More stories

  • in

    Metabolome dynamics during wheat domestication

    Haas, M., Schreiber, M. & Mascher, M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 61(3), 204–225 (2019).PubMed 
    Article 

    Google Scholar 
    Hebelstrup, K. H. Differences in nutritional quality between wild and domesticated forms of barley and emmer wheat. Plant Sci. 256, 1–4 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borisjuk, N. et al. Genetic modification for wheat improvement: From transgenesis to genome editing. Biomed. Res. Int. 2019, 6216304 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51(5), 885–895 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426), 705–710 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zimin, A. V. et al. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6(11), 1–7 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346), 93–97 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681), 498–502 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443), 91–95 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J. et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl. Acad. Sci. U. S. A. 100(5), 2489–2494 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Allen, A. M. et al. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol. J. 11(3), 279–295 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Merchuk-Ovnat, L., Fahima, T., Krugman, T. & Saranga, Y. Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat. Plant Sci. 251, 23–34 (2018).Article 
    CAS 

    Google Scholar 
    Bhalla, P. L., Sharma, A. & Singh, M. B. Enabling molecular technologies for trait improvement in wheat. Methods Mol. Biol. 1679, 3–24 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hong, J., Yang, L., Zhang, D., & Shi, J. Plant metabolomics: An indispensable system biology tool for plant science. Int. J. Mol. Sci. 17(6), 1–16 (2016).ADS 

    Google Scholar 
    Batyrshina, Z. S., Yaakov, B., Shavit, R., Singh, A. & Tzin, V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC Plant Biol. 20(1), 19 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zorb, C., Langenkamper, G., Betsche, T., Niehaus, K. & Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54(21), 8301–8306 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Matthews, S. B. et al. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE 7(8), e44179 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    de Leonardis, A. M. et al. Effects of heat stress on metabolite accumulation and composition, and nutritional properties of durum wheat grain. Int. J. Mol. Sci. 16(12), 30382–30404 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Allwood, J. W. et al. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115, 99–111 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ullah, N., Yuce, M., Neslihan Ozturk Gokce, Z. & Budak, H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genom. 18(1), 969 (2017).Article 
    CAS 

    Google Scholar 
    Lannucci, A., Fragasso, M., Beleggia, R., Nigro, F. & Papa, R. Evolution of the crop rhizosphere: Impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Front Plant Sci. 8, 2124 (2017).Article 

    Google Scholar 
    Beleggia, R. et al. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 33(7), 1740–1753 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poudel, R., Bhinderwala, F., Morton, M., Powers, R. & Rose, D. J. Metabolic profiling of historical and modern wheat cultivars using proton nuclear magnetic resonance spectroscopy. Sci. Rep. 11(1), 3080 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hanhineva, K. et al. Non-targeted analysis of spatial metabolite composition in strawberry (Fragariaxananassa) flowers. Phytochemistry 69(13), 2463–2481 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Abu, Y. & Itsko, M. “Changes in “natural antibiotic” metabolite composition during tetraploid wheat domestication. Sci. Rep. 11(1), 20340. https://doi.org/10.1038/s41598-021-98764-5 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3(6), 429–441. https://doi.org/10.1038/nrg817 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zörb, C., Langenkämper, G., Betsche, T., Niehaus, K. & Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54(21), 8301–8306 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ben-Abu, Y., Beiles, A., Flom, D. & Nevo, E. Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at “Evolution Canyon”, Mount Carmel, Israel. PLoS ONE. 13(2), e0190424 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben-Abu, Y., et al., Durum wheat evolution—a genomic analysis. In Proceedings of the International Symposium on Genetics and Breeding of Durum Wheat, Vol. 110 29–44 (2014).Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Bruijn, W. J. C., Gruppen, H. & Vincken, J. P. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry 155, 233–243 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Arbona, V. & Gomez-Cadenas, A. Metabolomics of Disease resistance in crops. Mol. Biol. 19, 13–30 (2016).
    Google Scholar 
    Okada, K., Abe, H. & Arimura, G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 56(1), 16–27 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Belz, R. G. Allelopathy in crop/weed interactions–an update. Pest. Manag. Sci. 63(4), 308–326 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mondal, S. et al. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front. Plant Sci. 7, 991 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang, L. et al. Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annu. Rev. Phytopathol. 54, 279–301 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-David, R., Dinoor, A., Peleg, Z. & Fahima, T. Reciprocal hosts’ responses to powdery mildew isolates originating from domesticated wheats and their wild progenitor. Front. Plant Sci. 9, 75 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yahiaoui, N., Brunner, S. & Keller, B. Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47(1), 85–98 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T. & Siddiqui, Z. H. Selective effect of pesticides on plant—a review. Crit. Rev. Food Sci. Nutr. 56(1), 160–179 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mou, Y., et al. Genome-wide identification and characterization of the OPR gene family in wheat (Triticum aestivum L). Int. J. Mol. Sci. 20(8), 85–97 (2019).Article 
    CAS 

    Google Scholar 
    Kage, U., Karre, S., Kushalappa, A. C. & McCartney, C. Identification and characterization of a fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnol. J. 15(4), 447–457 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dutartre, L., Hilliou, F. & Feyereisen, R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: Gene duplications and origin of the Bx cluster. BMC Evol. Biol. 12, 64 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dhokane, D., Karre, S., Kushalappa, A. C. & McCartney, C. Integrated metabolo-transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS ONE 11(5), e0155851 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kage, U., Yogendra, K. N. & Kushalappa, A. C. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Sci. Rep. 7, 42596 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Masisi, K., Beta, T. & Moghadasian, M. H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 196, 90–97 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 12(8), 749–767 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perez-Vizcaino, F. & Fraga, C. G. Research trends in flavonoids and health. Arch Biochem. Biophys. 646, 107–112 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kong, L., Guo, H. & Sun, M. Signal transduction during wheat grain development. Planta 241(4), 789–801 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nadolska-Orczyk, A., Rajchel, I. K., Orczyk, W. & Gasparis, S. Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130(6), 1081–1098 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, W. & Yang, B. Translational genomics of grain size regulation in wheat. Theor. Appl. Genet. 130(9), 1765–1771 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, P. F. et al. Transcriptional reference map of hormone responses in wheat spikes. BMC Genom. 20(1), 390 (2019).Article 
    CAS 

    Google Scholar 
    Hill, C. B. & Li, C. Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Front .Plant Sci. 7, 1906 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, Y., Schmidt, R. H., Zhao, Y. & Reif, J. C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 49(12), 1741–1746 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Limiting motorboat noise on coral reefs boosts fish reproductive success

    Permits and ethics approvalAnimal collections and all experimental procedures were conducted with ethical approval from the University of Exeter (2013/247), James Cook University (A2361) and Lizard Island Research Station, permission from the Great Barrier Reef Marine Park Authority (GBRMPA) (G17-39752.1) and under licence from the Australian Government Department of Fisheries (170251).Study speciesThe spiny chromis (Acanthochromis polyacanthus) is a damselfish that exhibits bi-parental care of eggs and juveniles at nests within shallow reef habitat in the tropical Western Pacific39 (Fig. 4). Spiny chromis are planktivores on the Great Barrier Reef, importing nutrients from the plankton to the reef40. As such, their preferred habitat is the reef edge (within ~7 m). Most pairs raise one clutch per season—in our study, second clutches occurred in only 7% of the population—so we tracked first clutches from adult pairs. Adults enhance their reproductive success by fanning eggs to oxygenate them, and chasing away potential predators from eggs and juveniles16,41. Adults also allow their offspring to eat some of their body mucus in a behaviour known as ‘glancing’ that has potential nutritional and/or immunological benefits42.Fig. 4: Spiny chromis (Acanthochromis polyacanthus) nest at the edge of coral reef habitat.Parents, juveniles and a predator (peacock grouper, Cephalopholis argus) can be seen in this photo. Photo credit: S Nedelec.Full size imageField studyWe conducted the field study at Lizard Island Research Station (LIRS) (14° 40′ S, 145° 28′ E), Great Barrier Reef, Australia over an entire spiny chromis breeding season (90 days from 23 October 2017 to 20 January 2018).Sites and nestsWe selected six coral reef edge sites (113–218 m in length) within the lagoon on the south of Lizard Island (Fig. 5). Water temperature ranged from ~26 °C at the start to ~29 °C at the end of the season. The reefs were composed mainly of a mixture of live and dead coral. Prevailing currents were wind-driven from south to north. Three of the sites were exposed to ‘busy boating’ while boating was limited at the other three. Treatments were allocated to sites partly randomly and partly allowing for ease and safety of motorboat access. Nest positions within sites did not differ between treatments in: depth of bottom next to reef (1–5 m at mid-tide with a tidal range of ~2 m, N = 67 measurements at a range of tidal heights, mean ± SE depth = 2.3 ± 0.1 m; LMM, sound treatment: Χ21 = 0.82, p = 0.365, random effect of site: variance = 0.14, standard deviation=0.38); nest height above the sand (range = 0–4 m, mean ± SE = 0.6 ± 0.1 m; sound treatment: Χ21 = 0.52, p = 0.470, site: variance=0.33, standard deviation = 0.57); or distance from the edge of the reef (range = 0–6.6 m, mean ± SE = 1.2 ± 0.2 m; t-test: t33,32 = 1.61, p = 0.112; a linear model did not fit the data). A small number of broods (mean ± SE per site = 4.7 ± 1.0) were already present at each site at the start of the season; spiny chromis occasionally breed outside the main breeding season. These were marked and ignored for the purpose of the experiment. The mean ± SD number of nesting pairs identified at each site at the start of the season was 9.5 ± 2.0 for limited-boating sites and 10.7 ± 3.2 for busy-boating sites. Nesting pairs did not always form clear, stable pairs with obvious territories and so pairs without broods were not tracked through the experiment. The mean ± SD total number of adults at each site at the start of the experiment was 185 ± 92 for limited-boating sites and 119 ± 20 for busy-boating sites.Fig. 5: Map of the experimental sites.Red sites were ‘busy-boating’ areas while blue sites were ‘limited-boating’ areas.Full size imageMotorboat traffic exposure and protectionThere is a navigable channel through the lagoon where the experiment was conducted. Fishing boats, tourist boats and research station boats pass through the channel, but the main source of traffic is research station boats. We chose six sites along the navigable route and randomly allocated these to treatments. Following random allocation, two sites were switched for safety reasons for motorboat drivers (Fig. 5). We experimentally elevated motorboat noise at three of the six sites (busy-boating treatment) to mimic typical traffic around a port, harbour or regularly visited reef. At these sites, we drove eight different 5 m aluminium motorboats with 40 hp Suzuki four-stroke outboard engines repeatedly along the length of the site within 10–30 m of the edge of the reef. Busy-boating sites received an average of 180 motorboat passes each day during 3–6 ‘exposure periods’ lasting 15–20 min each; this totalled 1.25–1.5 h per day of traffic noise at each busy-boating site. The other three sites were protected from motorboat traffic (limited-boating treatment), by marking these reefs on the research station map as areas to avoid by at least 100 m and monitoring activity in the lagoon daily. When experimenters needed to access protected sites, speed was reduced to that where no wake was created (roughly ¼ throttle) within 100 m and boats were anchored 20 m from the reef. See Supplementary Information for further details of motorboat traffic exposure and protection.Acoustic recordings and analysisWe made acoustic recordings of both pressure and particle motion at three locations within each site using an accelerometer with integrated hydrophone (M20-040 manufactured and calibrated by Geospectrum Techologies Inc. Dartmouth, Canada; sensitivity follows a curve from 0 to 5000 Hz) and a digital recorder (Zoom F4, Zoom Corporation, Tokyo, Japan; calibrated using pure sine waves measured with an oscilloscope). See Fig. 6 and Supplementary Information for further details of acoustic recordings, analysis and results.Fig. 6: Pressure power spectral density level (Lp,f (re 1 µPa2 Hz−1)) and particle acceleration power spectral density level (La,f (re 1 (µm s−2)2 Hz−1)) plots showing the mean (solid line) with 5% and 95% exceedance levels (coloured band around solid line) for busy-boating and limited-boating or no-boating treatments.A Lp,f in the wild study (average from three nests per site, ‘busy boating’ includes three passes of a motorboat at 10–250 m per recording location, recordings of limited boating were three minutes in duration per nest). B La,f in the wild study (same recording design as for pressure). C Lp,f in the parental tanks in the captive study (27 locations in a 3 × 3 × 3 grid within the tank, 1-min sample of motorboat playback and ambient reef sound playback for each case). D La,f in the parental tanks in the captive study (same recording design as for pressure), E Lp,f in the juvenile tanks in the captive study from the centre of the rearing tank (these tanks were too small to accommodate the particle motion sensor).Full size imageBreeding and reproductive successEach site was checked by snorkellers every other day to monitor breeding by spiny chromis pairs. Nests with new hatchlings were marked with flagging tape and continued to be checked every other day throughout the season to monitor reproductive success. The day in the season that broods hatched was used to test for an effect of motorboat exposure on the timing of breeding using a linear mixed-effects model (fitted in R) with site as a random effect. The proportion of nests retaining offspring at the end of the season in the two treatments was compared using a Chi-squared test.Brood sizeWe counted the number of offspring in broods within four days after hatching at a subset of 59 nests; 32 in the three busy-boating sites (N = 9, 11, 12) and 27 in the three limited-boating sites (N = 5, 10, 12). Average clutch size at hatching in the wild was 126 ± 16 (mean ± SE). Some of these nests were part of the predator presence observations (details below), some were part of the size monitoring (details below) and some were independent. We counted the number of offspring in three photos and used the highest number for analyses. We tested for an effect of motorboat treatment on brood size at hatching using a Welch’s t-test.Predator presence around nestsWe determined baseline predatory threat (counts of heterospecific piscivores, potential predators of juveniles) using video camera (GoPro 5) deployments. Thirty-three nests (not studied for size) were videoed once or twice between 1 and 11 days post-hatching; 18 in the three busy-boating sites (N = 7, 6, 5) and 15 in the three limited-boating sites (N = 6, 5, 4). A total of 55 videos were analysed. A camera stand was placed at each nest on the first or second day post-hatching and remained in place 2–3 m from the nest. For each survey, after GoPro cameras were attached to camera stands, several minutes settling time was allowed (mean ± sd: 827 ± 35 s), followed by a 30-s recording of predator presence in the absence of any motorboats. All nests that were videoed were at least 10 m away from one another (parents spend most of their time within 2 m of the nest). Videos were randomly named and analysed by KEC without sound (to remain ‘blind’ to treatment) using BORIS 7.6.143. Spiny chromis offspring are small and vulnerable to any piscivore on the reef and parents defend their offspring by chasing potential predators. The number of heterospecific piscivores at each nest was surveyed (conspecifics are known to cannibalise offspring, but this is very rare16). A negative binomial regression parameterised such that the variance is a quadratic function of the mean was fitted using glmmTMB in R with piscivore counts as the response variable, motorboat treatment and days into the season as potentially interacting fixed factors, and nest and site as random effects.Juvenile survivalIt was not possible to observe the eggs as they were laid in caves, so we studied juveniles from when they could be observed above the substrate (shortly after hatching – this species completes the larval stage inside the egg and hatches at the juvenile stage16). We also counted the number of surviving offspring at the subset of 59 nests every 4–8 days. When all juveniles from a nest could be captured in a frame, we used three photos per time point and used the highest number. As juveniles aged, they used more space and could not be captured in a single photo; then, they were counted by snorkellers with experience in fish surveys (SLN and IKD). The reliability of snorkellers’ counts was tested against one another and did not differ when there were 20 juveniles based on counts of 43 nests. Usually, however, when there were >20 juveniles at a nest, they were at an earlier developmental stage and counts could be taken from photos. Survival of juveniles was recorded as number of days from hatching until they were no longer seen at the nest. Where all offspring from a nest were apparently lost to predation (mean survival time = 21 days), the nest continued to be monitored every other day for the remainder of the season to ensure offspring had not temporarily disappeared and to check for second clutches. A Cox proportional-hazards survival model was fitted in R with motorboat treatment and initial hatching count as fixed effects, and nest and site as random effects. We discounted three nests where counts increased due to assumed experimenter error or immigration. The package Coxme was used in R to test for the interaction between treatment and start count (hatch day was not included in the model as there was no indication of an effect of treatment or site on hatch day), with nest and site as random effects. The package coxph was used to create Fig. 1B, which does not account for the random effects, but is used for illustrative purposes.Juvenile sizeWe monitored juvenile size at a subset of 22 nests; 11 in the three busy-boating sites (N = 3, 4, 4) and 11 in the three limited-boating sites (N = 3, 4, 4). Up to 10 juveniles (depending on catch success) were caught by snorkellers or SCUBA divers using hand nets from each nest each week. A total of 275 juveniles between 1 and 53 days post-hatching were sampled. Juveniles were transported to the field station in bags of fresh seawater. We measured standard length either under the microscope at 10× magnification or with a Vernier caliper, depending on fish size. All nests within a site were sampled on the same day and each site was visited for juvenile size sampling each week. Data were log-transformed and analysed using a linear mixed-effects model (fitted in R), with age and motorboat treatment as fixed effects, and nest and site as random effects.Laboratory studyWe conducted the laboratory study in the Marine and Aquaculture Research Facilities Unit (MARFU) at James Cook University, Townsville, Australia from March to July 2018. Spiny chromis adults were caught with fine monofilament barrier nets and hand nets from the section of reef on the lagoon side of Palfrey Island within the lagoon around Lizard Island in the northern Great Barrier Reef (14° 41′ S, 145° 27′ E) during November 2016. All adults would have experienced equivalent prior noise exposure. The mean ± SE standard length of adults was 10.7 ± 0.1 cm. Spiny chromis were randomly allocated to treatments and were housed in 30 male–female pairs, and maintained at a mean ± SE temperature of 27.7 ± 0.1 °C in the presence of either a busy-boating treatment (playback of four of the five recorded motorboats in a pattern matching exposures in the field) or a no-boating treatment (playback of ambient reef sound). We kept most of each brood with the parents to measure survival (cannibalism can rarely occur in this species under stress16) and isolated 50 individuals per brood as a single group in a separate tank (where parents could not compete with offspring for food) with the same playback treatment to measure size. See Supplementary Information for further details of tank setup and conditions, acoustic exposure regime, playback construction, acoustic recording analysis and results for the tanks.BreedingWe checked all adult tanks daily after lights were switched on, but before playbacks began, for the presence of a newly laid clutch. The number of days since the start of the treatment that clutches were laid was used to test for an effect of motorboat noise exposure on the timing of breeding using a two-sample Welch’s t-test.Clutch size and brood sizeWe photographed newly laid clutches and estimated clutch size by counting the number of eggs in a square on an overlaid grid and counting the number of grid squares containing eggs. All adult tanks were checked daily after lights were switched on, but before playbacks began, for the presence of a newly hatched brood. Clutch size and brood size were compared between treatments using two-sample Welch’s t-tests.Egg characteristics and embryonic developmentWe monitored clutch-level and individual-level egg and embryo characteristics at days 1 and 10 during the egg phase of the first clutch laid by each breeding pair. Measures taken were: (1) egg area, (2) yolk sac area, (3) dorsal spine length (day 10 embryos only), and (4) dry weight (at 10 days). Egg area, yolk sac area and spine length were obtained by measuring 10 randomly sampled individuals per clutch under a light microscope (Olympus SZXY). For dry weights, fish were dried in an oven for >24 h at 60 °C and weighed on a Mettler microbalance with ±0.001 mg accuracy. The number of days between laying and hatching was used as the embryonic developmental time. Linear mixed-effects models (fitted in R) were used, with clutch as a random effect and motorboat treatment as a fixed effect.Parental care of embryosWe filmed parental activity (distance moved by both parents) and time spent fanning eggs at day 10 of the egg phase during periods of playback. Two cameras were used: a Logitech HD Webcam C615 camera positioned 45 cm above the tank looking down with the entire tank in the field of view (‘top camera’), and a GoPro HERO 5 positioned inside the tank in front and looking into the nest (‘side camera’). Following a 30-minute settling time, minimising the disturbance to the fish, baseline behaviour was observed for five minutes. Then, in ‘busy-boating’ tanks, motorboat noise was played for a further five minutes, while in ‘no-boating’ tanks, a different ambient track was played for five minutes.Two key nest-caring parental behaviours were identified for analysis:

    (1)

    Activity – the distance travelled by parents. Average distance travelled within each breeding pair was calculated from the total distance travelled by both the male and female. Activity was observed from the top camera. Distance was calibrated by measuring a known distance on the bottom of the tank, present in all videos. The distance travelled was calculated by marking the position of the fish every second using the manual tracking feature of ImageJ version 1.52d (https://imagej.nih.gov/ij/download.html).

    (2)

    Fanning – the amount of time parents spent fanning the clutch of eggs. Fanning was observed from the side camera and analysed using Solomon Coder software (https://solomoncoder.com/download.php).

    T-tests were used to test for effects of treatment on parental care behaviour.Juvenile survivalWe counted the number of juveniles that survived with their parents at day 21 post-hatching (maximum count from three photos for each tank). Survival was measured at day 21 because that was the mean survival time in the field; also, by day 42 post-hatching, most parents had produced a second clutch which confounded observations of survival. The fish removed at hatching were included in the final count by modelling their survival as equal to that of the rest of the brood. Survival was converted to a percentage from the number of eggs laid in the clutch. This measure of survival is conservative compared with that expected in the field because the only potential predators of the juveniles in the tanks were their parents. Percentage survival rates were non-normally distributed and so were compared between treatments using a Wilcoxon signed-ranks test.Juvenile sizeWe measured the standard lengths (from photos using ImageJ) and dry weights of ten juveniles per clutch at day 21 post-hatching and of eight juveniles per clutch at day 42 post-hatching, following humane sacrifice; fish were dried in an oven for >24 h at 60 °C and weighed on a Mettler microbalance with 0.001 mg accuracy. We measured length and weight from juveniles that were isolated from the parents to avoid the possibility that the parents could compete with the juveniles for food. Dry weights at day 21 and 42 were compared between treatments using an LMM with clutch as a random effect.General statistical approachesFor measures of parental care, or at the level of clutch, t-tests or Wilcoxon signed ranks tests were used. Where we measured several individuals from within multiple sites, clutches or broods, LMMs or GLMMs were used to control for the random effects of site, clutch or brood, provided models fit the data satisfactorily. Plots of residuals vs fitted values were examined to check model fit and where models did not fit the data, standard tests such as t-test/Wilcoxon signed ranks were used in their place. Any effects among nests (such as slight variations in water flow) were therefore controlled for by the LMM or GLMM statistical models. The variance attributed to, and standard deviation of the variance for, random effects are presented as part of the full output from models. We used the same approach for model selection as in13. To establish the best-fitting model, terms were eliminated one by one from a maximal model. Simplified models were compared with more complex ones using maximum likelihood ratio tests that employ chi-square statistics to establish whether a simpler model performed significantly worse at explaining the data than a more complex model. If the simpler model was not significantly worse when a term was removed, the simpler model was deemed better and thus the removed term was dropped. If the simpler model was significantly worse, the term was maintained in the model44. The degrees of freedom from maximum likelihood tests presented in the Results of the main paper are the difference between the degrees of freedom of the simpler and the more complex models. All potential interactions of fixed effects were examined and are only presented where their exclusion from the model made the model significantly worse at explaining the data at the significance level p  More

  • in

    COVID delays are frustrating the world’s plans to save biodiversity

    Young caimans captured in Brazil. Illegal hunting is a major threat to biodiversity.Credit: Collart Hervé/Sygma via Getty

    Researchers are increasingly concerned that the world is running two years behind schedule to finalize a new global framework on biodiversity conservation. They say the delay to the agreement, which aims to halt the alarming rate of species extinctions and protect vulnerable ecosystems, has consequences for countries’ abilities to meet ambitious targets to protect biodiversity over the next decade. Representatives from almost 200 member states of the United Nations’ Convention on Biological Diversity (CBD) were set to meet in Kunming, China, in October 2020, to finalize a draft agreement. It includes 21 conservation targets, such as protecting 30% of the world’s land and seas. But the meeting, called the 15th Conference of the Parties, was cancelled because of the COVID-19 pandemic and has been postponed several times since.The conference is tentatively rescheduled for late August or early September, but China — which as the conference president is also the host — hasn’t confirmed the date. And now the country’s strict COVID-19 lockdown in Shanghai and rising cases of the virus in Beijing have put that meeting in doubt, too.Researchers say the delay in finalizing the agreement is stalling conservation work, especially in countries that rely on funds committed by wealthier nations to achieve the targets. The almost two-year hold-up means that countries will have less time to meet the agreement’s 2030 deadline. “We now have eight years to do more, whilst many countries are facing a recession and trying to prioritize economic recovery,” says Alice Hughes, a conservation biologist at the University of Hong Kong. “The longer we wait, the more diversity is lost.”A 2019 report estimated that roughly one million species of plants and animals face extinction, many within decades. In the past 2 years alone, the International Union for Conservation of Nature’s Red List has classified more than 100 species as extinct, including the large sloth lemur (Palaeopropithecus ingens), the Guam flying fox (Pteropus tokudae) and the Yunnan lake newt (Cynops wolterstorffi). Sparse monitoring means that the true scale of species and habitat loss is unknown, says Hughes. On top of that, tropical forests, especially in Brazil, are disappearing fast, environmental safeguards have been relaxed in some regions, and researchers have documented escalated poaching of plants driven by unemployment during the pandemic. “Every year we continue to lose biodiversity at an unprecedented and unacceptable rate, undermining nature and human well-being,” says Robert Watson, a retired environmental scientist formerly at the University of East Anglia in Norwich, UK.Releasing fundsThe importance of a global agreement on biodiversity cannot be overstated, says Aban Marker Kabraji, an adviser to the United Nations on biodiversity and climate change. These agreements spur action — for example, governments might hold off on updating or developing their national strategies until after they are settled. “It is extremely important that these meetings take place in the cycle in which they’re planned,” says Kabraji.Global agreements also lead to the release of funds earmarked to help countries to meet their biodiversity goals, such as through the Global Environment Facility, says Hughes. At a preparatory meeting in October 2021, Chinese President Xi Jinping committed 1.5 billion yuan (US$223 million) towards a Kunming Biodiversity Fund to support developing countries in protecting their biodiversity, but details about those funds have yet to be released.Funding delays will be felt especially in “countries which have the highest levels of biodiversity and the fewest resources to actually conserve it”, says Kabraji.Meeting uncertainThe CBD secretariat in Montreal, Canada, has said that the Kunming conference will take place in the third quarter of 2022, but it is waiting on China to confirm dates. David Ainsworth, information officer for the secretariat, says preparations for the meeting are under way, including plans for meeting participants to be isolated from local residents, similar to the process for the Winter Olympics in Beijing in February. There are provisions for the event to be held in another location if a host has to back out, but Ainsworth says there are no official plans to do that yet. Conference officials, including representatives from China, were due to meet on 19 May to discuss the date and location of the summit, he says. A decision to relocate the meeting would require China’s approval, which it is unlikely to agree to, say researchers. But sticking to having the meeting in Kunming could delay it further, owing to China’s strict lockdowns that have brought cities to a standstill. Several major sports events scheduled for later this year, including the Asian Games in Hangzhou, have already been postponed. The meeting will probably be pushed to after September or even next year, says Ma Keping, an ecologist at the Chinese Academy of Sciences Institute of Botany in Beijing.Some researchers say that the world should wait for China to host the meeting — whenever that will be — and that its leadership is important for the success of negotiations. “The Chinese government has worked very hard to prepare such a meeting,” says Ma. “It should happen in China.”Others think that it is more important that the meeting happens this year — whether in China or not. Facilities to host such a meeting exist in Rome, Nairobi and Montreal. “Any of these places would be preferable to indefinite further delays,” says Hughes.“A further delay sends a problematic signal that habitat loss and species extinction can somehow wait,” says Li Shuo, a policy adviser at Greenpeace China in Beijing.Regardless of when and where the meeting happens, researchers say what’s most important is that the world agrees to ambitious biodiversity goals and delivers on them. The two-year delay has given countries more time to develop the draft framework, but countries have yet to agree to many of the terms, or to figure out how to finance and monitor the work. There are “significant disagreements still on just about every aspect of every target,” says Anne Larigauderie, executive secretary of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services in Bonn, Germany. Nations will meet again only once more — in Nairobi, Kenya, in June — before the agreement is expected to be finalized at the summit in Kunming. More

  • in

    Reply to “Marine abundance and its prehistoric past in the Baltic”

    Hausmann, N., Robson, H. K. & Bailey, G. Marine abundance and its past in the Baltic: a response to Lewis and co-authors. Nat. Commun. Matters Arising (submitted).Lewis, J. P. et al. Marine resource abundance drove pre-agricultural population increase in Stone Age Scandinavia. Nat. Commun. 11, 2006 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Fischer, A. et al. Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J. Archaeol.Sci. 34, 2125–2150 (2007).Article 

    Google Scholar 
    Stein, J. K., Deo, J. N. & Phillips, L. S. Big sites—short time: accumulation rates in archaeological sites. J. Archaeol. Sci. 30, 297–316 (2003).Article 

    Google Scholar 
    Andersen, S. H. In Shell Middens in Atlantic Europe (eds N. Milner, O. E. Craig, & G.N Bailey) 31–45 (Oxbow Books, 2007).Cloern, J. E., Foster, S. Q. & Kleckner, A. E. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11, 2477–2501 (2014).ADS 
    Article 

    Google Scholar 
    Bennike, O. & Jensen, J. B. Postglacial, relative shore-level changes in Lillebælt, Denmark. Geol. Surv. Den. Greenl. Bull. 23, 37–40 (2011).
    Google Scholar 
    Bjørnsen, M., Clemmensen, L. B., Murray, A. & Pedersen, K. New evidence of the Littorina transgressions in the Kattegat: Optically stimulated luminescence dating of a beach ridge system on Anholt, Denmark. Boreas 37, 157–168 (2008).Article 

    Google Scholar 
    Berglund, B. E. et al. Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat. Int. 130, 111–139 (2005).Article 

    Google Scholar 
    Bailey, G., Andersen, S. H. & Maarleveld, T. J. In The Archaeology of Europe’s Drowned Landscapes Coastal Research Library (eds G. Bailey et al.) (2020).Bennike, O., Andresen, K. T., Astrup, P. M., Olsen, J. & Seidenkrantz, M.-S. Late Glacial and Holocene shore-level changes in the Aarhus Bugt area, Denmark. GEUS Bull. 47, 6530 (2021).Article 

    Google Scholar 
    Rowley-Conwy, P. The laziness of the short-distance hunter: the origins of agriculture in western Denmark. J. Anthropol. Archaeol. 3, 300–324 (1984).Article 

    Google Scholar 
    Milner, N. In The Archaeology and Historical Ecology of Small Scale Economies (eds V. D. Thompson & J. C. Waggoner Jr.) 16–39 (University Press of Florida, 2013).Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).ADS 
    Article 

    Google Scholar 
    Lewis, J. P. et al. The shellfish enigma across the Mesolithic-Neolithic transition in southern Scandinavia. Quat. Sci. Rev. 151, 315–320 (2016).ADS 
    Article 

    Google Scholar 
    Robson, H. K. & Ritchie, K. In Working at the sharp end: from bone and antler to Early Mesolithic life in Northern Europe 10 (eds D. Groß, D. Jantzen, H. Lübke, & J. Meadows) 289–303 (Wachholtz-Verlag, 2020).Aaris-Sørensen, K. Diversity and dynamics of the mammalian fauna in Denmark Throughout the last glacial-interglacial cycle, 115-0 kyr BP. Foss. Strat. 57, 1–59 (2009).
    Google Scholar 
    Boethius, A. & Ahlström, T. Fish and resilience among Early Holocene foragers of southern Scandinavia: A fusion of stable isotopes and zooarchaeology through Bayesian mixing modelling. J. Archaeol. Sci. 93, 196–210 (2018).Article 

    Google Scholar 
    Bennike, O., Jensen, J. B., Lemke, W., Kuijpers, A. & Lomholt, S. Late- and postglacial history of the Great Belt, Denmark. Boreas 33, 18–33 (2004).Article 

    Google Scholar 
    Bennike, O., Andreasen, M. S., Jensen, J. B., Moros, M. & Noe-Nygaard, N. Early Holocene sea-level changes in Øresund, southern Scandinavia. Geol. Surv. Den. Greenl. Bull. 26, 29–32, www.geus.dk/publications/bull (2012).
    Google Scholar 
    Boethius, A., Kjällquist, M., Kielman-Schmitt, M., Ahlström, T. & Larsson, L. Early Holocene Scandinavian foragers on a journey to affluence: Mesolithic fish exploitation, seasonal abundance and storage investigated through strontium isotope ratios by laser ablation (LA‐MC-ICP‐MS). PLoS ONE 16, e0245222 (2021).CAS 
    Article 

    Google Scholar 
    Petersen, E. B. & Meiklejohn, C. Historical context of the term ‘Complexity’. Acta Archaeol. 78, 181–192 (2007).Article 

    Google Scholar 
    Bennike, O., Nørgaard-Pedersen, N., Jensen, J. B., Andresen, K. J. & Seidenkrantz, M.-S. Development of the western Limfjord, Denmark, after the last deglaciation: a review with new data. Bull. Geol. Soc. Den. 67, 53–73 (2019).
    Google Scholar 
    Clemmensen, L. B., Murray, A. S. & Nielsen, L. Quantitative constraints on the sea-level fall that terminated the Littorina Sea Stage, southern Scandinavia. Quat. Sci. Rev. 40, 54–63 (2012).ADS 
    Article 

    Google Scholar 
    Mörner, N.-A. Eustatic changes during the last 8,000 years in view of radiocarbon calibration and new information from the Kattegatt region and other northwestern European coastal areas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 19, 63–85 (1976).Article 

    Google Scholar 
    Schrøder, N. The Kattegat Island of Anholt: sea-level changes and groundwater formation on an island. J. Transdisciplinary Environ. Stud. 14, 27–49 (2015).
    Google Scholar 
    Christensen, C. In Denmarks Hunting Stone Age—status and perspectives (eds O. L. Jensen, S. A. Sørensen, & K. M. Hansen) 183–193 (Hørsholm Egns Museum, 2001).Lambeck, K., Rouby, H., Purcell, Y. S. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. U.S.A. 111, 15296–15303 (2014).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Dynamic character displacement among a pair of bacterial phyllosphere commensals in situ

    Brown, W. L. Jr. & Wilson, E. O. Character displacement. Syst. Biol. 5, 49–64 (1956).
    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).PubMed 
    Article 

    Google Scholar 
    Schluter, D. & McPhail, J. D. Ecological character displacement and speciation in sticklebacks. Am. Nat. 140, 85–108 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).ADS 
    Article 

    Google Scholar 
    Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W., Rice, A. M. & Martin, R. A. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87, 769–779 (2006).PubMed 
    Article 

    Google Scholar 
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    Day, T. & Young, K. A. Competitive and facilitative evolutionary diversification. Bioscience 54, 101–109 (2004).Article 

    Google Scholar 
    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235–246 (2001).Article 

    Google Scholar 
    Stuart, Y. E., Inkpen, S. A., Hopkins, R. & Bolnick, D. I. Character displacement is a pattern: so, what causes it? Biol. J. Linn. Soc. 121, 711–715 (2017).Article 

    Google Scholar 
    Brockhurst, M. A., Hochberg, M. E., Bell, T. & Buckling, A. Character displacement promotes cooperation in bacterial biofilms. Curr. Biol. 16, 2030–2034 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellis, C. N., Traverse, C. C., Mayo-Smith, L., Buskirk, S. W. & Cooper, V. S. Character displacement and the evolution of niche complementarity in a model biofilm community. Evolution 69, 283–293 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rainey, P. B., Buckling, A., Kassen, R. & Travisano, M. The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol. Evol. 15, 243–247 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turner, P. E., Souza, V. & Lenski, R. E. Tests of ecological mechanisms promoting the stable coexistence of two bacterial genotypes. Ecology 77, 2119–2129 (1996).Article 

    Google Scholar 
    Xavier, J. B. & Foster, K. R. Cooperation and conflict in microbial biofilms. Proc. Natl. Acad. Sci. USA 104, 876–881 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Westeberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Evol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Development and evolution of character displacement. Ann NY Acad Sci. 1256, 89–107 (2012).ADS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas Gonzalez, I. & Dangl, J. L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155–163 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlaeppi, K. & Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212–217 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leveau, J. H. & Lindow, S. E. Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc. Natl. Acad. Sci. USA 98, 3446–3453 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lindow, S. E. & Leveau, J. H. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13, 238–243 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, K. M. & Leveau, J. H. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168, 621–629 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA 106, 16428–16433 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlstrom, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 22, 142–155 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bodenhausen, N., Horton, M. W. & Bergelson, J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8, e56329 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Roman-Reyna, V. et al. Characterization of the leaf microbiome from whole-genome sequencing data of the 3000 rice genomes project. Rice (NY) 13, 72 (2020).Article 

    Google Scholar 
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio. 6, e02527–14 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Laforest-Lapointe, I. & Whitaker, B. K. Decrypting the phyllosphere microbiota: progress and challenges. Am. J. Bot. 106, 171–173 (2019).PubMed 

    Google Scholar 
    Baldotto, L. E. B. & Olivares, F. L. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can. J. Microbiol. 54, 918–931 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monier, J. M. & Lindow, S. E. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc. Natl. Acad. Sci. USA 100, 15977–15982 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monier, J. M. & Lindow, S. E. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl. Environ. Microbiol. 70, 346–355 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, C. E., Monier, J. M. & Jacques, M. A. A technique To quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl. Environ. Microbiol. 64, 4789–4795 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N. P. & Schlechter, R. O. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol. 218, 1327–1333 (2018).PubMed 
    Article 

    Google Scholar 
    Gourion, B., Rossignol, M. & Vorholt, J. A. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc. Natl. Acad. Sci. USA 103, 13186–13191 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jacobs, J. L., Carroll, T. L. & Sundin, G. W. The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb. Ecol. 49, 104–113 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, D. B., Schubert, O. T., Rost, H., Aebersold, R. & Vorholt, J. A. Systems-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. Mol. Cell. Proteom. 15, 3256–3269 (2016).Article 
    CAS 

    Google Scholar 
    Ochsner, A. M. et al. Use of rare-earth elements in the phyllosphere colonizer Methylobacterium extorquens PA1. Mol. Microbiol. 111, 1152–1166 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helmann, T. C., Deutschbauer, A. M. & Lindow, S. E. Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast. Proc. Natl. Acad. Sci. USA 116, 18900–18910 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl. Acad. Sci. USA 115, E3055–E3064 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pulawska, J. et al. Transcriptome analysis of Xanthomonas fragariae in strawberry leaves. Sci. Rep. 10, 20582 (2020).Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vogel, C., Innerebner, G., Zingg, J., Guder, J. & Vorholt, J. A. Forward genetic in planta screen for identification of plant-protective traits of Sphingomonas sp Strain Fr1 against Pseudomonas syringae DC3000. Appl. Environ. Microbiol. 78, 5529–5535 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryffel, F. et al. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J. 10, 632–643 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maier, B. A. et al. A general non-self response as part of plant immunity. Nat. Plants 7, 696–705 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breton, C., Snajdrova, L., Jeanneau, C., Koca, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29r–37r (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tao, F., Swarup, S. & Zhang, L. H. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ. Microbiol. 12, 3159–3170 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou, M. X., Zhu, F., Dong, S. L., Pritchard, D. G. & Wu, H. A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis. J. Biol. Chem. 285, 12140–12148 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, A. et al. Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. J. Mol. Microbiol. Biotechnol. 4, 187–190 (2002).CAS 
    PubMed 

    Google Scholar 
    Halder, U., Banerjee, A. & Bandopadhyay, R. Structural and functional properties, biosynthesis, and patenting trends of bacterial succinoglycan: a review. Indian J. Microbiol. 57, 278–284 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niehaus, K. & Becker, A. The role of microbial surface polysaccharides in the Rhizobium-legume interaction. Sub-Cell. Biochem. 29, 73–116 (1998).CAS 
    Article 

    Google Scholar 
    Ellis, H. R. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg. Chem. 39, 178–184 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marco, M. L., Legac, J. & Lindow, S. E. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ. Microbiol. 7, 1379–1391 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu, X. L. et al. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc. Natl. Acad. Sci. USA 110, E425–E434 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cai, S. J. & Inouye, M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem. 277, 24155–24161 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freeman, B. C. et al. Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J. Bacteriol. 195, 4742–4752 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheublin, T. R. et al. Transcriptional profiling of gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ. Microbiol. 16, 2212–2225 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hopsu-Havu, V. K. & Glenner, G. G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7, 197–201 (1966).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kavi Kishor, P. B., Hima Kumari, P., Sunita, M. S. & Sreenivasulu, N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 6, 544 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chipperfield, J. R. & Ratledge, C. Salicylic acid is not a bacterial siderophore: a theoretical study. Biometals 13, 165–168 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visca, P., Ciervo, A., Sanfilippo, V. & Orsi, N. Iron-regulated salicylate synthesis by Pseudomonas Spp. J. Gen. Microbiol. 139, 1995–2001 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seifert, G. J., Barber, C., Wells, B., Dolan, L. & Roberts, K. Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr. Biol. 12, 1840–1845 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zablackis, E., Huang, J., Muller, B., Darvill, A. G. & Albersheim, P. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107, 1129–1138 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos-Beneit, F. The Pho regulon: a huge regulatory network in bacteria. Front. Microbiol. 6, 402 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mortimer, J. C. et al. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. Plant J. 83, 413–426 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Honer Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181, 7161–7167 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reinscheid, D. J., Eikmanns, B. J. & Sahm, H. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J. Bacteriol. 176, 3474–3483 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Groisman, E. A., Chiao, E., Lipps, C. J. & Heffron, F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86, 7077–7081 (1989).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamarche, M. G., Wanner, B. L., Crepin, S. & Harel, J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461–473 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jameson, G. N., Cosper, M. M., Hernandez, H. L., Johnson, M. K. & Huynh, B. H. Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry 43, 2022–2031 (2004).Sirithanakorn, C. & Cronan, J. E. Biotin, a universal and essential cofactor: synthesis, ligation and regulation. FEMS Microbiol. Rev. 45, fuab003 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Choi-Rhee, E. & Cronan, J. E. Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. Chem. Biol. 12, 461–468 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilmes, P. et al. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J. 2, 853–864 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beier, S., Rivers, A. R., Moran, M. A. & Obernosterer, I. Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures. ISME J. 9, 1141–1151 (2015).PubMed 
    Article 

    Google Scholar 
    Kim, H. et al. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736 (1998).Article 

    Google Scholar 
    Singh, P., Santoni, S., Weber, A., This, P. & Peros, J. P. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures. Sci. Rep. 9, 14294 (2019).Kosma, D. K. et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 151, 1918–1929 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piffeteau, A. & Gaudry, M. Biotin uptake: influx, efflux and countertransport in Escherichia coli K12. Biochim. Biophys. Acta 816, 77–82 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Souza, G. et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68, 2559–2570 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hassani, M. A., Duran, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mas, A., Jamshidi, S., Lagadeuc, Y., Eveillard, D. & Vandenkoornhuyse, P. Beyond the black queen hypothesis. ISME J. 10, 2085–2091 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pacheco, A. R., Moel, M. & Segre, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Joyner, D. C. & Lindow, S. E. Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiol. 146, 2435–2445 (2000).CAS 
    Article 

    Google Scholar 
    Remus-Emsermann, M. N., de Oliveira, S., Schreiber, L. & Leveau, J. H. Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles. Front. Microbiol. 2, 197 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Remus-Emsermann, M. N. P., Tecon, R., Kowalchuk, G. A. & Leveau, J. H. J. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 6, 756–765 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peredo, E. L. & Simmons, S. L. Leaf-FISH: microscale imaging of bacterial taxa on phyllosphere. Front. Microbiol. 8, 2669 (2018).Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ledermann, R., Strebel, S., Kampik, C. & Fischer, H. M. Versatile vectors for efficient mutagenesis of Bradyrhizobium diazoefficiens and other alphaproteobacteria. Appl. Environ. Microbiol. 82, 2791–2799 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roux, M. et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Staswick, P. E., Tiryaki, I. & Rowe, M. L. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Torres, M. A., Dangl, J. L. & Jones, J. D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517–522 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. & Dong, X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlesier, B., Breton, F. & Mock, H. P. A hydroponic culture system for growing Arabidopsis thaliana plantlets under sterile conditions. Plant Mol. Biol. Rep. 21, 449–456 (2003).CAS 
    Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hemmerle, L., Ochsner, A. M., Vonderach, T., Hattendorf, B. & Vorholt, J. A. Mass spectrometry-based approaches to study lanthanides and lanthanide-dependent proteins in the phyllosphere. Methods Enzymol. 650, 215–236 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Uhrig, R. G. et al. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Plant Cell Environ. 44, 821–841 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis, J. J. et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res. 48, D606–D612 (2020).CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Synthesis of palaeoecological data from the Polish Lowlands suggests heterogeneous patterns of old-growth forest loss after the Migration Period

    Giesecke, T. et al. Towards mapping the late Quaternary vegetation change of Europe. Veg. Hist. Archaeobot. 23, 75–86. https://doi.org/10.1007/s00334-012-0390-y (2013).Article 

    Google Scholar 
    Fyfe, R. M., Woodbridge, J. & Roberts, N. From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. Glob. Chang. Biol. 21, 1197–1212. https://doi.org/10.1111/gcb.12776 (2015).Article 
    PubMed 

    Google Scholar 
    Gilliam, F. S. Forest ecosystems of temperate climatic regions: From ancient use to climate change. New Phytol. 212, 871–887. https://doi.org/10.1111/nph.14255 (2016).Article 
    PubMed 

    Google Scholar 
    Jamrichová, E. et al. Human impact on open temperate woodlands during the middle Holocene in Central Europe. Rev. Palaeobot. Palynol. 245, 55–68. https://doi.org/10.1016/j.revpalbo.2017.06.002 (2017).Article 

    Google Scholar 
    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quatern. Sci. Rev. 28, 3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028 (2009).Article 

    Google Scholar 
    Kalis, A. J., Merkt, J. & Wunderlich, J. Environmental changes during the Holocene climatic optimum in central Europe—human impact and natural causes. Quatern. Sci. Rev. 22, 33–79. https://doi.org/10.1016/S0277-3791(02)00181-6 (2003).Article 

    Google Scholar 
    Molinari, C. et al. Exploring potential drivers of European biomass burning over the Holocene: A data-model analysis. Glob. Ecol. Biogeogr. 22, 1248–1260. https://doi.org/10.1111/geb.12090 (2013).Article 

    Google Scholar 
    Roberts, N. et al. Europe’s lost forests: A pollen-based synthesis for the last 11,000 years. Sci. Rep. 8, 716. https://doi.org/10.1038/s41598-017-18646-7 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. USA 118. https://doi.org/10.1073/pnas.2023483118 (2021).Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1010–1035. https://doi.org/10.1098/rsta.2010.0331 (2011).Article 
    PubMed 

    Google Scholar 
    Drake, B. L. Changes in North Atlantic Oscillation drove Population Migrations and the Collapse of the Western Roman Empire. Sci. Rep. 7, 1227. https://doi.org/10.1038/s41598-017-01289-z (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enters, D., Dörfler, W. & Zolitschka, B. Historical soil erosion and land-use change during the last two millennia recorded in lake sediments of Frickenhauser See, northern Bavaria, central Germany. The Holocene 18, 243–254. https://doi.org/10.1177/0959683607086762 (2008).Article 

    Google Scholar 
    Haldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc. Natl. Acad. Sci. USA 115, 3210–3218. https://doi.org/10.1073/pnas.1716912115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yeloff, D. & van Geel, B. Abandonment of farmland and vegetation succession following the Eurasian plague pandemic of ad 1347?52. J. Biogeogr. 34, 575–582. https://doi.org/10.1111/j.1365-2699.2006.01674.x (2007).Article 

    Google Scholar 
    Alt, K. W. et al. Lombards on the Move—An Integrative Study of the Migration Period Cemetery at Szólád Hungary. PLoS ONE 9, e110793. https://doi.org/10.1371/journal.pone.0110793 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pohl, W. in Ethnicity as a Political Resource Conceptualizations across Disciplines, Regions, and Periods (ed Resource« University of Cologne Forum »Ethnicity as a Political) 201–208 (Transcript Verlag, 2015).Dreibrodt, S. & Wiethold, J. Lake Belau and its catchment (northern Germany): A key archive of environmental history in northern central Europe since the onset of agriculture. The Holocene 25, 296–322. https://doi.org/10.1177/0959683614558648 (2014).Article 

    Google Scholar 
    Dreßler, M. et al. Environmental changes and the Migration Period in northern Germany as reflected in the sediments of Lake Dudinghausen. Quatern. Res. 66, 25–37. https://doi.org/10.1016/j.yqres.2006.02.007 (2017).CAS 
    Article 

    Google Scholar 
    Leuschner, C. & Ellenberg, H. in Ecology of Central European Forests: Vegetation Ecology of Central Europe, Volume I (eds Christoph Leuschner & Heinz Ellenberg) 31–116 (Springer International Publishing, 2017).Pędziszewska, A. et al. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 137–198 (Brill, 2020).Mączyńska, M. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 201–224 (Brill, 2020).Lamentowicz, M. et al. Reconstructing climate change and ombrotrophic bog development during the last 4000years in northern Poland using biotic proxies, stable isotopes and trait-based approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 418, 261–277. https://doi.org/10.1016/j.palaeo.2014.11.015 (2015).Article 

    Google Scholar 
    Makohonienko, M. in Late Glacial and Holocene history of vegetation in Poland based on isopollen maps (eds M. Ralska-Jasiewiczowa et al.) 411–416 (W. Szafer Institute of Botany, Polish Academy of Sciences, 2004).Ralska-Jasiewiczowa, M., Nalepka, D. & Goslar, T. Some problems of forest transformation at the transition to the oligocratic/ Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veg. Hist. Archaeobot. 12, 233–247. https://doi.org/10.1007/s00334-003-0021-8 (2003).Article 

    Google Scholar 
    Moździoch, M. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 123–167 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Wołoszyn, M. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 84–136 (Brill, 2020).Karczewski, M. Archeologia środowiska zachodniobałtyjskiego kręgu kulturowego na pojezierzach. (Bogucki Wydawnictwo Naukowe, 2011).Nowakiewicz, T. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages (eds P. Urbańczyk & M. Trzeciecki) 170–217 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Okulicz-Kozaryn, Ł. Dzieje Prusów (Wydawnictwo Monografie FNP, 1997).Okulicz, J. Osadnictwo ziem pruskich od czasów najdawniejszych do XIII wieku. Dzieje Warmii i Mazur w zarysie (Polskie Wydawnictwo Naukowe, 1981).Ralska-Jasiewiczowa, M. Correlation between the Holocene history of the Carpinus betulus and prehistoric settlement in North Poland. Acta Soc. Bot. Pol. 33, 461–468 (1964).Article 

    Google Scholar 
    Noryśkiewicz, A. M. Historia roślinności i osadnictwa ziemi chełmińskiej w późnym holocenie. Studium palinologiczne. (Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2013).Ralska-Jasiewiczowa, M. L., M. et al. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2004).Brown, A., Poska, A. & Pluskowski, A. The environmental impact of cultural change: Palynological and quantitative land cover reconstructions for the last two millennia in northern Poland. Quatern. Int. 522, 38–54. https://doi.org/10.1016/j.quaint.2019.05.014 (2019).Article 

    Google Scholar 
    Wacnik, A., Goslar, T. & Czernik, J. Vegetation changes caused by agricultural societies in the Great Mazurian Lake District. Acta Palaeobotanica 52, 59–104 (2012).
    Google Scholar 
    Pędziszewska, A. et al. Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Rev. Palaeobot. Palynol. 216, 55–75. https://doi.org/10.1016/j.revpalbo.2015.01.008 (2015).Article 

    Google Scholar 
    Słowiński, M. et al. The role of Medieval road operation on cultural landscape transformation. Sci. Rep. 11, 20876. https://doi.org/10.1038/s41598-021-00090-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gałka, M., Tobolski, K., Zawisza, E. & Goslar, T. Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data. Veg. Hist. Archaeobotany 23, 123–152. https://doi.org/10.1007/s00334-013-0401-7 (2013).Article 

    Google Scholar 
    Marks, L. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quatern. Sci. Rev. 44, 81–88. https://doi.org/10.1016/j.quascirev.2010.08.008 (2012).Article 

    Google Scholar 
    Woś, A. Klimat Polski. (Wydawnictwo Naukowe PWN, 1999).Matuszkiewicz, W. et al. Potential natural vegetation of Poland. General map 1:300 000. (IGiPZ PAN, 1995).Zając, A. & Zając, M. Atlas rozmieszczenia roślin naczyniowych w Polsce. Distribution Atlas of Vascular Plants in Poland. (Nakładem Pracowni Chorologii Komputerowej Instytutu Botaniki UJ, 2001).Matuszkiewicz, J. M. & Solon, J. Przestrzenne zróżnicowanie i cechy charakterystyczne krajobrazów Polski w ujęciu geobotanicznym. Problemy Ekologii Krajobrazu XL, 85–101 (2015).Broda, J. Historia leśnictwa w Polsce. (Wydaw. Akademii Rolniczej im. Augusta Cieszkowskiego, 2000).Rozkrut, D. et al. Statistical Yearbook of Forestry. (Główny Urząd Statystyczny, 2020).Lamentowicz, M. et al. Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine. Boreas 38, 214–229. https://doi.org/10.1111/j.1502-3885.2008.00047.x (2009).Article 

    Google Scholar 
    Lamentowicz, M. et al. How Joannites’ economy eradicated primeval forest and created anthroecosystems in medieval Central Europe. Sci. Rep. 10, 18775. https://doi.org/10.1038/s41598-020-75692-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Czerwiński, S. et al. Environmental implications of past socioeconomic events in Greater Poland during the last 1200 years. Synthesis of paleoecological and historical data. Quatern. Sci. Rev. 259. https://doi.org/10.1016/j.quascirev.2021.106902 (2021).Ralska-Jasiewiczowa, M., van Geel, B. & Demsk, D. in Lake Gościąż, central Poland: a monographic study. Part 1 (eds M. Ralska-Jasiewiczowa, T. Goslar, T. Madeyska, & L. Starkel) (W. Szafer Institute of Botany, Polish Academy of Sciences, 1998).Lamentowicz, M. et al. Multiproxy study of anthropogenic and climatic changes in the last two millennia from a small mire in central Poland. Hydrobiologia 631, 213–230. https://doi.org/10.1007/s10750-009-9812-y (2009).Article 

    Google Scholar 
    Pędziszewska, A. & Latałowa, M. Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Veget. History Archaeobot. 25, 239–254. https://doi.org/10.1007/s00334-015-0546-7 (2016).Lamentowicz, M., Gałka, M., Pawlyta, J., Lamentowicz, Ł. G., Tomasz & Miotk-Szpiganowicz, G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Studia Quaternaria 28, 3–16 (2011).Cywa, K. Trees and shrubs used in medieval Poland for making everyday objects. Veg. Hist. Archaeobotany 27, 111–136. https://doi.org/10.1007/s00334-017-0644-9 (2018).Article 

    Google Scholar 
    Dzieduszycki, W. Wykorzystywanie surowca drzewnego we wczesnośredniowiecznej i średniowiecznej Kruszwicy. Kwartalnik Historii Kultury Materialnej, 35–54 (1976).Kara, M. & Przybył, M. Wczesnośredniowieczne grodzisko wklęsłe w Bninie koło Poznania w świetle dotychczasowych ustaleń dendrochronologicznych. Folia Prahistorica Posnaniensia 10, 255–268 (2003).Article 

    Google Scholar 
    Gałka, M. et al. Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae. Quatern. Sci. Rev. 156, 90–106. https://doi.org/10.1016/j.quascirev.2016.11.034 (2017).Article 

    Google Scholar 
    Kinder, M. et al. Holocene history of human impacts inferred from annually laminated sediments in Lake Szurpiły, northeast Poland. J. Paleolimnol. 61, 419–435. https://doi.org/10.1007/s10933-019-00068-2 (2019).Article 

    Google Scholar 
    Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C. & Lamentowicz, M. Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene. Quatern. Sci. Rev. 231, 106180. https://doi.org/10.1016/j.quascirev.2020.106180 (2020).Article 

    Google Scholar 
    Wacnik, A. et al. Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: Combined pollen, geochemical and historical data. Veg. Hist. Archaeobotany 25, 479–498. https://doi.org/10.1007/s00334-016-0565-z (2016).Article 

    Google Scholar 
    Szal, M., Kupryjanowicz, M., Tylmann, W. & Piotrowska, N. Was it ‘terra desolata’? Conquering and colonizing the medieval Prussian wilderness in the context of climate change. The Holocene 27, 465–480. https://doi.org/10.1177/0959683616660167 (2016).Article 

    Google Scholar 
    Szal, M., Kupryjanowicz, M., Wyczółkowski, M. & Tylmann, W. The Iron Age in the Mrągowo Lake District, Masuria, NE Poland: the Salęt settlement microregion as an example of long-lasting human impact on vegetation. Veg. Hist. Archaeobotany 23, 419–437. https://doi.org/10.1007/s00334-014-0465-z (2014).Article 

    Google Scholar 
    Brown, A. et al. The ecological impact of conquest and colonization on a medieval frontier landscape: Combined Palynological and geochemical analysis of lake sediments from Radzyń Chełminski Northern Poland. Geoarchaeology 30, 511–527. https://doi.org/10.1002/gea.21525 (2015).Article 

    Google Scholar 
    Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quatern. Res. 89, 156–177. https://doi.org/10.1017/qua.2017.105 (2018).Article 

    Google Scholar 
    Marcisz, K. et al. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quatern. Sci. Rev. 112, 138–152. https://doi.org/10.1016/j.quascirev.2015.01.019 (2015).Article 

    Google Scholar 
    Milecka, K., Gałka, M. & Lamentowicz, M. Regionalna i lokalna sukcesja roślinności w Dolinie Stążki na podstawie analizy pyłkowej. Stud. Limnol. Telmatol. 6, 61–69 (2012).
    Google Scholar 
    Lamentowicz, M. et al. A 1300-year multi-proxy, high-resolution record from a rich fen in northern Poland: reconstructing hydrology, land use and climate change. J. Quat. Sci. 28, 582–594. https://doi.org/10.1002/jqs.2650 (2013).Article 

    Google Scholar 
    Lamentowicz, M. et al. Always on the tipping point—A search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quat. Sci. Rev. 225. https://doi.org/10.1016/j.quascirev.2019.105954 (2019).Wacnik, A., Kupryjanowicz, M., Mueller-Bieniek, A., Karczewski, M. & Cywa, K. The environmental and cultural contexts of the late Iron Age and medieval settlement in the Mazurian Lake District, NE Poland: combined palaeobotanical and archaeological data. Veg. Hist. Archaeobotany 23, 439–459. https://doi.org/10.1007/s00334-014-0458-y (2014).Article 

    Google Scholar 
    Gałka, M. et al. Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high-resolution multi-proxy peat archive. The Holocene 25, 421–434. https://doi.org/10.1177/0959683614561887 (2014).Article 

    Google Scholar 
    Latałowa, M., Zimny, M., Jędrzejewska, B. & Samojlik, T. in Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (eds K.J. Kirby & C. Watkins) Ch. 17, 243–263 (CAB International, 2015).Słowiński, M. et al. Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manage. 236, 755–768. https://doi.org/10.1016/j.jenvman.2019.02.002 (2019).Article 
    PubMed 

    Google Scholar 
    Żarczyński, M., Wacnik, A. & Tylmann, W. Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved sediments: 2000 year-long record of human-induced changes from Lake Żabińskie (NE Poland). Sci. Total Environ. 657, 585–596. https://doi.org/10.1016/j.scitotenv.2018.12.078 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wirth, C., Messier, C., Bergeron, Y., Frank, D. & Fankhänel, A. Old-Growth Forest Definitions: a Pragmatic View. 11–33 (Springer Berlin Heidelberg, 2009).Kołaczek, P. M., K. et al. in 20th Congress of the International Union for Quaternary Research (INQUA) (Dublin, Ireland, 2019).Szmoniewski, B. S. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages. Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 21–74 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Moździoch, M., Chudziak, W. & Poleski, J. Atlas grodzisk wczesnośredniowiecznych z obszaru Polski, 2015).Trzeciecki, M. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages. Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 277–341 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Faliński, J. B. & Pawlaczyk, P. in Grab zwyczajny – Carpinus betulus L. Nasze drzewa leśne, monografie popularnonaukowe Vol. 9 (ed W. Bugała) 157–264 (Polska Akademia Nauk, Instytut Dendrologii, „Sorus”,, 1993).Sikkema, R., Caudullo, G. & de Rigo, D. in European Atlas of Forest Tree Species (eds J. San-Miguel-Ayanz et al.) (Publ. Off. EU, 2016).Hensel, W. Słowiańszczyzna Wczesnośredniowieczna. Zarys kultury materialnej. (Państwowe Wydawnictwo Naukowe, 1987).Jørgensen, D. Pigs and Pollards: Medieval insights for UK wood pasture restoration. Sustainability 5, 387–399. https://doi.org/10.3390/su5020387 (2013).Article 

    Google Scholar 
    Plieninger, T. et al. Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biol. Cons. 190, 70–79. https://doi.org/10.1016/j.biocon.2015.05.014 (2015).Article 

    Google Scholar 
    Watkins, A. Cattle grazing in the forest of arden in the later middle ages. Agric. Hist. Rev. 37, 12–25 (1989).
    Google Scholar 
    Ładowski, S. Dykcyonarz służący do poznania historyi naturalney y rożnych osobliwszych starożytności, ktore ciekawi w gabinetach znayduią Vol. 2 (1783).Tobolski, K. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Litt, T. & Tobolski, K. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (1991).Makohonienko, M. Przyrodnicza historia Gniezna. (Homini, 2000).Makohonienko, M. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Filbrandt, A. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Pidek, I. A. Carpinus betulus pollen accumulation rates in Roztocze (SE Poland) in relation to presence of Carpinus in Ferdynandovian pollen diagrams. Ecol. Quest. 26, 95–101 (2017).
    Google Scholar 
    Wiśniewski, J. in Studia I Materiały Do Dziejów Suwalszczyzny (ed J. Antoniewicz) 51–138 (Prace Białostockiego Towarzystwa Naukowego Nr 4, Białostockie Towarzystwo Naukowe,, 1965).Biskup, M. et al. Państwo zakonu krzyżackiego w Prusach. Władza i społeczeństwo. (Państwowe Wydawnictwo Naukowe PWN, 2008).Pluskowski, A. The archaeology of the Prussian Crusade: Holy War and colonisation. (2012).Marcisz, K. et al. Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur. J. Protistol. 50, 445–455. https://doi.org/10.1016/j.ejop.2014.07.001 (2014).Article 
    PubMed 

    Google Scholar 
    Marcisz, K. et al. Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic–continental climatic gradient in northern Poland. Quatern. Sci. Rev. 177, 145–157. https://doi.org/10.1016/j.quascirev.2017.10.018 (2017).Article 

    Google Scholar 
    Boratyńska, K. in Biology and Ecology of Norway Spruce (eds Mark G. Tjoelker, Adam Boratyński, & Władysław Bugała) 23–36 (Springer Netherlands, 2007).Jaroszewicz, B. et al. Białowieża forest—a relic of the high naturalness of European forests. Forests 10, 849. https://doi.org/10.3390/f10100849 (2019).Article 

    Google Scholar 
    Zimny, M., Latałowa, M. & Pędziszewska, A. The Late-Holocene history of forests in the Strict Reserve of Białowieża National Park. 29–59 (Białowieski Park Narodowy, 2017).Blaauw, M., Christen, J. A., Bennett, K. D. & Reimer, P. J. Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quatern. Sci. Rev. 188, 58–66. https://doi.org/10.1016/j.quascirev.2018.03.032 (2018).Article 

    Google Scholar 
    Lisitsyna, O. V., Giesecke, T. & Hicks, S. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Rev. Palaeobot. Palynol. 166, 311–324. https://doi.org/10.1016/j.revpalbo.2011.06.004 (2011).Article 

    Google Scholar 
    Huntley, B. & Birks, H. J. B. An Atlas of past and present pollen maps for Europe: 0–13000 years ago. (Cambridge University Press, 1983). More

  • in

    The influence of sea ice on the detection of bowhead whale calls

    Stirling, I., Calvert, W. & Cleator, H. Underwater vocalizations as a tool for studying the distribution and relative abundance of wintering pinnipeds in the High Arctic. Arctic https://doi.org/10.14430/arctic2275 (1983).Article 

    Google Scholar 
    Sirovic, A. et al. Seasonality of blue and fin whale calls and the influence of sea ice in the Western Antarctic Peninsula. Deep Sea Res. II 51, 2327–2344 (2004).Article 
    ADS 

    Google Scholar 
    Jones, J. M. et al. Ringed, bearded, and ribbon seal vocalizations north of barrow, Alaska: Seasonal presence and relationship with sea ice. Arctic 67, 203–222 (2014).Article 

    Google Scholar 
    Clark, C. W. et al. A year in the acoustic world of bowhead whales in the Bering, Chukchi and Beaufort seas. Prog. Oceanogr. 136, 223–240 (2015).Article 
    ADS 

    Google Scholar 
    Marques, T. A., Munger, L., Thomas, L., Wiggins, S. & Hildebrand, J. A. Estimating North Pacific right whale Eubalaena japonica density using passive acoustic cue counting. Endangered Species Res. 13, 163–172 (2011).Article 

    Google Scholar 
    Hildebrand, J. A. et al. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Sci. Rep. 5, 16343 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    von Benda-Beckmann, A. M., Thomas, L., Tyack, P. L. & Ainslie, M. A. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates. J. Acoust. Soc. Am. 143, 954–967 (2018).Article 
    ADS 

    Google Scholar 
    Hildebrand, J. A. et al. Assessing seasonality and density from passive acoustic monitoring of signals presumed to be from pygmy and dwarf sperm whales in the Gulf of Mexico. Front. Mar. Sci. 6, 66 (2019).Article 

    Google Scholar 
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).PubMed 
    Article 

    Google Scholar 
    Helble, T. A., D’Spain, G. L., Campbell, G. S. & Hildebrand, J. A. Calibrating passive acoustic monitoring: Correcting humpback call detections for site-specific and time-dependent environmental characterisitcs. J. Acoust. Soc. Amer. 134, EL400–EL406 (2013).Article 
    ADS 

    Google Scholar 
    Frasier, K. E. et al. Delphinid echolocation click detection probability on near-seafloor sensors. J. Acoust. Soc. Am. 140, 1918–1930 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helble, T. A. et al. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones. J. Acoust. Soc. Am. 134, 2556–2570 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    Larsen Tempel, J. T., Wise, S., Osborne, T. Q., Sparks, K. & Atkinson, S. “Life without ice: Perceptions of environmental impacts on marine resources and subsistence users of St. Lawrence Island. Ocean Coast. Manag. 212, 105819 (2021).Article 

    Google Scholar 
    Clark, C. W. & Johnson, J. H. The sounds of the bowhead whale, Balaena mysticetus, during the spring migrations of 1979 and 1980. Can. J. Zool. 62, 1436–1441 (1984).Article 

    Google Scholar 
    Ashjian, C. J., Braund, S. R., Campbell, R. G., George, J. C., Kruse, J., Maslowski, W., Moore, S. E., Nicolson, C. R., Okkonen, S. R., & Sherr, B. F. Climate variability, oceanography, bowhead whale distribution, and Iñupiat subsistence whaling near Barrow, Alaska, Arctic 179–194 (2010).Moore, S. E. & Clarke, J. T. Bowhead whale fall distribution and relative abundance in relation to oil and gas lease areas in the northeastern Chukchi Sea. Polar Rec. 29, 209–214 (1993).Article 

    Google Scholar 
    Reeves, R., Rosa, C., George, J. C., Sheffield, G. & Moore, M. “Implications of Arctic industrial growth and strategies to mitigate future vessel and fishing gear impacts on bowhead whales. Mar. Policy 36, 454–462 (2012).Article 

    Google Scholar 
    Blackwell, S. B., Richardson, W., Greene Jr, C., & Streever, B. Bowhead whale (Balaena mysticetus) migration and calling behaviour in the Alaskan Beaufort Sea, Autumn 2001–04: An acoustic localization study, Arctic 255–270 (2007).Mathias, D., Thode, A., Blackwell, S. B., & Greene, C. Computer-aided classification of bowhead whale call categories for mitigation monitoring. In New Trends for Environmental Monitoring Using Passive Systems, Hyeres, French Riviera 1–6 (2008).Delarue, J., Laurinolli, M. & Martin, B. Bowhead whale (Balaena mysticetus) songs in the Chukchi Sea between October 2007 and May 2008. J. Acoust. Soc. Am. 126, 3319–3328 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Moore, S. E., Stafford, K. M. & Munger, L. M. Acoustic and visual surveys for bowhead whales in the western Beaufort and far northeastern Chukchi seas. Deep Sea Res. Part II 57, 153–157 (2010).Article 
    ADS 

    Google Scholar 
    Ballard, M. S. et al. Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf. J. Acoust. Soc. Am. 148, 1663–1680 (2020).PubMed 
    Article 
    ADS 

    Google Scholar 
    Duda, T. F., Zhang, W. G. & Lin, Y.-T. Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater sound ducting. J. Acoust. Soc. Am. 149, 2117–2136 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    Diachok, O. I. & Winokur, R. S. Spatial variability of underwater ambient noise at the Arctic ice-water boundary. J. Acoust. Soc. Am. 55, 750–753 (1974).Article 
    ADS 

    Google Scholar 
    Diachok, O. I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59, 1110–1120 (1976).Article 
    ADS 

    Google Scholar 
    Yang, T. & Votaw, C. W. Under ice reflectivities at frequencies below 1 kHz. J. Acoust. Soc. Am. 70, 841–851 (1981).Article 
    ADS 

    Google Scholar 
    Milne, A. R. & Ganton, J. H. Ambient Noise under Arctic-Sea Ice. J. Acoust. Soc. Am. 36, 855–865 (1964).Article 
    ADS 

    Google Scholar 
    Brown, J. R. & Milne, A. R. Reverberation under Arctic Sea-Ice. J. Acoust. Soc. Am. 42, 78–82 (1967).Article 
    ADS 

    Google Scholar 
    Duckworth, G., LePage, K. & Farrell, T. Low-frequency long-range propagation and reverberation in the central Arctic: Analysis of experimental results. J. Acoust. Soc. Am. 110, 747–760 (2001).Article 
    ADS 

    Google Scholar 
    Jensen, F. B. & Kuperman, W. A. Optimum frequency of propagation in shallow water environments. J. Acoust. Soc. Am. 73, 813–819 (1983).Article 
    ADS 

    Google Scholar 
    Keen, K. A., Thayre, B. J., Hildebrand, J. A. & Wiggins, S. M. Seismic airgun sound propagation in Arctic Ocean waveguides. Deep Sea Res. I 141, 24–32 (2018).Article 

    Google Scholar 
    Greene, C. R. & Buck, B. M. Arctic ocean ambient noise. J. Acoust. Soc. Am. 36, 1218–1220 (1964).Article 
    ADS 

    Google Scholar 
    Roth, E. H., Hildebrand, J. A., Wiggins, S. M. & Ross, D. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am. 131, 104–110 (2012).PubMed 
    Article 
    ADS 

    Google Scholar 
    Kinda, G. B., Simard, Y., Gervaise, C., Mars, J. I. & Fortier, L. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. J. Acoust. Soc. Am. 138, 2034–2045 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Hildebrand, J. A., Frasier, K. E., Baumann-Pickering, S. & Wiggins, S. M. An empirical model for wind-generated ocean noise. J. Acoust. Soc. Am. 149, 4516–4533 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    Farmer, D. M. & Xie, Y. The sound of cracking sea ice. J. Acoust. Soc. Am. 84, S123–S123 (1988).Article 
    ADS 

    Google Scholar 
    Bassett, C., Thomson, J., Dahl, P. H. & Polagye, B. Flow-noise and turbulence in two tidal channels. J. Acoust. Soc. Am. 135(4), 1764–1774 (2014).PubMed 
    Article 
    ADS 

    Google Scholar 
    Chapman, R. P. & Harris, J. Surface backscattering strengths measured with explosive sound sources. J. Acoust. Soc. Am. 34, 1592–1597 (1962).Article 
    ADS 

    Google Scholar 
    Gauss, R. C., Fialkowski, J. M., & Wurmser, D. A low- and mid-frequency bistatic scattering model for the ocean surface. In Proceedings of OCEANS 2005 MTS/IEEE, Vol. 2 1738–1744 (2005)Jin, G., Lynch, J. F., Pawlowicz, R. & Worcester, P. Acoustic scattering losses in the Greenland Sea marginal ice zone during the 1988–89 tomography experiment. J. Acoust. Soc. Am. 96, 3045–3053 (1994).Article 
    ADS 

    Google Scholar 
    Citta, J. J. et al. Ecological characteristics of core-use areas used by Bering-Chukchi-Beaufort (BCB) bowhead whales, 2006–2012. Prog. Oceanogr. 136, 201–222 (2015).Article 
    ADS 

    Google Scholar 
    Thode, A. M., Blackwell, S. B., Conrad, A. S., Kim, K. H. & Macrander, A. M. Decadal-scale frequency shift of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 142, 1482–1502 (2017).PubMed 
    Article 
    ADS 

    Google Scholar 
    Wiggins, S. M., & Hildebrand, J. A. High-frequency acoustic recording package (HARP) for broad-band, long-term marine mammal monitoring. In International Symposium on Underwater Technology 2007 and International Workshop on Scientific use of Submarine Cables & Related Technologies 2007. Institute of Electrical and Electronics Engineers, Tokyo, Japan 551–557 (2007).Marques, T. A., Thomas, L., Ward, J., DiMarzio, N. & Tyack, P. L. Estimating cetacean population density using fixed passive acoustic sensors: An example with Blainville’s beaked whales. J. Acoust. Soc. Am. 125, 1982–1994 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Küsel, E. T. et al. Cetacean population density estimation from single fixed sensors using passive acoustics. J. Acoust. Soc. Am. 129, 3610–3622 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    Cummings, W. C. & Holliday, D. V. Sounds and source levels from bowhead whales off Pt. Barrow, Alaska. J. Acoust. Soc. Am. 82, 814–821 (1987).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Thode, A. M. et al. Source level and calling depth distributions of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 140, 4288 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Blackwell, S. B. et al. Directionality of bowhead whale calls measured with multiple sensors. Mar. Mammal Sci. 28, 200–212 (2012).Article 

    Google Scholar 
    Markus, T., Stroeve, J. C. & Miller, J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. Oceans https://doi.org/10.1029/2009JC005436 (2009).Article 

    Google Scholar 
    Kwok, R. & Cunningham, G. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140157 (2015).Article 
    ADS 

    Google Scholar 
    Krishfield, R., Toole, J., Proshutinsky, A. & Timmermans, M.-L. Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Tech. 25, 2091–2105 (2008).Article 
    ADS 

    Google Scholar 
    Gong, D. & Pickart, R. S. Summertime circulation in the eastern Chukchi Sea. Deep Sea Res. Part II 118, 18–31 (2015).Article 

    Google Scholar 
    Meng, X., Li, G., Han, G. & Kan, G. Sound velocity and related properties of seafloor sediments in the Bering Sea and Chukchi Sea. Acta Oceanol. Sin. 34, 75–80 (2015).CAS 
    Article 

    Google Scholar 
    Toole, J. M., Krishfield, R. A., Timmermans, M.-L. & Proshutinsky, A. The ice-tethered profiler: Argo of the Arctic. Oceanography 24, 126–135 (2011).Article 

    Google Scholar 
    Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I 55, 50–72 (2008).Article 

    Google Scholar 
    Kutschale, H. Long-range sound transmission in the Arctic Ocean. J. Geophys. Res. 66, 2189–2198 (1961).Article 
    ADS 

    Google Scholar 
    Jakobsson, M. et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052219 (2012).Article 

    Google Scholar 
    Warner, G. A., Dosso, S. E., Dettmer, J. & Hannay, D. E. Bayesian environmental inversion of airgun modal dispersion using a single hydrophone in the Chukchi Sea. J. Acoust. Soc. Am. 137, 3009–3023 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Pang, X. et al. Comparison between AMSR2 sea ice concentration products and pseudo-ship observations of the Arctic and Antarctic sea ice edge on cloud-free days. Remote Sens. 10, 317 (2018).Article 
    ADS 

    Google Scholar 
    Kahru, M. Windows image manager: Image display and analysis program for Microsoft Windows with special features for satellite images (2001).Duncan, A. J. & Maggi, A. L. A consistent, user friendly interface for running a variety of underwater acoustic propagation codes. Proc. Acoust. 2006, 471–477 (2006).
    Google Scholar 
    Collins, M. D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).Article 
    ADS 

    Google Scholar 
    Alexander, P., Duncan, A., Bose, N., & Smith, D. Modelling acoustic transmission loss due to sea ice cover. Acoust. Aust. 41 (2013).Goff, J. A. Quantitative analysis of sea ice draft: 1. Methods for stochastic modeling. J. Geophys. Res. Oceans 100, 6993–7004 (1995).Article 
    ADS 

    Google Scholar 
    Gavrilov, A. N. & Mikhalevsky, P. N. Low-frequency acoustic propagation loss in the Arctic Ocean: Results of the Arctic climate observations using underwater sound experiment. J. Acoust. Soc. Am. 119, 3694–3706 (2006).Article 
    ADS 

    Google Scholar  More

  • in

    Gene flow in a pioneer plant metapopulation (Myricaria germanica) at the catchment scale in a fragmented alpine river system

    Sabo, J. et al. Riparian zones increase regional species richness by harbouring different, not more, species. Ecology 86, 56–62 (2005).Article 

    Google Scholar 
    Lind, L., Hasselquist, E. & Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manage. 249, 109391–109391 (2019).PubMed 
    Article 

    Google Scholar 
    Merritt, D., Nilsson, C. & Jansson, R. Consequences of propagule dispersal and river fragmentation for riparian plant community diversity and turnover. Ecol. Monogr. 80, 609–626 (2010).Article 

    Google Scholar 
    Jansson, R., Nilsson, C. & Renöfält, B. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81, 899–903 (2000).Article 

    Google Scholar 
    Mari, L. et al. Metapopulation persistence and species spread in river networks. Ecol. Lett. 17, 426–434 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111. https://doi.org/10.1038/s41586-019-1495-6 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768. https://doi.org/10.1038/s41598-020-70816-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wobus, C. et al. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States. Nat. Hazards Earth Syst. Sci. 17, 2199–2211 (2017).ADS 
    Article 

    Google Scholar 
    Meyer, J. L. et al. The contribution of headwater streams to biodiversity in river networks1. J. Am. Water Resour. Assoc. 43, 86–103. https://doi.org/10.1111/j.1752-1688.2007.00008.x (2007).ADS 
    Article 

    Google Scholar 
    Van Looy, K. & Piffady, J. Metapopulation modelling of riparian tree species persistence in river networks under climate change. J. Environ. Manage. 202, 437–446 (2017).PubMed 
    Article 

    Google Scholar 
    Sochor, M. et al. Can gene flow among populations counteract the habitat loss of extremely fragile biotopes? An example from the population genetic structure in Salix daphnoides. Tree Genet. Genomes 9, 1193–1205 (2013).Article 

    Google Scholar 
    Garssen, A. G. et al. Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Glob. Change Biol. 23, 3052–3063. https://doi.org/10.1111/gcb.13687 (2017).ADS 
    Article 

    Google Scholar 
    Ellenberg, H. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und historischer Sicht. 6., vollst. neu bearb. und stark erw. Aufl edn, (Ulmer, 2010).Hanski, I. Metapopulation Biology: Ecology, Genetics, and Evolution (Academic Press, New York, 1997).MATH 

    Google Scholar 
    Wubs, E. R. J. et al. Going against the flow: A case for upstream dispersal and detection of uncommon dispersal events. Freshw. Biol. 61, 580–595 (2016).CAS 
    Article 

    Google Scholar 
    Chen, F.-Q. & Xie, Z.-Q. Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecol. 191, 67–75 (2007).Article 

    Google Scholar 
    Bonn, S. Ausbreitungsbiologie der Pflanzen Mitteleuropas: Grundlagen und kulturhistorische Aspekte. (Quelle und Meyer Verlag, 1998).Müller-Schneider, P. Verbreitungsbiologie der Blütenpflanzen Graubündens: Diasporology of the Spermatophytes of the Grisons. Vol. 85. (Switzerland) (1986).Aradottir, A., Svavarsdottir, K. & Bau, A. Clonal variability of native willows (Salix pylicifofia and Salix lanata) in Iceland and implications for use in restoration. Icel. Agric. Sci. 20, 61–72 (2007).
    Google Scholar 
    Egelund, B., Pertoldi, C. & Barfod, A. S. Isolation and reduced gene flow among Faroese populations of tea-leaved willow (Salix phylicifolia, Salicaceae). N. J. Bot. J. Bot. Soc. B. Isles 2, 9–15 (2012).
    Google Scholar 
    Van Puyvelde, K. & Triest, L. ISSRs indicate isolation by distance and spatial structuring in Salix alba populations along Alpine upstream rivers (Alto Adige and Upper Rhine). Belg. J. Bot. 140, 100–108 (2007).
    Google Scholar 
    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108. https://doi.org/10.1007/s10750-016-3021-2 (2017).Article 

    Google Scholar 
    Werth, S., Schoedl, M. & Scheidegger, C. Dams and canyons disrupt gene flow among populations of a threatened riparian plant. Freshw. Biol. 59, 2502–2515 (2014).Article 

    Google Scholar 
    Pollux, B. J. A., Luteijn, A., Van-Groenendael, J. M., Ouborg, N. J. & Ouborg, N. J. Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw. Biol. 54, 64–76 (2009).Article 

    Google Scholar 
    Davis, C., Epps, C., Flitcroft, R. & Banks, M. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5, e1269 (2018).Article 

    Google Scholar 
    Vega-Retter, C. et al. Dammed river: Short- and long-term consequences for fish species inhabiting a river in a Mediterranean climate in central Chile. Aquat. Conserv.Mar. Freshw. Ecosyst. 30, 2254–2268. https://doi.org/10.1002/aqc.3425 (2020).Article 

    Google Scholar 
    Rannala, B. & Mountain, J. L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. U.S.A. 94, 9197–9201 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altermatt, F., Alther, R. & Mächler, E. Spatial patterns of genetic diversity, community composition and occurrence of native and non-native amphipods in naturally replicated tributary streams. BMC Ecol. 16, 23. https://doi.org/10.1186/s12898-016-0079-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. Lond. B: Biol. Sci. 285, 20172746. https://doi.org/10.1098/rspb.2017.2746 (2018).Article 

    Google Scholar 
    Sitzia, T., Kudrnovsky, H., Müller, N. & Michielon, B. Biological flora of Central Europe Myricaria germanica (L.) Desv. Perspect. Plant Ecol. Evol. Syst. 52, 125629. https://doi.org/10.1016/j.ppees.2021.125629 (2021).Article 

    Google Scholar 
    Egger, G., Steineder, R. & Angermann, K. Verbreitung und Erhaltungszustand des FFH-Lebensraumtyps 3230 “Alpine Flüsse mit Ufergehölzen von Myricaria germanica” an der Isel und deren Zubringern (Osttirol, Österreich). Carinthia II 204, 391–432 (2014).
    Google Scholar 
    Schletterer, M., Gewolf, S., Egger, G. & Fink, S. Forschungsprojekt Tamariske: Genetische Untersuchung von Populationen an der Isel – Dokumentation der Beprobungen 2018. 32 (Innbruck, 2019).Scheidegger, C. & Wiedmer, A. Genetische Untersuchung zur Deutschen Tamariske in Tirol. (Eidg. Forschungsanstalt WSL, Birmensdorf, 2014).Hedrick, P., Lacy, R., Allendorf, F. & Soule, M. Directions in conservation biology: Comments on caughley. Conserv. Biol. 10, 1312–1320 (1996).Article 

    Google Scholar 
    Sampson, J., Byrne, M., Gibson, N. & Yates, C. Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecol. Evol. 6, 5867–5880 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kudrnovsky, H. & Stöhr, O. Myricaria germanica (L.) Desv. historisch und aktuell in Österreich: Ein dramatischer Rückgang einer Indikatorart von europäischem Interesse. STAPFIA Rep. 99, 13–34 (2013).
    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. Biol. Conserv. 248, 108654. https://doi.org/10.1016/j.biocon.2020.108654 (2020).Article 

    Google Scholar 
    Auffret, A. G., Plue, J. & Cousins, S. A. O. The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44, 51–59. https://doi.org/10.1007/s13280-014-0588-6 (2015).Article 
    PubMed Central 

    Google Scholar 
    Herrmann, J. et al. Connectivity from a different perspective: Comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology 97, 1274–1282 (2016).PubMed 
    Article 

    Google Scholar 
    Mortelliti, A., Amori, G. & Boitani, L. The role of habitat quality in fragmented landscapes: A conceptual overview and prospectus for future research. Oecologia 163, 535–547 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mosner, E., Liepelt, S., Ziegenhagen, B. & Leyer, I. Floodplain willows in fragmented river landscapes: Understanding spatio-temporal genetic patterns as a basis for restoration plantings. Biol. Conserv. 153, 211–218 (2012).Article 

    Google Scholar 
    Chambers, J., MacMahon, J. & Brown, R. Alpine seedling establishment: The influence of disturbance type. Ecology 71, 1323–1341 (1990).Article 

    Google Scholar 
    Bill, H.-C. Besiedlungsdynamik und Populationsbiologie charakteristischer Pionierpflanzenarten nordalpiner Wildflüsse PhD thesis, Philipps-Universität Marburg, (2000).Lite, S. J., Bagstad, K. J. & Stromberg, J. C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J. Arid Environ. 63, 785–813. https://doi.org/10.1016/j.jaridenv.2005.03.026 (2005).ADS 
    Article 

    Google Scholar 
    Andersson, E., Nilsson, C. & Johansson, M. E. Plant dispersal in boreal rivers and its relation to the diversity of riparian flora. J. Biogeogr. 27, 1095–1106 (2000).Article 

    Google Scholar 
    Aguiar, F. et al. The abundance and distribution of guilds of riparian woody plants change in response to land use and flow regulation. J. Appl. Ecol. 55, 2227–2240 (2018).Article 

    Google Scholar 
    Leyer, I. Dispersal, diversity and distribution patterns in pioneer vegetation: The role of river-floodplain connectivity. J. Veg. Sci. 17, 407–416 (2006).Article 

    Google Scholar 
    Crookes, S. & Shaw, P. W. Isolation by distance and non-identical patterns of gene flow within two river populations of the freshwater fish Rutilus rutilus (L. 1758). Conserv. Genet. 17, 861–874. https://doi.org/10.1007/s10592-016-0828-3 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werth, S. & Scheidegger, C. Gene flow within and between catchments in the threatened riparian plant Myricaria germanica. PLoS ONE 9, e99400 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacquemyn, H., Honnay, O., Van Looy, K. & Breyne, P. Spatiotemporal structure of genetic variation of a spreading plant metapopulation on dynamic riverbanks along the Meuse River. Heredity 96, 471–478. https://doi.org/10.1038/sj.hdy.6800825 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mayer, C., Schiegg, K. & Pasinelli, G. Patchy population structure in a short-distance migrant: evidence from genetic and demographic data. Mol. Ecol. 18, 2353–2364 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benda, L. E. E. et al. The network dynamics hypothesis: How Channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).Article 

    Google Scholar 
    Miettinen, A. et al. A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. Conserv. Genet. 22, 35–51. https://doi.org/10.1007/s10592-020-01317-y (2021).CAS 
    Article 

    Google Scholar 
    Fink, S., Lanz, T., Stecher, R. & Scheidegger, C. Colonization potential of an endangered riparian shrub species. Biodivers. Conserv. 26, 2099–2114. https://doi.org/10.1007/s10531-017-1347-3 (2017).Article 

    Google Scholar 
    Merritt, D. & Wohl, E. Plant dispersal along rivers fragmented by dams. River Res. Appl. 22, 1–26 (2006).Article 

    Google Scholar 
    Sitzia, T., Michielon, B., Iacopino, S. & Kotze, D. J. Population dynamics of the endangered shrub Myricaria germanica in a regulated Alpine river is influenced by active channel width and distance to check dams. Ecol. Eng. 95, 828–838 (2016).Article 

    Google Scholar 
    Wöllner, R., Scheidegger, C. & Fink, S. Gene flow in a highly dynamic habitat and a single founder event: Proof from a plant population on a relocated river site. Glob. Ecol. Conserv. 28, e01686. https://doi.org/10.1016/j.gecco.2021.e01686 (2021).McLaughlin, B. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).ADS 
    Article 

    Google Scholar 
    Chiu, M. C. et al. Branching networks can have opposing influences on genetic variation in riverine metapopulations. bioRxiv https://doi.org/10.1101/550194 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catford, J. & Jansson, R. Drowned, buried and carried away: Effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol. 204, 19–36 (2014).PubMed 
    Article 

    Google Scholar 
    Schletterer, M. & Scheiber, T. Wiederansiedlung der deutschen tamariske (Myricaria germanica (L.) DESV.) an der Leutascher Ache (Nordtirol, Österreich). B. Naturwiss. Med. Ver. Innsbr. 95, 53–65 (2008).
    Google Scholar 
    Riehl, S. & Zehm, A. in ANLiegen Natur Vol. 40, 17–20 (ANL Bayern, Laufen, 2017).Egger, G., Angermann, K. & Gruber, A. Wiederansiedlung der Deutschen Tamariske (Myricaria germanica (L.) Desv.) in Kärnten. Carinthia II 393–418 (2010).Kudrnovsky, H. Alpine rivers and their ligneous vegetation with Myricaria germanica and riverine landscape diversity in the Eastern Alps: Proposing the Isel river system for the Natura 2000 network. Eco. Mont 5, 5–18 (2013).
    Google Scholar 
    Lener, F. P. Etablierung und Entwicklung der Deutschen Tamariske (Myricaria germanica) an der oberen Drau in Kärnten Master thesis (University of Vienna, Vienna, 2011).
    Google Scholar 
    Schiechtl, H. M. in Alpenländ. Bienenzeitung Vol. 4 125–131 (1957).Bill, H.-C., Poschlod, P., Reich, M. & Plachter, H. Experiments and observations on seed dispersal by running water in an Alpine floodplain. Bull. Geobot. Inst. ETH 65, 13–28 (1999).
    Google Scholar 
    Nilsson, C., Brown, R., Jansson, R. & Merritt, D. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 85, 837–858 (2010).PubMed 

    Google Scholar 
    Lener, F. P., Egger, G. & Karrer, G. Sprossaufbau und entwicklung der deutschen tamariske (Myricaria germanica) an der Oberen Drau (Kärnten, Österreich). Carinthia II(203), 515–552 (2013).
    Google Scholar 
    Werth, S. & Scheidegger, C. Isolation and characterization of 22 nuclear and 5 chloroplast microsatellite loci in the threatened riparian plant Myricaria germanica (Tamaricaceae, Caryophyllales). Conserv. Genet. Resour. 3, 445–448 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comp., (2016).Excoffier, L., Laval, G. & Schneider, S. Arlequin ver 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).CAS 
    Article 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247. https://doi.org/10.1093/jhered/89.3.238 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).Article 

    Google Scholar 
    Smouse, P. E., Peakall, R., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piry, S. et al. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65. https://doi.org/10.1046/j.1365-294X.2004.02008.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rannala, B. (ed University of California Davis) 1–12 (2007).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirmans, P. G. Nonconvergence in Bayesian estimation of migration rates. Mol. Ecol. Resour. 14, 726–733. https://doi.org/10.1111/1755-0998.12216 (2014).Article 
    PubMed 

    Google Scholar 
    Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350. https://doi.org/10.1007/s10654-016-0149-3 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More