More stories

  • in

    Maternal gastrointestinal nematode infection enhances spatial memory of uninfected juvenile mouse pups

    Zaiss, M. M. & Harris, N. L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 38, 5–11 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jhan, K. Y. et al. Angiostrongylus cantonensis causes cognitive impairments in heavily infected BALB/c and C57BL/6 mice. Parasites Vectors. 13, 405. https://doi.org/10.1186/s13071-020-04230-y (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boillat, M. et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep. 30, 320–334 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brombacher, T. M. et al. Nippostrongylus brasiliensis infection leads to impaired reference memory and myeloid cell interference. Sci. Rep. 8, 2958. https://doi.org/10.1038/s41598-018-20770-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kavaliers, M. & Colwell, D. D. Reduced spatial learning in mice infected with the nematode Heligmosomoides polygyrus. Parasitology 110(Pt 5), 591–597 (1995).PubMed 
    Article 

    Google Scholar 
    Pan, S. C. et al. Cognitive and microbiome impacts of experimental Ancylostoma ceylanicum hookworm infections in hamsters. Sci. Rep. 9, 7868. https://doi.org/10.1038/s41598-019-44301-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blecharz-Klin, K. et al. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog. 18, e1010330–e1010330. https://doi.org/10.1371/journal.ppat.1010330 (2022).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Braithwaite, V. et al. Spatial and discrimination learning in rodents infected with the nematode Strongyloides ratti. Parasitology 117(Pt 2), 145–154 (1998).PubMed 
    Article 

    Google Scholar 
    Sharma, S., Rakoczy, S. & Brown-Borg, H. Assessment of spatial memory in mice. Life Sci. 87, 521–536 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorhees, C. V. & Williams, M. T. Assessing spatial learning and memory in rodents. ILAR J. 55, 310–332 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pelletier, F., Page, K. A., Ostiguy, T. & Festa-Bianchet, M. Fecal counts of lungworm larvae and reproductive effort in bighorn sheep. Ovis canadensis. Oikos. 110, 473–480 (2005).Article 

    Google Scholar 
    Odiere, M. R., Koski, K. G., Weiler, H. A. & Scott, M. E. Concurrent nematode infection and pregnancy induce physiological responses that impair linear growth in the murine foetus. Parasitology 137, 991–1002 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fitzgerald, E., Hor, K. & Drake, A. J. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum. Dev. 150, 105190. https://doi.org/10.1016/j.earlhumdev.2020.105190 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boksa, P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav. Immun. 24, 881–897 (2010).PubMed 
    Article 

    Google Scholar 
    Akitake, Y. et al. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring. Nutr. Res. 35, 76–87 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammelrath, L. et al. Morphological maturation of the mouse brain: An in vivo MRI and histology investigation. Neuroimage 125, 144–152 (2016).PubMed 
    Article 

    Google Scholar 
    Wills, T., Muessig, L. & Cacucci, F. The development of spatial behaviour and the hippocampal neural representation of space. Philos. Trans. R. Soc. B: Biol. Sci. 369, 20130409. https://doi.org/10.1098/rstb.2013.0409 (2014).Article 

    Google Scholar 
    Travaglia, A., Steinmetz, A. B., Miranda, J. M. & Alberini, C. M. Mechanisms of critical period in the hippocampus underlie object location learning and memory in infant rats. Learn Mem. 25, 176–182 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McHail, D. G., Valibeigi, N. & Dumas, T. C. A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn Mem. 25, 138–146 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bliss, T. V. P., Collingridge, G. L., Morris, R. G. M. & Reymann, K. G. Long-term potentiation in the hippocampus: Discovery, mechanisms and function. Neuroforum 24, A103–A120 (2018).Article 

    Google Scholar 
    Schiller, D. et al. Memory and space: Towards an understanding of the cognitive map. J. Neurosci. 35, 13904–13911 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, P. et al. The persistent effects of maternal infection on the offspring’s cognitive performance and rates of hippocampal neurogenesis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 44, 279–289 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wallace, K. L. et al. Interleukin-10/Ceftriaxone prevents E. coli-induced delays in sensorimotor task learning and spatial memory in neonatal and adult Sprague-Dawley rats. Brain. Res. Bull. 81, 141–148 (2010).Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297–302 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Denenberg, V. H. Open-field behavior in the rat: what does it mean?. Ann. N. Y. Acad. Sci. 159, 852–859 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vogel-Ciernia, A. & Wood, M. A. Examining object location and object recognition memory in mice. Curr. Protoc. Neurosci. 69, 8.31.1–17 (2014).Denninger, J. K., Smith, B. M. & Kirby, E. D. Novel object recognition and object location behavioral testing in mice on a budget. J. Vis. Exp. https://doi.org/10.3791/58593 (2018).Article 
    PubMed 

    Google Scholar 
    Krüger, H.-S., Brockmann, M. D., Salamon, J., Ittrich, H. & Hanganu-Opatz, I. L. Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol. Learn. Mem. 97, 470–481 (2012).PubMed 
    Article 

    Google Scholar 
    Cruz-Sanchez, A. et al. Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci. Rep. 10, 10612. https://doi.org/10.1038/s41598-020-67619-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sunyer, B., Patil, S., Hoger, H. & Lubec, G. Barnes maze, a useful task to assess spatial reference memory in the mice. Nat. Protoc. https://doi.org/10.1038/nprot.2007.390 (2007).Article 

    Google Scholar 
    Schenk, F. Development of place navigation in rats from weaning to puberty. Behav. Neural Biol. 43, 69–85 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, R. W. & Kraemer, P. J. Ontogenetic differences in retention of spatial learning tested with the Morris water maze. Dev. Psychobiol. 30, 329–341 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Batinić, B. et al. Lipopolysaccharide exposure during late embryogenesis results in diminished locomotor activity and amphetamine response in females and spatial cognition impairment in males in adult, but not adolescent rat offspring. Behav. Brain Res. 299, 72–80 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lante, F. et al. Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic. Biol. Med. 42, 1231–1245 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, H. et al. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy. Toxicol. Lett. 192, 245–251 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yagi, S. & Galea, L. A. M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 44, 200–213 (2019).PubMed 
    Article 

    Google Scholar 
    Vuoksimaa, E. et al. Brain structure mediates the association between height and cognitive ability. Brain Struct. Func. 223, 3487–3494 (2018).Article 

    Google Scholar 
    Harris, M. A., Brett, C. E., Deary, I. J. & Starr, J. M. Associations among height, body mass index and intelligence from age 11 to age 78 years. BMC Geriatr. 16, 167. https://doi.org/10.1186/s12877-016-0340-0 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, V. H. et al. Adult body height is a good predictor of different dimensions of cognitive function in aged individuals: A cross-sectional study. Front. Aging Neurosci. 8, 1. https://doi.org/10.3389/fnagi.2016.00217 (2016).Case, A. & Paxson, C. Stature and status: Height, ability, and labor market outcomes. J. Polit. Econ. 116, 499–532 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frick, K. M., Kim, J., Tuscher, J. J. & Fortress, A. M. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem. 22, 472–493 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qiu, L. R. et al. Mouse MRI shows brain areas relatively larger in males emerge before those larger in females. Nat. Commun. 9, 2615. https://doi.org/10.1038/s41467-018-04921-2 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Towe, A. L. & Mann, M. D. Brain size/body length relations among myomorph rodents. Brain Behav. Evol. 39, 17–23 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perepelkina, O. V., Tarasova, A. Y., Ogienko, N. A., Lil’p, I. G. & Poletaeva, I. I. Brain weight and cognitive abilities of laboratory mice. Biol. Bull. Rev. 10, 91–101 (2020).Odiere, M. R., Scott, M. E., Weiler, H. A. & Koski, K. G. Protein deficiency and nematode infection during pregnancy and lactation reduce maternal bone mineralization and neonatal linear growth in mice. J. Nutr. 140, 1638–1645 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez, M. B. et al. Leishmania amazonensis infection impairs reproductive and fetal parameters in female mice. Rev. Argent. Microbiol. 53, 194–201 (2021).PubMed 

    Google Scholar 
    Haque, M., Koski, K. G. & Scott, M. E. Maternal gastrointestinal nematode infection up-regulates expression of genes associated with long-term potentiation in perinatal brains of uninfected developing pups. Sci. Rep. 9, 4165. https://doi.org/10.1038/s41598-019-40729-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gregory, R. D., Montgomery, S. S. J. & Montgomery, W. I. Population biology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. J. Anim. Ecol. 61, 749–757 (1992).Article 

    Google Scholar 
    Reynolds, L. A., Filbey, K. J. & Maizels, R. M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin. Immunopathol. 34, 829–846 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maizels, R. M. et al. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp. Parasitol. 132, 76–89 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haque, M., Starr, L. M., Koski, K. G. & Scott, M. E. Differential expression of genes in fetal brain as a consequence of maternal protein deficiency and nematode infection. Int. J. Parasitol. 48, 51–58 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hsueh, P.-T. et al. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation. Genes Brain Behav. 17, e12479. https://doi.org/10.1111/gbb.12479 (2018).Steimer, T. The biology of fear- and anxiety-related behaviors. Dialogues Clin. Neurosci. 4, 231–249 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ricceri, L., Colozza, C. & Calamandrei, G. Ontogeny of spatial discrimination in mice: A longitudinal analysis in the modified open-field with objects. Dev. Psychobiol. 37, 109–118 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howland, J. G., Cazakoff, B. N. & Zhang, Y. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience 201, 184–198 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ito, H. T., Smith, S. E. P., Hsiao, E. & Patterson, P. H. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav. Immun. 24, 930–941 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, U. et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol. Psychiatry. 13, 208–221 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapillon, P. & Roullet, P. Use of proximal and distal cues in place navigation by mice changes during ontogeny. Dev. Psychobiol. 29, 529–545 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Variyam, E. P. & Banwell, J. G. Hookworm disease: Nutritional implications. Rev. Infect. Dis. 4, 830–835 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bansemir, A. D. & Sukhdeo, M. V. The food resource of adult Heligmosomoides polygyrus in the small intestine. J. Parasitol. 80, 24–28 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Starr, L. M., Scott, M. E. & Koski, K. G. Protein deficiency and intestinal nematode infection in pregnant mice differentially impact fetal growth through specific stress hormones, growth factors, and cytokines. J. Nutr. 145, 41–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herring, C. M., Bazer, F. W., Johnson, G. A. & Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp. Biol. Med. (Maywood). 243, 525–533 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Starr, L. M., Odiere, M. R., Koski, K. G. & Scott, M. E. Protein deficiency alters impact of intestinal nematode infection on intestinal, visceral and lymphoid organ histopathology in lactating mice. Parasitology 141, 801–813 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian, T. W., von Hohenberg, W. C., Mickelson, D. J., Lanier, L. M. & Georgieff, M. K. Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism, and dendrite complexity. Dev. Neurosci. 38, 264–276 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian, T. W., Rao, R., Tran, P. V. & Georgieff, M. K. The effects of early-life iron deficiency on brain energy metabolism. Neurosci. Insights. 15, 2633105520935104. https://doi.org/10.1177/2633105520935104 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, J. M. et al. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory. Proc. Natl. Acad. Sci. 115, E7398–E7407. https://doi.org/10.1073/pnas.1721876115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Radlowski, E. & Johnson, R. Perinatal iron deficiency and neurocognitive development. Front. Hum. Neurosci. 7, 585 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rytych, J. L. et al. Early life iron deficiency impairs spatial cognition in neonatal piglets. J. Nutr. 142, 2050–2056 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brązert, M. et al. Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol. Med. Rep. 21, 1749–1760 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427–13431 (1999).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. Regular treadmill running improves spatial learning and memory performance in young mice through increased hippocampal neurogenesis and decreased stress. Brain. Res. 1531, 1–8 (2013).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Odiere, M. R., Scott, M. E., Leroux, L. P., Dzierszinski, F. S. & Koski, K. G. Maternal protein deficiency during a gastrointestinal nematode infection alters developmental profile of lymphocyte populations and selected cytokines in neonatal mice. J. Nutr. 143, 100–107 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    El Ahdab, N., Haque, M., Madogwe, E., Koski, K. G. & Scott, M. E. Maternal nematode infection upregulates expression of Th2/Treg and diapedesis related genes in the neonatal brain. Sci. Rep. 11, 22082. https://doi.org/10.1038/s41598-021-01510-0 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hein, A. M. et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav. Immun. 24, 243–253 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: A key role for IL-4. Exp. Med. 207, 1067–1080 (2010).CAS 
    Article 

    Google Scholar 
    Brombacher, T. M. et al. IL-4R alpha deficiency influences hippocampal-BDNF signaling pathway to impair reference memory. Sci. Rep. 10, 16506. https://doi.org/10.1038/s41598-020-73574-3 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mizuno, M., Yamada, K., Olariu, A., Nawa, H. & Nabeshima, T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20, 7116–7121 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miranda, M., Morici, J. F., Zanoni, M. B. & Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 13. https://doi.org/10.3389/fncel.2019.00363 (2019).Williamson, L. L. et al. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav. Immun. 51, 14–28 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    McKay, D. M. The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology 137, 385–394 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, U., Feldon, J. & Fatemi, S. H. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci. Biobehav. Rev. 33, 1061–1079 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, C. J. C. et al. Cultivation of Heligmosomoides polygyrus: an immunomodulatory nematode parasite and its secreted products. J. Vis. Exp. e52412–e52412. https://doi.org/10.3791/52412 (2015).Valanparambil, R. M. et al. Production and analysis of immunomodulatory excretory-secretory products from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri. Nat. Protoc. 9, 2740–2754 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Murai, T., Okuda, S., Tanaka, T. & Ohta, H. Characteristics of object location memory in mice: Behavioral and pharmacological studies. Physiol. Behav. 90, 116–124 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Patil, S. S., Sunyer, B., Hoger, H. & Lubec, G. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav. Brain. Res. 198, 58–68 (2009).PubMed 
    Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Lazic, S. E. The problem of pseudoreplication in neuroscientific studies: Is it affecting your analysis?. BMC Neurosci. 11, 5. https://doi.org/10.1186/1471-2202-11-5 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Vol. 1–574 (2009).Bates, D., Maechler, M., Bolker, B. & Steve, W. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Sanford, W. An R Companion to Applied Regression. 3 edn, (Sage, 2019).emmeans: Estimated marginal means, aka least-squares means v. 1.4.8 (R package, 2020).RVAideMemoire: Testing and plotting procedures for biostatistics. v. 0.9-78 (R package, 2020).DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models v. 0.3.3.0 (R package, 2020).Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).Article 

    Google Scholar  More

  • in

    Wild bees respond differently to sampling traps with vanes of different colors and light reflectivity in a livestock pasture ecosystem

    This study reveals that various measures of bee diversity-including abundance, richness, and assemblage patterns are influenced by vane color and light reflectance patterns when passively sampling bees with vane traps. In particular, brightly colored vanes with higher light reflectance within 400–600 nm range attracted a greater diversity of bees in traps placed in a livestock pasture ecosystem. Effectiveness of blue and yellow vane traps had been compared previously in different ecosystems, for instance in apple orchards17, both woodland and open agriculture farmland13, and adjacent to Helianthus spp. (Asteraceae) field27. In all these studies, blue vane trap captured more bee species and 5–6 times more individuals compared to yellow vane trap.In the current study, we assessed a different design and size of vanes and a wider array of vane colors and reflectance patterns attached to sample collection jars. In particular, we used bright blue and yellow vanes that were made of plastic sheets covered with a micro-prismatic retro-reflective sheeting that provides better daytime and nighttime brightness as well as high visibility and durability. These vanes showed higher light reflectance and captured the most bees and bee species in this study (Table 2). Similar material was used on red vanes as well, but the light reflectance from those vanes was relatively lower, and as a result captured fewer bees. Traps with bright blue vanes performed especially well in terms of rates of bee capture (Fig. 2; 11.1 bees per trap per sampling date) and rates of species accumulation (Fig. 3). Bright yellow traps exhibited the second highest values for capture rates (Fig. 2; 6.6 bees per trap per sampling date) and species accumulation (Fig. 3), but these rates were not deemed significantly different from some other colors in which the reflective sheeting was not used, such as dark yellow, dark blue and purple.Bees use visual clues for detection, recognition, and memorization of floral resources in the foraging landscape7,28. The intensity of light reflected from different colors of vanes in traps affect number of bees attracted toward the trap10. Most bees can recognize colors that fall between 300 to 600 nm visual spectrums29. While the information related to the vision of many solitary and wild bees is not available, in the case of honey bees (Apis mellifera), color vision is trichromatic with highly sensitive photoreceptors at 344 nm (ultraviolet), 436 nm (blue) and 544 nm (green)30.In this study, colored vanes at a higher light reflectance between 400 to 600 nm attracted the highest number bee species in these passive traps. Capture rate differed among traps with different colored vanes in the current study, which can be explained by sensitivity of visual spectrum of bees and variation in the light reflectance of vanes of these traps. For example, bright blue vanes had two peaks of higher light reflectance, initially in 450–455 nm range and second peak with  > 800 nm. Such higher reflectance peak within the optimal range of bee vision may have played an important role in attracting abundant and diverse bee species to these passive traps. Similarly, bright yellow captured second largest number of bees, also had higher light reflectance peak within 600 nm but gradually decreased with increasing wavelength. Though bees have color spectrum from UV to orange31, they are sensitive to color spectrum between blue, green and ultraviolet32, which is a type of trichromatic vision system28. In one study33, red color vanes showed relatively lower light reflectance within 600 nm range, but had higher reflectance later in the spectrum, and this could be a reason why a low number of bees were collected in the traps. Past research showed contradictory views regarding the ability of bees to perceive red color. For instance, an early researcher in this field33, reported that bees recognize red color objects; however, other researchers had reported inability of bees to perceive34 or discriminate red from other colors35,36. It was argued that the bees see up to 650 nm in the visual spectrum and may not miss red colored flowers while foraging. However, other factors such as background (vegetation) color could also be contributing to bees’ ability to navigate different vane or flower colors in a livestock pasture landscape. Generally bees use color contrast to locate flower source, and hence neutral colors such as white are usually ignored29. Ultraviolet signal can make flowers more or less attractive to bees depending on whether it increases or decreases color contrast37. For example, UV color component in yellow38 and red39 flower increases chromatic contrast of these colored flowers with their background contributing attractiveness to the flowers. However, UV-reflecting white flowers decreases attractiveness for bees40.Different species of bees responded to different colors of vane traps. Out of the 49 bee species collected in this study, only nine bee species were found in all vane color types, whereas 14 species were found in only one trap color. For instance, out of five bumble bee species, two were found in all six vane colors, one was found in five colors, and two species (Bombus bimaculatus and B. fervidus) were only found in the traps with bright blue vanes. Many of the species that were only found in one trap color- Calliopsis andreniformis (1, bright yellow), Ceratina dupla (1, bright yellow), Diadasia afflicta (1, bright blue), Diadasia enavata (1, dark blue), Halictus rubicundus (1, dark yellow), Hylaeus mesillae (1, red), Lasioglossum tegulare (1, bright blue), Lasioglossum trigeminum (1, purple), Megachile montivaga (1, dark yellow), Melitoma taurea (1, bright blue), Svastra atripes (1, bright blue), and Triepeolus lunatus (1, dark yellow) were singletons and it was impossible to know if this represented a true preference or pattern. Our analysis of assemblage patterns after aggregating bees at the genus level, did show a gradient-like response in bee-color associations (Fig. 4), ranging from dark blue to yellows (with no strong associations found with red vanes). These patterns may be used to guide future (passive trap-based) sampling efforts to monitor bee diversity or to target specific bee species in livestock pastures or other ecosystems. While the bright blue and yellow traps with reflective sheeting were particularly attractive to bees, dark blue and purple traps also had relatively high levels of abundance and richness and collected higher number of Melissodes. Purple, as a color, is less commonly used than blue and yellow traps in bee monitoring. While this study shows that purple may be a viable option for bee collection, it’s similar assemblage pattern (Fig. 4) and low level of complementarity with dark blue traps (Table 2) suggests that it may be redundant with blue traps that are already commonly used. Differences in species- and sex-specific associations of bees with different colors of sampling traps had also been reported in previous studies41.Most of the bees collected in the current study were from Halictidae family (77.6%) followed by Apidae. However, few bee species in the families Andrenidae, Colletidae, and Megachilidae were collected. Consistent with our findings, others42 reported that bees of the Halictidae family were the most abundant bees in rangeland of Texas. The most common species found in this study were Au. aurata, L. disparile, L. imitatum, and Ag. texanus). In our previous studies we have found similar bee diversity in this study region18. Pollinator species richness and diversity as well as population distribution in livestock pasture vary during the season43. Mid-July to mid-August is the latter half of the summer season in the Southeastern USA, and the sampling period may have missed bee species that emerge earlier in the season and are reported in other studies42,43.Overall, the findings of this study showed that the wild bees responded differently to passive traps with colored vanes of different light wavelength and reflectivity when deployed in a livestock pasture ecosystem. Among six different colors of vanes (dark blue, bright blue, dark yellow, bright yellow, purple and red), the bright blue traps captured the highest number of individuals and species of bees. This could be due to an appropriate match between the visual spectrum of bees and the light reflectance spectrum of vanes, which were made of a micro-prismatic retro-reflective material. Bees responded similarly to traps with other colors of vanes, except for red vane traps, which captured the lowest number of bees. The findings of this study would be useful in understanding bee vision and responses to passive traps, and, such information would help in optimizing bee sampling methods for future monitoring efforts. More

  • in

    Safety assessment and sustainability of consuming eggplant (Solanum melongena L.) grown in wastewater-contaminated agricultural soils

    Eid, E. M., Galal, T. M. & El-Bebany, A. F. Prediction models for monitoring heavy metals accumulation by wheat (Triticum aestivum L.) plants grown in soil amended with different rates of sewage sludge. Int. J. Phytoremediation 22(10), 1000–1008 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Singh, R. P. & Agrawal, M. Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng. 36(7), 969–972 (2010).Article 

    Google Scholar 
    Wu, N., Su-mei, L., Gui-ling, Z. & Hong-mei, Z. Anthropogenic impacts on nutrient variability in the lower yellow river. Sci. Tot. Environ. 755, 142488 (2021).CAS 
    Article 

    Google Scholar 
    Jacob, J. M. et al. Biological approaches to tackle heavy metal pollution: a survey of literature. J. Environ. Manag. 217, 56–70 (2018).CAS 
    Article 

    Google Scholar 
    Gharib, F. A., Mansour, K. H., Ahmed, E. Z. & Galal, T. M. Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. Int. J. Phytoremediation 23(6), 641–651 (2020).PubMed 

    Google Scholar 
    Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chowdhury, A. H., Chowdhury, T. & Rahman, A. Heavy metal accumulation in tomato and cabbage grown in some industrially contaminated soils of Bangladesh. J. Bangladesh Agric. Univ. 17(3), 288–294 (2019).Article 

    Google Scholar 
    Hu, S., Liu, L., Zuo, S., Ali, M. & Wang, Z. Soil salinity control and cauliflower quality promotion by intercropping with five turfgrass species. J. Clean Prod. 266, 121991 (2020).CAS 
    Article 

    Google Scholar 
    Hu, W. Y., Zhang, Y. X., Huang, B. & Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere 170, 183–195 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Qin, S. et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30(2), 168–180 (2020).Article 

    Google Scholar 
    Kumar, V., Thakur, K. R. & Kumar, P. Assessment of heavy metals uptake by cauliflower (Brassica oleracea Var. botrytis) grown in integrated industrial effluent irrigated soils: a prediction modeling study. Sci. Hortic. 257, 108682 (2019).CAS 
    Article 

    Google Scholar 
    Paltseva, A., Cheng, Z., Egendorf, S. & Groffman, P. Remediation of an urban garden with elevated levels of soil contamination. Sci Total Environ. 722, 137965 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, L., Liu, Y., Wu, Y., Wang, Q. & Zhou, Q. The effects and health risk assessment of cauliflower co-cropping with Sedum alfredii in cadmium contaminated vegetable field. Environ. Pollut. 268, 115869 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, Q., Fei, L., Wang, C., Hu, S. & Wang, Z. Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential. Environ. Pollut. 252, 1406–1411 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perveen, S., Ihsanullah, I., Shah, Z., Shah, W. S. S. & Shah, H. H. Study on accumulation of heavy metals in vegetables receiving sewage water. J. Chem. Soc. Pak. 33, 220 (2011).CAS 

    Google Scholar 
    Galal, T. M., Sheded, Z. A. & Hassan, L. M. Hazards assessment of the intake of trace metals by common mallow (Malva parviflora L.) growing in polluted soils. Int. J. Phytoremediation 21(14), 1397–1406 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ogundeji, A. O. et al. Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium Wilt. Appl. Soil Ecol. 163, 103912 (2021).Article 

    Google Scholar 
    Mauro, R. P. et al. Recovery of eggplant field waste as a source of phytochemicals. Sci. Hort. 261, 109023 (2020).CAS 
    Article 

    Google Scholar 
    Martini, S., Conte, A., Cattivelli, A. & Tagliazucchi, D. Domestic cooking methods affect the stability and bioaccessibility of dark purple eggplant (Solanum melongena) phenolic compounds. Food Chem. 341, 128298 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gürbüz, N., Uluişik, S., Frary, A., Frary, A. & Doğanlar, S. Health benefits and bioactive compounds of eggplant. Food Chem. 268, 602–610 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    FAOSTAT. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/567/default.aspx#ancor (2014).Asgari, K. & Cornelis, W. M. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environ. Monit. Assess. 187, 410 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    IWMI. (International Water Management Institute) Global water scarcity study. From http://www.iwmi.cgiar.org/home/wsmap.htm (2000).Oweis, T. & Hachum, A. Water harvesting for improved rainfed agriculture in the dry environments. In Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P. et al.) 164–181 (CABI, 2009).Chapter 

    Google Scholar 
    Shehata, H. S. & Galal, T. M. Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. J. Cons. Prot. Food Safe. 15, 205–217 (2020).CAS 
    Article 

    Google Scholar 
    Elawa, O. E. Impact assessment of industrial pollution on some economic plants south of Cairo Province, Egypt. M.Sc. Thesis, Helwan Uni Cairo, Egypt 194 pp (2015).Umbriet, W. W. et al. Monometric Technique, A Manual Description Method, Applicable to Study of Desiring Metabolism 239 (Burgess Publishing Company, 1959).
    Google Scholar 
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, S. E. Chemical Analysis of Ecological Materials (Blackwell Scientific Publications, 1989).
    Google Scholar 
    Liu, R. L., Li, S. T., Wang, X. B. & Wang, M. Contents of heavy metal in commercial organic fertilizers and organic wastes. J. Agro-Environ. Sci. 24, 392–397 (2005).CAS 

    Google Scholar 
    Lu, X. W. et al. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicol. Environ. Safe. 106, 154–163 (2014).CAS 
    Article 

    Google Scholar 
    Eid, E. M., Alrumman, S. A., Galal, T. M. & El-Bebany, A. F. Regression models for monitoring trace metal accumulations by Faba sativa Bernh. plants grown in soils amended with different rates of sewage sludge. Sci. Rep. 9, 5443 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Khan, S. et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686–692 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K. & Singh, A. K. Long-term impact of irrigation with sewage effluents on heavy metals content in soils, crops and groundwater: a case study. Agric. Ecosyst. Environ. 109, 310–322 (2005).CAS 
    Article 

    Google Scholar 
    US-EPA. Environmental Protection Agency, Region 9, Preliminary remediation goals (2012).SPSS. SPSS Version 20.0. SPSS Inc, 233 S Wacker Drive, Chicago, Illinois (2012).Al-jaboobi, M. et al. Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the Skhirat Region, Morocco. J. Mater Environ. Sci. 5(3), 961–966 (2014).
    Google Scholar 
    Rangamani, T., Rao, K. V. & Srinivas, T. Evaluation of heavy metals in water, soil and cauliflower in Penamaluru Mandal in Vijayawada. Int. J. Multidiscip. Adv. Res. Trends 1(3), 242–248 (2017).
    Google Scholar 
    Galal, T. M. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environ. Monit. Assess. 188(7), 134 (2016).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    Eid, E. M. et al. Evaluation of newly reclaimed areas in Abha, Saudi Arabia, for cultivation of the Phaseolus vulgaris leguminous crop under sewage sludge amendment. J. Cons. Prot. Food. Safe. https://doi.org/10.1007/s00003-020-01311-z (2021).Article 

    Google Scholar 
    Galal, T. M., Hassan, L. M. & Elawa, O. E. Impact Assessment of Industrial Pollution on Important Food Crops (Lambert Academic Publishing Gmbh&Co.KG, 2019).
    Google Scholar 
    WHO/FAO (2013) Guidelines for the Safe Use of Wastewater and foodstuff; 2(1), 14 ppGalal, T. M., Khalafallah, A. A., Elawa, O. E. & Hassan, L. M. Human health risks from consuming cabbage (Brassica oleracea L. var. capitata) grown on wastewater irrigated soil. Int. J. Phytoremediation 20(10), 1007–1016 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaturvedi, R., Favas, P., Pratas, J., Varun, M. & Paul, M. S. Ecotoxicology and environmental safety assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal (Loid) contaminated soil. Ecotoxicol. Environ. Safe. 148, 318–326 (2018).CAS 
    Article 

    Google Scholar 
    Ai, P., Jin, K., Alengebawy, A., Elsayed, M. & Meng, L. Effect of application of different biogas fertilizer on eggplant production: analysis of fertilizer value and risk assessment. Environ. Technol. Innov. 19(13), 101019 (2020).Article 

    Google Scholar 
    Ekmekçi, Y., Tanyolaç, D. & Ayhan, B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Plant Physiol. 165, 600–611 (2008).Article 
    CAS 

    Google Scholar 
    Hadi, F., Bano, A. & Fuller, M. P. The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80, 457–462 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, G. et al. A multi-level analysis of China’s phosphorus flows to identify options for improved management in agriculture. Agric. Syst. 144, 87–100 (2016).Article 

    Google Scholar 
    Farahat, E. A., Galal, T. M., Elawa, O. E. & Hassan, L. M. Health risk assessment and growth characteristics of wheat and maize crops irrigated with contaminated wastewater. Environ. Monit. Assess. 189, 535 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ghazi, S. M., Galal, T. M. & Husein, K. H. Monitoring Water Pollution in the Egyptian Watercourses: A Phytoremediation Approach (Lap Lambert Academic Publishing, 2019).
    Google Scholar 
    Körpe, D. A. & Aras, S. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat. Res. 719, 29–34 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Nagajyoti, P., Lee, K. & Sreekanth, T. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199–216 (2010).CAS 
    Article 

    Google Scholar 
    Ai, S. et al. Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors. Ecotoxicol. Environ. Safe. 153, 204–214 (2018).CAS 
    Article 

    Google Scholar 
    Vecchia, F. D. et al. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci. 168, 329–338 (2005).Article 
    CAS 

    Google Scholar 
    Rizwan, M. et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182, 90–105 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kupper, H. & Andresen, E. Mechanisms of metal toxicity in plants. Metallomics 8, 269–285 (2016).PubMed 
    Article 

    Google Scholar 
    Piotrowska, A., Bajguz, A., Godlewska, B., Czerpak, R. & Kaminska, M. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lamnaceae). Environ. Exp. Bot. 66, 507–513 (2009).CAS 
    Article 

    Google Scholar 
    Singh, R. et al. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour. Technol. 101, 3025–3032 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Collado-González, J., Piñero, M. C., Otálora, G. & López-Marín, J. Exogenous spermidine modifies nutritional and bioactive constituents of cauliflower (Brassica oleracea var. botrytis L.) florets under heat stress. Sci. Hortic. 277, 109818 (2021).Article 
    CAS 

    Google Scholar 
    Al Jassir, M., Shaker, A. & Khaliq, M. Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh City, Saudi Arabia. Bull. Environ. Contam. Toxicol. 75, 1020–1027 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    ur Rehman, K. et al. Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: the particular case of Sahiwal District in Pakistan. Agric. Water Manag. 226, 105816 (2019).Article 

    Google Scholar 
    Misra, S. G. & Mani, D. Soil pollution (Ashish Publishing House, 1991).
    Google Scholar 
    Jolly, Y. N., Islam, A. & Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. Springerplus 2, 385 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhou, H. et al. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health 13(3), 289 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rehman, Z., Hussain, R. A., Jabeen, S. & Ali, S. Heavy metals (Cd, Pb & Zn) accumulation in cauliflower (Brassica oleracea var. botyris) and associated health risks assessment in three districts of Punjab Pakistan. Biol. Pak. 64(1), 105–110 (2018).
    Google Scholar 
    Saeedifar, F., Ziarati, P. & Ramezan, Y. Nitrate and heavy metal contents in eggplant (Solanum melongena) cultivated in the farmlands in the south of Tehran-Iran. Int. J. Farm Allied Sci. 3, 60–65 (2014).Article 

    Google Scholar 
    Khanal, B. R., Shah, S. C., Sah, S. K. & Shriwastav, C. P. Heavy metals accumulation in cauliflower (Brassica oleracea L. var. botrytis) grown in brewery sludge amended sandy loam soil. Int. J. Agric. Sci. Technol. 2(3), 87–92 (2014).
    Google Scholar  More

  • in

    Quantification and characterisation of commensal wild birds and their interactions with domestic ducks on a free-range farm in southwest France

    Sætre, G.-P. et al. Single origin of human commensalism in the house sparrow. J. Evol. Biol. 25, 788–796 (2012).PubMed 
    Article 

    Google Scholar 
    Anderson, T. Biology of the Ubiquitous House Sparrow: From Genes to Populations (Oxford University Press, 2006). https://doi.org/10.1093/acprof:oso/9780195304114.001.0001.Book 

    Google Scholar 
    Johnston, R. F. Synanthropic Birds of North America. In Avian Ecology and Conservation in an Urbanizing World (eds Marzluff, J. M. et al.) 49–67 (Springer, 2001). https://doi.org/10.1007/978-1-4615-1531-9_3.Chapter 

    Google Scholar 
    Shaw, L. M., Chamberlain, D., Conway, G. & Toms, M. Spatial distribution and habitat preferences of the House Sparrow Passer domesticus in urbanised landscapes. (2011).Guetté, A., Gaüzère, P., Devictor, V., Jiguet, F. & Godet, L. Measuring the synanthropy of species and communities to monitor the effects of urbanization on biodiversity. Ecol. Indic. 79, 139–154 (2017).Article 

    Google Scholar 
    Slusher, M. J. et al. Are passerine birds reservoirs for influenza A viruses?. J. Wildl. Dis. 50, 792–809 (2014).PubMed 
    Article 

    Google Scholar 
    Veen, J. et al. Ornithological data relevant to the spread of Avian Influenza in Europe (phase 2): further identification and first field assessment of Higher Risk Species. (2007).Caron, A., Cappelle, J. & Gaidet, N. Challenging the conceptual framework of maintenance hosts for influenza A viruses in wild birds. J. Appl. Ecol. 54, 681–690 (2017).Article 

    Google Scholar 
    Olsen, B. et al. Global patterns of influenza A virus in wild birds. Science 312, 384–388 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, J. D., Stallknecht, D. E., Berghaus, R. D. & Swayne, D. E. Infectious and lethal doses of H5N1 highly pathogenic avian influenza virus for house sparrows (Passer Domesticus) and rock pigeons (Columbia Livia). J. Vet. Diagn. Invest. 21, 437–445 (2009).PubMed 
    Article 

    Google Scholar 
    Forrest, H. L., Kim, J.-K. & Webster, R. G. Virus shedding and potential for interspecies waterborne transmission of highly pathogenic H5N1 influenza virus in sparrows and chickens. J. Virol. 84, 3718–3720 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nemeth, N. M., Thomas, N. O., Orahood, D. S., Anderson, T. D. & Oesterle, P. T. Shedding and serologic responses following primary and secondary inoculation of house sparrows (Passer domesticus) and European starlings (Sturnus vulgaris) with low-pathogenicity avian influenza virus. Avian Pathol. 39, 411–418 (2010).PubMed 
    Article 

    Google Scholar 
    Yamamoto, Y., Nakamura, K., Yamada, M. & Mase, M. Pathogenesis in Eurasian tree sparrows inoculated with H5N1 highly pathogenic avian influenza virus and experimental virus transmission from tree sparrows to chickens. Avian Dis. 57, 205–213 (2013).PubMed 
    Article 

    Google Scholar 
    Ellis, J. W. et al. Avian influenza A virus susceptibility, infection, transmission, and antibody kinetics in European starlings. PLOS Pathog. 17, e1009879 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez, R. A., Sorn, S., Nicholls, J. M. & Buchy, P. Eurasian tree sparrows, risk for H5N1 virus spread and human contamination through buddhist ritual: An experimental approach. PLoS ONE 6, e28609 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Caron, A., Cappelle, J., Cumming, G. S., de Garine-Wichatitsky, M. & Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Vet. Res. 46, 1–11 (2015).CAS 
    Article 

    Google Scholar 
    Guinat, C. et al. Duck production systems and highly pathogenic avian influenza H5N8 in France, 2016–2017. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    EFSA et al. Scientific report Avian influenza overview October 2016–August 2017. EFSA J. 15, 101 (2017).
    Google Scholar 
    EFSA et al. Scientific report: Avian influenza overview December 2020–February 2021. EFSA J. 19, 74 (2021).
    Google Scholar 
    Le Bouquin, S. et al. L’épisode d’influenza aviaire en France en 2015–2016: Situation épidémiologique au 30 juin 2016. Bull. Epidémiologique Santé Anim. Aliment.—DGAL—Anses 1–7 (2016).EFSA et al. Avian influenza overview December 2021–March 2022. EFSA J. 20, e07289 (2022).
    Google Scholar 
    DGAL. Arrêté du 8 février 2016 relatif aux mesures de biosécurité applicables dans les exploitations de volailles et d’autres oiseaux captifs dans le cadre de la prévention contre l’influenza aviaire. AGRG1603907A, (2016).Koch, G. & Elbers, A. R. W. Outdoor ranging of poultry: A major risk factor for the introduction and development of high-pathogenicity avian influenza. NJAS—Wagening. J. Life Sci. 54, 179–194 (2006).Article 

    Google Scholar 
    Delpont, M. et al. Biosecurity practices on foie gras duck farms Southwest France. Prev. Vet. Med. 158, 78–88 (2018).PubMed 
    Article 

    Google Scholar 
    Bicout, J. D., Artois, M., Musseau, R., Caparros, O. & Lubac, S. Which wild birds are potentially at risk for contacts between wild avifauna and with poultry? in 9èmes Journées de la Recherche Avicole, Tours, France 5pp (World’s Poultry Science Association (WPSA), 2011).Gotteland, C., Lubac, S. & Bicout, D. Où trouve-t-on les oiseaux sauvages aux alentours des élevages? Risque de contact oiseaux sauvages et volailles. Epidemiol. Sante Anim. 55, 103–115 (2009).
    Google Scholar 
    Lubac, S., Musseau, R., Caparros, O., Artois, M. & Bicout, D. J. Interactions entre l’avifaune sauvage et les élevages de volailles: Quel risque épidémiologique vis à vis de l’Influenza aviaire ?. Innov. Agron. 25, 299–312 (2012).
    Google Scholar 
    Burns, F. et al. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 0, 1–14 (2021).Jeliazkov, A. et al. Impacts of agricultural intensification on bird communities: New insights from a multi-level and multi-facet approach of biodiversity. Agric. Ecosyst. Environ. 216, 9–22 (2016).Article 

    Google Scholar 
    Chiatante, G., Pellitteri-Rosa, D., Torretta, E., Nonnis Marzano, F. & Meriggi, A. Indicators of biodiversity in an intensively cultivated and heavily human modified landscape. Ecol. Indic. 130, 108060 (2021).Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. (QGIS Association, 2022).Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    Bacigalupo, S. A., Dixon, L. K., Gubbins, S., Kucharski, A. J. & Drewe, J. A. Towards a unified generic framework to define and observe contacts between livestock and wildlife: A systematic review. PeerJ 8, e10221 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xie, X., Li, Y., Chwang, A. T. Y., Ho, P. L. & Seto, W. H. How far droplets can move in indoor environments: revisiting the Wells evaporation-falling curve. Indoor Air 17, 211–225 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zuo, Z. et al. Association of airborne virus infectivity and survivability with its carrier particle size. Aerosol Sci. Technol. 47, 373–382 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pons, P. & Latapy, M. Computing Communities in Large Networks Using Random Walks. in Computer and Information Sciences : ISCIS 2005 284–293 (Springer, 2005). https://doi.org/10.1007/11569596_31.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).
    Google Scholar 
    Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: Estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).ADS 
    Article 

    Google Scholar 
    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 1988). https://doi.org/10.4324/9780203771587.Book 
    MATH 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. (2022).Bartoń, K. MuMIn: Multi-Model Inference. (2022).Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lefcheck, J., Byrnes, J. & Grace, J. piecewiseSEM: Piecewise Structural Equation Modeling. (2020).Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    UICN France, MNHN, LPO BirdLife France, SEOF & ONCFS. La Liste rouge des espèces menacées en France—Chapitre Oiseaux de France métropolitaine. (2016).Bestman, M., de Jong, W., Wagenaar, J.-P. & Weerts, T. Presence of avian influenza risk birds in and around poultry free-range areas in relation to range vegetation and openness of surrounding landscape. Agrofor. Syst. 92, 1001–1008 (2018).Article 

    Google Scholar 
    Scott, A. B. et al. Wildlife presence and interactions with chickens on australian commercial chicken farms assessed by camera traps. Avian Dis. 62, 65–72 (2018).PubMed 
    Article 

    Google Scholar 
    Scherer, A. L., de Scherer, J. F. M., Petry, M. V. & Sander, M. Occurrence and interaction of wild birds at poultry houses in southern Brazil. Rev. Bras. Ornitol.: Braz. J. Ornithol. 19, 74–79 (2011).
    Google Scholar 
    Burns, T. E. et al. Use of observed wild bird activity on poultry farms and a literature review to target species as high priority for avian influenza testing in 2 regions of Canada. Can. Vet. J. 53, 158–166 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Elbers, A. R. W. & Gonzales, J. L. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound. Emerg. Dis https://doi.org/10.1111/tbed.13382 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B. Biol. Sci. 370, 20140107 (2015).Article 

    Google Scholar 
    Clergeau, P., Savard, J.-P.L., Mennechez, G. & Falardeau, G. Bird abundance and diversity along an urban-rural gradient: A comparative study between two cities on different continents. The Condor 100, 413–425 (1998).Article 

    Google Scholar 
    Le Gall-Ladevèze, C. et al. Detection of a novel enterotropic Mycoplasma gallisepticum-like in European starling (Sturnus vulgaris) around poultry farms in France. Transbound. Emerg. Dis. 0, 1–12 (2021).Shriner, S. A. & Root, J. J. A review of avian influenza A virus associations in synanthropic birds. Viruses 12, 1209 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Shriner, S. A. et al. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak. Sci. Rep. 6, 36237 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davies, N. B. Food, flocking and territorial behaviour of the pied wagtail (Motacilla alba yarrellii Gould) in winter. J. Anim. Ecol. 45, 235–253 (1976).Article 

    Google Scholar 
    Snow, D. W., Perrins, C. M. & Gillmor, R. The birds of the western palaearctic. Vol. 2, Passerines. vol. 2 (Oxford University Press, 1998).Rigal, S. et al. Biotic homogenisation in bird communities leads to large-scale changes in species associations. Oikos 2022, e08756 (2022).Article 

    Google Scholar 
    Dalziel, A. E., Delean, S., Heinrich, S. & Cassey, P. Persistence of low pathogenic influenza A virus in water: A systematic review and quantitative meta-analysis. PLoS ONE 11, e0161929 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Keeler, S. P., Dalton, M. S., Cressler, A. M., Berghaus, R. D. & Stallknecht, D. E. Abiotic factors affecting the persistence of avian influenza virus in surface waters of waterfowl habitats. Appl. Environ. Microbiol. 80, 2910–2917 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marois, C., Dufour-Gesbert, F. & Kempf, I. Polymerase chain reaction for detection of mycoplasma gallisepticum in environmental samples. Avian Pathol. 31, 163–168 (2002).PubMed 
    Article 

    Google Scholar 
    Blagodatski, A. et al. Avian influenza in wild birds and poultry: dissemination pathways, monitoring methods, and virus ecology. Pathogens 10, 630 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoffolano, J. G. Jr. & Geden, C. J. Succession of manure arthropods at a poultry farm in massachusetts, USA, With observations on carcinops pumilio (Coleoptera: Histeridae) sex ratios, ovarian condition, and body size1. J. Med. Entomol. 24, 212–220 (1987).Article 

    Google Scholar 
    Ushio, M. et al. Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Sci. Rep. 8, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    Fontaine, B. et al. Suivi des oiseaux communs en France 1989–2019 : 30 ans de suivis participatifs—Executive summary of the 2019 common birds monitoring report. https://inpn.mnhn.fr/actualites/lire/12721/bilan-des-30-ans-du-suivi-temporel-des-oiseaux-communs-stoc (2020).Seamans, T. & Gosser, A. Bird dispersal techniques. in Wildlife Damage Management Technical Series 12pp (USDA, APHIS, WS National Wildlife Research Center, 2016). https://doi.org/10.32747/2016.7207730.ws.Elbers, A. R. W. & Gonzales, J. L. Efficacy of an automated laser for reducing wild bird visits to the free range area of a poultry farm. Sci. Rep. 11, 12779 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conover, M. R. & Perito, J. J. Response of starlings to distress calls and predator models holding conspecific prey. Z. Für Tierpsychol. 57, 163–172 (1981).Article 

    Google Scholar 
    Aubin, T. Synthetic bird calls and their application to scaring methods. Ibis 132, 290–299 (1990).Article 

    Google Scholar 
    Guinat, C. et al. Biosecurity risk factors for highly pathogenic avian influenza (H5N8) virus infection in duck farms France. Transbound. Emerg. Dis. 67, 2961–2970 (2020).PubMed 
    Article 

    Google Scholar 
    Gaide, N. et al. Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in feathers of ducks and geese. Sci. Rep. 11, 5928 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spekreijse, D., Bouma, A., Koch, G. & Stegeman, A. Quantification of dust-borne transmission of highly pathogenic avian influenza virus between chickens. Influenza Other Respir. Viruses 7, 132–138 (2013).PubMed 
    Article 

    Google Scholar 
    Torremorell, M. et al. Investigation into the airborne dissemination of H5N2 highly pathogenic avian influenza virus during the 2015 spring outbreaks in the midwestern United States. Avian Dis. 60, 637–643 (2016).PubMed 
    Article 

    Google Scholar 
    Caron, A., Grosbois, V., Etter, E., Gaidet, N. & de Garine-Wichatitsky, M. Bridge hosts for avian influenza viruses at the wildlife/domestic interface: An eco-epidemiological framework implemented in southern Africa. Prev. Vet. Med. 117, 590–600 (2014).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Maintaining the productivity of co-culture systems in the face of environmental change

    Lee, K., Khanal, S. & Bakshi, B. R. Techno-ecologically synergistic food–energy–water systems can meet human and ecosystem needs. Energy Environ. Sci. 14, 3700–3716 (2021).Article 

    Google Scholar 
    Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).CAS 
    Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 1–35 (Cambridge Univ. Press, 2022).Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).CAS 
    Article 

    Google Scholar 
    Bashir, M. A. et al. Co-culture of rice and aquatic animals: an integrated system to achieve production and environmental sustainability. J. Clean. Prod. 249, 119310 (2020).Article 

    Google Scholar 
    Dong, S. et al. Evaluation of the trophic structure and energy flow of a rice–crayfish integrated farming ecosystem based on the Ecopath model. Aquaculture 539, 736626 (2021).Article 

    Google Scholar 
    Polovina, J. J. Model of a coral reef ecosystem—I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs 3, 1–11 (1984).Article 

    Google Scholar 
    Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).Article 

    Google Scholar 
    Fath, B. D. et al. Ecological network analysis metrics: the need for an entire ecosystem approach in management and policy. Ocean Coast. Manag. 174, 1–14 (2019).Article 

    Google Scholar 
    Diffendorfer, J. E., Richards, P. M., Dalrymple, G. H. & DeAngelis, D. L. Applying linear programming to estimate fluxes in ecosystems or food webs: an example from the herpetological assemblage of the freshwater Everglades. Ecol. Model. 144, 99–120 (2001).Article 

    Google Scholar 
    Bolton, S. in Encyclopedia of Ecology 2nd edn, Vol. 4 (ed. Fath, B. D.) 493–497 (Elsevier, 2019).Galaitsi, S. E., Keisler, J. M., Trump, B. D. & Linkov, I. The need to reconcile concepts that characterize systems facing threats. Risk Anal. 41, 3–15 (2021).CAS 
    Article 

    Google Scholar 
    Lao, A., Cabezas, H., Orosz, A., Friedler, F. & Tan, R. Socio-ecological network structures from process graphs. PLoS ONE 15, e0232384 (2020).CAS 
    Article 

    Google Scholar 
    Friedler, F., Aviso, K. B., Bertok, B., Foo, D. C. Y. & Tan, R. R. Prospects and challenges for chemical process synthesis with P-graph. Curr. Opin. Chem. Eng. 26, 58–64 (2019).Article 

    Google Scholar 
    Heymans, J. J. et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol. Model. 331, 173–184 (2016).Article 

    Google Scholar 
    Hu, L. et al. Can the co-cultivation of rice and fish help sustain rice production? Sci. Rep. 6, 28728 (2016).CAS 
    Article 

    Google Scholar 
    He, M., Liu, F. & Wang, F. Resource utilization, competition and cannibalism of the red swamp crayfish Procambarus clarkii in integrated rice-crayfish culture without artificial diets. Aquac. Rep. 20, 100644 (2021).Article 

    Google Scholar 
    Xu, Q. et al. Conversion from rice–wheat rotation to rice–crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China. J. Clean. Prod. 319, 128883 (2021).Article 

    Google Scholar 
    Kurth, M. et al. A portfolio decision analysis approach to support energy research and development resource allocation. Energy Policy 105, 128–135 (2017).Article 

    Google Scholar 
    Friedler, F., Pimentel Lozada, J. & Orosz, Á. P-Graphs for Process Systems Engineering: Mathematical Models and Algorithms (Springer Nature, 2022).P-Graph (accessed 10 August 2021); www.p-graph.org More

  • in

    Patterns of genetic diversity and structure of a threatened palm species (Euterpe edulis Arecaceae) from the Brazilian Atlantic Forest

    Aguiar-Melo C, Zanella CM, Goetze M, Palma-Silva C, Hirsch LD, Neves B et al. (2019) Ecological niche modeling and a lack of phylogeographic structure in Vriesea incurvata suggest historically stable areas in the southern Atlantic Forest. Am J Bot https://doi.org/10.1002/ajb2.1317Bicudo MOP, Ribani RH, Beta T (2014) Anthocyanins, phenolic acids and antioxidant properties of juçara fruits (Euterpe edulis M.) along the on-tree ripening process. Plant Foods Hum Nutr https://doi.org/10.1007/s11130-014-0406-0Blengini IAD, Cintra MAMU, Caiafa AN (2015) Proposta de Unidade de Conservação da Serra da Jiboia. Gambá, Salvador, BA, https://www.gamba.org.br/wp-content/uploads/2016/03/Proposta-Final.pdf Accessed 05 May 2022Bourscheid K (2011) Euterpe edulis—Palmito juçara. In: Coradin L, Siminski A, Câmara, Reis A (Eds) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro – Região Sul. Ministério do Meio Ambiente, Brasília, D, p 179–183
    Google Scholar 
    Cabanne GS, d’Horta FM, Sari EHR, Santos FR, Miyaki CY (2008) Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): Biogeography and systematics implications Molecular. Mol Phylogenet Evol https://doi.org/10.1016/j.ympev.2008.09.013Cabanne GS, Santos FR, Miyaki CY (2007) Phylogeography of Xiphorhynchus fuscus (Passeriformes, Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol J Linn Soc https://doi.org/10.1111/j.1095-8312.2007.00775.xCâmara IG (2003) Brief history of conservation in the Atlantic Forest. In: Galindo Leal C, Câmara IG (Eds.) The Atlantic Forest of South America: Biodiversity Status, Threats, and Outlook. CABS and Island Press, Washington, p 31–42
    Google Scholar 
    Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest J Biogeogr https://doi.org/10.1111/j.1365-2699.2007.01870.xCarnaval AC, Moritz C, Hickerson M, Haddad C, Rodrigues M (2009) Stability predicts diversity in the Brazilian Atlantic Forest hotspot. Science https://doi.org/10.1126/science.1166955Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWa J, Damasceno R et al. (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc Lond https://doi.org/10.1098/rspb.2014.1461Carvalho CDS, Garcia C, Lucas MS, Jordano P, Cortes MC (2021) Extant fruit‐eating birds promote genetically diverse seed rain, but disperse to fewer sites in defaunated tropical forests. J Ecol https://doi.org/10.1111/1365-2745.13534Carvalho CS, Ballesteros-Mejia L, Ribeiro MC, Côrtes MC, Santos AS, Collevatti RG (2017) Climatic stability and contemporary human impacts affect the genetic diversity and conservation status of a tropical palm in the Atlantic Forest of Brazil Conserv Genet https://doi.org/10.1007/s10592-016-0921-7Carvalho CS, Galetti M, Colevatti RG, Jordano P (2016) Defaunation leads to microevolutionary changes in a tropical palm. Sci Rep https://doi.org/10.1038/srep31957Carvalho CS, Ribeiro MC, Côrtes MC, Galetti M, Collevatti RG (2015) Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm. Heredity https://doi.org/10.1038/hdy.2015.30Carvalho MS, Noia LR, Ferreira MFS, Ferreira A (2019) DNA de alta qualidade isolado a partir do córtex de Euterpe edulis Mart. (Arecaceae). Cienc Florest https://doi.org/10.5902/1980509824130Chávez-Pesqueira M, Núñez-Farfán J (2016) Genetic diversity and structure of wild populations of Carica papaya in Northern Mesoamerica inferred by nuclear microsatellites and chloroplast markers. Ann Bot https://doi.org/10.1093/aob/mcw183Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d’Horta FM et al. (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun https://doi.org/10.1038/ncomms2415Chhatre VE, Emerson KJ (2017) StrAuto: automation and parallelization of STRUCTURE analysis. BMC Bioinform https://doi.org/10.1186/s12859-017-1593-0Chybicki IJ, Burczyk J (2009) Simultaneous Estimation of Null Alleles and Inbreeding Coefficients. J Hered https://doi.org/10.1093/jhered/esn088Collevatti RG, Lima-Ribeiro MS, Terribile LC et al. (2014) Recovering species demographic history from multi-model inference: the case of a Neotropical savanna tree species. BMC Evol Biol https://doi.org/10.1186/s12862-014-0213-0Côrtes MC, Uriarte M, Lemes MR, Gribel R, Kress WJ, Smouse PE et al. (2013) Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata. Mol Ecol https://doi.org/10.1111/mec.12495Cortez MBS, Sforça DA, Alves FM, Vidal JD, Alves-Pereira A, Mori GM, Andreotti IA et al. (2019) Elucidating the Clusia criuva species ‘complex’: cryptic taxa can exhibit great genetic and geographical variation. Biol J Linn Soc https://doi.org/10.1093/botlinnean/boz004Costa PC, Lorenz-Lemke AP, Furini PR, Honorio Coronado EN, Kjellberg F, Pereira RA (2017) The phylogeography of two disjunct Neotropical Ficus (Moraceae) species reveals contrasted histories between the Amazon and the Atlantic Forests. Biol J Linn Soc https://doi.org/10.1093/botlinnean/box056d’Horta FM, Cabanne GS, Meyer D, Miyaki CY (2011) The genetic effects of Late Quaternary climatic changes over a tropical latitudinal gradient: diversification of an Atlantic Forest passerine. Mol Ecol https://doi.org/10.1111/j.1365-294X.2011.05063.xEarl DA, Von Holdt BM (2011) STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet Resources https://doi.org/10.1007/s12686-011-9548-7Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol https://doi.org/10.1111/j.1365-294X.2005.02553.xExcoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform PMCID: PMC2658868Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics PMCID: PMC1462648Fantini AC, Guries R, Ribeiro RJ (2000) Produção de palmito (Euterpe edulis Martius Arecaceae) na Floresta Ombrófila Densa: potenciais, problema e possíveis soluções. In: Reis MS, Reis A (Eds.) Euterpe edulis Martius (Palmiteiro) Biologia, Conservação e Manejo. Herbário Barbosa Rodrigues, Itajaí, p 256–280
    Google Scholar 
    Fundação Instituto Brasileiro de Geografia e Estatística (1993) Recursos naturais e meio ambiente: Uma visão do Brasil. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro
    Google Scholar 
    Gaiotto FA, Brondani RPV, Grattapaglia D (2001) Microsatellite markers for heart of palm–Euterpe edulis and E, oleracea Mart, (Arecaceae). Mol Ecol Notes https://doi.org/10.1046/j.1471-8278.2001.00036.xGaiotto FA, Grattapaglia D, Vencovsky V (2003) Genetic structure, mating system, and long-distance gene flow in heart of palm (Euterpe edulis Mart.). J Hered 94(5):399–406. https://doi.org/10.1093/jhered/esg087CAS 
    Article 
    PubMed 

    Google Scholar 
    Galetti M, Fernandez JC (1998) Palm heart harvesting in the Brazilian Atlantic forest: changes in industry structure and the illegal trade. J Appl Ecol https://doi.org/10.1046/j.1365-2664.1998.00295.xGaletti M, Guevara R, Côrtes MC, Fadini R, Von Mattes S, Leite AB et al. (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science https://doi.org/10.1126/science.1233774Gatti MG, Campanello PI, Montti LF, Goldstein G (2008) Frost resistance in the tropical palm Euterpe edulis and its pattern of distribution in the Atlantic Forest of Argentina. For Ecol Manag https://doi.org/10.1016/j.foreco.2008.05.012Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biological Reviews Cambridge Philosophical Society. https://doi.org/10.1017/S1464793105006731Goudet J (2002) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www2.unil.ch/popgen/softwares/fstat.htmGugger PF, Ikegami M, Sork VL (2013) Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata. Mol Ecol https://doi.org/10.1111/mec.12317Hardy OJ, Charbonnel N, Fréville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics https://doi.org/10.1093/genetics/163.4.1467Hardy OJ, Vekemans X (2002) SPAGEDI: a versatile computer program to analyses spatial genetic structure at the individual or population levels. Mol Ecol Notes https://doi.org/10.1046/j.1471-8286.2002.00305.xHenderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, Princeton, NJ, p 352
    Google Scholar 
    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature https://doi.org/10.1038/35016000Hulce D, Li X, Snyder-Leiby T, Johathan Liu CS (2011) GeneMarker® Genotyping Software: tools to increase the statistical power of DNA fragment analysis. J Biomol Screen PMCID: PMC3186482Joly C, Aidar M, Klink CA, McGrath DG, Moreira AG, Moutinho P et al. (1999) Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. Ciên e Cul 51:331–348
    Google Scholar 
    Konzen ER, Martins, MP (2017) Contrasting levels of genetic diversity among populations of the endangered tropical palm Euterpe edulis Martius, Cerne https://doi.org/10.1590/01047760201723012237.Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour https://doi.org/10.1111/1755-0998.12387Lauterjung MB, Montagna T, Bernardi AP, Silva JZ, Freitas NCC, Steiner, F et al. (2019) Temporal changes in population genetics of six threatened Brazilian plant species in a fragmented landscape. For Ecol Manag https://doi.org/10.1016/j.foreco.2018.12.058Leitman P, Judice DM, Barros FSM, Prieto PV (2013) Arecaceae, In: Martinelli G, Moraes MA (org) Livro Vermelho da Flora do Brasil. CNCFlora, Rio de Janeiro, pp 187–195Lewis PO, Zaykin D (2002) Genetic data analysis: Computer program for the analysis of allelic data. http://phylogeny.uconn.edu/software/Martins FM (2011) Historical biogeography of the Brazilian Atlantic forest and the Carnaval—Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biol. J Linn Soc https://doi.org/10.1111/j.1095-8312.2011.01745.xMartins FM, Ditchfield AD, Meyer D, Morgante JS (2007) Mitochondrial DNA phylogeography reveals marked population structure in the common vampire bat, Desmodus rotundus (Phyllostomidae). J Zoolog Syst Evol https://doi.org/10.1111/j.1439-0469.2007.00419.xNovello M, Viana JPG, Alves-Pereira A, Silvestre EA, Nunes HF, Pinheiro JB et al. (2017) Genetic conservation of a threatened Neotropical palm through community-management of fruits in agroforests and second-growth forests. For Ecol Manag https://doi.org/10.1016/j.foreco.2017.06.059Oliveira-Filho A, Fontes M (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of climate. Biotropica https://doi.org/10.1111/j.1744-7429.2000.tb00619.xOrtego J, Riordan EC, Gugger PF, Sork VL (2012) Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol https://doi.org/10.1111/j.1365-294X.2012.05591.xPalma-Silva C, Lexer C, Paggi GM, Barbará T, Bered F, BodaneseZanettini MH (2009) Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103:503–512CAS 
    Article 

    Google Scholar 
    Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol https://doi.org/10.1111/mec.12152Petit RJ, Csaiklb UM, Bordácsbc S, Burgb K, Coartd E, Cottrelle J et al. (2002) Chloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manag https://doi.org/10.1016/S0378-1127(01)00645-4Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics https://doi.org/10.1093/genetics/155.2.945Pritchard JK, Wen X, Falush D (2010) Documentation for structure software: Version o2.3. http://web.stanford.edu/group/pritchardlab/structure.htmlRambaut A, Drummond AJ (2007) TRACER version 1.4. http://beast.bio.ed.ac.uk/Tracer. Accessed 05 May 2022Reis A, Kageyama PY (2000) Dispersão de sementes de Euterpe edulis Martius Palmae. In: Reis MS, Reis A (Eds.) Euterpe edulis Martius (Palmiteiro): biologia, conservação e manejo. Herbário Barbosa Rodrigues, Itajaí, p 60–92
    Google Scholar 
    Ribeiro MC, Metzger JP, Martensen AC, FPonzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv https://doi.org/10.1016/j.biocon.2009.02.021Santos AS, Cazetta E, Morante Filho JC, Baumgarten J, Faria D, Gaiotto FA (2015) Lessons from a palm: genetic diversity and structure in anthropogenic landscapes from Atlantic Forest, Brazil. Conserv Genet https://doi.org/10.1007/s10592-015-0740-2Soares LASS, Cazetta E, Santos LR, França DS, Gaiotto FA (2019). Anthropogenic disturbances eroding the genetic diversity of a threatened palm tree: a multiscale approach. Front Genet https://doi.org/10.3389/fgene.2019.01090Szpiecha ZA, Rosenberga NA (2011) On the size distribution of private microsatellite alleles. Theor Popul Biol https://doi.org/10.1016/j.tpb.2011.03.006Thomé MTC, Zamudio KR, Giovanelli JGR, Haddad CFB, Baldissera Jr FA, Alexandrino J (2010) Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest Mol Phylogenet Evol https://doi.org/10.1016/j.ympev.2010.02.003Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C (2013) Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol https://doi.org/10.1111/mec.12323Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes https://doi.org/10.1111/j.1471-8286.2004.00684.xWilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics https://doi.org/10.1093/genetics/163.3.1177Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Conserv Biol https://doi.org/10.1016/j.biocon.2009.12.003 More

  • in

    Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf

    Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495. https://doi.org/10.1126/science.284.5413.493%JScience (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Brüchert, V. et al. Biogeochemical and physical control on shelf anoxia and water column hydrogen sulphide in the Benguela coastal upwelling system off Namibia. In Past and Present Water Column Anoxia (ed. Neretin, L. N.) 161–193 (Springer, 2006).Chapter 

    Google Scholar 
    Currie, B., Utne-Palm, A. C. & Salvanes, A. G. V. Winning ways with hydrogen sulphide on the Namibian shelf. Front. Mar. Sci. 5, 341. https://doi.org/10.3389/fmars.2018.00341 (2018).Article 

    Google Scholar 
    Emeis, K. C. et al. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont. Shelf Res. 24, 627–642 (2004).ADS 
    Article 

    Google Scholar 
    Eisenbarth, S. & Zettler, M. L. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea. J. Mar. Syst. 155, 1–10 (2016).Article 

    Google Scholar 
    Zettler, M. L., Bochert, R. & Pollehne, F. Macrozoobenthos diversity in an oxygen minimum zone off northern Namibia. Mar. Biol. 156, 1949–1961. https://doi.org/10.1007/s00227-009-1227-9 (2009).CAS 
    Article 

    Google Scholar 
    Cary, S. C., Vetter, R. D. & Felbeck, H. Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar. Ecol. Prog. Ser. 55, 31–45 (1989).ADS 
    Article 

    Google Scholar 
    Le Pennec, M., Beninger, P. G. & Herry, A. Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comp. Biochem. Physiol. A Physiol. 111, 183–189. https://doi.org/10.1016/0300-9629(94)00211-B (1995).Article 

    Google Scholar 
    Taylor, J. D. & Glover, E. A. Functional anatomy, chemosymbiosis and evolution of the Lucinidae. Geol. Soc. Lond. Spec. Publ. 177, 207–225. https://doi.org/10.1144/GSL.SP.2000.177.01.12 (2000).ADS 
    Article 

    Google Scholar 
    Lim, S. J. et al. Extensive thioautotrophic gill endosymbiont diversity within a single Ctena orbiculata (Bivalvia: Lucinidae) population and implications for defining host-symbiont specificity and species recognition. MSystems 4, e00280. https://doi.org/10.1128/mSystems.00280-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    König, S. et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat. Microbiol. 2, 16193. https://doi.org/10.1038/nmicrobiol.2016.193 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16195. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Osvatic, J. T. et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc. Natl. Acad. Sci. 118, e2104378118. https://doi.org/10.1073/pnas.2104378118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lim, S. J. et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 13, 902–920. https://doi.org/10.1038/s41396-018-0318-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Taylor, J., Glover, E. & Williams, S. Diversification of chemosymbiotic bivalves: Origins and relationships of deeper water Lucinidae. Biol. J. Lin. Soc. 111, 401–420. https://doi.org/10.1111/bij.12208 (2014).Article 

    Google Scholar 
    Taylor, J. & Glover, E. Biology, Evolution and Generic Review of the Chemosymbiotic Bivalve Family Lucinidae (Ray Society, 2021).
    Google Scholar 
    Nagel, B. et al. N-cycling and balancing of the N-deficit generated in the oxygen minimum zone over the Namibian shelf-An isotope-based approach. J. Geophys. Res. Biogeosci. 118, 361–371. https://doi.org/10.1002/jgrg.20040 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Neumann, A. & Flohr, A. The bivalve Lembulus bicuspidatus may enhance denitrification in shelf sediment at the Angola-Benguela Frontal Zone. Afr. J. Mar. Sci. 40, 91–96. https://doi.org/10.2989/1814232X.2018.1437774 (2018).Article 

    Google Scholar 
    Sampaio, L., Rodrigues, A. M. & Quintino, V. Carbon and nitrogen stable isotopes in coastal benthic populations under multiple organic enrichment sources. Mar. Pollut. Bull. 60, 1790–1802. https://doi.org/10.1016/j.marpolbul.2010.06.003 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakko, A. L. The influence of the Benguela upwelling system on Namibia’s marine biodiversity. Biodivers. Conserv. 7, 419–433. https://doi.org/10.1023/A:1008867310010 (1998).Article 

    Google Scholar 
    Levin, L. A., Mendoza, G. F., Konotchick, T. & Lee, R. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep Sea Res. II 56, 1632–1648. https://doi.org/10.1016/j.dsr2.2009.05.010 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Soto, L. A. Stable carbon and nitrogen isotopic signatures of fauna associated with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep Sea Res. II 56, 1675–1682. https://doi.org/10.1016/j.dsr2.2009.05.013 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Weems, J., Iken, K., Gradinger, R. & Wooller, M. J. Carbon and nitrogen assimilation in the Bering Sea clams Nuculana radiata and Macoma moesta. J. Exp. Mar. Biol. Ecol. 430, 32–42. https://doi.org/10.1016/j.jembe.2012.06.015 (2012).CAS 
    Article 

    Google Scholar 
    Ferrier-Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740. https://doi.org/10.1002/ece3.4712 (2019).Article 
    PubMed 

    Google Scholar 
    DavySimon, K., Allemand, D. & WeisVirginia, M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261. https://doi.org/10.1128/MMBR.05014-11 (2012).CAS 
    Article 

    Google Scholar 
    Ferrier-Pagès, C. et al. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56, 1429–1438. https://doi.org/10.4319/lo.2011.56.4.1429 (2011).ADS 
    Article 

    Google Scholar 
    Berg, C. J. & Alatalo, P. Potential of chemosynthesis in molluscan mariculture. Aquaculture 39, 165–179. https://doi.org/10.1016/0044-8486(84)90264-3 (1984).CAS 
    Article 

    Google Scholar 
    Dando, P. R. & Southward, A. J. Chemoautotrophy in bivalve molluscs of the genus Thyasira. J. Mar. Biol. Assoc. U.K. 66, 915–929. https://doi.org/10.1017/S0025315400048529 (1986).CAS 
    Article 

    Google Scholar 
    Spiro, B., Greenwood, P. B., Southward, A. J. & Dando, P. R. 13C/12C ratios in marine invertebrates from reducing sediments: Confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar. Ecol. Prog. Ser. 28, 233–240 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Fisher, C. R. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2, 399–436 (1990).CAS 

    Google Scholar 
    Duperron, S., Fiala-Medioni, A., Caprais, J. C., Olu, K. & Sibuet, M. Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): Comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol. Ecol. 59, 64–70. https://doi.org/10.1111/j.1574-6941.2006.00194.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zanzerl, H., Salvo, F., Jones, S. W. & Dufour, S. C. Feeding strategies in symbiotic and asymbiotic thyasirid bivalves. J. Sea Res. 145, 16–23. https://doi.org/10.1016/j.seares.2018.12.005 (2019).ADS 
    Article 

    Google Scholar 
    Descolas-Gros, C. & Fontugne, M. R. Carbon fixation in marine phytoplankton: Carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Mar. Biol. 87, 1–6. https://doi.org/10.1007/BF00396999 (1985).CAS 
    Article 

    Google Scholar 
    Brooks, J. M. et al. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science 238, 1138. https://doi.org/10.1126/science.238.4830.1138 (1987).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Conway, N., Capuzzo, J. M. & Fry, B. The role of endosymbiotic bacteria in the nutrition of Solemya velum: Evidence from a stable isotope analysis of endosymbionts and host. Limnol. Oceanogr. 34, 249–255. https://doi.org/10.4319/lo.1989.34.1.0249 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Conway, N. M., Howes, B. L., McDowell Capuzzo, J. E., Turner, R. D. & Cavanaugh, C. M. Characterization and site description of Solemya borealis (Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar. Biol. 112, 601–613. https://doi.org/10.1007/BF00346178 (1992).Article 

    Google Scholar 
    Rau, G. H. Low 15N/14N in hydrothermal vent animals: Ecological implications. Nature 289, 484. https://doi.org/10.1038/289484a0 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Kennicutt, M. C. et al. Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance. Chem. Geol. Isot. Geosci. Sect. 101, 293–310. https://doi.org/10.1016/0009-2541(92)90009-T (1992).CAS 
    Article 

    Google Scholar 
    Lee, R. W. & Childress, J. J. Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl. Environ. Microbiol. 60, 1852–1858. https://doi.org/10.1128/AEM.60.6.1852-1858.1994 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Zanden, M. J. V. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066. https://doi.org/10.4319/lo.2001.46.8.2061 (2001).ADS 
    Article 

    Google Scholar 
    Nagel, B., Gaye, B., Lahajnar, N., Struck, U. & Emeis, K.-C. Effects of current regimes and oxygenation on particulate matter preservation on the Namibian shelf: Insights from amino acid biogeochemistry. Mar. Chem. 186, 121–132. https://doi.org/10.1016/j.marchem.2016.09.001 (2016).CAS 
    Article 

    Google Scholar 
    Holmes, M. E. et al. Stable nitrogen isotopes in Angola Basin surface sediments. Mar. Geol. 134, 1–12. https://doi.org/10.1016/0025-3227(96)00031-X (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).Article 

    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750. https://doi.org/10.4319/lom.2009.7.740 (2009).CAS 
    Article 

    Google Scholar 
    Glibert, P. M., Middelburg, J. J., McClelland, J. W. & Jake Vander Zanden, M. Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnol. Oceanogr. 64, 950–981. https://doi.org/10.1002/lno.11087 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Mompeán, C., Bode, A., Gier, E. & McCarthy, M. D. Bulk vs amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic. Deep Sea Res. I 114, 137–148. https://doi.org/10.1016/j.dsr.2016.05.005 (2016).CAS 
    Article 

    Google Scholar 
    Steinkopf, M. Trophische Strukturen des Mesozooplanktons im Benguela Auftriebsgebiet vor Namibia (Universität Rostock, 2018).
    Google Scholar 
    Sigman, D. & Fripiat, F. Nitrogen isotopes in the Ocean. In Encyclopedia of Ocean Sciences 3rd edn, Vol. 263 (eds Cochran, J. K. et al.) 268 (Academic Press, 2019).
    Google Scholar 
    Nagel, B. et al. Nutrients and δ15N measured in water samples in the oxygen minimum zone over the Namibian shelf during the Meteor campaign M76–2 in 2008. PANGAEA. https://doi.org/10.1594/PANGAEA.892369 (2018).Granger, J., Sigman, D. M., Rohde, M. M., Maldonado, M. T. & Tortell, P. D. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim. Cosmochim. Acta 74, 1030–1040 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Prokopenko, M. G., Hammond, D. E. & Stott, L. Lack of isotopic fractionation of δ 15N of organic matter during long-term diagenesis in marine sediments, ODP Leg 202, Sites 1234 and 1235. In Proc. Ocean Drilling Program(eds. R. Tiedemann, A. C. Mix, C. Richter and W. F. Ruddiman) 22 (2006).Prokopenko, M. G. et al. Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)—“Riding on a glider”. Earth Planet. Sci. Lett. 242, 186–204 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27, 4203. https://doi.org/10.1029/2012PA002321 (2012).ADS 
    Article 

    Google Scholar 
    Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol. J. 12, 113–127. https://doi.org/10.1080/01490459409377977 (1994).CAS 
    Article 

    Google Scholar 
    Grasshoff, K. et al. (eds) Methods of Seawater Analysis 3rd edn. (Wiley, 2009).
    Google Scholar 
    Hofmann, D., Gehre, M. & Jung, K. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isot. Environ. Health Stud. 39, 233–244. https://doi.org/10.1080/1025601031000147630 (2003).CAS 
    Article 

    Google Scholar 
    Veuger, B., Middelburg, J. J., Boschker, H. T. S. & Houtekamer, M. Analysis of 15N incorporation into D-alanine: A new method for tracing nitrogen uptake by bacteria. Limnol. Oceanogr. Methods 3, 230–240. https://doi.org/10.4319/lom.2005.3.230 (2005).CAS 
    Article 

    Google Scholar 
    Loick-Wilde, N. et al. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure. Glob. Change Biol. 25, 794–810. https://doi.org/10.1111/gcb.14546 (2019).ADS 
    Article 

    Google Scholar 
    Chikaraishi, Y., Ogawa, N. O., Doi, H. & Ohkouchi, N. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: A case study of terrestrial insects (bees, wasps, and hornets). Ecol. Res. 26, 835–844. https://doi.org/10.1007/s11284-011-0844-1 (2011).Article 

    Google Scholar 
    Chikaraishi, Y. et al. High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecol. Evol. 4, 2423–2449. https://doi.org/10.1002/ece3.1103 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eglite, E. et al. Strategies of amino acid supply in mesozooplankton during cyanobacteria blooms: A stable nitrogen isotope approach. Ecosphere 9, e02135. https://doi.org/10.1002/ecs2.2135 (2018).Article 

    Google Scholar 
    Fujii, T. et al. Organic carbon and nitrogen isoscapes of reef corals and algal symbionts: Relative influences of environmental gradients and heterotrophy. Microorganisms 8, 1221. https://doi.org/10.3390/microorganisms8081221 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Ferrier-Pagès, C. et al. Tracing the trophic plasticity of the coral–dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9, 182. https://doi.org/10.3390/microorganisms9010182 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Maeda, T. et al. Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE 7, e42024. https://doi.org/10.1371/journal.pone.0042024 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pjevac, P. et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front. Microbiol. 12, 1069 (2021).Article 

    Google Scholar 
    Brettin, T. et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365. https://doi.org/10.1038/srep08365 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steffan, S. A. et al. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol. Evol. 7, 3532–3541. https://doi.org/10.1002/ece3.2951 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, J. J. & Cavanaugh, C. M. Expression of form I and form II Rubisco in chemoautotrophic symbioses: Implications for the interpretation of stable carbon isotope values. Limnol. Oceanogr. 40, 1496–1502. https://doi.org/10.4319/lo.1995.40.8.1496 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Fry, B. Stable Isotope Ecology (Springer, 2006).Book 

    Google Scholar 
    Emeis, K. et al. pCO2 underway data from the Benguela upwelling system in southeastern South Atlantic Ocean. PANGAEA. https://doi.org/10.1594/PANGAEA.880406 (2017).Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Goericke, R., Montoya, J. & Fry, B. Physiology and isotopic fractionation in algae and cyanobacteria. In Stable Isotopes in Ecology and Environmental Science (eds Kajtah, K. & Michener, R. H.) 187–221 (Blackwell, 1994).
    Google Scholar 
    Duplessis, M. R., Dufour, S. C., Blankenship, L. E., Felbeck, H. & Yayanos, A. A. Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin. Mar. Biol. 145, 551–561. https://doi.org/10.1007/s00227-004-1350-6 (2004).Article 

    Google Scholar 
    Lopez, G. R. & Levinton, J. S. Ecology of deposit-feeding animals in marine Sediments. Q. Rev. Biol. 62, 235–260. https://doi.org/10.1086/415511 (1987).Article 

    Google Scholar 
    Brüchert, V. et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim. Cosmochim. Acta 67, 4505–4518 (2003).ADS 
    Article 

    Google Scholar 
    Schukat, A., Auel, H., Teuber, L., Lahajnar, N. & Hagen, W. Complex trophic interactions of calanoid copepods in the Benguela upwelling system. J. Sea Res. 85, 186–196. https://doi.org/10.1016/j.seares.2013.04.018 (2014).ADS 
    Article 

    Google Scholar 
    McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744. https://doi.org/10.1016/j.gca.2007.06.061 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Zbinden, M. et al. Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides (North East-Pacific Rise). Mar. Biol. 162, 435–448. https://doi.org/10.1007/s00227-014-2591-7 (2015).CAS 
    Article 

    Google Scholar 
    Whitlatch, R. B. & Obrebski, S. Feeding selectivity and coexistence in two deposit-feeding gastropods. Mar. Biol. 58, 219–225. https://doi.org/10.1007/BF00391879 (1980).Article 

    Google Scholar 
    Connor, M. S. & Robert, K. E. Selective grazing by the mud snail Ilyanassa obsoleta. Oecologia 53, 271–275 (1982).ADS 
    Article 

    Google Scholar 
    Feller, R. J. Dietary immunoassay of Ilyanassa obsoleta, the eastern mud snail. Biol. Bull. 166, 96–102. https://doi.org/10.2307/1541433 (1984).Article 

    Google Scholar 
    Kelaher, B. P., Levinton, J. S. & Matthew Hoch, J. Foraging by the mud snail, Ilyanassa obsoleta (Say), modulates spatial variation in benthic community structure. J. Exp. Mar. Biol. Ecol. 292, 139–157. https://doi.org/10.1016/S0022-0981(03)00183-7 (2003).Article 

    Google Scholar 
    Montoya, J. P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 176–201 (Blackwell Publishing Ltd, 2007).Chapter 

    Google Scholar 
    Checkley, D. M. & Miller, C. A. Nitrogen isotope fractionation by oceanic zooplankton. Deep Sea Res. A Oceanogr. Res. Pap. 36, 1449–1456. https://doi.org/10.1016/0198-0149(89)90050-2 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, D. C. & Fisher, C. R. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In The Microbiology of Deep-Sea Hydrothermal Vents (ed. Karl, D. M.) 125–167 (CRC Press, 1995).
    Google Scholar 
    Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134. https://doi.org/10.1038/s41396-019-0486-9 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, R. W., Robinson, J. J. & Cavanaugh, C. M. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: Expression of host and symbiont glutamine synthetase. J. Exp. Biol. 202, 289 (1999).CAS 
    Article 

    Google Scholar 
    Hentschel, U. & Felbeck, H. Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata is not regulated by oxygen. Appl. Environ. Microbiol. 61, 1630–1633 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Sacks, L. E. & Barker, H. A. The influence of oxygen on nitrate and nitrite reduction. J. Bacteriol. 58, 11–22. https://doi.org/10.1128/JB.58.1.11-22.1949 (1949).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Networking for food production

    Mahdavi, A. et al. Proc. Natl Acad. Sci. USA 105, 2307–2312 (2008).CAS 
    Article 

    Google Scholar 
    Levin, A. et al. Nat. Rev. Chem. 4, 615–634 (2020).CAS 
    Article 

    Google Scholar 
    Graedel, T. E. Annu. Rev. Energy Environ. 21, 69–98 (1996).Article 

    Google Scholar 
    Erkman, S. J. Clean. Prod. 5, 1–10 (1997).Article 

    Google Scholar 
    Lao, A. R., Aviso, K. B., Cabezas, H. & Tan, R. R. Nat. Sustain. https://doi.org/10.1038/s41893-022-00912-w (2022).Benke, K. & Tomkins, B. Sustain. Sci. Practice Policy 13, 13–26 (2017).
    Google Scholar 
    Treich, N. Environ. Resource Econ. 79, 33–61 (2021).Article 

    Google Scholar 
    Liu, J., Caspersen, S. & Yong, J. W. H. Elife 11, e77202 (2022).Article 

    Google Scholar 
    Friedler, F., Tarján, K., Huang, Y. W. & Fan, L. T. Chem. Eng. Sci. 47, 1973–1988 (1992).CAS 
    Article 

    Google Scholar 
    Sait, S. M., Liu, W.-C., Thompson, D. J., Godfray, H. C. J. & Begon, M. Nature 405, 448–450 (2000).CAS 
    Article 

    Google Scholar 
    Nelson, M. Space Sci. Technol. 2021, 8067539 (2021).Article 

    Google Scholar  More