Insect vector manipulation by a plant virus and simulation modeling of its potential impact on crop infection
Whitfield, A. E., Falk, B. W. & Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 479–480, 278–289. https://doi.org/10.1016/j.virol.2015.03.026 (2015).CAS
Article
PubMed
Google Scholar
Nault, L. R. Arthropod transmission of plant viruses: A new synthesis. Ann. Entomol. Soc. Am. 90, 521–541. https://doi.org/10.1093/aesa/90.5.521 (1997).Article
Google Scholar
Maluta, N., Fereres, A. & Lopes, J. R. S. Plant-mediated indirect effects of two viruses with different transmission modes on Bemisia tabaci feeding behavior and fitness. J. Pest Sci. 92, 405–416. https://doi.org/10.1007/s10340-018-1039-0 (2019).Article
Google Scholar
Scheirs, J. & De Bruyn, L. Integrating optimal foraging and optimal oviposition theory in plant–insect research. Oikos 96, 187–191. https://doi.org/10.1034/j.1600-0706.2002.960121.x (2002).Article
Google Scholar
Pyke, G. H. Optimal foraging theory: A critical review. Annu. Rev. Ecol. Syst. 15, 523–575. https://doi.org/10.1146/annurev.es.15.110184.002515 (1984).Article
Google Scholar
Hurd, H. Manipulation of medically important insect vectors by their parasites. Annu. Rev. Entomol. 48, 141–161. https://doi.org/10.1146/annurev.ento.48.091801.112722 (2003).CAS
Article
PubMed
Google Scholar
Moore, J. Parasites and the Behavior of Animals (Oxford University Press, 2002).
Google Scholar
Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne plant pathogens and their vectors: Ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191. https://doi.org/10.1146/annurev-ento-020117-043119 (2018).CAS
Article
PubMed
Google Scholar
Mauck, K., Bosque-Pérez, N. A., Eigenbrode, S. D., De Moraes, C. M. & Mescher, M. C. Transmission mechanisms shape pathogen effects on host–vector interactions: Evidence from plant viruses. Funct. Ecol. 26, 1162–1175. https://doi.org/10.1111/j.1365-2435.2012.02026.x (2012).Article
Google Scholar
Blanc, S. & Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect. Sci. 16, 36–43. https://doi.org/10.1016/j.cois.2016.05.007 (2016).Article
PubMed
Google Scholar
Moreno-Delafuente, A., Garzo, E., Moreno, A. & Fereres, A. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS ONE 8, e61543. https://doi.org/10.1371/journal.pone.0061543 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Ng, J. C. K. & Falk, B. W. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 44, 183–212. https://doi.org/10.1146/annurev.phyto.44.070505.143325 (2006).CAS
Article
PubMed
Google Scholar
Stafford, C. A., Walker, G. P. & Ullman, D. E. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sci. 108, 9350–9355. https://doi.org/10.1073/pnas.1100773108 (2011).ADS
Article
PubMed
PubMed Central
Google Scholar
Rajabaskar, D., Bosque-Pérez, N. A. & Eigenbrode, S. D. Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res. 186, 32–37. https://doi.org/10.1016/j.virusres.2013.11.005 (2014).CAS
Article
PubMed
Google Scholar
Su, Q. et al. Manipulation of host quality and defense by a plant virus improves performance of whitefly vectors. J. Econ. Entomol. 108, 11–19. https://doi.org/10.1093/jee/tou012 (2015).Article
PubMed
Google Scholar
Chen, G. et al. Virus infection of a weed increases vector attraction to and vector fitness on the weed. Sci. Rep. 3, 2253. https://doi.org/10.1038/srep02253 (2013).Article
PubMed
PubMed Central
Google Scholar
Wei, J. et al. Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc. Natl. Acad. Sci. 114, 6746–6751. https://doi.org/10.1073/pnas.1701720114 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
Ogada, P. A., Moualeu, D. P. & Poehling, H.-M. Predictive models for tomato spotted wilt virus spread dynamics, considering Frankliniella occidentalis specific life processes as influenced by the virus. PLoS ONE 11, e0154533. https://doi.org/10.1371/journal.pone.0154533 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
Shoemaker, L. G. et al. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system. Ecol. Lett. 22, 1115–1125. https://doi.org/10.1111/ele.13268 (2019).Article
PubMed
Google Scholar
Shelton, A. M. & Badenes-Perez, F. R. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51, 285–308. https://doi.org/10.1146/annurev.ento.51.110104.150959 (2006).CAS
Article
PubMed
Google Scholar
Bennett, C. W. The Curly Top Disease of Sugarbeet and Other Plants (The American Phytopathological Society, 1971).Book
Google Scholar
Chen, L.-F. & Gilbertson, R. L. Chapter 17: Transmission of curtoviruses (beet curly top virus) by the beet leafhopper (Circulifer tenellus). In Vector-Mediated Transmission of Plant Pathogens (ed. Brown, J. K.) 243–262 (The American Phytopathological Society of America, 2016).Chapter
Google Scholar
Creamer, R. Chapter 37: Beet curly top virus transmission, epidemiology, and management. In Applied Plant Virology (ed. Awasthi, L. P.) 521–527 (Academic Press, 2020).Chapter
Google Scholar
Gilbertson, R. L., Melgarejo, T. A., Rojas, M. R., Wintermantel, W. M. & Stanley, J. Beet curly top virus (Geminiviridae). In Encyclopedia of Virology 4th edn (eds Bamford, D. H. & Zuckerman, M.) 200–212 (Academic Press, 2021).Chapter
Google Scholar
Hudson, A., Richman, D. B., Escobar, I. & Creamer, R. Comparison of the feeding behavior and genetics of beet leafhopper, Circulifer tenellus, populations from California and New Mexico. Southwest. Entomol. 35, 241–250, 210 (2010).Article
Google Scholar
Soto, M. J. & Gilbertson, R. L. Distribution and rate of movement of the curtovirus Beet mild curly top virus (Family Geminiviridae) in the beet leafhopper. Phytopathology 93, 478–484. https://doi.org/10.1094/phyto.2003.93.4.478 (2003).Article
PubMed
Google Scholar
Prager, S. M., Lewis, O. M., Michels, J. & Nansen, C. The influence of maturity and variety of potato plants on oviposition and probing of Bactericera cockerelli (Hemiptera: Triozidae). Environ. Entomol. 43, 402–409. https://doi.org/10.1603/en13278 (2014).Article
PubMed
Google Scholar
Prager, S. M., Vaughn, K., Lewis, M. & Nansen, C. Oviposition and leaf probing by Bactericera cockerelli (Homoptera: Psyllidae) in response to a limestone particle film or a plant growth regulator applied to potato plants. Crop Prot. 45, 57–62 (2013).CAS
Article
Google Scholar
McBryde, M. C. A method of demonstrating rust hyphae and Haustoria in unsectioned leaf tissue. Am. J. Bot. 23, 686–688 (1936).Article
Google Scholar
Backus, E. A., Hunter, W. B. & Arne, C. N. Technique for staining leafhopper (Homoptera: Cicadellidae) salivary sheaths and eggs within unsectioned plant tissue. J. Econ. Entomol. 81, 1819–1823. https://doi.org/10.1093/jee/81.6.1819 (1988).Article
Google Scholar
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical computing, Vienna, Austria, 2019).Stafford, C. A., Walker, G. P. & Creamer, R. Stylet penetration behavior resulting in inoculation of beet severe curly top virus by beet leafhopper, Circulifer tenellus. Entomol. Exp. Appl. 130, 130–137. https://doi.org/10.1111/j.1570-7458.2008.00813.x (2009).Article
Google Scholar
Chen, L.-F., Brannigan, K., Clark, R. & Gilbertson, R. L. Characterization of curtoviruses associated with curly top disease of tomato in California and monitoring for these viruses in beet leafhoppers. Plant Dis. 94, 99–108. https://doi.org/10.1094/pdis-94-1-0099 (2010).CAS
Article
PubMed
Google Scholar
Rojas, M. R. et al. World management of geminiviruses. Annu. Rev. Phytopathol. 56, 637–677. https://doi.org/10.1146/annurev-phyto-080615-100327 (2018).CAS
Article
PubMed
Google Scholar
Schoonhoven, L. M., Van Loon, B., van Loon, J. J. & Dicke, M. Insect-plant biology (Oxford University Press, 2005).
Google Scholar
Mauck, K. E., Kenney, J. & Chesnais, Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Curr. Opin. Insect. Sci. 33, 7–18. https://doi.org/10.1016/j.cois.2019.01.001 (2019).Article
PubMed
Google Scholar
Pelosi, P., Iovinella, I., Felicioli, A. & Dani, F. R. Soluble proteins of chemical communication: An overview across arthropods. Front. Physiol 5, 320. https://doi.org/10.3389/fphys.2014.00320 (2014).Article
PubMed
PubMed Central
Google Scholar
Pelosi, P., Zhou, J. J., Ban, L. P. & Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63, 1658–1676. https://doi.org/10.1007/s00018-005-5607-0 (2006).CAS
Article
PubMed
Google Scholar
Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T. & Fuyama, Y. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol. 5, e118. https://doi.org/10.1371/journal.pbio.0050118 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
Li, Z. et al. Mouthparts enriched odorant binding protein AfasOBP11 plays a role in the gustatory perception of Adelphocoris fasciaticollis. J. Insect Physiol. 117, 103915. https://doi.org/10.1016/j.jinsphys.2019.103915 (2019).CAS
Article
PubMed
Google Scholar
Waris, M. I. et al. Silencing of chemosensory protein gene NlugCSP8 by RNAi induces declining behavioral responses of Nilaparvata lugens. Front. Physiol. 9, 379. https://doi.org/10.3389/fphys.2018.00379 (2018).Article
PubMed
PubMed Central
Google Scholar
Hu, K. et al. Odorant-binding protein 2 is involved in the preference of Sogatella furcifera (Hemiptera: Delphacidae) for rice plants infected with the Southern rice black-streaked dwarf virus. Fla. Entomol. 102, 353–358. https://doi.org/10.1653/024.102.0210 (2019).CAS
Article
Google Scholar
Brentassi, M. E., Machado-Assefh, C. R. & Alvarez, A. E. The probing behaviour of the planthopper Delphacodes kuscheli (Hemiptera: Delphacidae) on two alternating hosts, maize and oat. Aust. Entomol. 58, 666–674. https://doi.org/10.1111/aen.12383 (2019).Article
Google Scholar
Milenovic, M., Wosula, E. N., Rapisarda, C. & Legg, J. P. Impact of host plant species and whitefly species on feeding behavior of Bemisia tabaci. Front. Plant Sci. 10, 1. https://doi.org/10.3389/fpls.2019.00001 (2019).Article
PubMed
PubMed Central
Google Scholar
Stafford, C. A. & Walker, G. P. Characterization and correlation of DC electrical penetration graph waveforms with feeding behavior of beet leafhopper, Circulifer tenellus. Entomol. Exp. Appl. 130, 113–129. https://doi.org/10.1111/j.1570-7458.2008.00812.x (2009).Article
Google Scholar
Mauck, K. E., Chesnais, Q. & Shapiro, L. R. Evolutionary determinants of host and vector manipulation by plant viruses. In Advances in Virus Research (ed. Malmstrom, C. M.) 189–250 (Academic Press, 2018).
Google Scholar
Chesnais, Q. et al. Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype. J. Pest Sci. 92, 791–804 (2019).Article
Google Scholar More