More stories

  • in

    Himalayas: create an international peace park

    After the successful protection of Himalayan areas on the border of China and Nepal, we propose that the two nations should create the world’s highest international peace park by combining the Qomolangma and Sagarmatha national parks. This would align with United Nations Sustainable Development Goal 17, to achieve sustainable development through international cooperation (see go.nature.com/3ixmini).
    Competing Interests
    The authors declare no competing interests. More

  • in

    Genomic insights into the secondary aquatic transition of penguins

    Climate change drove evolution, biogeography, and demographyPhylogenetic results (Fig. 1 and Supplementary Fig. 2) confirm previous findings, recovering Aptenodytes (king and emperor penguins) as the sister clade to all other crown penguins, with brush-tailed (Pygoscelis) penguins in turn sister to two clades uniting the banded (Spheniscus) and little (Eudyptula) penguins and the yellow-eyed (Megadyptes) and crested (Eudyptes) penguins6,7,9. Biogeographical reconstructions (Fig. 1, Supplementary Figs. 3–4 and Supplementary Data 1) support a Zealandian origin for penguins6,7. Stem penguins radiated extensively in Zealandia before dispersing to South America and Antarctica multiple times, following the eastward-flowing direction of the Antarctic Circumpolar Current (ACC) (Fig. 1). Crown penguins most likely arose from descendant lineages in South America, before dispersing back to Zealandia at least three times. Interestingly, at least two such dispersals occurred before the inferred onset of the ACC system, suggesting that early stem penguins were not dependent on currents to disperse over long distances. A second pulse of speciation coincides with the onset of the ACC, though understanding whether this pattern is real or an artifact of fossil sampling requires more collecting from early Eocene localities. We infer an age of ~14 Ma for the origin of crown penguins, which is more recent than the ~24 Ma age recovered in genomic analyses, not including fossil taxa7 (Supplementary Fig. 2b) and coincides with the onset of global cooling during the middle Miocene climate transition4,10 (Supplementary Fig. 3a). This young age suggests that expansion of Antarctic ice sheets and the onset of dispersal vectors such as the Benguela Current11 during the middle to late Miocene facilitated crown penguin dispersal and speciation, as hinted at by fossil evidence12.Incongruences between species trees and gene trees were identified, e.g., alternate topologies occurred at high frequencies ( >10%) for several internal branches (Fig. 1c; Supplementary Fig. 5). These patterns indicate that gene tree discordance may be caused by incomplete lineage sorting (ILS) or introgression events. By quantifying ILS and introgression via branch lengths from over 10,000 gene trees, we found that the rapid speciation within crown penguins was accompanied by >5% ILS content within the ancestors of Spheniscus, Eudyptula, Eudyptes, and several subgroups within Eudyptes (Fig. 2a). Our dated tree provides a temporal framework for this rapid radiation: the four extant Spheniscus taxa are all inferred to have split from one another within the last ~3 Ma, and likewise the nine extant Eudyptes taxa likely split from one another in that same time (Fig. 1b). Many closely related penguin species/lineages are known to hybridize in the wild (see supplementary methods). Consistent with this, multiple analyses suggest that introgression also contributes to species tree—gene tree incongruence (Supplementary Figs. 6–9 and Supplementary Data 2; also see Supplementary Methods for further details). This could explain the most notable conflict in previous phylogenetic results, which showed inconsistency over whether Aptenodytes alone7 or Aptenodytes and Pygoscelis together4,5 represent the sister clade to all other extant penguins. Introgression was detected between the ancestor of Aptenodytes and the ancestor of other extant penguins, and is inferred to have occurred when the range of these ancestors overlapped in South America (Fig. 2a and Supplementary Data 2). Introgression ( >9%) was also detected between Eudyptula novaehollandiae and Eudyptula minor, and several introgression events were especially pervasive in Eudyptes (Fig. 2a and Supplementary Fig. 6).Fig. 2: Incomplete lineage sorting, introgression events, and demographic history among penguins.a Model of incomplete lineage sorting (ILS) and introgression events estimated from QuIBL and hybrid pairwise sequentially Markovian coalescent (hPSMC) results. hPSMC was only run for 20 species pairs (see b). Numbers on branches represent the proportion (%) of ILS (orange branches) or introgression (blue lines, blue dashed lines, and blue dotted lines) detected by QuIBL. Proportions 50 km; see Supplementary Data 117), while taxa that decreased towards the end of the LGP (e.g., S. humboldti, S. demersus, M. a. antipodes and likely M. a. richdalei) tend to be residential, and forage inshore; see Supplementary Data 1. Taxa that disperse farther may have overcome local impacts of global climate cooling during the LGP (e.g., changes in sea-ice extent, prey abundance and terrestrial glaciation, however see18) largely by relocating to lower latitudes (e.g.,14), whereas locally-restricted taxa may have been more prone to sudden population collapses.Penguins have the slowest evolutionary rates among birdsThe integrated evolutionary speed hypothesis (IESH) proposes that temperature, water availability, population size, and spatial heterogeneity influence evolutionary rate19. Life history traits also impact the evolutionary rate, but such relationships remain incompletely understood in birds20. Penguins are long-lived, large-bodied, and produce few offspring, thus providing an ideal case study in how life history may impact evolutionary rate. We tested the IESH using three proxies for evolutionary rate: substitution rate, P and K2P distances between lineages and their ancestors (Supplementary Fig. 12 and Supplementary Data 3). We found that penguins and their sister group (Procellariiformes) had the lowest evolutionary rates of the 17 avian orders sampled by21 (Fig. 3a, Supplementary Fig. 13, and Supplementary Data 3). Because other aquatic orders also show slow rates (e.g., the aquatic Anseriformes show a significantly slower rate than their terrestrial sister group Galliformes), we hypothesize that the rate in penguins represents the culmination of a gradual slowdown associated with increasingly aquatic ecology. Intriguingly, we detected a trend toward decreasing rate over the first ~10 Ma of crown penguin evolution, followed by a marked uptick ~2 Ma, which suggests the onset of glacial-interglacial cycles contributed to a recent increase in evolutionary rates in penguins (Fig. 3b).Fig. 3: Evolutionary rates in birds.a Evolutionary rate in avian orders based on a ~19 Mbp alignment of highly conserved genome regions. Sphenisciformes and Procellariiformes have the lowest evolutionary rate among modern bird orders (One-sided Wilcoxon Rank sum test, P values  0.1)). Numbers at the tips represent the sample size in each group. Numbers at nodes represent the divergence times (Ma) between each order and its sister taxon and red dots within the boxplots indicate average values. We did not attempt to estimate the evolutionary rates for orders containing less than three sampled species (gray font; Musophagiformes, Mesitornithiformes, and Struthioniformes). Boxplots show the median with hinges at the 25th and 75th percentile and whiskers extending 1.5 times the interquartile range. Some bird images were downloaded from phylopic.org and were licensed under the Creative Commons (CC0) 1.0 Universal Public Domain Dedication. b Evolutionary rates inferred for extant penguin lineages at internal nodes from the maximum clade credibility tree, calculated using a 500 Mbp genome alignment. Gray shadows represent the 95% credible intervals. c–e Correlations between c, body mass and generation time (P value  More

  • in

    Comparative host–pathogen associations of Snake Fungal Disease in sympatric species of water snakes (Nerodia)

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fisher, M. C., Gow, N. A. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B 371, 20160332. https://doi.org/10.1098/rstb.2016.0332 (2016).Article 

    Google Scholar 
    Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371, 20150465. https://doi.org/10.1098/rstb.2015.0465 (2016).Article 

    Google Scholar 
    Lips, K. R., Diffendorfer, J., Mendelson, J. R. III. & Sears, M. W. Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 6, e72 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Caruso, N. M. & Lips, K. R. Truly enigmatic declines in terrestrial salamander populations in great smoky mountains national park. Divers. Distrib. 19, 38–48 (2013).Article 

    Google Scholar 
    Martel, A. et al. Recent introduction of a chytrid fungus endangers western palearctic salamanders. Science 346, 630–631 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van der Spitzen Sluijs, A. et al. Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in the Netherlands. Amphib.-Reptil. 34, 233–239 (2013).Article 

    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227–227 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thogmartin, W. E., King, R. A., McKann, P. C., Szymanski, J. A. & Pruitt, L. Population-level impact of white-nose syndrome on the endangered Indiana bat. J. Mammal. 93, 1086–1098 (2012).Article 

    Google Scholar 
    Fisher, M. C., Garner, T. W. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martel, A. et al. Batrachochytrium salamandrivorans sp. Nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. 110, 15325–15329 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allender, M. C., Raudabaugh, D. B., Gleason, F. H. & Miller, A. N. The natural history, ecology, and epidemiology of Ophidiomyces ophiodiicola and its potential impact on free-ranging snake populations. Fungal Ecol. 17, 187–196. https://doi.org/10.1016/j.funeco.2015.05.003 (2015).Article 

    Google Scholar 
    Grioni, A. et al. Detection of Ophidiomyces ophidiicola in a wild Burmese python (Python bivittatus) in Hong Kong SAR, China. J. Herpetol. Med. Surg. 31, 283–291 (2021).Article 

    Google Scholar 
    Allender, M. C. et al. Chrysosporium sp. infection in eastern massasauga rattlesnakes. Emerg. Infect. Dis. 17, 2383–2384. https://doi.org/10.1136/vr.b4816 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franklinos, L. H. V. et al. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes. Sci. Rep. 7, 1–7. https://doi.org/10.1038/s41598-017-03352-1 (2017).CAS 
    Article 

    Google Scholar 
    Lorch, J. M. et al. Experimental infection of snakes with Ophidiomyces ophiodiicola causes pathological changes that typify snake fungal disease. mBio 6, 1–9. https://doi.org/10.1128/mBio.01534-15 (2015).CAS 
    Article 

    Google Scholar 
    Clark, R. W., Marchand, M. N., Clifford, B. J., Stechert, R. & Stephens, S. Decline of an isolated timber rattlesnake (Crotalus horridus) population: Interactions between climate change, disease, and loss of genetic diversity. Biol. Cons. 144, 886–891. https://doi.org/10.1016/j.biocon.2010.12.001 (2011).Article 

    Google Scholar 
    Chandler, H. C. et al. Ophidiomycosis prevalence in Georgia’s eastern indigo snake (Drymarchon couperi) populations. PLoS ONE 14, e0218351 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guthrie, A. L., Knowles, S., Ballmann, A. E. & Lorch, J. M. Detection of snake fungal disease due to Ophidiomyces ophiodiicola in Virginia, USA. J. Wildl. Dis. 52, 143–149. https://doi.org/10.7589/2015-01-007 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Last, L. A., Fenton, H., Gonyor-McGuire, J., Moore, M. & Yabsley, M. J. Snake fungal disease caused by Ophidiomyces ophiodiicola in a free-ranging mud snake (Farancia abacura). J. Vet. Diagn. Invest. 28, 709–713. https://doi.org/10.1177/1040638716663250 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lorch, J. M. et al. Snake fungal disease: An emerging threat to wild snakes. Philos. Trans. R. Soc. B 371, 20150457. https://doi.org/10.1098/rstb.2015.0457 (2016).Article 

    Google Scholar 
    Haynes, E. et al. First report of ophidiomycosis in a free-ranging California Kingsnake (Lampropeltis californiae) in California, USA. J. Wildl. Dis. 57, 246–249 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burbrink, F. T., Lorch, J. M. & Lips, K. R. Host susceptibility to snake fungal disease is highly dispersed across phylogenetic and functional trait space. Sci. Adv. 3, 1–10. https://doi.org/10.1126/sciadv.1701387 (2017).Article 

    Google Scholar 
    Dixon, J. R. Amphibians and Reptiles of Texas: With Keys, Taxonomic synopses, Bibliography, and Distribution Maps 3rd edn. (Texas A&M University Press, 2000).
    Google Scholar 
    McKeown, S. A Field Guide to Reptiles and Amphibians in the Hawaiian Islands (Diamond Head Publishing, 1996).
    Google Scholar 
    Powell, R., Conant, R. & Collins, J. T. Peterson Field Guide to Reptiles and Amphibians of Eastern and Central NORTH AMERICA (Houghton Mifflin Harcourt, 2016).
    Google Scholar 
    Stebbins, R. C. & McGinnis, S. M. Peterson Field Guide to Western Reptiles and Amphibians (Houghton Mifflin Harcourt, 2018).
    Google Scholar 
    Texas Administrative Code. State‐listed threatened species in Texas. 31 TAC §65.175. (2020).Dixon, J. R., Werler, J. E. & Forstner, M. R. J. Texas Snakes: A Field Guide Revised. (University of Texas Press, 2020).Book 

    Google Scholar 
    Rodriguez, D., Forstner, M. R. J., McBride, D. L., Densmore, L. D. III. & Dixon, J. R. Low genetic diversity and evidence of population structure among subspecies of Nerodia harteri, a threatened water snake endemic to Texas. Conserv. Genet. 13, 977–986 (2012).Article 

    Google Scholar 
    Scott, N. J., Maxwell, T. C., Thornton, O. W., Fitzgerald, L. A. & Flury, J. W. Distribution, habitat, and future of Harter’s water snake, Nerodia harteri Texas. J. Herpetol. 23, 373–389 (1989).Article 

    Google Scholar 
    Whiting, M. J., Dixon, J. R. & Greene, B. D. Spatial ecology of the Concho water snake (Nerodia harteri paucimaculata) in a large lake system. J. Herpetol. 31, 327–335 (1997).Article 

    Google Scholar 
    McBride, D. L. Distribution and status of the Brazos water snake (Nerodia harteri harteri) Master of Science thesis, Tarleton State University (2009).United States Office of the Federal Register. Endangered and threatened wildlife and plants; determination of Nerodia harteri paucimaculata (Concho water snake) to be a threatened species Final rule. Fed. Regist. 51, 31412–31422 (1986).
    Google Scholar 
    United States Office of the Federal Register. Endangered and threatened wildlife and plants; removal of the Concho water snake from the federallist of endangered and threatened wildlife and removal of designated critical habitat. Fed. Reg. 76, 66779–66804 (2011).
    Google Scholar 
    United States Office of the Federal Register. Endangered and threatened wildlife and plants; findings on petitions and initiation of status review. Fed. Reg. 50, 29238–29239 (1985).
    Google Scholar 
    United States Office of the Federal Register. Endangered and threatened wildlife and plants; animal candidate review for listing as endangered or threatened species. Fed. Reg. 59, 58982–59028 (1994).
    Google Scholar 
    Gibbons, J. W. & Dorcas, M. E. North American Watersnakes: A Natural History (University of Oklahoma Press, 2004).
    Google Scholar 
    Werler, J. E. & Dixon, J. R. Texas Snakes: Identification, Distribution, and Natural History (University of Texas Press, 2000).
    Google Scholar 
    Lind, C. M., McCoy, C. M. & Farrell, T. M. Tracking outcomes of snake fungal disease in free-ranging pigmy rattlesnakes (Sistrurus miliarius). J. Wildl. Dis. 54, 352–356. https://doi.org/10.7589/2017-05-109 (2018).Article 
    PubMed 

    Google Scholar 
    McBride, M. P. et al. Ophidiomyces ophiodiicola dermatitis in eight free-ranging timber rattlesnakes (Crotalus horridus) from Massachusetts. J. Zoo Wildl. Med. 46, 86–94. https://doi.org/10.1638/2012-0248R2.1 (2015).Article 
    PubMed 

    Google Scholar 
    McCoy, C. M., Lind, C. M. & Farrell, T. M. Environmental and physiological correlates of the severity of clinical signs of snake fungal disease in a population of pigmy rattlesnakes Sistrurus miliarius. Conserv. Physiol. 5, cow077. https://doi.org/10.1093/conphys/cow077 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haynes, E. et al. Ophidiomycosis surveillance of snakes in Georgia, USA reveals new host species and taxonomic associations with disease. Sci. Rep. 10, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Stengle, A. G. et al. Evidence of vertical transmission of the snake fungal pathogen Ophidiomyces ophiodiicola. J. Wildl. Dis. 55, 961–964 (2019).PubMed 
    Article 

    Google Scholar 
    Britton, M., Allender, M. C., Hsiao, S.-H. & Baker, S. J. Postnatal mortality in neonate rattlesnakes associated with Ophidiomyces ophiodiicola. J. Zoo Wildl. Med. 50, 672–677 (2019).PubMed 
    Article 

    Google Scholar 
    Allender, M. C., Hileman, E., Moore, J. & Tetzlaff, S. Detection of Ophidiomyces, the caustive agent of snake fungal disease, in the eastern massasauga (Sistrurus catenatus) in Michigan, USA, 2014. J. Wildl. Dis. 52, 694–698. https://doi.org/10.7589/2015-12-333 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hileman, E. T. et al. Estimation of Ophidiomyces prevalence to evaluate snake fungal disease risk. J. Wildl. Manag. 82, 173–181. https://doi.org/10.1002/jwmg.21345 (2018).Article 

    Google Scholar 
    McKenzie, J. M. et al. Field diagnostics and seasonality of Ophidiomyces ophiodiicola in wild snake populations. EcoHealth 16, 141–150 (2019).PubMed 
    Article 

    Google Scholar 
    Snyder, S. D., Sutton, W. B. & Walker, D. M. Prevalence of Ophidiomyces ophiodiicola, the causative agent of Snake Fungal Disease, in the Interior Plateau Ecoregion of Tennessee, USA. J. Wildl. Dis. 56, 907–911 (2020).PubMed 
    Article 

    Google Scholar 
    Tetzlaff, S. J. et al. Snake fungal disease affects behavior of free-ranging massasauga rattlesnakes (Sistrurus catenatus). Herpetol. Conserv. Biol. 12, 624–634 (2017).
    Google Scholar 
    Aldridge, R. D., Flanagan, W. P. & Swarthout, J. T. Reproductive biology of the water snake Nerodia rhombifer from Veracruz, Mexico, with comparisons of tropical and temperate snakes. Herpetologica 51, 182–192 (1995).
    Google Scholar 
    Greene, B. D., Dixon, J. R., Whiting, M. J. & Mueller, J. M. Reproductive ecology of the Concho water snake Nerodia harteri paucimaculata. Copeia 1999, 701–709 (1999).Article 

    Google Scholar 
    Kofron, C. P. Reproduction of aquatic snakes in south-central Louisiana. Herpetologica 35, 44–50 (1979).
    Google Scholar 
    Green, B. D. Life History and Ecology of the Concho Water Snake, Nerodia harteri paucimaculata. Dissertation (Texas A&M University, 1993).
    Google Scholar 
    McKenzie, C. M. et al. Ophidiomycosis in red cornsnakes (Pantherophis guttatus): potential roles of brumation and temperature on pathogenesis and transmission. Vet. Pathol. 57, 825–837 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gregoire, D. R. Nerodia rhombifer (Hallowell, 1852): U.S. geological survey, nonindigenous aquatic species database, Gainesville, FL, Retrieved from 27 Oct 2009 https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=2577.Janecka, M. J., Janecka, J. E., Haines, A. M., Michaels, A. & Criscione, C. D. Post-delisting genetic monitoring reveals population subdivision along river and reservoir localities of the endemic Concho water snake (Nerodia harteri paucimaculata). Conserv. Genet. 22, 1005–1021 (2021).CAS 
    Article 

    Google Scholar 
    Madsen, T., Stille, B. & Shine, R. Inbreeding depression in an isolated population of adders Vipera berus. Biol. Cons. 75, 113–118 (1996).Article 

    Google Scholar 
    Carter, J. et al. Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur. J. Plant Pathol. 18, 573–583 (2002).Article 

    Google Scholar 
    Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    Nieminen, M., Singer, M. C., Fortelius, W., Schöps, K. & Hanski, I. Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. Am. Nat. 157, 237–244 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roelke, M. E., Martenson, J. S. & O’Brien, S. J. The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr. Biol. 3, 340–350. https://doi.org/10.1016/0960-9822(93)90197-v (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    United States Office of the Federal Register. Endangered and threatened wildlife and plants: findings on petitions involving the Yacare Caiman and Harter’s water snake. Fed. Reg. 49, 21089–21090 (1984).
    Google Scholar 
    NatureServe. NatureServe Explorer: An Online Encyclopedia of Life [web application]. Version 7.0. NatureServe, Arlington, Virginia., http://www.natureserve.org/explorer (2020).Hammerson, G. A. Nerodia harteri (Trapido, 1941). The IUCN red list of threatened species 2007. https://doi.org/10.2305/IUCN.UK.2007.RLTS.T62238A12583490.en (2007).Allender, M. C. et al. Hematology in an eastern massasauga (Sistrurus catenatus) population and the emergence of Ophidiomyces in Illinois, USA. J. Wildl. Dis. 52, 258–269 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Becker, C. G., Rodriguez, D., Lambertini, C., Toledo, L. F. & Haddad, C. F. Historical dynamics of Batrachochytrium dendrobatidis in Amazonia. Ecography 39, 954–960 (2016).Article 

    Google Scholar 
    Rodriguez, D., Becker, C. G., Pupin, N. C., Haddad, C. F. B. & Zamudio, K. R. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic forest of Brazil. Mol. Ecol. 23, 774–787. https://doi.org/10.1111/mec.12615 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fitch, H. S. Collecting and Life-History Techniques. In Snakes: Ecology and Evolutionary Biology (eds Seigel, Richard A. et al.) 143–164 (Macmillan, 1987).
    Google Scholar 
    Winne, C. T., Willson, J. D., Andrews, K. M. & Reed, R. N. Efficacy of marking snakes with disposable medical cautery units. Herpetol. Rev. 37, 52–54 (2006).
    Google Scholar 
    Greene, B. D., Dixon, J. R., Mueller, J. M., Whiting, M. J. & Thornton, O. W. Jr. Feeding ecology of the Concho water snake, Nerodia harteri paucimaculata. J. Herpetol. 28, 165–172 (1994).Article 

    Google Scholar 
    Lacki, M. J., Hummer, J. W. & Fitzgerald, J. L. Population patterns of copperbelly water snakes (Nerodia erythrogaster neglecta) in a riparian corridor impacted by mining and reclamation. Am. Midl. Nat. 153, 357–369 (2005).Article 

    Google Scholar 
    Hyatt, A. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).CAS 
    Article 

    Google Scholar 
    Allender, M. C., Bunick, D., Dzhaman, E., Burrus, L. & Maddox, C. Development and use of a real-time polymerase chain reaction assay for the detection of Ophidiomyces ophiodiicola in snakes. J. Vet. Diagn. Invest. 27, 217–220. https://doi.org/10.1177/1040638715573983 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bohuski, E., Lorch, J. M., Griffin, K. M. & Blehert, D. S. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease. BMC Vet. Res. 11, 1–10. https://doi.org/10.1186/s12917-015-0407-8 (2015).CAS 
    Article 

    Google Scholar 
    Longo, A. V. et al. ITS1 copy number varies among Batrachochytrium dendrobatidis strains: Implications for qPCR estimates of infection intensity from field-collected amphibian skin swabs. PLoS ONE 8, e59499 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohkura, M. et al. Genome sequence of Ophidiomyces ophiodiicola, an emerging fungal pathogen of snakes. Genome Announc. 5, 1–2 (2017).Article 

    Google Scholar 
    Falk, B. G., Snow, R. W. & Reed, R. N. A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry. PLoS ONE 12, e0180791 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Garrow, J. S. & Webster, J. Quetelet’s index (W/H2) as a measure of fatness. Int. J. Obes. 9, 147–153 (1985).CAS 
    PubMed 

    Google Scholar 
    Dorai-Raj, S. binom: Binomial confidence intervals for several parameterizations. https://CRAN.R-project.org/package=binom (2014).Thiele, C. & Hirschfeld, G. cutpointr: Improved estimation and validation of optimal cutpoints in R. J. Stat. Softw. 98, 1–27 (2021).Article 

    Google Scholar 
    Diggle, P. J. Estimating prevalence using an imperfect test. Epidemiol. Res. Int. 2011, 1–5 (2011).Article 

    Google Scholar 
    Bender, R. & Lange, S. Adjusting for multiple testing: When and how?. J. Clin. Epidemiol. 54, 343–349 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooks, M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-model inference. R package version 1.43.6 (2019).Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means, R package version 1.4.8. https://CRAN.R-project.org/package=emmeans (2020). More

  • in

    Vertebrate growth plasticity in response to variation in a mutualistic interaction

    Pfennig, D. The adaptive significance of an environmentally-cued developmental switch in an anuran tadpole. Oecologia 85, 101–107 (1990).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brönmark, C. & Miner, J. G. Predator-induced phenotypical change in body morphology in Crucian carp. Science 258, 1348–1350 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wikelski, M. & Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37–38 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huchard, E., English, S., Bell, M. B. V., Thavarajah, N. & Clutton-Brock, T. Competitive growth in a cooperative mammal. Nature 533, 532–534 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Travis, J. Evaluating the adaptive role of morphological plasticity. In: Ecological morphology (pp. 99–122) (The University of Chicago Press, Chicago, 1994).Lázaro, J., Dechmann, D. K. N., LaPoint, S., Wikelski, M. & Hertel, M. Profound reversible seasonal changes of individual skull size in a mammal. Curr. Biol. 27, R1106–R1107 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lázaro, J. & Dechmann, D. K. Dehnel’s phenomenon. Ecol. Evol. 31, R463–R465 (2021).
    Google Scholar 
    Bronstein, J. L. The evolution of facilitation and mutualism. J. Ecol. 97, 1160–1170 (2009).Article 

    Google Scholar 
    Leigh, J. The evolution of mutualism. J. Environ. Biol. 23, 2507–2528 (2010).
    Google Scholar 
    Liu, C., Yang, D. R. & Peng, Y. Q. Body size in a pollinating fig wasp and implications for stability in a fig-pollinator mutualism. Entomol. Exper. Appl. 138, 249–255 (2011).Article 

    Google Scholar 
    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).Article 

    Google Scholar 
    Boucher, D., James, S. & Keeler, K. The ecology of mutualism. Annu. Rev. Ecol. Syst. 13, 315–347 (1982).Article 

    Google Scholar 
    Irwin, R. E. & Brody, A. K. Nectar robbing in Ipomopsis aggregata: effects on pollinator behavior and plant fitness. Oecologia 116, 519–527 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    Allen, G. The Anemonefishes: their classification and biology (T.F.H. Publications, 1972).
    Google Scholar 
    Fautin, D.G. & Allen, G.R. Field guide to anemonefishes and their host sea anemones. (Western Australian Museum, Perth, 1992).Ollerton, J., McCollin, D., Fautin, D. G. & Allen, G. R. Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proc. R. Soc. B Biol. Sci. 274, 591–598 (2006).Article 

    Google Scholar 
    Fricke, H. & Fricke, S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830–832 (1977).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Buston, P. M. Size and growth modification in clownfish. Nature 424, 145–146 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariscal, R. N. The nature of the symbiosis between Indo-Pacific anemone fishes and sea anemones. Mar. Biol. 6, 58–65 (1970).Article 

    Google Scholar 
    Elliott, J. K., Elliott, J. M. & Mariscal, R. N. Host selection, location, and association behaviors of anemonefishes in field settlement experiments. Mar. Biol. 122, 377–389 (1995).Article 

    Google Scholar 
    Verde, A. E., Cleveland, A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis II: direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. Mar. Biol. 162, 2409–2429 (2015).Article 
    CAS 

    Google Scholar 
    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).Article 

    Google Scholar 
    Sale, P. F. Effect of cover on agonistic behavior of a reef fish: a possible spacing mechanism. Ecology 53, 753–758 (1972).Article 

    Google Scholar 
    Fricke, H. W. & Holzberg, S. Social units and hermaphroditism in a pomacentrid fish. Naturwissenschaften 61, 367–368 (1974).ADS 
    Article 

    Google Scholar 
    Fricke, H. W. Control of different mating systems in a coral reef fish by one environmental factor. Anim. Behav. 28, 561–569 (1980).Article 

    Google Scholar 
    Mitchell, J. S. & Dill, L. M. Why is group size correlated with the size of the host sea anemone in the false clown anemonefish?. Canad. J. Zool. 83, 372–376 (2005).Article 

    Google Scholar 
    Chausson, J., Srinivasan, M. & Jones, G. P. Host anemone size as a determinant of social group size and structure in the orange clownfish (Amphiprion percula). PeerJ 6, e5841 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reed, C., Branconi, R., Majoris, J., Johnson, C. & Buston, P. Competitive growth in a social fish. Biol. Lett. 15, 20180737 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buston, P. M. Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Mar. Biol. 143, 811–815 (2003).Article 

    Google Scholar 
    Branconi, R. et al. Ecological and social constraints combine to promote evolution of non-breeding strategies in clownfish. Comm. Biol. 3, 1–7 (2020).Article 
    CAS 

    Google Scholar 
    Schmiege, P. F., D’Aloia, C. C. & Buston, P. M. Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones. Mar. Biol. 164, 24 (2017).Article 

    Google Scholar 
    Barbasch, T. A. & Buston, P. M. Plasticity and personality of parental care in the clown anemonefish. Anim. Behav. 136, 65–73 (2018).Article 

    Google Scholar 
    Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image PROcessing with ImageJ. Biophoto. Int. 11, 36–42 (2004).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).Goodrich, B., Gabry, J., Ali I. & Brilleman, S. Rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).Weatherley, A. H. Approaches to understanding fish growth. Trans. Am. Fish. Soc. 119, 662–672 (1990).Article 

    Google Scholar 
    Gabry, J. Shinystan: interactive visual and numerical diagnostics and posterior analysis for Bayesian models. R package version 2.5.0. https://CRAN.R-project.org/package=shinystan (2018).Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 3, 307–309 (2018).MathSciNet 

    Google Scholar 
    LĂŒdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: an R package for assessment, comparison and testing of statistical models. J. Open Sour. Softw. 6, 60 (2021).
    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Ser. A Stat. Soc. 182, 389–402 (2019).MathSciNet 
    Article 

    Google Scholar 
    Gabry, J. & Mahr, T. Bayesplot: plotting for bayesian models. R package version 1.8.0. https://mc-stan.org/bayesplot/ (2021).Elliott, J. K. & Mariscal, R. N. Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138, 23–36 (2001).Article 

    Google Scholar 
    Buston, P. M. Forcible eviction and prevention of recruitment in the clown anemonefish. Behav. Ecol. 14, 576–582 (2003).Article 

    Google Scholar 
    Fautin, D. G. & Allen, G. R. Anemone fishes and their host sea anemones: a guide for aquarists and divers. Sea Challengers (1997).Beldade, R., Blandin, A., O’Donnell, R. & Mills, S. C. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nat. Commun. 8, 1–9 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Cortese, D. et al. Physiological and behavioural effects of anemone bleaching on symbiont anemonefish in the wild. Funct. Ecol. 35, 663–674 (2021).Article 

    Google Scholar 
    Scherbatskoy, E. C. et al. Characterization of a novel picornavirus isolated from moribund aquacultured clownfish. J. Gen. Virol. 101, 735–745 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saenz-Agudelo, P., Jones, G. P., Thorrold, S. R. & Planes, S. Mothers matter: contribution to local replenishment is linked to female size, mate replacement and fecundity in a fish metapopulation. Mar. Biol. 162, 3–14 (2014).Article 

    Google Scholar 
    Barbasch, T. A. et al. Substantial plasticity of reproduction and parental care in response to local resource availability in a wild clownfish population. Oikos 129, 1844–1855 (2020).Article 

    Google Scholar 
    Sebens, K. P. The ecology of indeterminate growth in animals. A. Rev. Ecol. Syst. 18, 371–407 (1987).Article 

    Google Scholar 
    Buston, P. M. & García, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish Biol. 70, 1710–1719 (2007).Article 

    Google Scholar 
    Chamberlain, S. A., Kilpatrick, J. R. & Holland, J. N. Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant–plant mutualistic networks?. Oecologia 164, 741–750 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Marting, P. R., Kallman, N. M., Wcislo, W. T. & Pratt, S. C. Ant-plant sociometry in the Azteca-Cecropia mutualism. Sci. Rep. 8, 1–15 (2018).Article 
    CAS 

    Google Scholar 
    Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).PubMed 
    Article 

    Google Scholar 
    West-Eberhard, M. J. Developmental plasticity and evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    West-Eberhard, M. J. Phenotypic accommodation: adaptive innovation due to developmental plasticity. J. Exp. Zool. B Mol. Develop. Evol. 304, 610–618 (2005).Article 

    Google Scholar 
    Moczek, A. P. et al. The role of developmental plasticity in evolutionary innovation. Proc. R. Soc. B Biol. Sci. 278, 2705–2713 (2011).Article 

    Google Scholar  More

  • in

    Timescale mediates the effects of environmental controls on water temperature in mid- to low-order streams

    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol 27, 249–268. https://doi.org/10.1016/S0306-4565(01)00094-8 (2002).Article 

    Google Scholar 
    Ebersole, J. L., Liss, W. J. & Frissell, C. A. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. JAWRA J. Am. Water Resour. Assoc. 39, 355–368. https://doi.org/10.1111/j.1752-1688.2003.tb04390.x (2003).ADS 
    Article 

    Google Scholar 
    Comte, L. & Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246. https://doi.org/10.1111/j.1600-0587.2013.00282.x (2013).Article 

    Google Scholar 
    Kurylyk, B. L., MacQuarrie, K. T. B., Linnansaari, T., Cunjak, R. A. & Curry, R. A. Preserving, augmenting, and creating cold-water thermal refugia in rivers: Concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology 8, 1095–1108. https://doi.org/10.1002/eco.1566 (2015).Article 

    Google Scholar 
    Ebersole, J. L., Quiñones, R. M., Clements, S. & Letcher, B. H. Managing climate refugia for freshwater fishes under an expanding human footprint. Front. Ecol. Environ. 18, 271–280. https://doi.org/10.1002/fee.2206 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x (2006).Article 

    Google Scholar 
    Dick, J. J., Tetzlaff, D. & Soulsby, C. Landscape influence on small-scale water temperature variations in a moorland catchment. Hydrol. Process. 29, 3098–3111. https://doi.org/10.1002/hyp.10423 (2015).ADS 
    Article 

    Google Scholar 
    Fullerton, A. H. et al. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrol. Process. 29, 4719–4737. https://doi.org/10.1002/hyp.10506 (2015).ADS 
    Article 

    Google Scholar 
    Fullerton, A. H. et al. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change. Aquatic Sci. 80, 3. https://doi.org/10.1007/s00027-017-0557-9 (2018).Article 

    Google Scholar 
    Segura, C., Caldwell, P., Sun, G., McNulty, S. & Zhang, Y. A model to predict stream water temperature across the conterminous USA. Hydrol. Process. 29, 2178–2195. https://doi.org/10.1002/hyp.10357 (2015).ADS 
    Article 

    Google Scholar 
    Jonkers, A. R. T. & Sharkey, K. J. The differential warming response of Britain’s rivers (1982–2011). PLOS One 11, e0166247. https://doi.org/10.1371/journal.pone.0166247 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, F. L., Hannah, D. M., Fryer, R. J., Millar, C. P. & Malcolm, I. A. Development of spatial regression models for predicting summer river temperatures from landscape characteristics: Implications for land and fisheries management. Hydrol. Process. 31, 1225–1238. https://doi.org/10.1002/hyp.11087 (2017).ADS 
    Article 

    Google Scholar 
    Maheu, A., Poff, N. L. & St-Hilaire, A. A classification of stream water temperature regimes in the conterminous USA. River Res. Appl. 32, 896–906. https://doi.org/10.1002/rra.2906 (2016).Article 

    Google Scholar 
    Steel, E. A., Sowder, C. & Peterson, E. E. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network. J. Am. Water Resour. Assoc. 52, 769–787. https://doi.org/10.1111/1752-1688.12423 (2016).Article 

    Google Scholar 
    Kearney, M. R., Matzelle, A. & Helmuth, B. Biomechanics meets the ecological niche: The importance of temporal data resolution. J. Exp. Biol. 215, 922–933. https://doi.org/10.1242/jeb.059634 (2012).Article 
    PubMed 

    Google Scholar 
    Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103. https://doi.org/10.1007/s00442-006-0542-9 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: Delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553. https://doi.org/10.1111/gcb.12879 (2015).ADS 
    Article 

    Google Scholar 
    Steel, E. A., Beechie, T. J., Torgersen, C. E. & Fullerton, A. H. Envisioning, quantifying, and managing thermal regimes on river networks. Bioscience 67, 506–522. https://doi.org/10.1093/biosci/bix047 (2017).Article 

    Google Scholar 
    Budescu, D. V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 114, 542–551. https://doi.org/10.1037/0033-2909.114.3.542 (1993).Article 

    Google Scholar 
    Singhal, B. B. S. & Gupta, R. P. Applied Hydrogeology of Fractured Rocks. 2 edn, 408 (Springer, 2010).Shimizu, T. Relation between scanty runoff from mountainous watershed and geology, slope and vegetation (in Japanese with English summary). Bull. Forestry Forest Prod. Res. Inst. 310, 109–128 (1980).
    Google Scholar 
    Iwasaki, K., Nagasaka, Y. & Nagasaka, A. Geological effects on the scaling relationships of groundwater contributions in Forested Watersheds. Water Resour. Res. 57, e2021WR029641. https://doi.org/10.1029/2021WR029641 (2021).ADS 
    Article 

    Google Scholar 
    Ishiyama, N. et al. The role of geology in creating stream climate-change refugia along climate gradients. bioRxiv, 2022.2005.2002.490355, https://doi.org/10.1101/2022.05.02.490355 (2022).Kanno, Y., Vokoun, J. C. & Letcher, B. H. Paired stream-air temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks. River Res. Appl. 30, 745–755. https://doi.org/10.1002/rra.2677 (2014).Article 

    Google Scholar 
    Snyder, C. D., Hitt, N. P. & Young, J. A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 25, 1397–1419. https://doi.org/10.1890/14-1354.1 (2015).Article 
    PubMed 

    Google Scholar 
    Carslaw, D. C. & Ropkins, K. Openair—an R package for air quality data analysis. Environ. Model. Softw. 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 (2012).Article 

    Google Scholar 
    Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-PLUS. (Springer, 2000).Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2006).Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794. https://doi.org/10.7717/peerj.4794 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clarke, P. When can group level clustering be ignored? Multilevel models versus single-level models with sparse data. J. Epidemiol. Commun. Health 62, 752. https://doi.org/10.1136/jech.2007.060798 (2008).CAS 
    Article 

    Google Scholar 
    Theall, K. P. et al. Impact of small group size on neighbourhood influences in multilevel models. J. Epidemiol. Commun. Health 65, 688–695. https://doi.org/10.1136/jech.2009.097956 (2011).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).Article 

    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. Royal Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).Article 

    Google Scholar 
    LĂŒdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139. https://doi.org/10.21105/joss.03139 (2021).ADS 
    Article 

    Google Scholar 
    Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis: A Global Perspective. 7 edn, (Prentice Hall, 2009).Azen, R. & Budescu, D. V. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods 8, 129–148. https://doi.org/10.1037/1082-989x.8.2.129 (2003).Article 
    PubMed 

    Google Scholar 
    Grömping, U. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat. 61, 139–147. https://doi.org/10.1198/000313007X188252 (2007).MathSciNet 
    Article 

    Google Scholar 
    Luo, W. & Azen, R. Determining predictor importance in hierarchical linear models using dominance analysis. J. Educ. Behav. Stat. 38, 3–31. https://doi.org/10.3102/1076998612458319 (2013).Article 

    Google Scholar 
    R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Erickson, T. R. & Stefan, H. G. Linear air/water temperature correlations for streams during open water periods. J. Hydrol. Eng. 5, 317–321. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317) (2000).Article 

    Google Scholar 
    Webb, B. W., Clack, P. D. & Walling, D. E. Water–air temperature relationships in a Devon river system and the role of flow. Hydrol. Process. 17, 3069–3084. https://doi.org/10.1002/hyp.1280 (2003).ADS 
    Article 

    Google Scholar 
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics.
    30, 2811–2812. https://doi.org/10.1093/bioinformatics/btu393 (2014).Sugimoto, S., Nakamura, F. & Ito, A. Heat budget and statistical analysis of the relationship between stream temperature and riparian forest in the Toikanbetsu River Basin, Northern Japan. J. For. Res. 2, 103–107. https://doi.org/10.1007/BF02348477 (1997).Article 

    Google Scholar 
    Dugdale, S. J., Malcolm, I. A., Kantola, K. & Hannah, D. M. Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes. Sci. Total Environ. 610–611, 1375–1389. https://doi.org/10.1016/j.scitotenv.2017.08.198 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Timm, A., Ouellet, V. & Daniels, M. Riparian land cover, water temperature variability, and thermal stress for aquatic species in urban streams. Water 13, 2732. https://doi.org/10.3390/w13192732 (2021).Article 

    Google Scholar 
    Mitchell, S. A simple model for estimating mean monthly stream temperatures after riparian canopy removal. Environ. Manage. 24, 77–83. https://doi.org/10.1007/s002679900216 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Horne, J. P. & Hubbart, J. A. A spatially distributed investigation of stream water temperature in a contemporary mixed-land-use watershed. Water 12, 1756. https://doi.org/10.3390/w12061756 (2020).Article 

    Google Scholar 
    Graham, C. B., Barnard, H. R., Kavanagh, K. L. & McNamara, J. P. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow. Hydrol. Process. 27, 2541–2556. https://doi.org/10.1002/hyp.9334 (2013).ADS 
    Article 

    Google Scholar 
    Sun, H., Kasahara, T., Otsuki, K., Saito, T. & Onda, Y. Spatio-temporal streamflow generation in a small, steep headwater catchment in Western Japan. Hydrol. Sci. J. 62, 818–829. https://doi.org/10.1080/02626667.2016.1266635 (2017).Article 

    Google Scholar 
    Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 10, 52–67. https://doi.org/10.1007/s10040-001-0170-8 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Arnott, S., Hilton, J. & Webb, B. W. The impact of geological control on flow accretion in lowland permeable catchments. Hydrol. Res. 40, 533–543. https://doi.org/10.2166/nh.2009.017 (2009).Article 

    Google Scholar 
    Calvache, M. L., Duque, C., Fontalva, J. M. G. & Crespo, F. Processes affecting groundwater temperature patterns in a coastal aquifer. Int. J. Environ. Sci. Technol. 8, 223–236. https://doi.org/10.1007/BF03326211 (2011).Article 

    Google Scholar 
    Nejadhashemi, A. P., Wardynski, B. J. & Munoz, J. D. Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin. Hydrol. Earth Syst. Sci. 2011, 3421–3468, https://doi.org/10.5194/hessd-8-3421-2011 (2011).Macedo, M. N. et al. Land-use-driven stream warming in southeastern Amazonia. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20120153–20120153. https://doi.org/10.1098/rstb.2012.0153 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlson, K. M. et al. Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. J. Geophys. Res. Biogeosci. 119, 1110–1128. https://doi.org/10.1002/2013JG002516 (2014).Article 

    Google Scholar 
    Wang, Y. I., He, B. I. N. & Takase, K. Effects of temporal resolution on hydrological model parameters and its impact on prediction of river discharge. Hydrol. Sci. J. 54, 886–898. https://doi.org/10.1623/hysj.54.5.886 (2009).Article 

    Google Scholar 
    Levin, S. A. The problem of pattern and scale in ecology: The Robert H MacArthur award lecture. Ecology 73, 1943–1967. https://doi.org/10.2307/1941447 (1992).Article 

    Google Scholar 
    García Molinos, J. & Donohue, I. Downscaling the non-stationary effect of climate forcing on local-scale dynamics: The importance of environmental filters. Clim. Change 124, 333–346. https://doi.org/10.1007/s10584-014-1077-4 (2014).ADS 
    Article 

    Google Scholar 
    Newman, E. A., Kennedy, M. C., Falk, D. A. & McKenzie, D. Scaling and complexity in landscape ecology. Front. Ecol. Evolution https://doi.org/10.3389/fevo.2019.00293 (2019).Article 

    Google Scholar 
    Atkinson, S. E., Woods, R. A. & Sivapalan, M. Climate and landscape controls on water balance model complexity over changing timescales. Water Resour. Res. 38, 50-51–50-17, https://doi.org/10.1029/2002WR001487 (2002).Engel, M. et al. Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment. Hydrol. Earth Syst. Sci. 23, 2041–2063. https://doi.org/10.5194/hess-23-2041-2019 (2019).ADS 
    Article 

    Google Scholar 
    Karlsen, R. H. et al. Landscape controls on spatiotemporal discharge variability in a boreal catchment. Water Resour. Res. 52, 6541–6556. https://doi.org/10.1002/2016WR019186 (2016).ADS 
    Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109. https://doi.org/10.1038/s41467-019-10924-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kingsford, R. T. Conservation management of rivers and wetlands under climate change—a synthesis. Mar. Freshw. Res. 62, 217–222. https://doi.org/10.1071/MF11029 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Length weight relationships of coleoid cephalopods from the eastern Mediterranean

    Nash, R. D. M., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor—setting the record straight. Fisheries 31(5), 236–238 (2006).
    Google Scholar 
    Tarkan, A. S., Gaygusuz, Ö., Acıpınar, H., GĂŒrsoy, Ç. & Özuluğ, M. Length–weight relationships of fishes from the Marmara region (NW-Turkey). J. Appl. Ichthyol. 22(4), 271–273 (2006).Article 

    Google Scholar 
    Al Nahdi, A., de Leaniz, C. G. & King, A. J. Spatio-temporal variation in length-weight relationships and condition of ribbonfish Trichiurus lepturus (Linnaeus, 1758): Implications for fisheries. PLoS One 11(8), e0161989 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Froese, R., Tsikliras, A. C. & Stergiou, K. I. Editorial note on weight–length relations of fishes. Acta Ichthyol. Piscat. 41(4), 261–263 (2011).Article 

    Google Scholar 
    Torres, M. A. et al. Length–weight relationships for 22 crustecans and cephalopods from the Gulf of Cadiz (SW Spain). Aquat. Liv. Resour. 30, 12 (2017).Article 

    Google Scholar 
    Rocha, F., Guerra, A. & Gonzalez, A. F. A review of reproductive strategies in cephalopods. Biol. Rev. 76, 291–304 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Laptikhovsky, V. & Salman, A. On reproductive strategies of the epipelagic octopods of the superfamily Argonautoidea (Cephalopoda: Octopoda). Mar. Biol. 142, 321–326 (2003).Article 

    Google Scholar 
    Forsythe, J. W. & van Heukelem, W. F. Growth. In Cephalopod Life Cycles (ed. Boyle, P. R.) 135–156 (Academic Press, 1987).
    Google Scholar 
    Jereb, P., et al. (eds) 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No. 325, p. 360.Salman, A. Cephalopod research in the eastern Mediterranean (East of 23°E): A review. Boll. Malacol. 45, 47–59 (2009).
    Google Scholar 
    Salman, A. & İzmirli, C. Ege Üniversitesi Su ÜrĂŒnleri FakĂŒltesi MĂŒzesi (ESFM)’nin cephalopod envanteri. EgeJFAS 37(4), 357–361. https://doi.org/10.12714/egejfas.37.4.06) (2020) (in Turkish).Article 

    Google Scholar 
    Önsoy, B. & Salman, A. Reproductive biology of the common cuttlefish Sepia officinalis L. (Sepiida: Cephalpoda) in the Aegean Sea. Turk. J. Vet. Anim. Sci. 29, 613–619 (2005).
    Google Scholar 
    Salman, A. Reproductive biology of the elegant cuttlefish (Sepia elegans) in the Eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 15(2), 265–272 (2015).Article 

    Google Scholar 
    Dursun, D., Eronat, E. G. T., Akalın, M. & Salman, M. A. Reproductive biology of pink cuttlefish Sepia orbignyana in the Aegean Sea (eastern Mediterranean). Turk. J. Zool. 37, 576–581 (2013).Article 

    Google Scholar 
    Salman, A. Reproductive biology of Sepietta oweniana (Pfeffer, 1908) (Sepiolidae: Cephalopoda) in the Aegean Sea. Sci. Mar. 62(4), 379–383 (1998).Article 

    Google Scholar 
    Salman, A. & Önsoy, B. Reproductive biology of the bobtail squid Rossia macrosoma (Cephalopoda: Sepiolidea) from the eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 10, 81–86 (2010).Article 

    Google Scholar 
    Salman, A. Fecundity and spawning strategy of shortfin squid Illex coindetii (Oegopsida: Ommastrephidae), in the eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 17, 841–849 (2017).
    Google Scholar 
    Mangold-Wirz, K. Biologie des cĂ©phalopodes benthiques et nectoniques de la Mer Catalane. Vie Millieu suppl. 13, 1–285 (1963).
    Google Scholar 
    Salman, A. Fecundity, spawning strategy and oocyte development of shortfin squid Alloteuthis media (Myopsida: Loliginidae) in the eastern Mediterranean. Cah. Biol. Mar. 55, 163–171 (2014).
    Google Scholar 
    Önsoy, B. & Salman, A. Reproduction patterns of the Mediterranean endemic, Eledone moschata (Lamarck, 1798) (Octopoda: Cephalopoda) in the eastern Mediterranean. (In Turkish) 1st National Malacology Congress, 1–3 September 2004, Izmir-Turkey (Bilal ÖztĂŒrk & Alp Salman, eds). Turk. J. Aquat. Life 2(2), 55–60 (2004).
    Google Scholar 
    Tesch, F. W. Age and growth. In Methods for Assessment of Fish Production in Fresh Waters (ed. Ricker, W. E.) 99–130 (Blackwell Scientific Publications, 1971).
    Google Scholar 
    Merella, P., Quetglas, A., Alemany, F. & Carbonell, A. Length–weight relationship of fishes and cephalopods from the Balearic Islands (western Mediterranean). Naga ICLARM Q. 20(3–4), 66–68 (1997).
    Google Scholar 
    Manfrin Piccinetti, G. & Giovanardi, O. DonnĂ©es sur la biologie de Sepia officinalis L. dans l’Adriatique obtenues lors de expĂ©ditions pipeta. FAO Fish. Rep. 290, 135–138 (1984).
    Google Scholar 
    Bello, G. Length–weight relationship in males and females of Sepia orbignyana and Sepia elegans (Cephalopoda: Sepiidae). Rapp. Comm. Int. Mer. MĂ©dit. 31(2), 254 (1988).
    Google Scholar 
    Ragonese, S. & Jereb, P. Length-weight relationship and growth of the pink and elegant cuttlefish Sepia orbignyana and Sepia elegans in the Sicilian Channel. In Acta of the 1st International Symposium on the Cuttlefish (ed. Boucaud-Camou, E.) 31–47 (SEPIA. Centre de Publications de l’Universite de Caen, 1991).
    Google Scholar 
    Akyol, O. & Metin, G. An investigation on determination of some morphological characteristics of Cephalopods in Izmir Bay (Aegean Sea). EU J. Fish. Aquat. Sci. 18(3–4), 357–365 (2001).
    Google Scholar 
    Lefkaditou, E., Verriopoulos, G. & Valavanis, V. VII9. Research on Cephalopod resources in Hellas. In State of Hellenic Fisheries (eds Papaconstantinou, C. et al.) 440–451 (HCMR Publications, 2007).
    Google Scholar 
    Duysak, Ö., SendĂŁo, J., Borges, T., TĂŒreli, C. & Erdem, Ü. Cephalopod distribution in Iskenderun bay (eastern Mediterranean–Turkey). J. Fish. Sci. 2, 118–125 (2008).
    Google Scholar 
    Giordano, D. et al. Distribution and biology of Sepietta oweniana (Pfeffer, 1908) (Cephalopoda: Sepiolidae) in the southern Tyrrhenian Sea (central Mediterranean Sea). Cah. Biol. Mar. 50, 1–10 (2009).
    Google Scholar 
    Andriguetto, J. M. Jr. & Haimovici, M. Effects of fixation and preservation methods on the morphology of a Loliginid squid (Cephalopoda: Myopsida). Am. Malac Bull. 6(2), 213–217 (1988).
    Google Scholar 
    Sanchez, P. Donnés preliminaires sur la biologie de trois species de cephalopods de la Mer Catalan. Rapp. Comm. Int. Mer. Médit. 30(2), 247 (1986).
    Google Scholar 
    Belcari, P., Sartor, P., Nannini, N. & De Ranieri, S. Length-weight relationship of Toda- ropsis eblanae (Cephalopoda: Ommastrephidae) of the northern Tyrrhenian Sea in relation to sexual maturation. Biol. Mar. Mediter. 6, 524–528 (1999).
    Google Scholar 
    Belcari, P. Length–weight relationship in relation to sexual maturation of Illex coindetii (Cephalopoda: Ommastrephidae) in the northern Tyrrhenian Sea (western Mediterranean). Sci. Mar. 60, 379–384 (1996).
    Google Scholar 
    Petric, M., Ferri, J., Skeljo, F. & Krstulovic Sifner, S. Body and beak measures of Illex coindetii (Cephalopoda: Ommastrephidae) and their relation to growth and maturity. Cah. Biol. Mar. 51, 275–287 (2010).
    Google Scholar 
    Ceriola, L., Ungaro, N. & Toteda, F. Some information on the biology of Illex coindetii Verany, 1839 (Cephalopoda, Ommastrephidae) in the south-western Adriatic Sea (central Mediterranean). Fish. Res. 82, 41–49 (2006).Article 

    Google Scholar 
    Arvanitidis, C. et al. A comparison of the fishery biology of three Illex coindetii Verany, 1839 (Cephalopoda: Ommastrephidae) populations from the European Atlantic and Mediterranean Waters. Bull. Mar. Sci. 71, 129–146 (2002).
    Google Scholar 
    Quetglas, A., Alemany, F., Carbonell, A., Merella, P. & Sanchez, P. Some aspects of the biology of Todarodes sagittatus (Cephalopoda: Ommastrephidae) from the Balearic Sea (western Mediterranean). Sci. Mar. 62, 73–82 (1998).Article 

    Google Scholar 
    Krstulovic Sifner, S. K. & Vrgoc, N. Population structure, maturation and reproduction of the European squid, Loligo vulgaris, in the central Adriatic Sea. Fish. Res. 69, 239–249 (2004).Article 

    Google Scholar 
    Moreno, A. et al. Biological variation of Loligo vulgaris (Cephalopoda: Loliginidae) in the eastern Atlantic and Mediterranean. Bull. Mar. Sci. 71(1), 515–534 (2002).
    Google Scholar 
    Guerra, A. & Manriquez, M. Parametros biometricos de Octopus vulgaris. Invest. Pesq. 44, 177–198 (1980).
    Google Scholar 
    Quetglas, A., Alemany, F., Carbonell, A., Merella, P. & Sanchez, P. Biology and fishery of Octopus vulgaris Cuvier, 1797, caught by trawlers in Mallorca (Balearic Sea, western Mediterranean). Fish. Res. 36, 237–249 (1998).Article 

    Google Scholar 
    Sanchez, P., & Obarti, R. 1993. The biology and fishery of Octopus vulgaris caught with clay pots on the Spanish Mediterranean coast. In: Jereb, P., Allcock, A. L., Lefkaditou, E., Piatkowski, U., Hastie, L. C., Pierce, G. J. (Eds.) 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No. 325, p 360.Gonzalez, M., Barcala, E., Perez-Gil, J. L., Carrasco, M. N. & Garcia-Martinez, M. C. Fisheries and reproductive biology of Octopus vulgaris (Mollusca: Cephalopoda) in the Gulf of Alicante (Northwestern Mediterranean). Medit. Mar. Sci. 12, 369–389 (2011).Article 

    Google Scholar 
    Jabeur, C., Nouira, T., Khoufi, W., Mosbahi, D. S. & Ezzedine-Najai, S. Age and growth of Octopus vulgaris Cuvier, 1797 along the east coast of Tunisia. J. Shellf. Res. 31, 119–124 (2012).Article 

    Google Scholar 
    Quetglas, A., Ordines, F., Gonzalez, M. & Franco, I. Life history of the bathyal octopus Pteroctopus tetracirrhus (Mollusca, Cephalopoda) in the Mediterranean Sea. Deep Sea Res. Part I 56, 1379–1390 (2009).Article 

    Google Scholar 
    Quetglas, A., Gonzalez, M. & Franco, I. Biology of the upper-slope cephalopod Octopus salutii from the western Mediterranean Sea. Mar. Biol. 146, 1131–1138 (2005).Article 

    Google Scholar 
    Moriyasu, M. Etude biometrique de la croissance d’E. cirrhosa [LAM. 1798 (Cephalopoda, Octopoda)] du Golfe du Lion. Oceanol. Acta 6, 35–41 (1983).
    Google Scholar 
    Massi, D. Effetti del congelamento sull’accuratezza delle misure in Eledone cirrhosa (Lamarck, 1798). Biol. Mar. Suppl. al Notiziario S.I.B.M. 1, 379–380 (1993).
    Google Scholar 
    Agnesi, S., Belluscio, A. & Ardizzone, G. D. Biologia e dinamica di populazione di Eledone cirrhosa (Cephalopoda: Octopoda) nel Tirreno Centrale. Biol. Mar. Mediterr. 5, 336–348 (1998).
    Google Scholar 
    Giordano, D. et al. Population dynamics and distribution of Eledone cirrhosa (Lamarck, 1798) in the Southern Tyrrhenian Sea (Central Mediterranean). Cah. Biol. Mar. 51, 213–227 (2010).
    Google Scholar 
    Krstulovic Sifner, S. K. & Vrgoc, N. Reproductive cycle and sexual maturation of the musky octopus Eledone moschata (Cephalopoda: Octopodidae) in the northern and central Adriatic Sea. Sci. Mar. 73, 439–447 (2009).Article 

    Google Scholar 
    Ikica, Z., Krstulovic Sifner, S. & Joksimovic, A. Some preliminary data on biological aspects of the musky octopus, Eledone moschata (Lamarck, 1798) (Cephalopoda: Octopodidae) in Montenegrin waters. Stud. Mar. 25, 21–36 (2011).
    Google Scholar 
    Akyol, O., ƞen, H. & Kinacigil, H. T. Reproductive biology of Eledone moschata (Cephalopoda: Octopodidae) in the Aegean Sea (Izmir Bay, Turkey). J. Mar. Biol. Assoc. UK 87, 967–970 (2007).Article 

    Google Scholar 
    Quetglas, A., Gonzalez, M., Carbonell, A. & Sanchez, P. Biology of the deep-sea octopus Bathypolypus sponsalis (Cephalopoda: Octopodidae) from the western Mediterranean Sea. Mar. Biol. 138, 785–792 (2001).Article 

    Google Scholar  More

  • in

    Slow science: how I’m protecting sloth species

    It’s surprisingly hard to catch a sloth. Although they’re slow — very, very slow — if you climb a tree to catch one, it will move along to the next tree. Once you climb the new tree, it will move back again.My team does this regularly, as we conduct the Sloth Backpack Project, a data-logging initiative here in Costa Rica, where many sloths coexist with people. In 2017, I wanted to do more than research, so I started the Sloth Conservation Foundation.In this photograph, I’m fitting a backpack to a brown-throated three-fingered sloth (Bradypus variegatus) that we named Baguette, after a nearby bakery. The backpack will collect data on her location, movement and living patterns.We had found Baguette about 20 minutes earlier, balancing atop construction fencing as she attempted to escape two pit bulls. Baguette wasn’t all that grateful. She’s a feisty old girl. She’s old: she’s missing fingers, and she’s got scars on her face.I adore sloths, but I also envy them. They’re a powerful symbol of the slowness that our society needs more of. They don’t let anything stress them out unless it’s really important — they just get on with life.The backpack project will help us to understand sloth behaviour, so we can better protect them as the urban environment grows. This year, I received a €50,000 (US$52,220) Future For Nature award, which we will use to train a dog to detect sloth faeces. We can use faeces as a proxy for sloth numbers and locations in the region, and ultimately work out the boundaries of the species, how fast populations are declining and which conservation measures work.I’m happy I’ve moved away from academia — I can put all my energy into conservation as opposed to bashing out papers. That’s what I feel ecology should focus on — how we can use what we’re learning to give back to other species. More

  • in

    Effectiveness of management zones for recovering parrotfish species within the largest coastal marine protected area in Brazil

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301(5635), 929–933 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. E. et al. Coral reefs under rapid climate change and ocean acidification. Science 318(5857), 1737–1742 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Soares, M. et al. The flourishing and vulnerabilities of zoantharians on Southwestern Atlantic reefs. Mar. Environ. Res. 173(3), 105535 (2021).Ban, N. C. et al. Designing, implementing and managing marine protected areas: Emerging trends and opportunities for coral reef nations. J. Exp. Mar. Biol. Ecol. 408(1–2), 21–31 (2011).Article 

    Google Scholar 
    Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).Article 

    Google Scholar 
    Vercammen, A. et al. Evaluating the impact of accounting for coral cover in large-scale marine conservation prioritizations. Divers. Distrib. 25(10), 1564–1574 (2019).Article 

    Google Scholar 
    Giakoumi, S., Grantham, H. S., Kokkoris, G. D. & Possingham, H. P. Designing a network of marine reserves in the Mediterranean Sea with limited socio-economic data. Biol. Conserv. 144(2), 753–763 (2011).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543(7647), 665–669 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27(2), 198–215 (2021).Article 

    Google Scholar 
    Day, J. C. Zoning—lessons from the Great Barrier Reef marine park. Ocean Coast. Manag. 45(2–3), 139–156 (2002).Article 

    Google Scholar 
    Agardy, T. Ocean Zoning: Making Marine Management More Effective (Earthscan, 2010).Makino, A., Klein, C. J., Beger, M., Jupiter, S. D. & Possingham, H. P. Incorporating conservation zone effectiveness for protecting biodiversity in marine planning. PLoS ONE 8(11), e78986 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Villa, F., Tunesi, L. & Agardy, T. Zoning marine protected areas through spatial multiple-criteria analysis: The case of the Asinara Island National Marine Reserve of Italy. Conserv. Biol. 16(2), 515–526 (2002).Article 

    Google Scholar 
    Muhl, E. K., Esteves Dias, A. C. & Armitage, D. Experiences with governance in three marine conservation zoning initiatives: Parameters for assessment and pathways forward. Front. Mar. Sci. 7, 629 (2020).Article 

    Google Scholar 
    Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6(1), 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Ban, N. C. et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 11(4), 194–202 (2013).Article 

    Google Scholar 
    Teh, L. C., Teh, L. S. & Jumin, R. Combining human preference and biodiversity priorities for marine protected area site selection in Sabah, Malaysia. Biol. Conserv. 167, 396–404 (2013).Article 

    Google Scholar 
    Sarker, S., Rahman, M. M., Yadav, A. K. & Islam, M. M. Zoning of marine protected areas for biodiversity conservation in Bangladesh through socio-spatial data. Ocean Coast. Manag. 173, 114–122 (2019).Article 

    Google Scholar 
    Day, J. C., Kenchington, R. A., Tanzer, J. M. & Cameron, D. S. Marine zoning revisited: How decades of zoning the Great Barrier Reef has evolved as an effective spatial planning approach for marine ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 9–32 (2019).Article 

    Google Scholar 
    Claudet, J. et al. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130(3), 349–369 (2006).Article 

    Google Scholar 
    Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr. Biol. 25(8), 983–992 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClure, E. C. et al. Higher fish biomass inside than outside marine protected areas despite typhoon impacts in a complex reefscape. Biol. Cons. 241, 108354 (2020).Article 

    Google Scholar 
    Bender, M. G. et al. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9(10), e110332 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Hamilton, R. J. et al. Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs 35(3), 751–763 (2016).Article 
    ADS 

    Google Scholar 
    Pereira, P. H. C., Ternes, M. L. F., Nunes, J. A. C. & Giglio, V. J. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): Evidence from fishers’ knowledge. Biol. Conserv. 254, 108940 (2021).Article 

    Google Scholar 
    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311(5757), 98–101 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5(1), e8657 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12(4), e12638 (2019).Article 

    Google Scholar 
    Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34(2), 232–243 (2011).CAS 
    Article 

    Google Scholar 
    Miranda, R. J. et al. Integrating long term ecological research (LTER) and marine protected area management: Challenges and solutions. Oecol. Aust. 24(2), 279–300 (2020).Article 

    Google Scholar 
    ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais. ICMBio/MMA (2021).Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2(2), 188–196 (2020).Article 
    ADS 

    Google Scholar 
    Figueiredo, M. S. & Grelle, C. E. V. Predicting global abundance of a threatened species from its occurrence: Implications for conservation planning. Divers. Distrib. 15(1), 117–121 (2009).Article 

    Google Scholar 
    Pearce, J. & Ferrier, S. The practical value of modelling relative abundance of species for regional conservation planning: A case study. Biol. Conserv. 98(1), 33–43 (2001).Article 

    Google Scholar 
    Ferreira, H. M., Magris, R. A., Floeter, S. R. & Ferreira, C. E. Drivers of ecological effectiveness of marine protected areas: A meta-analytic approach from the Southwestern Atlantic Ocean (Brazil). J. Environ. Manag. 301, 113889 (2021).Article 

    Google Scholar 
    Mills, M. et al. Real-world progress in overcoming the challenges of adaptive spatial planning in marine protected areas. Biol. Conserv. 181, 54–63 (2015).Article 

    Google Scholar 
    Bennett, N. J. et al. Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness. Conserv. Lett. 12(4), e12640 (2019).Article 

    Google Scholar 
    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30(1), 133–141 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Emslie, M. J. et al. Decades of monitoring have informed the stewardship and ecological understanding of Australia’s Great Barrier Reef. Biol. Conserv. 252, 108854 (2020).Article 

    Google Scholar 
    Gerhardinger, L. C., Godoy, E. A., Jones, P. J., Sales, G. & Ferreira, B. P. Marine protected dramas: The flaws of the Brazilian national system of marine protected areas. Environ. Manag. 47(4), 630–643 (2011).Article 
    ADS 

    Google Scholar 
    Oliveira, E. A., Martelli, H., Silva, A. C. S. E., Martelli, D. R. B. & Oliveira, M. C. L. Science funding crisis in Brazil and COVID-19: Deleterious impact on scientific output. Anais Acad. Bras. CiĂȘnc. 92, 1–2 (2020).
    Floeter, S. R., Halpern, B. S. & Ferreira, C. E. L. Effects of fishing and protection on Brazilian reef fishes. Biol. Conserv. 128(3), 391–402 (2006).Article 

    Google Scholar 
    Bender, M. G., Floeter, S. R. & Hanazaki, N. Do traditional fishers recognise reef fish species declines? Shifting environmental baselines in E astern B razil. Fish. Manag. Ecol. 20(1), 58–67 (2013).Article 

    Google Scholar 
    Hoey, A. S. & Bonaldo, R. M. (eds) Biology of Parrotfishes (CRC Press, Boca Raton, 2018).
    Google Scholar 
    FrĂ©dou, T. & Ferreira, B. P. Bathymetric trends of Northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48(5), 787–800 (2005).Article 

    Google Scholar 
    Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol. Cons. 115(2), 213–226 (2004).Article 

    Google Scholar 
    Tuya, F. et al. Effect of fishing pressure on the spatio-temporal variability of the parrotfish, Sparisoma cretense (Pisces: Scaridae), across the Canarian Archipelago (eastern Atlantic). Fish. Res. 7(1), 24–33 (2006).Article 

    Google Scholar 
    Steneck, R. S., Arnold, S. N. & Mumby, P. J. Experiment mimics fishing on parrotfish: Insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506, 115–127 (2014).Article 
    ADS 

    Google Scholar 
    Taylor, B. M., Trip, E. D., & Choat, J. H. Dynamic demography: Investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes 69–98 (CRC Press, 2018).Moura, R. L. & Francini-Filho, R. B. Reef and Shore Fishes of the Abrolhos Region, Brazil Vol. 38, 40–55 (RAP Bulletin of Biological Assessment, Washington, 2005).
    Google Scholar 
    Francini-Filho, R. B., Moura, R. L., Ferreira, C. M. & Coni, E. O. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop. Ichthyol. 6, 191–200 (2008).Article 

    Google Scholar 
    Freitas, M. O. et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish, Scarus trispinosus Valenciennes, 1840. PeerJ 7, e7459 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinheiro, H. T. et al. An inverted management strategy for the fishery of endangered marine species. Front. Mar. Sci. 8, 172 (2021).Article 

    Google Scholar 
    Correia, M. D. Scleractinian corals (Cnidaria: Anthozoa) from reef ecosystems on the Alagoas coast, Brazil. J. Mar. Biol. Assoc. U. K. 91, 659–668 (2011).CAS 
    Article 

    Google Scholar 
    Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A. & Sarubbo, L. A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17(3), 401 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    de Oliveira, S. et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster. Mar. Policy 115, 103879 (2020).Article 

    Google Scholar 
    Teixeira, L. M. P. & Creed, J. C. A decade on: An updated assessment of the status of marine non-indigenous species in Brazil. Aquat. Invasions 15(1), 30–43 (2020).Article 

    Google Scholar 
    Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luiz, O. J. et al. Multiple lionfish (Pterois spp.) new occurrences along the Brazilian coast confirm the invasion pathway into the Southwestern Atlantic. Biol. Invasions 23, 3013–3019 (2021).Article 

    Google Scholar 
    Maida, M., & Ferreira, B. P. Coral reefs of Brazil: An overview. In Proceedings of the 8th International Coral Reef Symposium, Vol. 1, 263–274 (Smithsonian Tropical Research Institute Panamá, 1997).Pereira, P. H. C., Macedo, C. H., Nunes, J. D. A. C., Marangoni, L. F. D. B. & Bianchini, A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais (ICMBio/MMA, 2013).Hill, J. & Wilkinson, C. E. Methods for Ecological Monitoring of Coral Reefs Vol. 117 (Australian Institute of Marine Science, Townsville, 2004).
    Google Scholar 
    Dalapicolla, J. Tutorial de modelos de distribuição de espĂ©cies: guia prĂĄtico usando o MaxEnt e o ArcGIS 10. LaboratĂłrio de Mastozoologia e Biogeografia. Universidade Federal do EspĂ­rito Santo, VitĂłria. Retrieved, 6 (2016).Phillips, S. J., DudĂ­k, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine learning, Vol. 83 (2004).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Anderson, R. P. & Martınez-Meyer, E. Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv. 116(2), 167–179 (2004).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).Article 

    Google Scholar 
    Rodrigues, E. D. C., Rodrigues, F. A., Rocha, R. L. A. & CorrĂȘa, P. L. P. An adaptive maximum entropy approach for modeling of species distribution. Mem. WTA 108–117 (2010).Rodrigues, E. S. D. C., Rodrigues, F. A., Ricardo, L. D. A., CorrĂȘa, P. L. & Giannini, T. C. Evaluation of different aspects of maximum entropy for niche-based modeling. Procedia Environ. Sci. 2, 990–1001 (2010).Article 

    Google Scholar 
    Hattab, T. et al. The use of a predictive habitat model and a fuzzy logic approach for marine management and planning. PLoS ONE 8(10), e76430 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography 41(5), 726–736 (2018).Article 

    Google Scholar 
    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).Article 

    Google Scholar 
    Perkins-Taylor, I. E. & Frey, J. K. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101(4), 1035–1048 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, C. M., Lee, D. S., Kwon, T. S., Athar, M. & Park, Y. S. Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects 12(3), 229 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Possingham, H., Ball, I. & Andelman, S. Mathematical methods for identifying representative reserve networks. In Quantitative methods for conservation biology 291–306 (Springer, New York, 2000).Terrell, G. R. & Scott, D. W. Variable kernel density estimation.  Ann. Stat. 20(3), 1236–1265 (1992).
    O’Brien, S. H., Webb, A., Brewer, M. J. & Reid, J. B. Use of kernel density estimation and maximum curvature to set Marine Protected Area boundaries: Identifying a Special Protection Area for wintering red-throated divers in the UK. Biol. Conserv. 156, 15–21 (2012).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar  More