJosep M. Serra-DiazCenter for International Forestry Research (CIFOR), Situ Gede, Bogor Barat, IndonesiaDouglas SheilCirad, University of Montpellier, Montpellier, FrancePlinio SistUniversidade Federal do Rio Grande do Norte, Departamento de Ecologia, Natal, BrazilAlexandre F. SouzaSchool of Biological Sciences, University of Aberdeen, Aberdeen, UKMike D. SwaineHerbarium Kew, Royal Botanic Gardens Kew, London, UKLiam A. TrethowanFaculté des Sciences Appliquées, Université de Mbujimayi, Mbujimayi, Democratic Republic of CongoJohn Tshibamba MukendiYale School of Forestry and Environmental Studies, New Haven, CT, USAPeter Mbanda UmunayUral State Forest Engineering University, Botanical Garden, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, RussiaVladimir A. UsoltsevDIBAF Department, Tuscia University, Viterbo, ItalyGaia Vaglio Laurin & Riccardo ValentiniLINCGlobal, MNCN, CSIC, Madrid, SpainFernando ValladaresPlant Ecology and Nature Conservation Group, Wageningen University, AA Wageningen, NetherlandsFons van der PlasAgricultural High School, ESAV, Polytechnic Institute of Viseu, IPV, Viseu, PortugalHelder VianaCentre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, Vila Real, PortugalHelder VianaDepartment of Forest Engineering, Universidade Regional de Blumenau, Blumenau, BrazilAlexander C. VibransNucleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas (UNICAMP), SP, Campinas, BrazilSimone A. VieiraInternational Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, USAJason VleminckxForest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, AustraliaCatherine E. WaiteSanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, ChinaHua-Feng Wang & Zhi-Xin ZhuKenya Forestry Research Institute, Taita Taveta Research Centre, Wundanyi, KenyaChemuku WekesaDepartment of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Rastatt, GermanyFlorian WittmannDepartment of Forest Management, Centre for Agricultural Research in Suriname, Paramaribo, SurinameVerginia WortelPolish State Forests-Coordination Centre for Environmental Projects, Warsaw, PolandTomasz Zawiła-NiedźwieckiResearch Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, ChinaChunyu Zhang & Xiuhai ZhaoDepartment of Statistics, University of Wisconsin–Madison, Madison, WI, USAJun ZhuInstitut National Polytechnique Félix Houphouët-Boigny, DFR Eaux, Forêts et Environnement, BP, Yamoussoukro, Ivory CoastIrie C. Zo-BiCentre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, South AfricaCang HuiAfrican Institute for Mathematical Sciences, Muizenberg, South AfricaCang HuiConceptualization: J. Liang and C.H. Methodology: J. Liang, C.H., J.G.P.G. and N. Picard. Data coordination: J. Liang, M.Z., S.d.-M., T.W.C., G.-J.N., P.B.R., F. Slik, K.v.G., J.G.P.G. and N. Picard. Writing, revision and editing: all. More