More stories

  • in

    Cysteine mitigates the effect of NaCl salt toxicity in flax (Linum usitatissimum L) plants by modulating antioxidant systems

    Kaya, C., Murillo-Amador, B. & Ashraf, M. Involvement of L-cysteine desulfhydrase and hydrogen sulfide in glutathione-induced tolerance to salinity by accelerating ascorbate-glutathione cycle and glyoxalase system in capsicum. Antioxidants (Basel, Switzerland) 9, 1–29 (2020).
    Google Scholar 
    Darwesh, O. M., Shalaby, M. G., Abo-Zeid, A. M. & Mahmoud, Y. A. G. Nano-bioremediation of municipal wastewater using myco-synthesized iron nanoparticles. Egypt. J. Chem. 64, 2499–2507 (2021).
    Google Scholar 
    Bimurzayev, N., Sari, H., Kurunc, A., Doganay, K. H. & Asmamaw, M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci. Rep. 11, 1–17 (2021).Article 
    CAS 

    Google Scholar 
    Li, W. et al. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Sci. Rep. 10, 1–9 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Hussien, H. A., Salem, H. & Mekki, B. E. D. Ascorbate-glutathione-α-tocopherol triad enhances antioxidant systems in cotton plants grown under drought Stress. Int. J. ChemTech Res. 8, 1463–1472 (2015).CAS 

    Google Scholar 
    Hussein, H. A. A., Mekki, B. B., El-Sadek, M. E. A. & El Lateef, E. E. Effect of L-ornithine application on improving drought tolerance in sugar beet plants. Heliyon 5, e02631 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, H., Huang, Z., Li, M. & Hou, Z. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci. Rep. 10, 2 (2020).Article 
    CAS 

    Google Scholar 
    Khataar, M., Mohammadi, M. H., Shabani, F., Mohhamadi, M. H. & Shabani, F. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    Hernández, J. A. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 20, 2408 (2019).PubMed Central 
    Article 

    Google Scholar 
    Dubey, S., Bhargava, A., Fuentes, F., Shukla, S. & Srivastava, S. Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 48, 954–966 (2020).CAS 
    Article 

    Google Scholar 
    Devarshi, P., Grant, R., Ikonte, C. & Hazels Mitmesser, S. Maternal omega-3 nutrition, placental transfer and fetal brain development in gestational diabetes and preeclampsia. Nutrients 11, 2 (2019).Article 
    CAS 

    Google Scholar 
    Takahashi, H. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 62, 157–184 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakhoum, G. S. et al. Improving growth, some biochemical aspects and yield of three cultivars of soybean plant by methionine treatment under sandy soil condition. Int. J. Environ. Res. 13, 35–43 (2018).Article 
    CAS 

    Google Scholar 
    Adams, E. et al. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana. Sci. Rep. 7, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    Sadak, M. S., Abd El-Hameid, A. R., Zaki, F. S. A., Dawood, M. G. & El-Awadi, M. E. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull. Natl. Res. Cent. 44, 1–10 (2020).Article 

    Google Scholar 
    Wani, S. H. et al. Engineering salinity tolerance in plants: Progress and prospects. Planta 251, 1–29 (2020).Article 
    CAS 

    Google Scholar 
    Genisel, M., Erdal, S. & Kizilkaya, M. The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regul. 75, 187–197 (2015).CAS 
    Article 

    Google Scholar 
    Salem, H., Abo-Setta, Y., Aiad, M., Hussein, H.-A. & El-Awady, R. Effect of potassium humate on some metabolic products of wheat plants grown under saline conditions. J. Soil Sci. Agric. Eng. 8, 565–569 (2017).
    Google Scholar 
    El-Awadi, M. E., Ibrahim, S. K., Sadak, M. S., Abd Elhamid, E. M. & Gamal El-Din, K. M. Impact of cysteine or proline on growth, some biochemical attributes and yield of faba bean. Int. J. PharmTech Res. 9, 100–106 (2016).CAS 

    Google Scholar 
    Nasibi, F., Kalantari, K. M., Zanganeh, R., Mohammadinejad, G. & Oloumi, H. Seed priming with cysteine modulates the growth and metabolic activity of wheat plants under salinity and osmotic stresses at early stages of growth. Indian J. Plant Physiol. 21, 279–286 (2016).Article 

    Google Scholar 
    Romero, I. et al. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasit. Vectors 7, 1–11 (2014).Article 
    CAS 

    Google Scholar 
    Guo, H. et al. l-cysteine desulfhydrase-related H2S production is involved in OsSE5-promoted ammonium tolerance in roots of Oryza sativa. Plant Cell Environ. 40, 1777–1790 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colak, N., Tarkowski, P. & Ayaz, F. A. Effect of N-acetyl-L-cysteine (NAC) on soluble sugar and polyamine content in wheat seedlings exposed to heavy metal stress (Cd, Hg and Pb). Bot. Serbica 44, 191–201 (2020).Article 

    Google Scholar 
    Teixeira, W. F. et al. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front. Plant Sci. 8, 2 (2017).Article 

    Google Scholar 
    Perveen, S. et al. Cysteine-induced alterations in physicochemical parameters of oat (Avena sativa L var Scott and F-411) under drought stress. Biol. Futur. 70, 16–24 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marrez, D. A., Abdelhamid, A. E. & Darwesh, O. M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packag. Shelf Life 20, 100302 (2019).Article 

    Google Scholar 
    Acharya, B. R. et al. Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Sci. Rep. 12, 1274 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hayat, S. et al. Role of proline under changing environments: A review. Plant Signal. Behav. 7, 2 (2012).
    Google Scholar 
    Thomas, J., Mandal, A. K. A., Kumar, R. R. & Chordia, A. Role of biologically active amino acid formulations on quality and crop productivity of tea (Camellia sp.). Int. J. Agric. Res. 4, 228–236 (2009).CAS 
    Article 

    Google Scholar 
    Mekki, B. E. D. B. & Hussein, H. A. A. Influence of L-ascorbate on yield components, biochemical constituents and fatty acids composition in seeds of some groundnut (Arachis hypogaea L.) cultivars grown in sandy soil. Biosci. Res. 14, 75–83 (2017).
    Google Scholar 
    Cuin, T. A. & Shabala, S. Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225, 753–761 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hussein, H.-A.A. et al. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress. Plants 11, 1219 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azarakhsh, M. R., Asrar, Z. & Mansouri, H. Effects of seed and vegetative stage cysteine treatments on oxidative stress response molecules and enzymes in Ocimum basilicum L. under cobalt stress. J. Soil Sci. Plant Nutr. 15, 651–662 (2015).
    Google Scholar 
    Mekki, B. E. D., Hussien, H. A. & Salem, H. Role of glutathione, ascorbic acid and α-tocopherol in alleviation of drought stress in cotton plants. Int. J. ChemTech Res. 8, 1573–1581 (2015).
    Google Scholar 
    Zhao, Y. S. et al. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 10, 2004 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elsayed, A. A., Ibrahim, A. A. & Dakroury, M. Z. Effect of salinity on growth and genetic diversity of broad bean (Vicia faba L.) cultivars. Alexandria Sci. Exch. J. An Int Q. J. Sci. Agric. Environ. 37, 467–479 (2016).
    Google Scholar 
    Darwesh, O. M. & Elshahawy, I. E. Silver nanoparticles inactivate sclerotial formation in controlling white rot disease in onion and garlic caused by the soil borne fungus Stromatinia cepivora. Eur. J. Plant Pathol. 160, 917–934 (2021).CAS 
    Article 

    Google Scholar 
    Metzner, H., Rau, H. & Senger, H. Untersuchungen zur Synchronisierbarkeit einzelner Pigmentmangel-Mutanten von Chlorella. Planta 65, 186–194 (1965).CAS 
    Article 

    Google Scholar 
    Cerning, B. J. A note on sugar determination by the anthrone method. Cereal Chem. 52, 857–860 (1975).
    Google Scholar 
    Pourmorad, F., Hosseinimehr, S. J. & Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 5, 1142–1145 (2006).CAS 

    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).CAS 
    Article 

    Google Scholar 
    Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67, 10–15 (1957).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darwesh, O. M., Ali, S. S., Matter, I. A., Elsamahy, T. & Mahmoud, Y. A. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. In Methods in Enzymology Vol. 630 481–502 (Academic Press, 2020).
    Google Scholar 
    Kong, F. X., Hu, W., Chao, S. Y., Sang, W. L. & Wang, L. S. Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2. Environ. Exp. Bot. 42, 201–209 (1999).CAS 
    Article 

    Google Scholar 
    Asada, K. Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235–241 (1992).CAS 
    Article 

    Google Scholar 
    Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611 (1999).CAS 
    Article 

    Google Scholar 
    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Snedecor, G. W. & Cochran, W. G. Statistical Methods (The Iowa State University Press, 1989).MATH 

    Google Scholar  More

  • in

    Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis

    Riley M, Gordon D. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 1999;7:129–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin A, West S, Buckling A. Cooperation and competition in pathogenic bacteria. Nature. 2004;430:1024–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Velicer G, Vos M. Sociobiology of the myxobacteria. Annu Rev Microbiol. 2009;63:599–623.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brockhurst M, Habets M, Libberton B, Buckling A, Gardner A. Ecological drivers of the evolution of public-goods cooperation in bacteria. Ecology. 2010;91:334–40.PubMed 
    Article 

    Google Scholar 
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Gestel J, Weissing FJ, Kuipers OP, Kovács ÁT. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014;8:2069–79.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol Rev. 1972;36:478–503.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Gestel J, Vlamakis H, Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 2015;13:e1002141.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hölscher T, Kovács ÁT. Sliding on the surface: bacterial spreading without an active motor. Environ Microbiol. 2017;19:2537–45.PubMed 
    Article 

    Google Scholar 
    Kearns D. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nogales J, Bernabéu-Roda L, Cuéllar V, Soto M. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol. 2012;194:2027–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murray T, Kazmierczak B. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol. 2008;190:2700–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kinsinger R, Shirk M, Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol. 2003;185:5627–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grau RR, De Oña P, Kunert M, Leñini C, Gallegos-Monterrosa R, Mhatre E, et al. A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis. MBio. 2015;6:e00581–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kobayashi K, Iwano M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol. 2012;85:51–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, et al. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA. 2013;110:13600–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seminara A, Angelini T, Wilking J, Vlamakis H, Ebrahim S, Kolter R, et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc Natl Acad Sci USA. 2012;109:1116–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kafri M, Metzl-Raz E, Jona G, Barkai N. The cost of protein production. Cell Rep. 2016;14:22–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sexton D, Schuster M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat Commun. 2017;8:230.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Xavier J, Kim W, Foster K. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol. 2011;79:166–79.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tai JSB, Mukherjee S, Nero T, Olson R, Tithof J, Nadell CD, et al. Social evolution of shared biofilm matrix components. Proc Natl Acad Sci USA. 2022;119:e2123469119.PubMed 
    Article 

    Google Scholar 
    Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol. 2006;59:1229–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin M, Dragoš A, Hölscher T, Maróti G, Bálint B, Westermann M, et al. De novo evolved interference competition promotes the spread of biofilm defectors. Nat Commun. 2017;8:15127.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dragoš A, Kiesewalter H, Martin M, Hsu C-Y, Hartmann R, Wechsler T, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28:1903–13.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin M, Dragoš A, Schäfer D, Maróti G, Kovács ÁT. Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms. ISME J. 2020;14:2302–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Otto SB, Martin M, Schäfer D, Hartmann R, Drescher K, Brix S, et al. Privatization of biofilm matrix in structurally heterogeneous biofilms. mSystems. 2020;5:e00425–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 2021;19:600–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kovács ÁT, Dragoš A. Evolved Biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles. J Mol Biol. 2019;431:4749–59.Dragos A, Lakshmanan N, Martin M, Horvath B, Maroti G, Falcon Garcia C, et al. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol Ecol. 2018;94:fix155.Article 
    CAS 

    Google Scholar 
    Dragoš A, Martin M, Garcia CF, Kricks L, Pausch P, Heimerl T, et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol. 2018;3:1451–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    van Gestel J, Bareia T, Tenennbaum B, Dal Co A, Guler P, Aframian N, et al. Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities. Nat Commun. 2021;12:2324.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gore J, Youk H, Van Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature. 2009;459:253–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Konkol MA, Blair KM, Kearns DB. Plasmid-encoded comI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol. 2013;195:4085–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hölscher T, Dragoš A, Gallegos-Monterrosa R, Martin M, Mhatre E, Richter A, et al. Monitoring spatial segregation in surface colonizing microbial populations. J Vis Exp. 2016;2016:e54752.
    Google Scholar 
    Morris R, Schor M, Gillespie R, Ferreira A, Baldauf L, Earl C, et al. Natural variations in the biofilm-associated protein BslA from the genus Bacillus. Sci Rep. 2017;7:6730.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dogsa I, Brloznik M, Stopar D, Mandic-Mulec I. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PLoS One. 2013;8:e62044.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lenski RE, Rose M, Simpson S, Tadler S. Long-term experimental evolution in Escherichia coli. I Adaptation and divergence during 2,000 generations. Am Nat. 1991;138:1315–41.Article 

    Google Scholar 
    Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA. 2007;104:19926–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Slatkin M, Excoffier L. Serial founder effects during range expansion: a spatial analog of genetic drift. Genetics. 2012;191:171–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacLean R, Fuentes-Hernandez A, Greig D, Hurst L, Gudelj I. A mixture of ‘cheats’ and ‘co-operators’ can enable maximal group benefit. PLoS Biol. 2010;8:e1000486.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kearns DB. Division of labour during Bacillus subtilis biofilm formation. Mol Microbiol. 2008;67:229–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maróti G, Snyder D, et al. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems. 2021;6:e00770–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stefanic P, Mandic-Mulec I. Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J Bacteriol. 2009;191:1756–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Even-Tov E, Omer Bendori S, Valastyan J, Ke X, Pollak S, Bareia T, et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol. 2016;14:e1002386.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall N. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol. 2018;110:863–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aframian N, Eldar A. A bacterial tower of Babel: Quorum-Sensing signaling diversity and its evolution. Annu Rev Microbiol. 2020;74:587–606.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiesewalter HT, Lozano-Andrade CN, Strube ML, Kovács ÁT. Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein J Org Chem. 2020;16:2983–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dragoš A, Kovács ÁT. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 2017;25:257–66.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kovács ÁT. Impact of spatial distribution on the development of mutualism in microbes. Front Microbiol. 2014;5:649.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang F, Kwan A, Xu A, Süel G. A synthetic quorum sensing system reveals a potential private benefit for public good production in a biofilm. PLoS One. 2015;10:e0132948.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bruce J, West S, Griffin A. Functional amyloids promote retention of public goods in bacteria. Proc Biol Sci. 2019;286:20190709.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma L, Conover M, Lu H, Parsek M, Bayles K, Wozniak D. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:e1000354.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat Microbiol. 2021;6:151–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science. 2021;373:eabi4882.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lozano-Andrade CN, Nogueira CG, Wibowo M, Kovács ÁT. Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. bioRxiv. 2022. https://doi.org/10.1101/2022.01.10.475645.Article 

    Google Scholar  More

  • in

    Paninvasion severity assessment of a U.S. grape pest to disrupt the global wine market

    Ristaino, J. B. et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 118, e2022239118 (2021).Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 
    Article 

    Google Scholar 
    Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).Article 

    Google Scholar 
    Liebhold, A. M. et al. Plant diversity drives global patterns of insect invasions. Sci. Rep. 8, 1–5 (2018).CAS 
    Article 

    Google Scholar 
    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Wyckhuys, K. A. G. et al. Biological control of an invasive pest eases pressures on global commodity markets. Environ. Res. Lett. 13, 094005 (2018).Article 
    CAS 

    Google Scholar 
    Leung, B., Finnoff, D., Shogren, J. F. & Lodge, D. Managing invasive species: rules of thumb for rapid assessment. Ecol. Econ. 55, 24–36 (2005).Article 

    Google Scholar 
    Reed, C. et al. Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics. Emerg. Infect. Dis. 19, 85 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qualls, N. et al. Community mitigation guidelines to prevent pandemic influenza—United States, 2017. MMWR Recomm. Rep. 66, 1 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grarock, K., Lindenmayer, D. B., Wood, J. T. & Tidemann, C. R. Using invasion process theory to enhance the understanding and management of introduced species: a case study reconstructing the invasion sequence of the common myna (Acridotheres tristis). J. Environ. Manag. 129, 398–409 (2013).Article 

    Google Scholar 
    Nuñez, M. A., Pauchard, A. & Ricciardi, A. Invasion science and the global spread of SARS-CoV-2. Trends Ecol. Evol. 35, 642–645 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ogden, N. H. et al. Emerging infectious diseases and biological invasions: a call for a one health collaboration in science and management. R. Soc. Open Sci. 6, 181577 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hatcher, M. J., Dick, J. T. A. & Dunn, A. M. Disease emergence and invasions. J. Ecol. 26, 1275–1287 (2016).
    Google Scholar 
    Bright, C. Invasive species: pathogens of globalization. Foreign Policy 1, 50–64 (1999).Article 

    Google Scholar 
    Simberloff, D., Meyerson, L. & Fefferman, N. Invasive species policy and COVID-19. The Ecological Society of America https://www.esa.org/about/esa-covid-19/invasive-species-policy-and-covid-19/ (2020).Comizzoli, P., Pagenkopp Lohan, K. M., Muletz-Wolz, C., Hassell, J. & Coyle, B. The interconnected health initiative: a Smithsonian framework to extend one health research and education. Front. Vet. Sci. 8, 629410 (2021).Katella, K. Our new COVID-19 vocabulary—what does it all mean? Stories at Yale Medicine. Yale Medicine https://www.yalemedicine.org/stories/covid-19-glossary/ (2020).Parra, G., Moylett, H. & Bulluck, R. USDA-APHIS-PPQ-CPHST Technical working group summary report spotted lanternfly, Lycorma delicatula (White, 1845) (2018).Floerl, O., Inglis, G. J., Dey, K. & Smith, A. The importance of transport hubs in stepping-stone invasions. J. Appl. Ecol. 46, 37–45 (2009).Article 

    Google Scholar 
    Barringer, L. E., Donovall, L. R., Spichiger, S.-E., Lynch, D. & Henry, D. The first New World record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. N. 125, 20–23 (2015).Article 

    Google Scholar 
    Urban, J. M. Perspective: shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nixon, L. J. et al. Survivorship and development of the invasive Lycorma delicatula (Hemiptera: Fulgoridae) on wild and cultivated temperate host plants. Environ. Entomol. 51, 222–228 https://doi.org/10.1093/ee/nvab137 (2022).Urban, J. M., Calvin, D. & Hills-Stevenson, J. Early response (2018–2020) to the threat of spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae) in Pennsylvania. Ann. Entomol. Soc. Am. 114, 709–718 (2021).Article 

    Google Scholar 
    Du, Z. et al. Global phylogeography and invasion history of the spotted lanternfly revealed by mitochondrial phylogenomics. Evol. Appl. 14, 915–930 https://doi.org/10.1111/eva.13170 (2020).Lee, J.-E. et al. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Korean. J. Appl. Entomol. 48, 467–477 (2009).Article 

    Google Scholar 
    Lee, D.-H., Park, Y.-L. & Leskey, T. C. A review of biology and management of Lycorma delicatula (Hemiptera: Fulgoridae), an emerging global invasive species. J. Asia-Pac. Entomol. 22, 589–596 (2019).Article 

    Google Scholar 
    Roush, R. How we can contain the spotted lanternfly—maybe the worst invasive pest in generations | Opinion https://www.inquirer.com (2018).Imbler, S. The dreaded lanternfly, scourge of agriculture, spreads in New Jersey. The New York Times (2020).Morrison, R. Invasive insects: The top 4 ‘most wanted’ list. Entomology Today https://entomologytoday.org/2018/06/21/invasive-insects-the-top-4-most-wanted-list/ (2018).Murman, K. et al. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 49, 1270–1281 (2020).PubMed 
    Article 

    Google Scholar 
    Derstine, N. T. et al. Plant volatiles help mediate host plant selection and attraction of the spotted lanternfly (Hemiptera: Fulgoridae): a generalist with a preferred host. Environ. Entomol. 49, 1049–1062 (2020).PubMed 
    Article 

    Google Scholar 
    Dechaine, A. C. et al. Phenology of Lycorma delicatula (Hemiptera: Fulgoridae) in Virginia, USA. Environ. Entomol. 50, 1267–1275 https://doi.org/10.1093/ee/nvab107 (2021).Uyi, O. et al. Spotted lanternfly (Hemiptera: Fulgoridae) can complete development and reproduce without access to the Ppreferred host, Ailanthus altissima. Environ. Entomol. 49, 1185–1190 https://doi.org/10.1093/ee/nvaa083 (2020).Park, M., Kim, K.-S. & Lee, J.-H. Genetic structure of Lycorma delicatula (Hemiptera: Fulgoridae) populations in Korea: Implication for invasion processes in heterogeneous landscapes. Bull. Entomol. Res. 103, 414–424 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (Hemiptera: Fulgoridae): a new invasive pest in the United States. J. Integr. Pest Manag. 6, 1–6 (2015).Article 

    Google Scholar 
    Leach, H. & Leach, A. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in Eastern U.S. vineyards. J. Pest Sci. 93, 1215–1224 (2020).Article 

    Google Scholar 
    International Organisation of Vine and Wine. 2019 Statistical Report on World Vitiviniculture. 23 (2019).California Department of Food and Agriculture. Pest Detection Advisory No. PD17-2020 Spotted Lanternfly PD/EP Activity Summary 2020. 1–7 (2020).Oak Ridge National Lab. Freight analysis framework version 4. http://faf.ornl.gov/fafweb/ (2017).U.S. Census Bureau. U.S.A. Trade Online. https://usatrade.census.gov/index.php?do=login (2019).Derived dataset GBIF.org. Filtered export of GBIF occurrence data. https://doi.org/10.15468/DD.KS6ACS (2021).Jung, J.-M., Jung, S., Byeon, D. & Lee, W.-H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 10, 532–538 (2017).Article 

    Google Scholar 
    Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (Hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2020).PubMed 

    Google Scholar 
    Lewkiewicz, S. M., De Bona, S., Helmus, M. R. & Seibold, B. Temperature sensitivity of pest reproductive numbers in age-structured PDE models, with a focus on the invasive spotted lanternfly. Preprint at ArXiv211211448 Q-Bio (2021).Maino, J. L., Schouten, R., Lye, J. C., Umina, P. A. & Reynolds, O. L. Mapping the life-history, development, and survival of spotted lantern fly in occupied and uninvaded ranges. InReview 1–18 https://doi.org/10.21203/rs.3.rs-400798/v1 (2021).FAOSTAT. FAOSTAT statistical database. http://www.fao.org/faostat/en/#data/QC (2019).USDA National Agricultural Statistics Service. National agricultural statistics service – quick stats. https://quickstats.nass.usda.gov/ (2019).U.S. Alcohol and Tobacco Tax and Trade Bureau. Wine statistics. https://www.ttb.gov/wine/wine-stats.shtml (2019).Crowe, J. Spotted lanternfly control program in the Mid-Atlantic region environmental assessment. USDA APHIS Rep. 46 (2018).US Animal and Plant Health Inspection Service. USDA provides $7.1 million to Pennsylvania to support projects that protect agriculture and natural resources. https://www.aphis.usda.gov/wcm/connect/APHIS_Content_Library/SA_Newsroom/SA_News/SA_By_Date/SA-2019/pennsylvania-funding?presentationtemplate=APHIS_Design_Library%2FPT_Print_Friendly_News_release (2019).Jones, C. M. et al. Iteratively forecasting biological invasions with PoPS and a little help from our friends. Front. Ecol. Environ. 19, 411–418 https://doi.org/10.1002/fee.2357 (2021).Smyers, E. C. et al. Spatio-temporal model for predicting spring hatch of the spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 50, 126–137 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooks, R. K., Wickert, K. L., Baudoin, A., Kasson, M. T. & Salom, S. Field-inoculated Ailanthus altissima stands reveal the biological control potential of Verticillium nonalfalfae in the Mid-Atlantic region of the United States. Biol. Control 148, 104298 (2020).CAS 
    Article 

    Google Scholar 
    Commonwealth of Pennsylvania. Pennsylvania Bulletin. 49, 2705–2902 (2019).Barringer, L. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).PubMed 
    Article 

    Google Scholar 
    Leach, H., Biddinger, D. J., Krawczyk, G., Smyers, E. & Urban, J. M. Evaluation of insecticides for control of the spotted lanternfly, Lycorma delicatula, (Hemiptera: Fulgoridae), a new pest of fruit in the Northeastern U.S. Crop Prot. 124, 104833 (2019).CAS 
    Article 

    Google Scholar 
    Francese, J. A. et al. Developing traps for the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Environ. Entomol. 49, 269–276 (2020).PubMed 
    Article 

    Google Scholar 
    Penn State Extension. Spotted lanternfly management in vineyards. https://extension.psu.edu/spotted-lanternfly-management-in-vineyards (2021).Nixon, L. J. et al. Development of behaviorally based monitoring and biosurveillance tools for the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 49, 1117–1126 (2020).PubMed 
    Article 

    Google Scholar 
    Liu, H. & Mottern, J. An old remedy for a new problem? Identification of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae), an egg parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae) in North America. J. Insect Sci. 17, 1–6 (2017).Article 

    Google Scholar 
    Yang, Z.-Q., Choi, W.-Y., Cao, L.-M., Wang, X.-Y. & Hou, Z.-R. A new species of Anastatus (Hymenoptera: Eulpelmidae) from China, parasitizing eggs of Lycorma delicatula (Homoptera: Fulgoridae). Zool. Syst. 40, 290–302 (2015).
    Google Scholar 
    Clifton, E. H. et al. Applications of Beauveria bassiana (Hypocreales: Cordycipitaceae) to control populations of spotted lanternfly (Hemiptera: Fulgoridae), in semi-natural landscapes and on grapevines. Environ. Entomol. 49, 854–864 (2020).PubMed 
    Article 

    Google Scholar 
    Hogan, M. J. & Pardi, N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu. Rev. Med. 73, 17–39 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Whyard, S., Singh, A. D. & Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39, 824–832 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ordish, G. The Great Wine Blight (Charles Scribner’s Sons, 1972).About the Council. https://www.doi.gov/invasivespecies/about-nisc (2016).Invasive Species Advisory Committee Products. https://www.doi.gov/invasivespecies/isac-resources (2015).Simberloff, D. et al. U.S. action lowers barriers to invasive species. Science 367, 636–636 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Exec. Order No. 14048, A. of J. R. B., Jr. Executive Order on Continuance or Reestablishment of Certain Federal Advisory Committees and Amendments to Other Executive Orders (2021).Zhu, G., Illan, J. G., Looney, C. & Crowder, D. W. Assessing the ecological niche and invasion potential of the Asian giant hornet. Proc. Natl Acad. Sci. USA 117, 24646–24648 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freitas, A. R. R. et al. Assessing the severity of COVID-19. Epidemiol. E Serviços. Saúde. 29, 1–5 (2020).
    Google Scholar 
    Prevent Epidemics. COVID-19 Key COVID-19 Metrics Based on the Latest Available Science. https://preventepidemics.org/wp-content/uploads/2020/09/COVID-19-Science-Metrics_2020Sept18.pdf (2020).Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology (Wiley-Blackwell, 2013).Ehler, L. E. Invasion biology and biological control. Biol. Control 13, 127–133 (1998).Article 

    Google Scholar 
    Ludsin, S. A. & Wolfe, A. D. Biological invasion theory: Darwin’s contributions from The Origin of Species. BioScience 51, 780 (2001).Article 

    Google Scholar 
    Schulz, A. N., Lucardi, R. D. & Marsico, T. D. Strengthening the ties that bind: an evaluation of cross-disciplinary communication between invasion ecologists and biological control researchers in entomology. Ann. Entomol. Soc. Am. 114, 163–174 (2021).CAS 
    Article 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).PubMed 
    Article 

    Google Scholar 
    Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (Hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Liu, H. Seasonal development, cumulative growing degree-days, and population density of spotted lanternfly (Hemiptera: Fulgoridae) on selected hosts and substrates. Environ. Entomol. 49, 1171–1184 (2020).PubMed 
    Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open‐source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosciences 116 (2011).Sladonja, B., Sušek, M. & Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: assessment of its ecosystem services and potential biological threat. Environ. Manag. 56, 1009–1034 (2015).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).Article 

    Google Scholar 
    AVCALC. Density of alcoholic beverage, wine, table, all (food). https://www.aqua-calc.com/page/density-table/substance/alcoholic-blank-beverage-coma-and-blank-wine-coma-and-blank-table-coma-and-blank-all (2019).U.S. Alcohol and Tobacco Tax and Trade Bureau. Established AVAs. https://www.ttb.gov/wine/established-avas (2019).Wikipedia. https://en.wikipedia.org/wiki/List_of_wine-producing_regions. (2020).Allison, P. D. Multiple Regression: A Primer (Pine Forge Press, 1999).Ponti, L. et al. Biological invasion risk assessment of Tuta absoluta: Mechanistic versus correlative methods. Biol. Invasions 23, 3809–3829 (2021).Article 

    Google Scholar 
    Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).PubMed 
    Article 

    Google Scholar 
    Wang, C.-J. et al. Risk assessment of insect pest expansion in alpine ecosystems under climate change. Pest Manag. Sci. 77, 3165–3178 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keena, M. A. & Nielsen, A. L. Comparison of the hatch of newly laid Lycorma delicatula (Hemiptera: Fulgoridae) eggs from the United States after exposure to different temperatures and durations of low temperature. Environ. Entomol. 50, 410–417 https://doi.org/10.1093/ee/nvaa177 (2021).Xin, B. et al. Exploratory survey of spotted lanternfly (Hemiptera: Fulgoridae) and its natural enemies in China. Environ. Entomol. 50, 36–45 (2020).Article 
    CAS 

    Google Scholar 
    Leach, A. & Leach, H. Characterizing the spatial distributions of spotted lanternfly (Hemiptera: Fulgoridae) in Pennsylvania vineyards. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Granett, J., Walker, M. A., Kocsis, L. & Omer, A. D. Biology and management of grape phylloxera. Annu. Rev. Entomol. 46, 387–412 (2001).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    3D model of the geometric nest structure, the “mystery circle,” constructed by pufferfish

    Wild animals construct various types of structures that are adaptive to their life and reproduction. For example, termites that inhabit the African savanna use soil to construct a huge mound that reaches 10 m in height; they produce hollows and holes in these mounds to allow air ventilation, thereby keeping the internal temperature constant1. In addition, prairie dogs inhabiting the North American prairie dig vertically and horizontally extending burrows in the ground that they use for shelter and rearing offspring; these burrows have multiple entrances, some of which are chimney-shaped to improve ventilation efficiency2. In the field of biomimetics, researchers apply the principles of animal-created structures in applications useful to humans3.The white-spotted pufferfish Torquigener albomaculosus (Pisces: Tetraodontidae) is a relatively small species that grows to ~10 cm in total total length (Fig. 1). Male T. albomaculosus individuals construct an intricate geometric circular structure, known as the “mystery circle,” with a diameter of 2 m in the sand of the seabed;4 the discovery of these structures has fascinated researchers and the general public worldwide. The male pufferfish digs the sand on the seabed with its fins and body while swimming straight ahead toward the centre from different directions, and a circular structure composed of radially aligned peaks and valleys was constructed. Finally, the male creates a maze-like pattern by flapping its anal fin on the bottom of the central zone4. Thus, the male completes the circular structure by himself. Furthermore, we discovered that the earliest stage of the mystery circle is composed of dozens of irregular depressions, which might function as landmarks for the formation of the radial patterns5. By accumulating observations of pufferfish behaviour, we were able to conduct a computer simulation including the swimming trajectory of the pufferfish extracted from video images wherein they constructed the circular structure. This simulation revealed that an elaborate circular geometric pattern is inevitably formed if the pufferfish repeats the digging behavior on the seabed using simple rules6. We also observed the reproductive behaviour of the pufferfish and found that they consistently breed in a semilunar cycle from spring to summer. Each male constructs a mystery circle and spawns with multiple females on the nest, and the male cares for the eggs alone until they hatch. Some of the elements of the circular structure, i.e., its size, symmetry, ornaments, and maze-like pattern, might be important factors in terms of female mate choice4,7.Fig. 1The white-spotted pufferfish Torquigener albomaculosus. Lateral view of a male (a), and male digging behaviour on the seabed while rolling up fine sand particles (b).Full size imageAlthough data on the reproductive ecology and circle-construction behaviour of these pufferfish have been collected, many questions remain. Our interdisciplinary research currently has two themes: (i) theoretical studies on the logic of 3D-structure formation of the circular structure and (ii) ethological studies on the relationship between female mate choice and the features of the structure. To advance these studies, it is essential to collect quantitative data on the circular structure. Thus, we reconstructed 3D models of six completed mystery circles using a “structure from motion” (SfM) algorithm (Fig. 2).Fig. 2“Mystery circle” constructed by a white-spotted pufferfish (Torquigener albomaculosus). 3D model displayed on a computer (a), one of the video frames used to reconstruct the 3D model (b), and a Styrofoam model output in full size created using a 3D printer and the 3D data (c) for a specific mystery circle 20160615_K13.Full size imageOn the other hand, the mystery circle constructed by the pufferfish may have potential applications in biomimetics similar to the structures constructed by termites and prairie dogs. To support the importance of its structural characteristics, it has been observed that the water passing through the valley upstream always gathers in the center of the structure, regardless of the direction of water flow4. Furthermore, particle size analysis of the sand forming the mystery circle has revealed that it has the function of extracting fine-grained sand particles from the valleys arranged radially to the outside and directing them to the center (Kawase, in prep.). The field of computational fluid dynamics, which makes full use of fluid dynamics technology, engineering knowledge, and computers, will logically clarify the characteristics of the 3D structure of the mystery circle we have reconstructed here. Shameem et al. reconstructed a 3D model of a mystery circle to explore the flow features with 2D computational fluid dynamic simulations8. Since our model has already been quantified as 3D data, computational fluid analysis can be immediately performed using this data, and the structural features of the mystery circle are expected to be applied in a wide range of fields, such as architecture and engineering, via biomimetics. More

  • in

    A single gene integrates sex and hormone regulators into sexual attractiveness

    Ryan, M. J. Darwin, sexual selection, and the brain. Proc. Natl Acad. Sci. USA 118, e2008194118 (2021).CAS 
    Article 

    Google Scholar 
    Le Moëne, O. & Ågmo, A. The neuroendocrinology of sexual attraction. Front. Neuroendocrinol. 51, 46–67 (2018).Article 

    Google Scholar 
    Witchel, S. F. Disorders of sex development. Best Pract. Res. Clin. Obstet. Gynaecol. 48, 90–102 (2018).Article 

    Google Scholar 
    Mäkelä, J., Koskenniemi, J. J., Virtanen, H. E. & Toppari, J. Testis development. Endocr. Rev. 40, 857–905 (2019).Article 

    Google Scholar 
    Bilen, J., Atallah, J., Azanchi, R., Levine, J. D. & Riddiford, L. M. Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 110, 18321–18326 (2013).CAS 
    Article 

    Google Scholar 
    Auer, T. O. & Benton, R. Sexual circuitry in Drosophila. Curr. Opin. Neurobiol. 38, 18–26 (2016).CAS 
    Article 

    Google Scholar 
    Schal, C., Fan, Y. & Blomquist, G. J. in Insect Pheromone Biochemistry and Molecular Biology (eds Blomquist, G. J. & Vogt, R. G.) 283–322 (Elsevier Academic Press, 2003).Eliyahu, D., Nojima, S., Mori, K. & Schal, C. New contact sex pheromone components of the German cockroach, Blattella germanica, predicted from the proposed biosynthetic pathway. J. Chem. Ecol. 34, 229–237 (2008).CAS 
    Article 

    Google Scholar 
    Nojima, S., Schal, C., Webster, F. X., Santangelo, R. G. & Roelofs, W. L. Identification of the sex pheromone of the German cockroach, Blattella germanica. Science 307, 1104–1106 (2005).CAS 
    Article 

    Google Scholar 
    Mori, K. Synthesis of all the six components of the female-produced contact sex pheromone of the German cockroach, Blattella germanica (L.). Tetrahedron 64, 4060–4071 (2008).CAS 
    Article 

    Google Scholar 
    Pei, X.-J. et al. Modulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness. PLoS Biol. 19, e3001330 (2021).CAS 
    Article 

    Google Scholar 
    Nishida, R., Fukami, H. & Ishii, S. Sex pheromone of the German cockroach (Blattella germanica L.) responsible for male wing-raising: 3,11-dimethyl-2-nonacosanone. Experientia 30, 978–979 (1974).CAS 
    Article 

    Google Scholar 
    Chase, J., Touhara, K., Prestwich, G. D., Schal, C. & Blomquist, G. J. Biosynthesis and endocrine control of the production of the German cockroach sex pheromone 3,11-dimethylnonacosan-2-one. Proc. Natl Acad. Sci. USA 89, 6050–6054 (1992).CAS 
    Article 

    Google Scholar 
    Harrison, M. C. et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat. Ecol. Evol. 2, 557–566 (2018).Article 

    Google Scholar 
    Gu, X., Quilici, D., Juarez, P., Blomquist, G. J. & Schal, C. Biosynthesis of hydrocarbons and contact sex pheromone and their transport by lipophorin in females of the German cockroach (Blattella germanica). J. Insect Physiol. 41, 257–267 (1995).CAS 
    Article 

    Google Scholar 
    Chen, N., Pei, X., Li, S., Fan, Y.-L. & Liu, T.-X. Involvement of integument-rich CYP4G19 in hydrocarbon biosynthesis and cuticular penetration resistance in Blattella germanica (L.). Pest Manag. Sci. 76, 215–226 (2020).CAS 
    Article 

    Google Scholar 
    Roy, S., Saha, T. T., Zou, Z. & Raikhel, A. S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489–511 (2018).CAS 
    Article 

    Google Scholar 
    Li, S. et al. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat. Commun. 9, 1008 (2018).Article 

    Google Scholar 
    Zhu, S. et al. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach. Development. 147, dev188805 (2020).CAS 
    Article 

    Google Scholar 
    Luo, W. et al. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc. Natl Acad. Sci. USA 118, e2014461118 (2021).
    Google Scholar 
    Tillman, J. A., Seybold, S. J., Jurenka, R. A. & Blomquist, G. J. Insect pheromones—an overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol. 29, 481–514 (1999).CAS 
    Article 

    Google Scholar 
    Jindra, M., Palli, S. R. & Riddiford, L. M. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181–241 (2013).CAS 
    Article 

    Google Scholar 
    Piulachs, M. D., Maestro, J. L. & Belles, X. Juvenile hormone production and accessory gland development during sexual maturation of male Blattella germanica (L.) (Dictyoptera: Blattellidae). Comp. Biochem. Physiol. A 102, 477–480 (1992).Article 

    Google Scholar 
    Ferveur, J. F. et al. Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276, 1555–1558 (1997).CAS 
    Article 

    Google Scholar 
    Shirangi, T., Dufour, H., Williams, T. & Carroll, S. Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biol. 7, e1000168 (2009).Article 

    Google Scholar 
    Verhulst, E. C., de Zande, L. & Beukeboom, L. W. Insect sex determination: it all evolves around transformer. Curr. Opin. Genet. Dev. 20, 376–383 (2010).CAS 
    Article 

    Google Scholar 
    Yamamoto, D. & Koganezawa, M. Genes and circuits of courtship behaviour in Drosophila males. Nat. Rev. Neurosci. 14, 681–692 (2013).CAS 
    Article 

    Google Scholar 
    Wexler, J. et al. Hemimetabolous insects elucidate the origin of sexual development via alternative splicing. eLife 8, e47490 (2019).CAS 
    Article 

    Google Scholar 
    Clynen, E., Ciudad, L., Belles, X. & Piulachs, M.-D. Conservation of fruitless’ role as master regulator of male courtship behaviour from cockroaches to flies. Dev. Genes Evol. 221, 43–48 (2011).Article 

    Google Scholar 
    Defelipea, L. A. et al. Juvenile hormone synthesis: ‘esterify then epoxidize’ or ‘epoxidize then esterify’? Insights from the structural characterization of juvenile hormone acid methyltransferase. Insect Biochem. Mol. Biol. 41, 228–235 (2011).Article 

    Google Scholar 
    Fan, Y., Zurek, L., Dykstra, M. J. & Schal, C. Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German cockroach, Blattella germanica. Naturwissenschaften 90, 121–126 (2003).CAS 
    Article 

    Google Scholar 
    Beach, F. A. Sexual attractivity, proceptivity, and receptivity in female mammals. Horm. Behav. 7, 105–138 (1976).CAS 
    Article 

    Google Scholar 
    Lozano, J. & Belles, X. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci. Rep. 1, 163 (2011).Article 

    Google Scholar 
    Lozano, J. & Belles, X. Role of methoprene-tolerant (Met) in adult morphogenesis and in adult ecdysis of Blattella germanica. PLoS ONE 9, e103614 (2014).Article 

    Google Scholar 
    Tian, L. et al. 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 9, 1172–1187 (2013).CAS 
    Article 

    Google Scholar 
    Jia, Q. et al. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. J. Biol. Chem. 292, 21504–21516 (2017).CAS 
    Article 

    Google Scholar 
    Eliyahu, D., Nojima, S., Mori, K. & Schal, C. Jail baits: how and why nymphs mimic adult females of the German cockroach, Blattella germanica. Anim. Behav. 78, 1097–1105 (2009).Article 

    Google Scholar 
    Schal, C., Burns, E. L., Jurenka, R. A. & Blomquist, G. J. A new component of the female sex pheromone of Blattella germanica (L.) (Dictyoptera: Blattellidae) and interaction with other pheromone components. J. Chem. Ecol. 16, 1997–2008 (1990).CAS 
    Article 

    Google Scholar  More

  • in

    Dispersal and fire limit Arctic shrub expansion

    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 3, 673–677 (2013).ADS 
    Article 

    Google Scholar 
    Wang, J. A. et al. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Glob. Chang. Biol. 26, 807–822 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16, 053001 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2, 453–457 (2012).ADS 
    Article 

    Google Scholar 
    Sturm, M., Racine, C. & Tape, K. Climate change. Increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Chang. Biol. 12, 686–702 (2006).ADS 
    Article 

    Google Scholar 
    Forbes, B. C., Fauria, M. M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Chang. Biol. 16, 1542–1554 (2010).ADS 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 10, 106–117 (2020).ADS 
    Article 

    Google Scholar 
    Chapin, F. S. 3rd et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).ADS 
    Article 

    Google Scholar 
    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paradis, M., Lévesque, E. & Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11, 085005 (2016).ADS 
    Article 

    Google Scholar 
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, Y. et al. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Chang. 11, 404–410 (2021).ADS 
    Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Chang. 8, 825–828 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).Article 

    Google Scholar 
    Myers-Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).Article 

    Google Scholar 
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).CAS 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).ADS 
    Article 

    Google Scholar 
    Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, T. K. F., Lantz, T. C., Fraser, R. H. & Hogan, D. High Arctic vegetation change mediated by hydrological conditions. Ecosystems 24, 106–121 (2021).CAS 
    Article 

    Google Scholar 
    Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Chang. Biol. 27, 652–663 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Martin, A. C., Jeffers, E. S., Petrokofsky, G., Myers-Smith, I. & Macias-Fauria, M. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environ. Res. Lett. 12, 085007 (2017).ADS 
    Article 

    Google Scholar 
    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).PubMed 
    Article 

    Google Scholar 
    Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).PubMed 
    Article 

    Google Scholar 
    Klesse, S. et al. Continental-scale tree-ring-based projection of Douglas-fir growth: testing the limits of space-for-time substitution. Glob. Chang. Biol. 26, 5146–5163 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).PubMed 
    Article 

    Google Scholar 
    Rogers, H. S. et al. The total dispersal kernel: a review and future directions. AoB Plants 11, lz042 (2019).Article 

    Google Scholar 
    Bullock, J. M. et al. Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).Article 

    Google Scholar 
    Shipley, B. R. et al. megaSDM: integrating dispersal and time‐step analyses into species distribution models. Ecography 2022, e05450 (2022).Article 

    Google Scholar 
    Anadon‐Rosell, A., Talavera, M., Ninot, J. M., Carrillo, E. & Batllori, E. Seed production and dispersal limit treeline advance in the Pyrenees. J. Veg. Sci. 31, 981–994 (2020).Article 

    Google Scholar 
    Standish, R. J., Cramer, V. A., Wild, S. L. & Hobbs, R. J. Seed dispersal and recruitment limitation are barriers to native recolonization of old-fields in western Australia. J. Appl. Ecol. 44, 435–445 (2007).Article 

    Google Scholar 
    Kunstler, G. et al. Tree colonization of sub-Mediterranean grasslands: effects of dispersal limitation and shrub facilitation. Can. J. Res. 37, 103–115 (2007).Article 

    Google Scholar 
    Reid, J. L., Holl, K. D. & Zahawi, R. A. Seed dispersal limitations shift over time in tropical forest restoration. Ecol. Appl. 25, 1072–1082 (2015).PubMed 
    Article 

    Google Scholar 
    van Breugel, M. et al. Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. J. Ecol. 107, 566–581 (2019).Article 

    Google Scholar 
    Münzbergová, Z. & Herben, T. Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia 145, 1–8 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Alsos, I. G. et al. Frequent long-distance plant colonization in the changing Arctic. Science 316, 1606–1609 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Makoto, K. & Wilson, S. D. When and where does dispersal limitation matter in primary succession? J. Ecol. 107, 559–565 (2019).Article 

    Google Scholar 
    Flannigan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 15, 549–560 (2009).ADS 
    Article 

    Google Scholar 
    Higuera, P. E. et al. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change. PLoS ONE 3, e0001744 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).PubMed 
    Article 

    Google Scholar 
    Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 16, 1281–1295 (2010).ADS 
    Article 

    Google Scholar 
    Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120490 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Klupar, I., Rocha, A. V. & Rastetter, E. B. Alleviation of nutrient co-limitation induces regime shifts in post-fire community composition and productivity in Arctic tundra. Glob. Chang. Biol. 27, 3324–3335 (2021).PubMed 
    Article 

    Google Scholar 
    Racine, C., Jandt, R., Meyers, C. & Dennis, J. Tundra fire and vegetation change along a hillslope on the Seward Peninsula, Alaska, USA Arct. Antarct. Alp. Res. 36, 1–10 (2004).Article 

    Google Scholar 
    Narita, K. et al. Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska. Arct. Antarct. Alp. Res. 47, 547–559 (2015).Article 

    Google Scholar 
    Iwahana, G. et al. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska. J. Geophys. Res. Earth Surf. 121, 1697–1715 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    CAVM Team. Circumpolar Arctic Vegetation (1:7,500,000 scale), Conservation of Arctic Flora and Fauna (CAFF) Map No. 1 (U.S. Fish and Wildlife Service, 2003).Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).ADS 
    Article 

    Google Scholar 
    Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the MacKenzie delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).Article 

    Google Scholar 
    Wilson, S. D. & Nilsson, C. Arctic alpine vegetation change over 20 years. Glob. Chang. Biol. 15, 1676–1684 (2009).ADS 
    Article 

    Google Scholar 
    Mielke, K. P. et al. Disentangling drivers of spatial autocorrelation in species distribution models. Ecography 43, 1741–1751 (2020).Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ims, R. A. & Henden, J.-A. Collapse of an arctic bird community resulting from ungulate-induced loss of erect shrubs. Biol. Conserv. 149, 2–5 (2012).Article 

    Google Scholar 
    IPCC. Global warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. (Intergovernmental Panel on Climate Change, 2018).Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32, 34–45 (2009).Article 

    Google Scholar 
    Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article 

    Google Scholar 
    Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Graae, B. J. et al. Strong microsite control of seedling recruitment in tundra. Oecologia 166, 565–576 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Frei, E. R. et al. Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Sci. Rep. 8, 10894 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huebner, D. C. & Bret-Harte, M. S. Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic. Ecol. Evol. 9, 1880–1897 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hargreaves, A. L. et al. Seed predation increases from the Arctic to the Equator and from high to low elevations. Sci. Adv. 5, eaau4403 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rupp, T. S., Starfield, A. M. & Chapin, F. S. A frame-based spatially explicit model of subarctic vegetation response to climatic change: comparison with a point model. Landsc. Ecol. 15, 383–400 (2000).Article 

    Google Scholar 
    Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 7, 529–534 (2017).ADS 
    Article 

    Google Scholar 
    Camac, J. S., Williams, R. J., Wahren, C.-H., Hoffmann, A. A. & Vesk, P. A. Climatic warming strengthens a positive feedback between alpine shrubs and fire. Glob. Chang. Biol. 23, 3249–3258 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Angers-Blondin, S., Myers-Smith, I. H. & Boudreau, S. Plant–plant interactions could limit recruitment and range expansion of tall shrubs into alpine and Arctic tundra. Polar Biol. 41, 2211–2219 (2018).Article 

    Google Scholar 
    Mekonnen, Z. A., Riley, W. J. & Grant, R. F. Accelerated nutrient cycling and increased light competition will lead to 21st century shrub expansion in North American Arctic Tundra. J. Geophys. Res. Biogeosci. 123, 1683–1701 (2018).CAS 
    Article 

    Google Scholar 
    Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T. & Lischke, H. Competition and demography rather than dispersal limitation slow down upward shifts of trees’ upper elevation limits in the Alps. J. Ecol. 108, 2416–2430 (2020).Article 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H., Thomas, H. J. D. & Bjorkman, A. D. Plant traits inform predictions of tundra responses to global change. N. Phytol. 221, 1742–1748 (2019).Article 

    Google Scholar 
    Wang, J. A. et al. ABoVE: landsat-derived annual dominant land cover across ABoVE core domain, 1984–2014. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1691 (2019).Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. (2019).Barnes, R. RichDEM: Terrain Analysis Software. (2016).Loboda, T. V., Chen, D., Hall, J. V. & He, J. ABoVE: Landsat-derived Burn Scar dNBR across Alaska and Canada, 1985–2015. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1564 (2018).James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer, 2013).Thuiller, W., Georges, D., Gueguen, M., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. https://CRAN.R-project.org/package=biomod2 (2013).R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (2013).Bullock, J. M. et al. A synthesis of empirical plant dispersal kernels. J. Ecol. 105, 6–19 (2017).Article 

    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finley, A. O., Banerjee, S. & Gelfand, A. E. spBayes for Large univariate and multivariate point-referenced spatio-temporal data models. J. Stat. Softw. 63, 1–28 (2015).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ (2021).Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data. (Chapman and Hall/CRC, 2003).Liu, Y. et al. Dataset: dispersal and fire limit Arctic shrub expansion. Figshare https://doi.org/10.6084/m9.figshare.20097104.v1 (2022).Article 

    Google Scholar 
    Liu, Y. et al. Code: dispersal and fire limit Arctic shrub expansion. Zenodo https://doi.org/10.5281/zenodo.6672698 (2022).Article 

    Google Scholar  More

  • in

    The genetic consequences of captive breeding, environmental change and human exploitation in the endangered peninsular pronghorn

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328(5982), 1164–1168. https://doi.org/10.1126/science.1187512 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345(6195), 401–406. https://doi.org/10.1126/science.1251817 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bradshaw, C. J. A. et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. https://doi.org/10.3389/fcosc.2020.615419 (2021).Article 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471(7336), 51–57. https://doi.org/10.1038/nature09678 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl. Acad. Sci. U.S.A. 117(24), 13596–13602. https://doi.org/10.1073/pnas.1922686117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGowan, P. J., Traylor-Holzer, K. & Leus, K. IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conserv. Lett. 10(3), 361–366. https://doi.org/10.1111/conl.12285 (2016).Article 

    Google Scholar 
    Clout, M. N. & Merton, D. V. Saving the Kakapo: The conservation of the world’s most peculiar parrot. Bird Conserv. Int. 8(3), 281–296. https://doi.org/10.1017/s0959270900001933 (1998).Article 

    Google Scholar 
    Milinkovitch, M. C. et al. Genetic analysis of a successful repatriation programme: Giant Galápagos tortoises. Proc. R. Soc. B Biol. Sci. 271(1537), 341–345. https://doi.org/10.1098/rspb.2003.2607 (2004).CAS 
    Article 

    Google Scholar 
    Ryder, O. A. & Wedemeyer, E. A. A cooperative breeding programme for the Mongolian wild horse Equus przewalskii in the United States. Biol. Conserv. 22(4), 259–271. https://doi.org/10.1016/0006-3207(82)90021-0 (1982).Article 

    Google Scholar 
    Mallinson, J. J. C. Conservation breeding programmes: An important ingredient for species survival. Biodivers. Conserv. 4(6), 617–635. https://doi.org/10.1007/bf00222518 (1995).Article 

    Google Scholar 
    Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Developing the science of reintroduction biology. Conserv. Biol. 21(2), 303–312. https://doi.org/10.1111/j.1523-1739.2006.00627.x (2007).Article 
    PubMed 

    Google Scholar 
    Bowkett, A. E. Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conserv. Biol. 23(3), 773–776. https://doi.org/10.1111/j.1523-1739.2008.01157.x (2009).Article 
    PubMed 

    Google Scholar 
    Shan, L. et al. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas. Mol. Biol. Evol. 31(10), 2663–2671. https://doi.org/10.1093/molbev/msu210 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fischer, J. & Lindenmayer, D. An assessment of the published results of animal relocations. Biol. Conserv. 96(1), 1–11. https://doi.org/10.1016/s0006-3207(00)00048-3 (2014).Article 

    Google Scholar 
    Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. U.S.A. 109(1), 238–242. https://doi.org/10.1073/pnas.1111073109 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fraser, D. J. et al. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol. Appl. 12(7), 1305–1317. https://doi.org/10.1111/eva.12649 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ralls, K., Brugger, K. & Ballou, J. Inbreeding and juvenile mortality in small populations of ungulates. Science 206(4422), 1101–1103. https://doi.org/10.1126/science.493997 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Evol. Syst. 18(1), 237–268. https://doi.org/10.1146/annurev.es.18.110187.001321 (1987).Article 

    Google Scholar 
    Ralls, K., Ballou, J. D. & Templeton, A. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2(2), 185–193. https://doi.org/10.1111/j.1523-1739.1988.tb00169.x (1988).Article 

    Google Scholar 
    Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Evol. Syst. 31(1), 139–162. https://doi.org/10.1146/annurev.ecolsys.31.1.139 (2000).Article 

    Google Scholar 
    Frankham, R. Introduction to Conservation Genetics 2nd edn. (Cambridge University Press, 2010).Book 

    Google Scholar 
    Laikre, L. Conservation genetics of Nordic carnivores: Lessons from zoos. Hereditas 130(3), 203–216. https://doi.org/10.1111/j.1601-5223.1999.00203.x (2004).Article 

    Google Scholar 
    Gomendio, M., Cassinello, J. & Roldan, E. R. S. A comparative study of ejaculate traits in three endangered ungulates with different levels of inbreeding: Fluctuating asymmetry as an indicator of reproductive and genetic stress. Proc. R. Soc. B Biol. Sci. 267(1446), 875–882. https://doi.org/10.1098/rspb.2000.1084 (2000).CAS 
    Article 

    Google Scholar 
    Swinnerton, K. J., Groombridge, J. J., Jones, C. G., Burn, R. W. & Mungroo, Y. Inbreeding depression and founder diversity among captive and free-living populations of the endangered pink pigeon Columba mayeri. Anim. Conserv. 7(4), 353–364. https://doi.org/10.1017/s1367943004001556 (2004).Article 

    Google Scholar 
    Farquharson, K. A., Hogg, C. J. & Grueber, C. E. Offspring survival changes over generations of captive breeding. Nat. Commun. https://doi.org/10.1038/s41467-021-22631-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleiman, D. G., Thompson, K. V. & Baer, C. K. Wild Mammals in Captivity: Principles and Techniques for Zoo Management 2nd edn. (University of Chicago Press, 2021).
    Google Scholar 
    Ralls, K. & Ballou, J. D. Captive breeding and reintroduction. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 662–667 (Academic Press, 2013). https://doi.org/10.1016/b978-0-12-384719-5.00268-9.Chapter 

    Google Scholar 
    Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x (2003).Article 

    Google Scholar 
    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. U.S.A. 101(42), 15261–15264. https://doi.org/10.1073/pnas.0403809101 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Willi, Y., van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37(1), 433–458. https://doi.org/10.1146/annurev.ecolsys.37.091305.110145 (2006).Article 

    Google Scholar 
    Habel, J. C., Husemann, M., Finger, A., Danley, P. D. & Zachos, F. E. The relevance of time series in molecular ecology and conservation biology. Biol. Rev. 89(2), 484–492. https://doi.org/10.1111/brv.12068 (2013).Article 
    PubMed 

    Google Scholar 
    Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318(5847), 100–103. https://doi.org/10.1126/science.1145621 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Purohit, D. et al. Genetic effects of long-term captive breeding on the endangered pygmy hog. PeerJ 9, e12212. https://doi.org/10.7717/peerj.12212 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hahn, E. E. & Culver, M. Genetic diversity and structure in Arizona pronghorn following conservation efforts. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.498 (2021).Article 

    Google Scholar 
    Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Gen. 10(3), 195–205. https://doi.org/10.1038/nrg2526 (2009).CAS 
    Article 

    Google Scholar 
    Wang, J., Santiago, E. & Caballero, A. Prediction and estimation of effective population size. Heredity 117(4), 193–206. https://doi.org/10.1038/hdy.2016.43 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Gara, W., Yoakum, J. D. & McCabe, R. E. Pronghorn: Ecology and Managment (University Press of Colorado, 2004).
    Google Scholar 
    Janis, C. M., Scott, K. M. & Jacobs, L. L. Evolution of Tertiary Mammals of North America: Terrestrial Carnivores, Ungulates, and Ungulate like Mammals Vol. 1 (Cambridge University Press, 2005).
    Google Scholar 
    Nelson, E. W. Status of the Pronghorn Antelope, 1922–1924 (U.S Department Agriculture Bulletin, 1925).Book 

    Google Scholar 
    O’Gara, B. W. & McCabe, R. E. From exploitation to conservation. In Pronghorn: Ecology and Management (eds O’Gara, B. W. & Yoakum, J. D.) 41–73 (University Press Colorado, 2004).
    Google Scholar 
    Cancino, J., Ortega-Rubio, A. & Sanchez-Pacheco, J. A. Status of an endangered subspecies: The peninsular pronghorn at Baja California. J. Arid Environ. 32(4), 463–467. https://doi.org/10.1006/jare.1996.0039 (1996).ADS 
    Article 

    Google Scholar 
    Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54(2), 123–138. https://doi.org/10.1641/0006-3568 (2004).Article 

    Google Scholar 
    Medellín, R. A. et al. History, ecology, and conservation of the pronghorn antelope, bighorn sheep, and black bear in Mexico. In Biodiversity, Ecosystems, and Conservation in Northern Mexico (eds Cartron, J.-L. et al.) 387–405 (Oxford University Press, 2005).
    Google Scholar 
    Lee, T. E., Bickham, J. W. & Scott, M. D. Mitochondrial DNA and allozyme analysis of North American pronghorn populations. J. Wildl. Manag. 58(2), 307–318. https://doi.org/10.2307/3809396 (1994).Article 

    Google Scholar 
    IUCN SSC Antelope Specialist Group. Antilocapra americana ssp. peninsularis. The IUCN Red List of Threatened Species 2021: e.T1679A200726719. https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T1679A200726719.en (2021).SEMARNAT. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental– Especies nativas de México de flora y fauna silvestres– Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio– Lista de especies en riesgo. Diario Oficial de la Federación 30 diciembre (2010).U. S. Fish and Wildlife Service. Recovery Plan for the Sonoran pronghorn (Antilocapra americana sonoriensis), Second Revision. (U.S. Fish and Wildlife Service, Southwest Region, Albuquerque, 2016).Cancino, J., Sanchez-Sotomayor, V. & Castellanos, R. From the field: Capture, hand-raising, and captive management of peninsular pronghorn. Wildl. Soc. Bull. 33(1), 61–65. https://doi.org/10.2193/0091-7648 (2005).Article 

    Google Scholar 
    Horne, J. S., Hervert, J. J., Woodruff, S. P. & Mills, L. S. Evaluating the benefit of captive breeding and reintroductions to endangered Sonoran pronghorn. Biol. Conserv. 196, 133–146. https://doi.org/10.1016/j.biocon.2016.02.005 (2016).Article 

    Google Scholar 
    CONANP. Programa de Acción para la Conservación de la Especie: Berrendo (Antilocapra americana), 2009 año del berrendo. Secretaria del Medio Ambiente y Recursos Naturales (SEMARNAT). www.conanp.gob.mx (2009).Cancino, J., Rodríguez-Estrella, R. & Miller, P. Using population viability analysis for management recommendations of the endangered endemic peninsular pronghorn. Acta Zool. Mex. 26(1), 173–189 (2010).
    Google Scholar 
    Danoff-Burg, J. A. & Mulroe, K. Peninsular Pronghorn Species Action Plan (2021) (in press).Stephen, C. L. et al. Population genetic analysis of sonoran pronghorn (Antilocapra americana sonoriensis). J. Mammal. 86(4), 782–792. https://doi.org/10.1644/1545-1542 (2005).Article 

    Google Scholar 
    Stephen, C. L., Whittaker, D. G., Gillis, D., Cox, L. L. & Rhodes, O. E. Genetic consequences of reintroductions: An example from oregon pronghorn antelope (Antilocapra americana). J. Wildl. Manag. 69(4), 1463–1474. https://doi.org/10.2193/0022-541x (2005).Article 

    Google Scholar 
    Barnow-Meyer, K. & Byers, J. Genetic diversity and gene flow in Yellowstone Basin pronghorn (Antilocapra americana). UW Natl. Parks Serv. Res. Station Annu. Rep. 31, 65–72. https://doi.org/10.13001/uwnpsrc.2008.3705 (2008).Article 

    Google Scholar 
    LaCava, M. E. F. et al. Pronghorn population genomics show connectivity in the core of their range. J. Mammal. 101(4), 1061–1071. https://doi.org/10.1093/jmammal/gyaa054 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klimova, A., Munguia-Vega, A., Hoffman, J. I. & Culver, M. Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert. J. Mammal. 95(6), 1263–1277. https://doi.org/10.1644/13-mamm-a-321 (2014).Article 

    Google Scholar 
    Hahn, E. E., Klimova, A., Munguía-Vega, A., Clark, K. B. & Culver, M. Use of museum specimens to refine historical pronghorn subspecies boundaries. J. Wildl. Manag. 84(3), 524–533. https://doi.org/10.1002/jwmg.21810 (2020).Article 

    Google Scholar 
    Axelrod, D. I. The evolution of desert vegetation in western North America. Carnegie Instit. Wash. Publ. 590, 215–306 (1950).
    Google Scholar 
    Dolby, G. A., Bennett, S. E. K., Lira-Noriega, A., Wilder, B. T. & Munguía-Vega, A. Assessing the geological and climatic forcing of biodiversity and evolution Surrounding the Gulf of California. J. Southwest. 57, 391–455. https://doi.org/10.1353/jsw.2015.0005 (2015).Article 

    Google Scholar 
    Gedir, J. V., Cain, J. W., Harris, G. & Turnbull, T. T. Effects of climate change on long-term population growth of pronghorn in an arid environment. Ecosphere 6(10), art189. https://doi.org/10.1890/es15-00266.1 (2015).Article 

    Google Scholar 
    Cornuet, J. M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30(8), 1187–1189. https://doi.org/10.1093/bioinformatics/btt763 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Islas-Espinoza, M. & de las Heras, A. Peninsular pronghorn conservation: Too many paradigms, too few indicators. In Sustainability Indicators in Practice (eds Latawiec, A. & Agol, D.) 126–145 (De Gruyter Open Poland, 2015). https://doi.org/10.1515/9783110450507-012.Chapter 

    Google Scholar 
    Willoughby, J. R. et al. The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Mol. Ecol. 24(1), 98–110. https://doi.org/10.1111/mec.13020 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Crow, J. F. & Kimura, M. An Introduction in Population Genetics Theory (Harper and Row, 1970).MATH 

    Google Scholar 
    Falconer, D. S. Introduction to Quantitative Genetics 3rd edn. (Longman Scientific and Technical, 1989).
    Google Scholar 
    Ballou, J. D. Strategies for maintaining genetic diversity in captive populations through reproductive technology. Zoo Biol. 3(4), 311–323. https://doi.org/10.1002/zoo.1430030404 (1984).Article 

    Google Scholar 
    Ballou, J. D. & Lacy, R. C. Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In Population Management for Survival and Recovery (eds Ballou, J. D. et al.) 76–111 (Columbia Press, 1995).
    Google Scholar 
    Montgomery, M. E. et al. Minimizing kinship in captive breeding programs. Zoo Biol. 16(5), 377–389. https://doi.org/10.1002/(sici)1098-2361 (1997).Article 

    Google Scholar 
    Dunn, S. J., Clancey, E., Waits, L. P. & Byers, J. A. Inbreeding depression in pronghorn (Antilocapra americana) fawns. Mol. Ecol. 20(23), 4889–4898. https://doi.org/10.1111/j.1365-294x.2011.05327.x (2011).Article 
    PubMed 

    Google Scholar 
    Hoffman, J. I. et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proc. Natl. Acad. Sci. U.S.A. 111(10), 3775–3780. https://doi.org/10.1073/pnas.1318945111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl. Acad. Sci. U.S.A. 118(48), e2104642118. https://doi.org/10.1073/pnas.2104642118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zoonomia Consortium. A comparative genomics multitool for scientific discovery and conservation. Nature 587(7833), 240–245. https://doi.org/10.1038/s41586-020-2876-6 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 19(4), 220–234. https://doi.org/10.1038/nrg.2017.109 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. https://doi.org/10.1186/s13059-018-1520-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohenlohe, P. A. & Rajora, O. P. Population Genomics: Wildlife (Springer, 2020).
    Google Scholar 
    Chalmers, G. A. & Barrett, M. W. Capture myopathy in pronghorns in Alberta, Canada. J. Am. Vet. Med. Assoc. 171(9), 918–923 (1977).CAS 
    PubMed 

    Google Scholar 
    Sotelo-Gallardo, H., Contreras Balderas, A. J. & Espinosa Treviño, A. Comparación de dos métodos de liberación del berrendo, Antilocapra americana (Artiodactyla: Antilocapridae) en Coahuila, México. Rev. Biol. Trop. 65(3), 1208. https://doi.org/10.15517/rbt.v65i3.29447 (2017).Article 

    Google Scholar 
    Breed, D. et al. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. https://doi.org/10.1093/conphys/coz027 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snyder, N. F. et al. Limitations of captive breeding in endangered species recovery. Conserv. Biol. 10(2), 338–348. https://doi.org/10.1046/j.1523-1739.1996.10020338.x (1996).Article 

    Google Scholar 
    Bonebrake, T. C., Christensen, J., Boggs, C. L. & Ehrlich, P. R. Population decline assessment, historical baselines, and conservation. Conserv. Lett. 3(6), 371–378. https://doi.org/10.1111/j.1755-263x.2010.00139.x (2010).Article 

    Google Scholar 
    Grismer, L. L. & McGuire, J. A. The oases of central Baja California, Mexico. Part I. A preliminary account of the relict mesophilic herpetofauna and the status of the oases. Bull. South. Calif. Acad. Sci. 92, 2–24 (1993).
    Google Scholar 
    Welsh, H. H., Clark, W. H., Franco-Vizcaíno, E. & Valdéz-Villavicencio, J. H. Herpetofauna associated with palm oases across the Californian-Sonoran transition in Northern Baja California, Mexico. Southwest. Nat. 55(4), 581–585. https://doi.org/10.1894/pas-15.1 (2010).Article 

    Google Scholar 
    Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: The Plaids and Stripes Hypothesis. Biol. Rev. 94(1), 328–352. https://doi.org/10.1111/brv.12456 (2018).Article 

    Google Scholar 
    Brown, D. E., Warnecke, D. & McKinney, T. Effects of midsummer drought on mortality of doe pronghorn (Antilocapra americana). Southwest. Nat. 51(2), 220–225. https://doi.org/10.1894/0038-4909 (2006).Article 

    Google Scholar 
    Simpson, D. C., Harveson, L. A., Brewer, C. E., Walser, R. E. & Sides, A. R. Influence of precipitation on pronghorn demography in Texas. J. Wildl. Manag. 71(3), 906–910. https://doi.org/10.2193/2005-753 (2007).Article 

    Google Scholar 
    McKinney, T., Brown, D. E. & Allison, L. Winter precipitation and recruitment of pronghorns in Arizona. Southwest. Nat. 53(3), 319–325. https://doi.org/10.1894/cj-147.1 (2008).Article 

    Google Scholar 
    Otte, A. Partners save the Sonoran pronghorn. Endang. Species Bull. 31, 22–23 (2006).
    Google Scholar 
    McCullough, D. R. & Barrett, R. H. Wildlife 2001: Populations (Springer, 1992).Book 

    Google Scholar 
    Percie Du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLOS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carling, M. D., Passavant, C. W. & Byers, J. A. DNA microsatellites of pronghorn (Antilocapra americana). Mol. Ecol. Not. 3(1), 10–11. https://doi.org/10.1046/j.1471-8286.2003.00334.x (2002).Article 

    Google Scholar 
    Dunn, S. J. et al. Ten polymorphic microsatellite markers for pronghorn (Antilocapra americana). Conserv. Genet. Resour. 2(1), 81–84. https://doi.org/10.1007/s12686-009-9166-9 (2010).Article 

    Google Scholar 
    Munguia-Vega, A., Klimova, A. & Culver, M. New microsatellite loci isolated via next-generation sequencing for two endangered pronghorn from the Sonoran Desert. Conserv. Genet. Resour. 5(1), 125–127. https://doi.org/10.1007/s12686-012-9749-8 (2012).Article 

    Google Scholar 
    Boutin-Ganache, I., Raposo, M., Raymond, M. & Deschepper, C. F. M13-Tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31(1), 25–28. https://doi.org/10.2144/01311bm02 (2001).Article 

    Google Scholar 
    Amos, W. et al. Automated binning of microsatellite alleles: Problems and solutions. Mol. Ecol. Not. 7(1), 10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x (2006).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.Jombart, T. & Ahmed, I. Adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5(4), 384–387. https://doi.org/10.1111/2041-210x.12158 (2014).Article 

    Google Scholar 
    Agapow, P. M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Not. 1(1–2), 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x (2001).CAS 
    Article 

    Google Scholar 
    Paradis, E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26(3), 419–420. https://doi.org/10.1093/bioinformatics/btp696 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Not. 5(1), 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).Article 

    Google Scholar 
    Aparicio, J. M., Ortego, J. & Cordero, P. J. What should we weigh to estimate heterozygosity, alleles or loci?. Mol. Ecol. 15(14), 4659–4665. https://doi.org/10.1111/j.1365-294x.2006.03111.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alho, J. S., Välimäki, K. & Merilä, J. Rhh: An R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation. Mol. Ecol. Res. 10(4), 720–722. https://doi.org/10.1111/j.1755-0998.2010.02830.x (2010).Article 

    Google Scholar 
    Stoffel, M. A. et al. inbreedR: An R package for the analysis of inbreeding based on genetic markers. Methods Ecol. Evol. 7(11), 1331–1339. https://doi.org/10.1111/2041-210x.12588 (2016).Article 

    Google Scholar 
    Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Res. 11(1), 141–145. https://doi.org/10.1111/j.1755-0998.2010.02885.x (2010).ADS 
    Article 

    Google Scholar 
    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89(3), 135–153. https://doi.org/10.1017/s0016672307008798 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marshall, T. C. et al. Estimating the prevalence of inbreeding from incomplete pedigrees. Proc. R. Soc. B Biol. Sci. 269(1500), 1533–1539. https://doi.org/10.1098/rspb.2002.2035 (2002).CAS 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162(4), 2025–2035. https://doi.org/10.1093/genetics/162.4.2025 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertorelle, G., Benazzo, A. & Mona, S. ABC as a flexible framework to estimate demography over space and time: Some cons, many pros. Mol. Ecol. 19(13), 2609–2625. https://doi.org/10.1111/j.1365-294x.2010.04690.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fagundes, N. J. R. et al. Statistical evaluation of alternative models of human evolution. Proc. Natl. Acad. Sci. U.S.A. 104(45), 17614–17619. https://doi.org/10.1073/pnas.0708280104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Increasing calcium scarcity along Afrotropical forest succession

    Losos, E. & Leigh, E. G. Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network (Univ. Chicago Press, 2004).Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–854 (2013).CAS 
    PubMed 

    Google Scholar 
    Chazdon, R. L. Beyond deforestation: restoring degraded lands. Science 1458, 1458–1460 (2008).
    Google Scholar 
    Global Forest Resources Assessment 2010 (FAO, 2010).Rozendaal, D. M. A. & Chazdon, R. L. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecol. Appl. 25, 506–516 (2015).PubMed 

    Google Scholar 
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS 
    PubMed 

    Google Scholar 
    Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F. & Al, E. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lohbeck, M. et al. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 14, 89–96 (2012).
    Google Scholar 
    Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed 

    Google Scholar 
    Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B. & White, J. W. Multi-element regulation of the tropical forest carbon cycle. Front. Ecol. Environ. 9, 9–17 (2011).
    Google Scholar 
    Medvigy, D. et al. Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytol. 223, 1820–1833 (2019).Powers, J. S., Mar, E. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles during secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).
    Google Scholar 
    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).CAS 
    PubMed 

    Google Scholar 
    Davidson, E. A. & Martinelli, L. A. in Amazonia and Global Change (eds Keller, M. et al.) 299–309 (American Geophysical Union, 2013).Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).
    Google Scholar 
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).CAS 
    PubMed 

    Google Scholar 
    Bauters, M., Mapenzi, N., Kearsley, E., Vanlauwe, B. & Boeckx, P. Facultative nitrogen fixation by legumes in the central Congo basin is downregulated during late successional stages. Biotropica 48, 281–284 (2016).
    Google Scholar 
    Van Langenhove, L. et al. Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield. Plant Soil 450, 93–110 (2020).PubMed 

    Google Scholar 
    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).CAS 

    Google Scholar 
    Kaspari, M. et al. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol. Lett. 11, 35–43 (2008).PubMed 

    Google Scholar 
    Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol. Lett. 14, 939–947 (2011).PubMed 

    Google Scholar 
    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).CAS 

    Google Scholar 
    Hedin, L. O. et al. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).
    Google Scholar 
    Sanchez, P. A., Villachica, J. H. & Bandy, D. E. Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Sci. Soc. Am. J. 47, 1171 (1983).CAS 

    Google Scholar 
    Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).
    Google Scholar 
    Wardle, D. A., Walker, L. R. & Bardgett, R. D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–513 (2004).CAS 
    PubMed 

    Google Scholar 
    Wassen, M. J., Venterink, H. O., Lapshina, E. D. & Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 437, 547–550 (2005).CAS 
    PubMed 

    Google Scholar 
    Waring, B. G., Becknell, J. M. & Powers, J. S. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest. Oecologia 178, 887–897 (2015).PubMed 

    Google Scholar 
    De longe, M., D’odorico, P. & Lawrence, D. Feedbacks between phosphorus deposition and canopy cover: the emergence of multiple stable states in tropical dry forests. Glob. Change Biol. 14, 154–160 (2008).
    Google Scholar 
    Bauters, M. et al. Fire-derived phosphorus fertilization of African Tropical Forests. Nat. Commun. 12, 5129 (2021).Vitousek, P. M. & Reiners, W. A. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25, 376–381 (1975).CAS 

    Google Scholar 
    Gallarotti, N. et al. In-depth analysis of N 2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J. 15, 3357–3374 (2021).Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).CAS 

    Google Scholar 
    Markewitz, D., Davidson, E., Moutinho, P. & Nepstad, D. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol. Appl. 14, 177–199 (2004).
    Google Scholar 
    Lawrence, D. et al. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc. Natl Acad. Sci. USA 104, 20696–20701 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).
    Google Scholar 
    Sanchez, P. A. Properties and Management of Soils in the Tropics (John Wiley and Sons, 1976).Turner, B. L. & Engelbrecht, B. M. J. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103, 297–315 (2011).Sullivan, B. W. et al. Biogeochemical recuperation of lowland tropical forest during succession. Ecology 100, e02641 (2019).Sardans, J. et al. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat. Ecol. Evol. 13, 184–194 (2021).White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 

    Google Scholar 
    Huggett, B. A., Schaberg, P. G., Hawley, G. J. & Eagar, C. Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest. Can. J. For. Res. 37, 1692–1700 (2007).CAS 

    Google Scholar 
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants 3rd edn (Elsevier/Academic Press 2002).Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).
    Google Scholar 
    Bauters, M. et al. Soil nutrient depletion and tree functional composition shift following repeated clearing in secondary forests of the Congo Basin. Ecosystems 24, 1422–1435 (2021).Turner, B. L., Brenes-arguedas, T. & Condit, R. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).CAS 
    PubMed 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Lugli, L. F. et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2021).Vitousek, P. M. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).
    Google Scholar 
    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).PubMed 

    Google Scholar 
    Nykvist, N. in Soils of Tropical Forest Ecosystems (eds Schulte, A. & Ruhiyat, D.) 87–91 (Springer, 1998).Bunyavejchewin, S., Sinbumroong, A., Turner, B. L. & Davies, S. J. Natural disturbance and soils drive diversity and dynamics of seasonal dipterocarp forest in Southern Thailand. J. Trop. Ecol. 35, 95–107 (2019).
    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).CAS 

    Google Scholar 
    Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).Makelele, I. A. et al. Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J. Veg. Sci. 32, e13071 (2021).Van Langenhove, L. et al. Atmospheric deposition of elements and its relevance for nutrient budgets of tropical forests. Biogeochemistry 149, 175–193 (2020).
    Google Scholar 
    Staelens, J. et al. Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut. 191, 149–169 (2008).CAS 

    Google Scholar 
    Hofhansl, F. et al. Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, southwest Costa Rica. Biogeochemistry 106, 371–396 (2011).
    Google Scholar 
    Schrijver, A. De, Nachtergale, L. & Staelens, J. Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut. 131, 93–105 (2004).Eriksson, E. & Khunakasem, V. Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. J. Hydrol. 7, 178–197 (1969).
    Google Scholar 
    Malhi, Y. et al. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439 (2002).
    Google Scholar 
    Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J. & Hérault, B. biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8, 1163–1167 (2017).
    Google Scholar 
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
    Google Scholar 
    Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).D’Angelo, E., Crutchfield, J. & Vandiviere, M. Rapid, sensitive, microscale determination of phosphate in water and soil. J. Environ. Qual. 30, 2206–2209 (2001).Rowland, A. P. & Haygarth, P. M. Determination of total dissolved phosphorus in soil solutions. J. Environ. Qual. 26, 410–415 (1997).CAS 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 

    Google Scholar 
    Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14, 319–329 (1982).CAS 

    Google Scholar 
    Kaiser, C. et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187, 843–858 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021). More