Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186â194 (2012).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Fisher, M. C., Gow, N. A. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B 371, 20160332. https://doi.org/10.1098/rstb.2016.0332 (2016).ArticleÂ
Google ScholarÂ
Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371, 20150465. https://doi.org/10.1098/rstb.2015.0465 (2016).ArticleÂ
Google ScholarÂ
Lips, K. R., Diffendorfer, J., Mendelson, J. R. III. & Sears, M. W. Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 6, e72 (2008).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Caruso, N. M. & Lips, K. R. Truly enigmatic declines in terrestrial salamander populations in great smoky mountains national park. Divers. Distrib. 19, 38â48 (2013).ArticleÂ
Google ScholarÂ
Martel, A. et al. Recent introduction of a chytrid fungus endangers western palearctic salamanders. Science 346, 630â631 (2014).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
van der Spitzen Sluijs, A. et al. Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in the Netherlands. Amphib.-Reptil. 34, 233â239 (2013).ArticleÂ
Google ScholarÂ
Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227â227 (2009).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Thogmartin, W. E., King, R. A., McKann, P. C., Szymanski, J. A. & Pruitt, L. Population-level impact of white-nose syndrome on the endangered Indiana bat. J. Mammal. 93, 1086â1098 (2012).ArticleÂ
Google ScholarÂ
Fisher, M. C., Garner, T. W. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291â310 (2009).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Martel, A. et al. Batrachochytrium salamandrivorans sp. Nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. 110, 15325â15329 (2013).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Allender, M. C., Raudabaugh, D. B., Gleason, F. H. & Miller, A. N. The natural history, ecology, and epidemiology of Ophidiomyces ophiodiicola and its potential impact on free-ranging snake populations. Fungal Ecol. 17, 187â196. https://doi.org/10.1016/j.funeco.2015.05.003 (2015).ArticleÂ
Google ScholarÂ
Grioni, A. et al. Detection of Ophidiomyces ophidiicola in a wild Burmese python (Python bivittatus) in Hong Kong SAR, China. J. Herpetol. Med. Surg. 31, 283â291 (2021).ArticleÂ
Google ScholarÂ
Allender, M. C. et al. Chrysosporium sp. infection in eastern massasauga rattlesnakes. Emerg. Infect. Dis. 17, 2383â2384. https://doi.org/10.1136/vr.b4816 (2011).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Franklinos, L. H. V. et al. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes. Sci. Rep. 7, 1â7. https://doi.org/10.1038/s41598-017-03352-1 (2017).CASÂ
ArticleÂ
Google ScholarÂ
Lorch, J. M. et al. Experimental infection of snakes with Ophidiomyces ophiodiicola causes pathological changes that typify snake fungal disease. mBio 6, 1â9. https://doi.org/10.1128/mBio.01534-15 (2015).CASÂ
ArticleÂ
Google ScholarÂ
Clark, R. W., Marchand, M. N., Clifford, B. J., Stechert, R. & Stephens, S. Decline of an isolated timber rattlesnake (Crotalus horridus) population: Interactions between climate change, disease, and loss of genetic diversity. Biol. Cons. 144, 886â891. https://doi.org/10.1016/j.biocon.2010.12.001 (2011).ArticleÂ
Google ScholarÂ
Chandler, H. C. et al. Ophidiomycosis prevalence in Georgiaâs eastern indigo snake (Drymarchon couperi) populations. PLoS ONE 14, e0218351 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Guthrie, A. L., Knowles, S., Ballmann, A. E. & Lorch, J. M. Detection of snake fungal disease due to Ophidiomyces ophiodiicola in Virginia, USA. J. Wildl. Dis. 52, 143â149. https://doi.org/10.7589/2015-01-007 (2016).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Last, L. A., Fenton, H., Gonyor-McGuire, J., Moore, M. & Yabsley, M. J. Snake fungal disease caused by Ophidiomyces ophiodiicola in a free-ranging mud snake (Farancia abacura). J. Vet. Diagn. Invest. 28, 709â713. https://doi.org/10.1177/1040638716663250 (2016).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Lorch, J. M. et al. Snake fungal disease: An emerging threat to wild snakes. Philos. Trans. R. Soc. B 371, 20150457. https://doi.org/10.1098/rstb.2015.0457 (2016).ArticleÂ
Google ScholarÂ
Haynes, E. et al. First report of ophidiomycosis in a free-ranging California Kingsnake (Lampropeltis californiae) in California, USA. J. Wildl. Dis. 57, 246â249 (2021).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Burbrink, F. T., Lorch, J. M. & Lips, K. R. Host susceptibility to snake fungal disease is highly dispersed across phylogenetic and functional trait space. Sci. Adv. 3, 1â10. https://doi.org/10.1126/sciadv.1701387 (2017).ArticleÂ
Google ScholarÂ
Dixon, J. R. Amphibians and Reptiles of Texas: With Keys, Taxonomic synopses, Bibliography, and Distribution Maps 3rd edn. (Texas A&M University Press, 2000).
Google ScholarÂ
McKeown, S. A Field Guide to Reptiles and Amphibians in the Hawaiian Islands (Diamond Head Publishing, 1996).
Google ScholarÂ
Powell, R., Conant, R. & Collins, J. T. Peterson Field Guide to Reptiles and Amphibians of Eastern and Central NORTH AMERICA (Houghton Mifflin Harcourt, 2016).
Google ScholarÂ
Stebbins, R. C. & McGinnis, S. M. Peterson Field Guide to Western Reptiles and Amphibians (Houghton Mifflin Harcourt, 2018).
Google ScholarÂ
Texas Administrative Code. Stateâlisted threatened species in Texas. 31 TAC §65.175. (2020).Dixon, J. R., Werler, J. E. & Forstner, M. R. J. Texas Snakes: A Field Guide Revised. (University of Texas Press, 2020).BookÂ
Google ScholarÂ
Rodriguez, D., Forstner, M. R. J., McBride, D. L., Densmore, L. D. III. & Dixon, J. R. Low genetic diversity and evidence of population structure among subspecies of Nerodia harteri, a threatened water snake endemic to Texas. Conserv. Genet. 13, 977â986 (2012).ArticleÂ
Google ScholarÂ
Scott, N. J., Maxwell, T. C., Thornton, O. W., Fitzgerald, L. A. & Flury, J. W. Distribution, habitat, and future of Harterâs water snake, Nerodia harteri Texas. J. Herpetol. 23, 373â389 (1989).ArticleÂ
Google ScholarÂ
Whiting, M. J., Dixon, J. R. & Greene, B. D. Spatial ecology of the Concho water snake (Nerodia harteri paucimaculata) in a large lake system. J. Herpetol. 31, 327â335 (1997).ArticleÂ
Google ScholarÂ
McBride, D. L. Distribution and status of the Brazos water snake (Nerodia harteri harteri) Master of Science thesis, Tarleton State University (2009).United States Office of the Federal Register. Endangered and threatened wildlife and plants; determination of Nerodia harteri paucimaculata (Concho water snake) to be a threatened species Final rule. Fed. Regist. 51, 31412â31422 (1986).
Google ScholarÂ
United States Office of the Federal Register. Endangered and threatened wildlife and plants; removal of the Concho water snake from the federallist of endangered and threatened wildlife and removal of designated critical habitat. Fed. Reg. 76, 66779â66804 (2011).
Google ScholarÂ
United States Office of the Federal Register. Endangered and threatened wildlife and plants; findings on petitions and initiation of status review. Fed. Reg. 50, 29238â29239 (1985).
Google ScholarÂ
United States Office of the Federal Register. Endangered and threatened wildlife and plants; animal candidate review for listing as endangered or threatened species. Fed. Reg. 59, 58982â59028 (1994).
Google ScholarÂ
Gibbons, J. W. & Dorcas, M. E. North American Watersnakes: A Natural History (University of Oklahoma Press, 2004).
Google ScholarÂ
Werler, J. E. & Dixon, J. R. Texas Snakes: Identification, Distribution, and Natural History (University of Texas Press, 2000).
Google ScholarÂ
Lind, C. M., McCoy, C. M. & Farrell, T. M. Tracking outcomes of snake fungal disease in free-ranging pigmy rattlesnakes (Sistrurus miliarius). J. Wildl. Dis. 54, 352â356. https://doi.org/10.7589/2017-05-109 (2018).ArticleÂ
PubMedÂ
Google ScholarÂ
McBride, M. P. et al. Ophidiomyces ophiodiicola dermatitis in eight free-ranging timber rattlesnakes (Crotalus horridus) from Massachusetts. J. Zoo Wildl. Med. 46, 86â94. https://doi.org/10.1638/2012-0248R2.1 (2015).ArticleÂ
PubMedÂ
Google ScholarÂ
McCoy, C. M., Lind, C. M. & Farrell, T. M. Environmental and physiological correlates of the severity of clinical signs of snake fungal disease in a population of pigmy rattlesnakes Sistrurus miliarius. Conserv. Physiol. 5, cow077. https://doi.org/10.1093/conphys/cow077 (2017).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Haynes, E. et al. Ophidiomycosis surveillance of snakes in Georgia, USA reveals new host species and taxonomic associations with disease. Sci. Rep. 10, 1â15 (2020).ArticleÂ
CASÂ
Google ScholarÂ
Stengle, A. G. et al. Evidence of vertical transmission of the snake fungal pathogen Ophidiomyces ophiodiicola. J. Wildl. Dis. 55, 961â964 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
Britton, M., Allender, M. C., Hsiao, S.-H. & Baker, S. J. Postnatal mortality in neonate rattlesnakes associated with Ophidiomyces ophiodiicola. J. Zoo Wildl. Med. 50, 672â677 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
Allender, M. C., Hileman, E., Moore, J. & Tetzlaff, S. Detection of Ophidiomyces, the caustive agent of snake fungal disease, in the eastern massasauga (Sistrurus catenatus) in Michigan, USA, 2014. J. Wildl. Dis. 52, 694â698. https://doi.org/10.7589/2015-12-333 (2016).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Hileman, E. T. et al. Estimation of Ophidiomyces prevalence to evaluate snake fungal disease risk. J. Wildl. Manag. 82, 173â181. https://doi.org/10.1002/jwmg.21345 (2018).ArticleÂ
Google ScholarÂ
McKenzie, J. M. et al. Field diagnostics and seasonality of Ophidiomyces ophiodiicola in wild snake populations. EcoHealth 16, 141â150 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
Snyder, S. D., Sutton, W. B. & Walker, D. M. Prevalence of Ophidiomyces ophiodiicola, the causative agent of Snake Fungal Disease, in the Interior Plateau Ecoregion of Tennessee, USA. J. Wildl. Dis. 56, 907â911 (2020).PubMedÂ
ArticleÂ
Google ScholarÂ
Tetzlaff, S. J. et al. Snake fungal disease affects behavior of free-ranging massasauga rattlesnakes (Sistrurus catenatus). Herpetol. Conserv. Biol. 12, 624â634 (2017).
Google ScholarÂ
Aldridge, R. D., Flanagan, W. P. & Swarthout, J. T. Reproductive biology of the water snake Nerodia rhombifer from Veracruz, Mexico, with comparisons of tropical and temperate snakes. Herpetologica 51, 182â192 (1995).
Google ScholarÂ
Greene, B. D., Dixon, J. R., Whiting, M. J. & Mueller, J. M. Reproductive ecology of the Concho water snake Nerodia harteri paucimaculata. Copeia 1999, 701â709 (1999).ArticleÂ
Google ScholarÂ
Kofron, C. P. Reproduction of aquatic snakes in south-central Louisiana. Herpetologica 35, 44â50 (1979).
Google ScholarÂ
Green, B. D. Life History and Ecology of the Concho Water Snake, Nerodia harteri paucimaculata. Dissertation (Texas A&M University, 1993).
Google ScholarÂ
McKenzie, C. M. et al. Ophidiomycosis in red cornsnakes (Pantherophis guttatus): potential roles of brumation and temperature on pathogenesis and transmission. Vet. Pathol. 57, 825â837 (2020).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Gregoire, D. R. Nerodia rhombifer (Hallowell, 1852): U.S. geological survey, nonindigenous aquatic species database, Gainesville, FL, Retrieved from 27 Oct 2009 https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=2577.Janecka, M. J., Janecka, J. E., Haines, A. M., Michaels, A. & Criscione, C. D. Post-delisting genetic monitoring reveals population subdivision along river and reservoir localities of the endemic Concho water snake (Nerodia harteri paucimaculata). Conserv. Genet. 22, 1005â1021 (2021).CASÂ
ArticleÂ
Google ScholarÂ
Madsen, T., Stille, B. & Shine, R. Inbreeding depression in an isolated population of adders Vipera berus. Biol. Cons. 75, 113â118 (1996).ArticleÂ
Google ScholarÂ
Carter, J. et al. Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur. J. Plant Pathol. 18, 573â583 (2002).ArticleÂ
Google ScholarÂ
Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783 (2009).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230â241 (2002).ArticleÂ
Google ScholarÂ
Nieminen, M., Singer, M. C., Fortelius, W., Schöps, K. & Hanski, I. Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. Am. Nat. 157, 237â244 (2001).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Roelke, M. E., Martenson, J. S. & OâBrien, S. J. The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr. Biol. 3, 340â350. https://doi.org/10.1016/0960-9822(93)90197-v (1993).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
United States Office of the Federal Register. Endangered and threatened wildlife and plants: findings on petitions involving the Yacare Caiman and Harterâs water snake. Fed. Reg. 49, 21089â21090 (1984).
Google ScholarÂ
NatureServe. NatureServe Explorer: An Online Encyclopedia of Life [web application]. Version 7.0. NatureServe, Arlington, Virginia., http://www.natureserve.org/explorer (2020).Hammerson, G. A. Nerodia harteri (Trapido, 1941). The IUCN red list of threatened species 2007. https://doi.org/10.2305/IUCN.UK.2007.RLTS.T62238A12583490.en (2007).Allender, M. C. et al. Hematology in an eastern massasauga (Sistrurus catenatus) population and the emergence of Ophidiomyces in Illinois, USA. J. Wildl. Dis. 52, 258â269 (2016).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Becker, C. G., Rodriguez, D., Lambertini, C., Toledo, L. F. & Haddad, C. F. Historical dynamics of Batrachochytrium dendrobatidis in Amazonia. Ecography 39, 954â960 (2016).ArticleÂ
Google ScholarÂ
Rodriguez, D., Becker, C. G., Pupin, N. C., Haddad, C. F. B. & Zamudio, K. R. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic forest of Brazil. Mol. Ecol. 23, 774â787. https://doi.org/10.1111/mec.12615 (2014).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Fitch, H. S. Collecting and Life-History Techniques. In Snakes: Ecology and Evolutionary Biology (eds Seigel, Richard A. et al.) 143â164 (Macmillan, 1987).
Google ScholarÂ
Winne, C. T., Willson, J. D., Andrews, K. M. & Reed, R. N. Efficacy of marking snakes with disposable medical cautery units. Herpetol. Rev. 37, 52â54 (2006).
Google ScholarÂ
Greene, B. D., Dixon, J. R., Mueller, J. M., Whiting, M. J. & Thornton, O. W. Jr. Feeding ecology of the Concho water snake, Nerodia harteri paucimaculata. J. Herpetol. 28, 165â172 (1994).ArticleÂ
Google ScholarÂ
Lacki, M. J., Hummer, J. W. & Fitzgerald, J. L. Population patterns of copperbelly water snakes (Nerodia erythrogaster neglecta) in a riparian corridor impacted by mining and reclamation. Am. Midl. Nat. 153, 357â369 (2005).ArticleÂ
Google ScholarÂ
Hyatt, A. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175â192 (2007).CASÂ
ArticleÂ
Google ScholarÂ
Allender, M. C., Bunick, D., Dzhaman, E., Burrus, L. & Maddox, C. Development and use of a real-time polymerase chain reaction assay for the detection of Ophidiomyces ophiodiicola in snakes. J. Vet. Diagn. Invest. 27, 217â220. https://doi.org/10.1177/1040638715573983 (2015).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Bohuski, E., Lorch, J. M., Griffin, K. M. & Blehert, D. S. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease. BMC Vet. Res. 11, 1â10. https://doi.org/10.1186/s12917-015-0407-8 (2015).CASÂ
ArticleÂ
Google ScholarÂ
Longo, A. V. et al. ITS1 copy number varies among Batrachochytrium dendrobatidis strains: Implications for qPCR estimates of infection intensity from field-collected amphibian skin swabs. PLoS ONE 8, e59499 (2013).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Ohkura, M. et al. Genome sequence of Ophidiomyces ophiodiicola, an emerging fungal pathogen of snakes. Genome Announc. 5, 1â2 (2017).ArticleÂ
Google ScholarÂ
Falk, B. G., Snow, R. W. & Reed, R. N. A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry. PLoS ONE 12, e0180791 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Garrow, J. S. & Webster, J. Queteletâs index (W/H2) as a measure of fatness. Int. J. Obes. 9, 147â153 (1985).CASÂ
PubMedÂ
Google ScholarÂ
Dorai-Raj, S. binom: Binomial confidence intervals for several parameterizations. https://CRAN.R-project.org/package=binom (2014).Thiele, C. & Hirschfeld, G. cutpointr: Improved estimation and validation of optimal cutpoints in R. J. Stat. Softw. 98, 1â27 (2021).ArticleÂ
Google ScholarÂ
Diggle, P. J. Estimating prevalence using an imperfect test. Epidemiol. Res. Int. 2011, 1â5 (2011).ArticleÂ
Google ScholarÂ
Bender, R. & Lange, S. Adjusting for multiple testing: When and how?. J. Clin. Epidemiol. 54, 343â349 (2001).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Brooks, M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378â400 (2017).ArticleÂ
Google ScholarÂ
Barton, K. MuMIn: Multi-model inference. R package version 1.43.6 (2019).Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means, R package version 1.4.8. https://CRAN.R-project.org/package=emmeans (2020). More