More stories

  • in

    The influence of sea ice on the detection of bowhead whale calls

    Stirling, I., Calvert, W. & Cleator, H. Underwater vocalizations as a tool for studying the distribution and relative abundance of wintering pinnipeds in the High Arctic. Arctic https://doi.org/10.14430/arctic2275 (1983).Article 

    Google Scholar 
    Sirovic, A. et al. Seasonality of blue and fin whale calls and the influence of sea ice in the Western Antarctic Peninsula. Deep Sea Res. II 51, 2327–2344 (2004).Article 
    ADS 

    Google Scholar 
    Jones, J. M. et al. Ringed, bearded, and ribbon seal vocalizations north of barrow, Alaska: Seasonal presence and relationship with sea ice. Arctic 67, 203–222 (2014).Article 

    Google Scholar 
    Clark, C. W. et al. A year in the acoustic world of bowhead whales in the Bering, Chukchi and Beaufort seas. Prog. Oceanogr. 136, 223–240 (2015).Article 
    ADS 

    Google Scholar 
    Marques, T. A., Munger, L., Thomas, L., Wiggins, S. & Hildebrand, J. A. Estimating North Pacific right whale Eubalaena japonica density using passive acoustic cue counting. Endangered Species Res. 13, 163–172 (2011).Article 

    Google Scholar 
    Hildebrand, J. A. et al. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Sci. Rep. 5, 16343 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    von Benda-Beckmann, A. M., Thomas, L., Tyack, P. L. & Ainslie, M. A. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates. J. Acoust. Soc. Am. 143, 954–967 (2018).Article 
    ADS 

    Google Scholar 
    Hildebrand, J. A. et al. Assessing seasonality and density from passive acoustic monitoring of signals presumed to be from pygmy and dwarf sperm whales in the Gulf of Mexico. Front. Mar. Sci. 6, 66 (2019).Article 

    Google Scholar 
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).PubMed 
    Article 

    Google Scholar 
    Helble, T. A., D’Spain, G. L., Campbell, G. S. & Hildebrand, J. A. Calibrating passive acoustic monitoring: Correcting humpback call detections for site-specific and time-dependent environmental characterisitcs. J. Acoust. Soc. Amer. 134, EL400–EL406 (2013).Article 
    ADS 

    Google Scholar 
    Frasier, K. E. et al. Delphinid echolocation click detection probability on near-seafloor sensors. J. Acoust. Soc. Am. 140, 1918–1930 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helble, T. A. et al. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones. J. Acoust. Soc. Am. 134, 2556–2570 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    Larsen Tempel, J. T., Wise, S., Osborne, T. Q., Sparks, K. & Atkinson, S. “Life without ice: Perceptions of environmental impacts on marine resources and subsistence users of St. Lawrence Island. Ocean Coast. Manag. 212, 105819 (2021).Article 

    Google Scholar 
    Clark, C. W. & Johnson, J. H. The sounds of the bowhead whale, Balaena mysticetus, during the spring migrations of 1979 and 1980. Can. J. Zool. 62, 1436–1441 (1984).Article 

    Google Scholar 
    Ashjian, C. J., Braund, S. R., Campbell, R. G., George, J. C., Kruse, J., Maslowski, W., Moore, S. E., Nicolson, C. R., Okkonen, S. R., & Sherr, B. F. Climate variability, oceanography, bowhead whale distribution, and Iñupiat subsistence whaling near Barrow, Alaska, Arctic 179–194 (2010).Moore, S. E. & Clarke, J. T. Bowhead whale fall distribution and relative abundance in relation to oil and gas lease areas in the northeastern Chukchi Sea. Polar Rec. 29, 209–214 (1993).Article 

    Google Scholar 
    Reeves, R., Rosa, C., George, J. C., Sheffield, G. & Moore, M. “Implications of Arctic industrial growth and strategies to mitigate future vessel and fishing gear impacts on bowhead whales. Mar. Policy 36, 454–462 (2012).Article 

    Google Scholar 
    Blackwell, S. B., Richardson, W., Greene Jr, C., & Streever, B. Bowhead whale (Balaena mysticetus) migration and calling behaviour in the Alaskan Beaufort Sea, Autumn 2001–04: An acoustic localization study, Arctic 255–270 (2007).Mathias, D., Thode, A., Blackwell, S. B., & Greene, C. Computer-aided classification of bowhead whale call categories for mitigation monitoring. In New Trends for Environmental Monitoring Using Passive Systems, Hyeres, French Riviera 1–6 (2008).Delarue, J., Laurinolli, M. & Martin, B. Bowhead whale (Balaena mysticetus) songs in the Chukchi Sea between October 2007 and May 2008. J. Acoust. Soc. Am. 126, 3319–3328 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Moore, S. E., Stafford, K. M. & Munger, L. M. Acoustic and visual surveys for bowhead whales in the western Beaufort and far northeastern Chukchi seas. Deep Sea Res. Part II 57, 153–157 (2010).Article 
    ADS 

    Google Scholar 
    Ballard, M. S. et al. Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf. J. Acoust. Soc. Am. 148, 1663–1680 (2020).PubMed 
    Article 
    ADS 

    Google Scholar 
    Duda, T. F., Zhang, W. G. & Lin, Y.-T. Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater sound ducting. J. Acoust. Soc. Am. 149, 2117–2136 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    Diachok, O. I. & Winokur, R. S. Spatial variability of underwater ambient noise at the Arctic ice-water boundary. J. Acoust. Soc. Am. 55, 750–753 (1974).Article 
    ADS 

    Google Scholar 
    Diachok, O. I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59, 1110–1120 (1976).Article 
    ADS 

    Google Scholar 
    Yang, T. & Votaw, C. W. Under ice reflectivities at frequencies below 1 kHz. J. Acoust. Soc. Am. 70, 841–851 (1981).Article 
    ADS 

    Google Scholar 
    Milne, A. R. & Ganton, J. H. Ambient Noise under Arctic-Sea Ice. J. Acoust. Soc. Am. 36, 855–865 (1964).Article 
    ADS 

    Google Scholar 
    Brown, J. R. & Milne, A. R. Reverberation under Arctic Sea-Ice. J. Acoust. Soc. Am. 42, 78–82 (1967).Article 
    ADS 

    Google Scholar 
    Duckworth, G., LePage, K. & Farrell, T. Low-frequency long-range propagation and reverberation in the central Arctic: Analysis of experimental results. J. Acoust. Soc. Am. 110, 747–760 (2001).Article 
    ADS 

    Google Scholar 
    Jensen, F. B. & Kuperman, W. A. Optimum frequency of propagation in shallow water environments. J. Acoust. Soc. Am. 73, 813–819 (1983).Article 
    ADS 

    Google Scholar 
    Keen, K. A., Thayre, B. J., Hildebrand, J. A. & Wiggins, S. M. Seismic airgun sound propagation in Arctic Ocean waveguides. Deep Sea Res. I 141, 24–32 (2018).Article 

    Google Scholar 
    Greene, C. R. & Buck, B. M. Arctic ocean ambient noise. J. Acoust. Soc. Am. 36, 1218–1220 (1964).Article 
    ADS 

    Google Scholar 
    Roth, E. H., Hildebrand, J. A., Wiggins, S. M. & Ross, D. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am. 131, 104–110 (2012).PubMed 
    Article 
    ADS 

    Google Scholar 
    Kinda, G. B., Simard, Y., Gervaise, C., Mars, J. I. & Fortier, L. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. J. Acoust. Soc. Am. 138, 2034–2045 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Hildebrand, J. A., Frasier, K. E., Baumann-Pickering, S. & Wiggins, S. M. An empirical model for wind-generated ocean noise. J. Acoust. Soc. Am. 149, 4516–4533 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    Farmer, D. M. & Xie, Y. The sound of cracking sea ice. J. Acoust. Soc. Am. 84, S123–S123 (1988).Article 
    ADS 

    Google Scholar 
    Bassett, C., Thomson, J., Dahl, P. H. & Polagye, B. Flow-noise and turbulence in two tidal channels. J. Acoust. Soc. Am. 135(4), 1764–1774 (2014).PubMed 
    Article 
    ADS 

    Google Scholar 
    Chapman, R. P. & Harris, J. Surface backscattering strengths measured with explosive sound sources. J. Acoust. Soc. Am. 34, 1592–1597 (1962).Article 
    ADS 

    Google Scholar 
    Gauss, R. C., Fialkowski, J. M., & Wurmser, D. A low- and mid-frequency bistatic scattering model for the ocean surface. In Proceedings of OCEANS 2005 MTS/IEEE, Vol. 2 1738–1744 (2005)Jin, G., Lynch, J. F., Pawlowicz, R. & Worcester, P. Acoustic scattering losses in the Greenland Sea marginal ice zone during the 1988–89 tomography experiment. J. Acoust. Soc. Am. 96, 3045–3053 (1994).Article 
    ADS 

    Google Scholar 
    Citta, J. J. et al. Ecological characteristics of core-use areas used by Bering-Chukchi-Beaufort (BCB) bowhead whales, 2006–2012. Prog. Oceanogr. 136, 201–222 (2015).Article 
    ADS 

    Google Scholar 
    Thode, A. M., Blackwell, S. B., Conrad, A. S., Kim, K. H. & Macrander, A. M. Decadal-scale frequency shift of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 142, 1482–1502 (2017).PubMed 
    Article 
    ADS 

    Google Scholar 
    Wiggins, S. M., & Hildebrand, J. A. High-frequency acoustic recording package (HARP) for broad-band, long-term marine mammal monitoring. In International Symposium on Underwater Technology 2007 and International Workshop on Scientific use of Submarine Cables & Related Technologies 2007. Institute of Electrical and Electronics Engineers, Tokyo, Japan 551–557 (2007).Marques, T. A., Thomas, L., Ward, J., DiMarzio, N. & Tyack, P. L. Estimating cetacean population density using fixed passive acoustic sensors: An example with Blainville’s beaked whales. J. Acoust. Soc. Am. 125, 1982–1994 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Küsel, E. T. et al. Cetacean population density estimation from single fixed sensors using passive acoustics. J. Acoust. Soc. Am. 129, 3610–3622 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    Cummings, W. C. & Holliday, D. V. Sounds and source levels from bowhead whales off Pt. Barrow, Alaska. J. Acoust. Soc. Am. 82, 814–821 (1987).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Thode, A. M. et al. Source level and calling depth distributions of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 140, 4288 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Blackwell, S. B. et al. Directionality of bowhead whale calls measured with multiple sensors. Mar. Mammal Sci. 28, 200–212 (2012).Article 

    Google Scholar 
    Markus, T., Stroeve, J. C. & Miller, J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. Oceans https://doi.org/10.1029/2009JC005436 (2009).Article 

    Google Scholar 
    Kwok, R. & Cunningham, G. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140157 (2015).Article 
    ADS 

    Google Scholar 
    Krishfield, R., Toole, J., Proshutinsky, A. & Timmermans, M.-L. Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Tech. 25, 2091–2105 (2008).Article 
    ADS 

    Google Scholar 
    Gong, D. & Pickart, R. S. Summertime circulation in the eastern Chukchi Sea. Deep Sea Res. Part II 118, 18–31 (2015).Article 

    Google Scholar 
    Meng, X., Li, G., Han, G. & Kan, G. Sound velocity and related properties of seafloor sediments in the Bering Sea and Chukchi Sea. Acta Oceanol. Sin. 34, 75–80 (2015).CAS 
    Article 

    Google Scholar 
    Toole, J. M., Krishfield, R. A., Timmermans, M.-L. & Proshutinsky, A. The ice-tethered profiler: Argo of the Arctic. Oceanography 24, 126–135 (2011).Article 

    Google Scholar 
    Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I 55, 50–72 (2008).Article 

    Google Scholar 
    Kutschale, H. Long-range sound transmission in the Arctic Ocean. J. Geophys. Res. 66, 2189–2198 (1961).Article 
    ADS 

    Google Scholar 
    Jakobsson, M. et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052219 (2012).Article 

    Google Scholar 
    Warner, G. A., Dosso, S. E., Dettmer, J. & Hannay, D. E. Bayesian environmental inversion of airgun modal dispersion using a single hydrophone in the Chukchi Sea. J. Acoust. Soc. Am. 137, 3009–3023 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Pang, X. et al. Comparison between AMSR2 sea ice concentration products and pseudo-ship observations of the Arctic and Antarctic sea ice edge on cloud-free days. Remote Sens. 10, 317 (2018).Article 
    ADS 

    Google Scholar 
    Kahru, M. Windows image manager: Image display and analysis program for Microsoft Windows with special features for satellite images (2001).Duncan, A. J. & Maggi, A. L. A consistent, user friendly interface for running a variety of underwater acoustic propagation codes. Proc. Acoust. 2006, 471–477 (2006).
    Google Scholar 
    Collins, M. D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).Article 
    ADS 

    Google Scholar 
    Alexander, P., Duncan, A., Bose, N., & Smith, D. Modelling acoustic transmission loss due to sea ice cover. Acoust. Aust. 41 (2013).Goff, J. A. Quantitative analysis of sea ice draft: 1. Methods for stochastic modeling. J. Geophys. Res. Oceans 100, 6993–7004 (1995).Article 
    ADS 

    Google Scholar 
    Gavrilov, A. N. & Mikhalevsky, P. N. Low-frequency acoustic propagation loss in the Arctic Ocean: Results of the Arctic climate observations using underwater sound experiment. J. Acoust. Soc. Am. 119, 3694–3706 (2006).Article 
    ADS 

    Google Scholar  More

  • in

    Gene flow in a pioneer plant metapopulation (Myricaria germanica) at the catchment scale in a fragmented alpine river system

    Sabo, J. et al. Riparian zones increase regional species richness by harbouring different, not more, species. Ecology 86, 56–62 (2005).Article 

    Google Scholar 
    Lind, L., Hasselquist, E. & Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manage. 249, 109391–109391 (2019).PubMed 
    Article 

    Google Scholar 
    Merritt, D., Nilsson, C. & Jansson, R. Consequences of propagule dispersal and river fragmentation for riparian plant community diversity and turnover. Ecol. Monogr. 80, 609–626 (2010).Article 

    Google Scholar 
    Jansson, R., Nilsson, C. & Renöfält, B. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81, 899–903 (2000).Article 

    Google Scholar 
    Mari, L. et al. Metapopulation persistence and species spread in river networks. Ecol. Lett. 17, 426–434 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111. https://doi.org/10.1038/s41586-019-1495-6 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768. https://doi.org/10.1038/s41598-020-70816-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wobus, C. et al. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States. Nat. Hazards Earth Syst. Sci. 17, 2199–2211 (2017).ADS 
    Article 

    Google Scholar 
    Meyer, J. L. et al. The contribution of headwater streams to biodiversity in river networks1. J. Am. Water Resour. Assoc. 43, 86–103. https://doi.org/10.1111/j.1752-1688.2007.00008.x (2007).ADS 
    Article 

    Google Scholar 
    Van Looy, K. & Piffady, J. Metapopulation modelling of riparian tree species persistence in river networks under climate change. J. Environ. Manage. 202, 437–446 (2017).PubMed 
    Article 

    Google Scholar 
    Sochor, M. et al. Can gene flow among populations counteract the habitat loss of extremely fragile biotopes? An example from the population genetic structure in Salix daphnoides. Tree Genet. Genomes 9, 1193–1205 (2013).Article 

    Google Scholar 
    Garssen, A. G. et al. Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Glob. Change Biol. 23, 3052–3063. https://doi.org/10.1111/gcb.13687 (2017).ADS 
    Article 

    Google Scholar 
    Ellenberg, H. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und historischer Sicht. 6., vollst. neu bearb. und stark erw. Aufl edn, (Ulmer, 2010).Hanski, I. Metapopulation Biology: Ecology, Genetics, and Evolution (Academic Press, New York, 1997).MATH 

    Google Scholar 
    Wubs, E. R. J. et al. Going against the flow: A case for upstream dispersal and detection of uncommon dispersal events. Freshw. Biol. 61, 580–595 (2016).CAS 
    Article 

    Google Scholar 
    Chen, F.-Q. & Xie, Z.-Q. Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecol. 191, 67–75 (2007).Article 

    Google Scholar 
    Bonn, S. Ausbreitungsbiologie der Pflanzen Mitteleuropas: Grundlagen und kulturhistorische Aspekte. (Quelle und Meyer Verlag, 1998).Müller-Schneider, P. Verbreitungsbiologie der Blütenpflanzen Graubündens: Diasporology of the Spermatophytes of the Grisons. Vol. 85. (Switzerland) (1986).Aradottir, A., Svavarsdottir, K. & Bau, A. Clonal variability of native willows (Salix pylicifofia and Salix lanata) in Iceland and implications for use in restoration. Icel. Agric. Sci. 20, 61–72 (2007).
    Google Scholar 
    Egelund, B., Pertoldi, C. & Barfod, A. S. Isolation and reduced gene flow among Faroese populations of tea-leaved willow (Salix phylicifolia, Salicaceae). N. J. Bot. J. Bot. Soc. B. Isles 2, 9–15 (2012).
    Google Scholar 
    Van Puyvelde, K. & Triest, L. ISSRs indicate isolation by distance and spatial structuring in Salix alba populations along Alpine upstream rivers (Alto Adige and Upper Rhine). Belg. J. Bot. 140, 100–108 (2007).
    Google Scholar 
    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108. https://doi.org/10.1007/s10750-016-3021-2 (2017).Article 

    Google Scholar 
    Werth, S., Schoedl, M. & Scheidegger, C. Dams and canyons disrupt gene flow among populations of a threatened riparian plant. Freshw. Biol. 59, 2502–2515 (2014).Article 

    Google Scholar 
    Pollux, B. J. A., Luteijn, A., Van-Groenendael, J. M., Ouborg, N. J. & Ouborg, N. J. Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw. Biol. 54, 64–76 (2009).Article 

    Google Scholar 
    Davis, C., Epps, C., Flitcroft, R. & Banks, M. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5, e1269 (2018).Article 

    Google Scholar 
    Vega-Retter, C. et al. Dammed river: Short- and long-term consequences for fish species inhabiting a river in a Mediterranean climate in central Chile. Aquat. Conserv.Mar. Freshw. Ecosyst. 30, 2254–2268. https://doi.org/10.1002/aqc.3425 (2020).Article 

    Google Scholar 
    Rannala, B. & Mountain, J. L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. U.S.A. 94, 9197–9201 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altermatt, F., Alther, R. & Mächler, E. Spatial patterns of genetic diversity, community composition and occurrence of native and non-native amphipods in naturally replicated tributary streams. BMC Ecol. 16, 23. https://doi.org/10.1186/s12898-016-0079-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. Lond. B: Biol. Sci. 285, 20172746. https://doi.org/10.1098/rspb.2017.2746 (2018).Article 

    Google Scholar 
    Sitzia, T., Kudrnovsky, H., Müller, N. & Michielon, B. Biological flora of Central Europe Myricaria germanica (L.) Desv. Perspect. Plant Ecol. Evol. Syst. 52, 125629. https://doi.org/10.1016/j.ppees.2021.125629 (2021).Article 

    Google Scholar 
    Egger, G., Steineder, R. & Angermann, K. Verbreitung und Erhaltungszustand des FFH-Lebensraumtyps 3230 “Alpine Flüsse mit Ufergehölzen von Myricaria germanica” an der Isel und deren Zubringern (Osttirol, Österreich). Carinthia II 204, 391–432 (2014).
    Google Scholar 
    Schletterer, M., Gewolf, S., Egger, G. & Fink, S. Forschungsprojekt Tamariske: Genetische Untersuchung von Populationen an der Isel – Dokumentation der Beprobungen 2018. 32 (Innbruck, 2019).Scheidegger, C. & Wiedmer, A. Genetische Untersuchung zur Deutschen Tamariske in Tirol. (Eidg. Forschungsanstalt WSL, Birmensdorf, 2014).Hedrick, P., Lacy, R., Allendorf, F. & Soule, M. Directions in conservation biology: Comments on caughley. Conserv. Biol. 10, 1312–1320 (1996).Article 

    Google Scholar 
    Sampson, J., Byrne, M., Gibson, N. & Yates, C. Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecol. Evol. 6, 5867–5880 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kudrnovsky, H. & Stöhr, O. Myricaria germanica (L.) Desv. historisch und aktuell in Österreich: Ein dramatischer Rückgang einer Indikatorart von europäischem Interesse. STAPFIA Rep. 99, 13–34 (2013).
    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. Biol. Conserv. 248, 108654. https://doi.org/10.1016/j.biocon.2020.108654 (2020).Article 

    Google Scholar 
    Auffret, A. G., Plue, J. & Cousins, S. A. O. The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44, 51–59. https://doi.org/10.1007/s13280-014-0588-6 (2015).Article 
    PubMed Central 

    Google Scholar 
    Herrmann, J. et al. Connectivity from a different perspective: Comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology 97, 1274–1282 (2016).PubMed 
    Article 

    Google Scholar 
    Mortelliti, A., Amori, G. & Boitani, L. The role of habitat quality in fragmented landscapes: A conceptual overview and prospectus for future research. Oecologia 163, 535–547 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mosner, E., Liepelt, S., Ziegenhagen, B. & Leyer, I. Floodplain willows in fragmented river landscapes: Understanding spatio-temporal genetic patterns as a basis for restoration plantings. Biol. Conserv. 153, 211–218 (2012).Article 

    Google Scholar 
    Chambers, J., MacMahon, J. & Brown, R. Alpine seedling establishment: The influence of disturbance type. Ecology 71, 1323–1341 (1990).Article 

    Google Scholar 
    Bill, H.-C. Besiedlungsdynamik und Populationsbiologie charakteristischer Pionierpflanzenarten nordalpiner Wildflüsse PhD thesis, Philipps-Universität Marburg, (2000).Lite, S. J., Bagstad, K. J. & Stromberg, J. C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J. Arid Environ. 63, 785–813. https://doi.org/10.1016/j.jaridenv.2005.03.026 (2005).ADS 
    Article 

    Google Scholar 
    Andersson, E., Nilsson, C. & Johansson, M. E. Plant dispersal in boreal rivers and its relation to the diversity of riparian flora. J. Biogeogr. 27, 1095–1106 (2000).Article 

    Google Scholar 
    Aguiar, F. et al. The abundance and distribution of guilds of riparian woody plants change in response to land use and flow regulation. J. Appl. Ecol. 55, 2227–2240 (2018).Article 

    Google Scholar 
    Leyer, I. Dispersal, diversity and distribution patterns in pioneer vegetation: The role of river-floodplain connectivity. J. Veg. Sci. 17, 407–416 (2006).Article 

    Google Scholar 
    Crookes, S. & Shaw, P. W. Isolation by distance and non-identical patterns of gene flow within two river populations of the freshwater fish Rutilus rutilus (L. 1758). Conserv. Genet. 17, 861–874. https://doi.org/10.1007/s10592-016-0828-3 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werth, S. & Scheidegger, C. Gene flow within and between catchments in the threatened riparian plant Myricaria germanica. PLoS ONE 9, e99400 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacquemyn, H., Honnay, O., Van Looy, K. & Breyne, P. Spatiotemporal structure of genetic variation of a spreading plant metapopulation on dynamic riverbanks along the Meuse River. Heredity 96, 471–478. https://doi.org/10.1038/sj.hdy.6800825 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mayer, C., Schiegg, K. & Pasinelli, G. Patchy population structure in a short-distance migrant: evidence from genetic and demographic data. Mol. Ecol. 18, 2353–2364 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benda, L. E. E. et al. The network dynamics hypothesis: How Channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).Article 

    Google Scholar 
    Miettinen, A. et al. A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. Conserv. Genet. 22, 35–51. https://doi.org/10.1007/s10592-020-01317-y (2021).CAS 
    Article 

    Google Scholar 
    Fink, S., Lanz, T., Stecher, R. & Scheidegger, C. Colonization potential of an endangered riparian shrub species. Biodivers. Conserv. 26, 2099–2114. https://doi.org/10.1007/s10531-017-1347-3 (2017).Article 

    Google Scholar 
    Merritt, D. & Wohl, E. Plant dispersal along rivers fragmented by dams. River Res. Appl. 22, 1–26 (2006).Article 

    Google Scholar 
    Sitzia, T., Michielon, B., Iacopino, S. & Kotze, D. J. Population dynamics of the endangered shrub Myricaria germanica in a regulated Alpine river is influenced by active channel width and distance to check dams. Ecol. Eng. 95, 828–838 (2016).Article 

    Google Scholar 
    Wöllner, R., Scheidegger, C. & Fink, S. Gene flow in a highly dynamic habitat and a single founder event: Proof from a plant population on a relocated river site. Glob. Ecol. Conserv. 28, e01686. https://doi.org/10.1016/j.gecco.2021.e01686 (2021).McLaughlin, B. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).ADS 
    Article 

    Google Scholar 
    Chiu, M. C. et al. Branching networks can have opposing influences on genetic variation in riverine metapopulations. bioRxiv https://doi.org/10.1101/550194 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catford, J. & Jansson, R. Drowned, buried and carried away: Effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol. 204, 19–36 (2014).PubMed 
    Article 

    Google Scholar 
    Schletterer, M. & Scheiber, T. Wiederansiedlung der deutschen tamariske (Myricaria germanica (L.) DESV.) an der Leutascher Ache (Nordtirol, Österreich). B. Naturwiss. Med. Ver. Innsbr. 95, 53–65 (2008).
    Google Scholar 
    Riehl, S. & Zehm, A. in ANLiegen Natur Vol. 40, 17–20 (ANL Bayern, Laufen, 2017).Egger, G., Angermann, K. & Gruber, A. Wiederansiedlung der Deutschen Tamariske (Myricaria germanica (L.) Desv.) in Kärnten. Carinthia II 393–418 (2010).Kudrnovsky, H. Alpine rivers and their ligneous vegetation with Myricaria germanica and riverine landscape diversity in the Eastern Alps: Proposing the Isel river system for the Natura 2000 network. Eco. Mont 5, 5–18 (2013).
    Google Scholar 
    Lener, F. P. Etablierung und Entwicklung der Deutschen Tamariske (Myricaria germanica) an der oberen Drau in Kärnten Master thesis (University of Vienna, Vienna, 2011).
    Google Scholar 
    Schiechtl, H. M. in Alpenländ. Bienenzeitung Vol. 4 125–131 (1957).Bill, H.-C., Poschlod, P., Reich, M. & Plachter, H. Experiments and observations on seed dispersal by running water in an Alpine floodplain. Bull. Geobot. Inst. ETH 65, 13–28 (1999).
    Google Scholar 
    Nilsson, C., Brown, R., Jansson, R. & Merritt, D. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 85, 837–858 (2010).PubMed 

    Google Scholar 
    Lener, F. P., Egger, G. & Karrer, G. Sprossaufbau und entwicklung der deutschen tamariske (Myricaria germanica) an der Oberen Drau (Kärnten, Österreich). Carinthia II(203), 515–552 (2013).
    Google Scholar 
    Werth, S. & Scheidegger, C. Isolation and characterization of 22 nuclear and 5 chloroplast microsatellite loci in the threatened riparian plant Myricaria germanica (Tamaricaceae, Caryophyllales). Conserv. Genet. Resour. 3, 445–448 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comp., (2016).Excoffier, L., Laval, G. & Schneider, S. Arlequin ver 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).CAS 
    Article 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247. https://doi.org/10.1093/jhered/89.3.238 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).Article 

    Google Scholar 
    Smouse, P. E., Peakall, R., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piry, S. et al. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65. https://doi.org/10.1046/j.1365-294X.2004.02008.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rannala, B. (ed University of California Davis) 1–12 (2007).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirmans, P. G. Nonconvergence in Bayesian estimation of migration rates. Mol. Ecol. Resour. 14, 726–733. https://doi.org/10.1111/1755-0998.12216 (2014).Article 
    PubMed 

    Google Scholar 
    Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350. https://doi.org/10.1007/s10654-016-0149-3 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A sea change in craft brewing

    New wave: Petar Puškarić used yeast isolated from the Adriatic Sea to make a beer that he named Morski Kukumar (Sea Cucumber).Credit: Marin Ordulj

    Petar Puškarić is an engineer, ecologist and head of beer production at LAB Split, a craft brewery in Split, Croatia. He graduated with a master’s degree from the department of marine studies at the University of Split last year, after successfully making a beer from Candida famata, a yeast that can be isolated from sea water. He now hopes to brew this sea-yeast beer commercially. He speaks to Nature about some of the challenges in going from dissertation to commercialization.How did your marine-yeast beer come about?I’ve had an interest in brewing beer for a long time, and started brewing as a hobby when I was a student. During a marine-microbiology lecture as part of my undergraduate degree in ecology, my mentor Marin Ordulj and I started to talk about marine yeasts, and one question led to another. We wondered whether sea yeast could ferment beer.We researched the literature and could not find anyone who had made a beer with a yeast isolated from the sea. Perhaps we could become the first to do so? The idea stayed with me for a few years as I continued my degree and moved on to my master’s course. When I came to choose my dissertation topic, I decided it was time to put the idea to the test. I discussed things with Marin, and he agreed to help me plan an experiment. By then, I was working part-time at the LAB Split brewery, so I had some brewing experience to bring to our investigations.Our first task was to isolate yeasts from the sea. We then tested the fermentation abilities of the isolated yeasts and grew cultures from the most promising samples. Finally, we used those cultures to brew beer.How did you manage your time between brewing and your degree?I wasn’t overorganized, but I always made sure to be disciplined and to do whatever was needed as tasks came along. I kept active outside work as well, continuing to play as a mandolinist in an orchestra, for example.I didn’t think too strictly about my career, and made time to do the things I enjoyed. I’d recommend that other students also try to enjoy life and spend as much time as possible with friends. After all, life is not just about building a career. I was lucky in proposing a graduate topic that I found interesting and that my mentor liked: that helped me through the duller and more difficult moments.What was the hardest part of the process?The biggest problem was created by marine bacteria, which would outgrow the yeast colonies and thus make the isolation of yeast more difficult. We tackled this problem by using selective nutrient media, which inhibit the growth of bacteria. Eventually, this resulted in pure yeast cultures.What did the beer taste like?The first beer tasting after all that research, thinking and anticipation was really exciting. We noted clove and fruit aromas and a slightly sour tone. It didn’t carry the taste of the sea; the flavour was closest to that of sour beer.What impact do you hope this work will have?The beer is an exciting product of my graduate work, but I also hope that my thesis will encourage others to explore in more detail the yeasts in the Adriatic Sea, and to realize their potential in ecology, medicine and nutrition. Split is on the Adriatic coast and I like the idea that we’re contributing in some small way to protecting that coastline.Sea Cucumber, as we’ve named the beer, might not help much directly in that regard, but I do hope that it could raise awareness about how many useful things there are in the sea.Are you planning on taking the sea yeast further in your career?Any experience in microbiology helps in the food industry. Sea yeast might turn out to be useful in brewing, but we have to consider the finances and infrastructure we’d need to support its use commercially. For now, we’re concentrating on brewing more standard beers. In the future, I hope to brew some of my own recipes, whether Sea Cucumber or something else. I would definitely like to combine brewing with the search for new yeasts that can be used not only in beer making, but in other industries as well. More

  • in

    Factors affecting the implementation of soil conservation practices among Iranian farmers

    Komarek, A. M., Thierfelder, C. & Steward, P. R. Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi. Agric. Syst. 190, 103117 (2021).Article 

    Google Scholar 
    Charles, H., Godfray, H. & Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 369, 1 (2014).Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 4, 287–291 (2014).Article 
    ADS 

    Google Scholar 
    Challinor, A. J., Koehler, A. K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Chang. 6, 954–958 (2016).Article 
    ADS 

    Google Scholar 
    Savari, M. & Shokati Amghani, M. SWOT-FAHP-TOWS analysis for adaptation strategies development among small-scale farmers in drought conditions. Int. J. Disaster Risk Reduct. 67, 1 (2022).
    Google Scholar 
    Savari, M. & Shokati Amghani, M. Factors influencing farmers’ adaptation strategies in confronting the drought in Iran. Environ. Dev. Sustain. 23, 4949–4972 (2020).Article 

    Google Scholar 
    Savari, M., Eskandari Damaneh, H. & Eskandari Damaneh, H. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Reduct. 67, (2022).Savari, M. & Zhoolideh, M. The role of climate change adaptation of small-scale farmers on the households food security level in the west of Iran. Dev. Pract. 31, 650–664 (2021).Article 

    Google Scholar 
    Eder, A., Salhofer, K. & Scheichel, E. Land tenure, soil conservation, and farm performance: An eco-efficiency analysis of Austrian crop farms. Ecol. Econ. 180, 106861 (2021).Article 

    Google Scholar 
    Keesstra, S. et al. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. 7, 133 (2018).Savari, M., Naghibeiranvand, F. & Asadi, Z. Modeling environmentally responsible behaviors among rural women in the forested regions in Iran. Glob. Ecol. Conserv. 35, e02102 (2022).Article 

    Google Scholar 
    Savari, M., Damaneh, H. E. & Damaneh, H. E. Factors involved in the degradation of mangrove forests in Iran: A mixed study for the management of this ecosystem. J. Nat. Conserv. 66, 1 (2022).Article 

    Google Scholar 
    Bhan, S. & Behera, U. K. Conservation agriculture in India—Problems, prospects and policy issues. Int. Soil Water Conserv. Res. 2, 1–12 (2014).Article 

    Google Scholar 
    Savari, M., Ebrahimi-Maymand, R. & Mohammadi-Kanigolzar, F. The factors influencing the application of organic farming operations by farmers in iran. Agris On-line Pap. Econ. Informatics 5, 179–187 (2013).
    Google Scholar 
    FAO. Conservation agriculture in Central Asia: Status, Policy, Institutional Support, and Strategic Framework for its Promotion. 57 pp (2013).Eskandari Damaneh, H., Khosravi, H., Habashi, K., Eskandari Damaneh, H. & Tiefenbacher, J. P. The impact of land use and land cover changes on soil erosion in western Iran. Nat. Hazards 110, 2185–2205 (2022).Dougill, A. J. et al. Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers. J. Environ. Manage. 195, 25–34 (2017).PubMed 
    Article 

    Google Scholar 
    Pannell, D. J., Llewellyn, R. S. & Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agric. Ecosyst. Environ. 187, 52–64 (2014).Article 

    Google Scholar 
    Bajwa, A. A. Sustainable weed management in conservation agriculture. Crop Prot. 65, 105–113 (2014).Article 

    Google Scholar 
    Lalani, B., Dorward, P., Holloway, G. & Wauters, E. Smallholder farmers’ motivations for using Conservation Agriculture and the roles of yield, labour and soil fertility in decision making. Agric. Syst. 146, 80–90 (2016).Article 

    Google Scholar 
    Faridi, A. A., Kavoosi-Kalashami, M. & Bilali, H. E. Attitude components affecting adoption of soil and water conservation measures by paddy farmers in Rasht County. Northern Iran. Land Use Policy 99, 1 (2020).
    Google Scholar 
    Thierfelder, C. et al. Conservation agriculture in Southern Africa: Advances in knowledge. Renew. Agric. Food Syst. 30, 328–348 (2015).Article 

    Google Scholar 
    Eskandari Damaneh, H. et al. Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province https://doi.org/10.1177/1178622121101333214 (2021).Article 

    Google Scholar 
    Ataei, P., Sadighi, H., Chizari, M. & Abbasi, E. Discriminant analysis of the participated farmers’ characteristics in the conservation agriculture project based on the learning transfer system. Environ. Dev. Sustain. 23, 291–307 (2021).Article 

    Google Scholar 
    Izadi, N., Ataei, P., Karimi-Gougheri, H. & Norouzi, A. Environmental impact assessment of construction of water pumping station in Bacheh Bazar Plain: A case from Iran. EQA – Int. J. Environ. Qual. 35, 13–32 (2019).
    Google Scholar 
    Mesgaran, M. B., Madani, K., Hashemi, H. & Azadi, P. Iran’s Land Suitability for Agriculture. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    Jia, L. et al. Regional differences in the soil and water conservation efficiency of conservation tillage in China. CATENA 175, 18–26 (2019).Article 

    Google Scholar 
    Kuyvenhoven, A., Ruben, R. & Pender, J. Development strategies for less-favoured areas. Food Policy 29, 295–302 (2004).Article 

    Google Scholar 
    Hoque, R. & Sorwar, G. Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. Int. J. Med. Inform. 101, 75–84 (2017).PubMed 
    Article 

    Google Scholar 
    Gupta, K. P., Manrai, R. & Goel, U. Factors influencing adoption of payments banks by Indian customers: extending UTAUT with perceived credibility. J. Asia Bus. Stud. 13, 173–195 (2019).Article 

    Google Scholar 
    Solís, D., Bravo-Ureta, B. E. & Quiroga, R. E. Technical efficiency among peasant farmers participating in natural resource management programmes in Central America. J. Agric. Econ. 60, 202–219 (2009).Article 

    Google Scholar 
    Amsalu, A. & de Graaff, J. Determinants of adoption and continued use of stone terraces for soil and water conservation in an Ethiopian highland watershed. Ecol. Econ. 61, 294–302 (2007).Article 

    Google Scholar 
    Solís, D. & Bravo-Ureta, B. E. Economic and Financial Sustainability of Private Agricultural Extension in El Salvador. https://doi.org/10.1300/J064v26n02_0726,81-102 (2008).Article 

    Google Scholar 
    Bagheri, A. & Teymouri, A. Farmers’ intended and actual adoption of soil and water conservation practices. Agric. Water Manag. 259, 1 (2022).Article 

    Google Scholar 
    Rodrigo-Comino, J. et al. The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment. L. Degrad. Dev. 31, 1877–1889 (2020).Article 

    Google Scholar 
    Klik, A. & Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil Tillage Res. 203, 1 (2020).Article 

    Google Scholar 
    Singh, R. K., Singh, A. & Pandey, C. B. Agro-biodiversity in rice–wheat-based agroecosystems of eastern Uttar Pradesh, India: implications for conservation and sustainable management. 21, 46–59. https://doi.org/10.1080/13504509.2013.869272 (2014).Bijani, M., Ghazani, E., Valizadeh, N. & Fallah Haghighi, N. Pro-environmental analysis of farmers’ concerns and behaviors towards soil conservation in central district of Sari County, Iran. Int. Soil Water Conserv. Res. 5, 43–49 (2017).Raeisi, A., Bijani, M. & Chizari, M. The mediating role of environmental emotions in transition from knowledge to sustainable use of groundwater resources in Iran’s agriculture. Int. Soil Water Conserv. Res. 6, 143–152 (2018).Article 

    Google Scholar 
    Valizadeh, N., Bijani, M., Hayati, D. & Fallah Haghighi, N. Social-cognitive conceptualization of Iranian farmers’ water conservation behavior. Hydrogeol. J. 27, 1131–1142 (2019).Kassie, M., Jaleta, M., Shiferaw, B., Mmbando, F. & Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Change 80, 525–540 (2013).Article 

    Google Scholar 
    Teklewold, H., Kassie, M. & Shiferaw, B. Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia. J. Agric. Econ. 64, 597–623 (2013).Article 

    Google Scholar 
    Savari, M., Zhoolideh, M. & Khosravipour, B. Explaining pro-environmental behavior of farmers: A case of rural Iran. Curr. Psychol. https://doi.org/10.1007/S12144-021-02093-9 (2021).Article 

    Google Scholar 
    Tey, Y. S. & Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 13, 713–730 (2012).Article 

    Google Scholar 
    Savari, M., Abdeshahi, A., Gharechaee, H. & Nasrollahian, O. Explaining farmers’ response to water crisis through theory of the norm activation model: Evidence from Iran. Int. J. Disaster Risk Reduct. 60, 1 (2021).Article 

    Google Scholar 
    Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991).Article 

    Google Scholar 
    Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. Manag. Inf. Syst. 13, 319–339 (1989).Article 

    Google Scholar 
    Rogers W., R. Cognitive and physiological processes in fear appeals and attitude change: a revised theory of protection motivation. in Social Psychophysiology: A Sourcebook 153–177 (1983).Bandura, A. Health promotion by social cognitive means. Heal. Educ. Behav. 31, 143–164 (2004).Article 

    Google Scholar 
    Ratten, V. & Ratten, H. Technological innovations and m-Commerce applications. Int. J. Innov. Technol. Manag. 4, 1–14 (2007).Article 

    Google Scholar 
    Shahangian, S. A., Tabesh, M. & Yazdanpanah, M. Psychosocial determinants of household adoption of water-efficiency behaviors in Tehran capital, Iran: Application of the social cognitive theory. Urban Clim. 39, 1009 (2021).Article 

    Google Scholar 
    Yazdanpanah, M., Feyzabad, F. R., Forouzani, M., Mohammadzadeh, S. & Burton, R. J. F. Predicting farmers’ water conservation goals and behavior in Iran: A test of social cognitive theory. Land Use Policy 47, 401–407 (2015).Article 

    Google Scholar 
    Rahimi-Feyzabad, F., Yazdanpanah, M., Burton, R. J. F., Forouzani, M. & Mohammadzadeh, S. The use of a bourdieusian “capitals” model for understanding farmer’s irrigation behavior in Iran. J. Hydrol. 591, 1 (2020).Article 

    Google Scholar 
    Schwarzer, R. & Luszczynska, A. Predicting and changing health behavior. Heal. action Process approach 252–278 (2015).Gothe, N. P. Correlates of physical activity in urban African American adults and older adults: Testing the social cognitive theory. Ann. Behav. Med. 52, 743–751 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murphy, D. A., Stein, J. A., Schlenger, W. & Maibach, E. Conceptualizing the multidimensional nature of self-efficacy: Assessment of situational context and level of behavioral challenge to maintain safer sex. Heal. Psychol. 20, 281–290 (2001).CAS 
    Article 

    Google Scholar 
    Valois, R. F., Zullig, K. J. & Revels, A. A. Aggressive and violent behavior and emotional self-efficacy: Is there a relationship for adolescents?. J. Sch. Health 87, 269–277 (2017).PubMed 
    Article 

    Google Scholar 
    Ramirez, E., Kulinna, P. H. & Cothran, D. Constructs of physical activity behaviour in children: The usefulness of Social Cognitive Theory. Psychol. Sport Exerc. 13, 303–310 (2012).Article 

    Google Scholar 
    Schunk, D. H. & DiBenedetto, M. K. Motivation and social cognitive theory. Contemp. Educ. Psychol. 60, 101832 (2020).Article 

    Google Scholar 
    Raskauskas, J., Rubiano, S., Offen, I. & Wayland, A. K. Do social self-efficacy and self-esteem moderate the relationship between peer victimization and academic performance?. Soc. Psychol. Educ. 18, 297–314 (2015).Article 

    Google Scholar 
    Wang, S., Hung, K. & Huang, W.-J. Motivations for entrepreneurship in the tourism and hospitality sector: A social cognitive theory perspective. https://doi.org/10.1016/j.ijhm.2018.11.018 (2018).Article 

    Google Scholar 
    Zimmerman, B. J. Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. Am. Educ. Res. J. 45, 166–183 (2008).Article 
    ADS 

    Google Scholar 
    Steese, S. et al. Understanding Girls’ Circle as an intervention on perceived social support, body image, self-efficacy, locus of control, and self-esteem. Adolescence 41, 55–74 (2006).PubMed 

    Google Scholar 
    Komendantova, N. et al. Studying young people’ views on deployment of renewable energy sources in Iran through the lenses of Social Cognitive Theory. AIMS Energy 6, 216–228 (2018).Article 

    Google Scholar 
    Burton, R. J. F. Reconceptualising the ‘behavioural approach’ in agricultural studies: A socio-psychological perspective. J. Rural Stud. 20, 359–371 (2004).Article 

    Google Scholar 
    Plotnikoff, R. C., Lippke, S., Courneya, K. S., Birkett, N. & Sigal, R. J. Physical activity and social cognitive theory: A test in a population sample of adults with type 1 or type 2 diabetes. Appl. Psychol. AN Int. Rev. 57, 628–643 (2008).Article 

    Google Scholar 
    Thøgersen, J. & Grønhøj, A. Electricity saving in households-A social cognitive approach. Energy Policy 38, 7732–7743 (2010).Article 

    Google Scholar 
    Kaye, S. A., Lewis, I., Forward, S. & Delhomme, P. A priori acceptance of highly automated cars in Australia, France, and Sweden: A theoretically-informed investigation guided by the TPB and UTAUT. Accid. Anal. Prev. 137, 5441 (2020).Article 

    Google Scholar 
    Savari, M. & Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 263, 1 (2020).Article 
    CAS 

    Google Scholar 
    Koohizadeh, M., Mohammad Akhoond-Ali, A. & Arsham, A. The Effect of Soil Moisture Levels on the Threshold Velocity of Wind Erosion in Dust Centers of South and Southeast of Khuzestan Province-Ahwaz. Iran. J. Soil Water Res. 52, 869–885 (2021).Keshavarz, M. & Karami, E. Farmers’ decision-making process under drought. J. Arid Environ. 108, 43–56 (2014).Article 
    ADS 

    Google Scholar 
    Wu, J. Urban sustainability: an inevitable goal of landscape research. Landsc. Ecol. 25, 1–4 (2009).Article 

    Google Scholar 
    Ullman, J. B. & Bentler, P. M. Structural equation modeling. Handb. Psychol. Second Ed. https://doi.org/10.1002/9781118133880.HOP202023 (2012).Article 

    Google Scholar 
    Serda, M. Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza. Uniw. śląski 343–354 (2013).Khoshmaram, M., Shiri, N., Shinnar, R. S. & Savari, M. Environmental support and entrepreneurial behavior among Iranian farmers: The mediating roles of social and human capital. https://doi.org/10.1111/jsbm.1250158,1064-1088 (2020).Article 

    Google Scholar 
    Kim, T. K. T test as a parametric statistic. Korean J. Anesthesiol. 68, 540–546 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    -The T-test. Source: Adapted from Semenick, (96), p. 37. | Download Scientific Diagram. https://www.researchgate.net/figure/The-T-test-Source-Adapted-from-Semenick-96-p-37_fig2_274192999.Yadav, R. & Pathak, G. S. Intention to purchase organic food among young consumers: Evidences from a developing nation. Appetite 96, 122–128 (2016).PubMed 
    Article 

    Google Scholar 
    Akey, J. E., Rintamaki, L. S. & Kane, T. L. Health Belief Model deterrents of social support seeking among people coping with eating disorders. J. Affect. Disord. 145, 246–252 (2013).PubMed 
    Article 

    Google Scholar 
    Ahmmadi, P., Rahimian, M. & Movahed, R. G. Theory of planned behavior to predict consumer behavior in using products irrigated with purified wastewater in Iran consumer. J. Clean. Prod. 296, 6359 (2021).Article 

    Google Scholar 
    Bagheri, A., Bondori, A., Allahyari, M. S. & Damalas, C. A. Modeling farmers’ intention to use pesticides: An expanded version of the theory of planned behavior. J. Environ. Manage. 248, 1 (2019).Article 

    Google Scholar 
    Sarstedt, M., Ringle, C. M. & Hair, J. F. Partial least squares structural equation modeling. Handb. Mark. Res. 1, 1–47. https://doi.org/10.1007/978-3-319-05542-8_15-2 (2021).Article 

    Google Scholar 
    Mogaka, B. O., Bett, H. K. & Nganga, S. K. Socioeconomic factors influencing the choice of climate-smart soil practices among farmers in western Kenya. J. Agric. Food Res. 5, 1 (2021).
    Google Scholar 
    Afshan, S., Sharif, A., Waseem, N. & Farooghi, R. Internet banking in Pakistan: An extended technology acceptance perspective. Int. J. Bus. Inf. Syst. 27, 383–410 (2018).
    Google Scholar 
    Pai, F. Y. & Huang, K. I. Applying the Technology Acceptance Model to the introduction of healthcare information systems. Technol. Forecast. Soc. Change 78, 650–660 (2011).Article 

    Google Scholar 
    Venkatesh, V., Thong, J. Y. L. & Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. Manag. Inf. Syst. 36, 157–178 (2012).Article 

    Google Scholar 
    Nguru, W. M., Gachene, C. K., Onyango, C. M., Nganga, S. K. & Girvetz, E. H. Factors constraining the adoption of soil organic carbon enhancing technologies among small-scale farmers in Ethiopia. Heliyon 7, 1 (2021).Article 

    Google Scholar 
    Warner, L. A. Who conserves and who approves? Predicting water conservation intentions in urban landscapes with referent groups beyond the traditional ‘important others’. Urban For. Urban Green. 60, 1 (2021).Article 

    Google Scholar  More

  • in

    Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral

    Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B: Biol. Sci. 276, 3019–3025 (2009).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C. & Lirman, D. Genotype by environment interactions in coral bleaching. Proc. R. Soc. B Biol. Sci., https://doi.org/10.1098/rspb.2021.0177 (2021).Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).PubMed 
    Article 

    Google Scholar 
    Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef‐building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).Article 

    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci., https://doi.org/10.3389/fmars.2017.00434 (2018).Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals. Mol. Ecol. 28, 3371–3382 (2019).PubMed 
    Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo‐West Pacific. Glob. Chang. Biol. 26, 3473–3481 (2020).Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quigley, K. M., Bay, L. K. & van Oppen, M. J. Genome‐wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 29, 2176–2188 (2020).Howells, E. J. et al. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7, eabg6070 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowan, R. Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430, 742 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. USA 105, 10444–10449 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maire, J. et al. Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs. ISME J., 15, 2028–2042 (2021).Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science 369 (2020).Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jin, Y. K. et al. Genetic markers for antioxidant capacity in a reef-building coral. Sci. Adv. 2, e1500842 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cooke, I. et al. Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Sci. Adv. 6, eabc6318 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C. Resilience in reef-building corals: the ecological and evolutionary importance of the host response to thermal stress. Mol. Ecol. 00, 1–18 (2019).CAS 

    Google Scholar 
    Quigley, K. M., Willis, B. L. & Bay, L. K. Heritability of the Symbiodinium community in vertically-and horizontally-transmitting broadcast spawning corals. Sci. Rep. 7, 8219 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Van Hooidonk, R., Maynard, J. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508 (2013).Article 
    CAS 

    Google Scholar 
    Quigley, K. M., Warner, P. A., Bay, L. K. & Willis, B. L. Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity, 121, 524–536 (2018).Cunning, R., Ritson-Williams, R. & Gates, R. D. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).CAS 
    Article 

    Google Scholar 
    Dilworth, J., Caruso, C., Kahkejian, V. A., Baker, A. C. & Drury, C. Host genotype and stable differences in algal symbiont communities explain patterns of thermal stress response of Montipora capitata following thermal pre-exposure and across multiple bleaching events. Coral Reefs, https://doi.org/10.1007/s00338-020-02024-3 (2020).Rocha de Souza, M. et al. Community composition of coral-associated Symbiodiniaceae is driven by fine-scale environmental gradients. bioRxiv https://doi.org/10.1101/2021.11.10.468165 (2021).Innis, T., Cunning, R., Ritson-Williams, R., Wall, C. & Gates, R. Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Coral Reefs 37, 423–430 (2018).Article 

    Google Scholar 
    Shore-Maggio, A., Runyon, C. M., Ushijima, B., Aeby, G. S. & Callahan, S. M. Differences in bacterial community structure in two color morphs of the Hawaiian reef coral Montipora capitata. Appl. Environ. Microbiol. 81, 7312–7318 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roach, T. N., Dilworth, J., Jones, A. D., Quinn, R. A. & Drury, C. Metabolomic signatures of coral bleaching history. Nat. Ecol. Evol., 5, 495–503 (2021).Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol., Evolution, Syst. 40, 551–571 (2009).Article 

    Google Scholar 
    Caruso, C. et al. Genetic patterns in Montipora capitata across an environmental mosaic in Kāne’ohe Bay. bioRxiv https://doi.org/10.1101/2021.10.07.463582 (2021).Rose, N. H., Bay, R. A., Morikawa, M. K. & Palumbi, S. R. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution 72, 82–94 (2017).PubMed 
    Article 

    Google Scholar 
    Rose, N. H. et al. Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proc. R. Soc. B 288, 20210678 (2021).PubMed 
    Article 

    Google Scholar 
    Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal Hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS ONE 5, e15021 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dixon, G., Abbott, E. & Matz, M. Meta‐analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. 29, 2855–2870 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lim, S., Kim, D. G. & Kim, S. ERK-dependent phosphorylation of the linker and substrate-binding domain of HSP70 increases folding activity and cell proliferation. Exp. Mol. Med. 51, 1–14 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yancey, P. H. et al. Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. Physiol. Biochem. Zool. 83, 167–173 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, R., Li, C., Jones, A., Gunn, J. & Frade, P. Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs 29, 869–880 (2010).Article 

    Google Scholar 
    Ngugi, D. K., Ziegler, M., Duarte, C. M. & Voolstra, C. R. Genomic blueprint of glycine betaine metabolism in coral metaorganisms and their contribution to reef nitrogen budgets. iScience 23, 101120 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A. et al. Metabolome shift associated with thermal stress in coral holobionts. bioRxiv https://doi.org/10.1101/2020.06.04.134619 (2021).Sakamoto, A. & Murata, N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell Environ. 25, 163–171 (2002).CAS 
    Article 

    Google Scholar 
    Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, T. H. & Murata, N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 34, 1–20 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Petronini, P., De Angelis, E., Borghetti, A. & Wheeler, K. Effect of betaine on HSP70 expression and cell survival during adaptation to osmotic stress. Biochem. J. 293, 553–558 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS ONE 7, e38440 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cunning, R. & Baker, A. C. Thermotolerant coral symbionts modulate heat stress‐responsive genes in their hosts. Mol. Ecol. 29, 2940–2950 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayfield, A. B. & Gates, R. D. Osmoregulation in anthozoan–dinoflagellate symbiosis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 1–10 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A. & van Oppen, M. J. Interspecific hybridization may provide novel opportunities for coral reef restoration. Front. Mar. Sci. 5, 160 (2018).Article 

    Google Scholar 
    Rose, N. H., Seneca, F. O. & Palumbi, S. R. Gene networks in the wild: identifying transcriptional modules that mediate coral resistance to experimental heat stress. Genome Biol. Evolution 8, 243–252 (2016).CAS 
    Article 

    Google Scholar 
    Ruiz-Jones, L. J. & Palumbi, S. R. Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. Sci. Adv. 3, e1601298 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. Rapid thermal adaptation in photosymbionts of reef‐building corals. Glob. Change Biol. 23, 4675–4688 (2017).Article 

    Google Scholar 
    Little, A. F., Van Oppen, M. J. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quigley, K., Randall, C., van Oppen, M. & Bay, L. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol. Open 9, bio047316 (2020).Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00178 (2020).Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kane ‘ohe Bay, Hawai ‘i. Coral Reefs. 39, 757–769 (2020).Hancock, J. et al. Coral husbandry for ocean futures: leveraging abiotic factors to increase survivorship, growth and resilience in juvenile Montipora capitata. Mar. Ecol. Prog. Ser., https://doi.org/10.3354/meps13534 (2020).Falconer, D. S. Introduction To Quantitative Genetics (Pearson, 1960).Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2012).Article 

    Google Scholar 
    Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34, 155–160 (2015).Article 

    Google Scholar 
    Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 1–17 (2019).Article 

    Google Scholar 
    Shumaker, A. et al. Genome analysis of the rice coral Montipora capitata. Sci. Rep. 9, 2571 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).Article 

    Google Scholar 
    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 1.17-2. R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2010).
    Google Scholar 
    Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16, 371 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hivert, V., Leblois, R., Petit, E. J., Gautier, M. & Vitalis, R. Measuring genetic differentiation from Pool-seq data. Genetics 210, 315–330 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 11, 1–11 (2010).Article 
    CAS 

    Google Scholar 
    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. methods 16, 299–302 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ludwig, M., Fleischauer, M., Dührkop, K., Hoffmann, M. A. & Böcker, S. in Computational Methods and Data Analysis for Metabolomics 185–207 (Springer, 2020).Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 1–13 (2008).Article 
    CAS 

    Google Scholar 
    Pedersen, H. K. et al. A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat. Protoc. 13, 2781–2800 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pei, G., Chen, L. & Zhang, W. in Methods in enzymology 585 135–158 (Elsevier, 2017).Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Harnessing agricultural microbiomes for human pathogen control

    Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveillance Summaries. 2018;67:1.PubMed Central 
    Article 

    Google Scholar 
    CDC. Ongoing Multistate Outbreak of Escherichia coli serotype O157:H7 Infections Associated With Consumption of Fresh Spinach – United States. JAMA. 2006;296:2195–6.Article 

    Google Scholar 
    Jay MT, Cooley M, Carychao D, Wiscomb GW, Sweitzer RA, Crawford-Miksza L, et al. Escherichia coli O157: H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis. 2007;13:1908.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, et al. Incidence and tracking of Escherichia coli O157: H7 in a major produce production region in California. PLoS One. 2007;2:e1159.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mukherjee A, Mammel MK, LeClerc JE, Cebula TA. Altered Utilization of N-Acetyl-d-Galactosamine by Escherichia coli O157:H7 from the 2006 Spinach Outbreak. J Bacteriol. 2008;190:1710–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Macarisin D, Patel J, Bauchan G, Giron JA, Sharma VK. Role of Curli and Cellulose Expression in Adherence of Escherichia coli O157:H7 to Spinach Leaves. Foodborne Pathog Dis. 2012;9:160–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol. 2014;44:108–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Park S, Navratil S, Gregory A, Bauer A, Srinath I, Szonyi B, et al. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic Escherichia coli at the preharvest stage. Appl Environ Microbiol. 2014;80:2504–15.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    CDC. Investigation Details. 2021 [updated 2021; cited]; Available from: https://www.cdc.gov/ecoli/2021/o157h7-02-21/details.html.Karp DS, Gennet S, Kilonzo C, Partyka M, Chaumont N, Atwill ER, et al. Comanaging fresh produce for nature conservation and food safety. Proc Natl Acad Sci. 2015;112:11126–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones MS, Fu Z, Reganold JP, Karp DS, Besser TE, Tylianakis JM, et al. Organic farming promotes biotic resistance to foodborne human pathogens. J Appl Ecol. 2019;56:1117–27.Article 

    Google Scholar 
    Holden N, Pritchard L, Toth I. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMs Microbiol Rev. 2009;33:689–703.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holden N. You are what you can find to eat: bacterial metabolism in the rhizosphere. Curr Issues Mol Biol. 2019;30:1–16.Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology. 2019;165:503–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liao H, Li X, Bai Y, Cui P, Wen C, Liu C, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evolut. 2021;38:2337–50.CAS 
    Article 

    Google Scholar 
    Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol. 2014;7:496–516.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, et al. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology. 2013;103:333–40.PubMed 
    Article 

    Google Scholar 
    Dinu L-D, Bach S. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Appl Environ Microbiol. 2011;77:8295–302.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crozier L, Marshall J, Holmes A, Wright KM, Rossez Y, Merget B, et al. The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. Microbiology. 2021;167:1–12.Franz E, Semenov AV, Van Bruggen AHC. Modelling the contamination of lettuce with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies. J Appl Microbiol. 2008;105:1569–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AHC. Internal colonization of salmonella enterica serovar typhimurium in tomato plants. PLoS One. 2011;6:e27340.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, et al. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157:H7 (Sakai) suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts. Front Microbiol. 2016;12:1088. 7
    Google Scholar 
    Jacob C, Melotto M. Human pathogen colonization of lettuce dependent upon plant genotype and defense response activation. Front Plant Sci. 2020;30:10.
    Google Scholar 
    Launders N, Locking ME, Hanson M, Willshaw G, Charlett A, Salmon R, et al. A large Great Britain-wide outbreak of STEC O157 phage type 8 linked to handling of raw leeks and potatoes. Epidemiol Infect. 2016;144:171–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schenkel D, Deveau A, Niimi J, Mariotte P, Vitra A, Meisser M, et al. Linking soil’s volatilome to microbes and plant roots highlights the importance of microbes as emitters of belowground volatile signals. Environ Microbiol. 2019;21:3313–27.Article 

    Google Scholar 
    Teixeira PJPL, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Darlison J, Mogren L, Rosberg A-K, Grudén M, Minet A, Liné C, et al. Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ. 2019;675:501–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett. 2013;346:146–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Daniel S, Goldlust K, Quebre V, Shen M, Lesterlin C, Bouet J-Y, et al. Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4. Genes. 2020;11:1207.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte J-L, et al. Global soil biodiversity atlas. European Commission; 2016.Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Latz E, Eisenhauer N, Rall BC, Scheu S, Jousset A. Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Scientific Reports. 2016;6:23584.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lapsansky ER, Milroy AM, Andales MJ, Vivanco JM. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Curr Opin Biotechnol. 2016;38:137–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME Journal. 2016;10:265–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schikora A, Jackson RW, Van Overbeek L, Holden N. Editorial: plants as alternative hosts for human and animal pathogens – second edition. Front Microbiol. [Editorial] 2020;14:11.
    Google Scholar 
    Lebeis SL. Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol. 2015;24:82–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kinnunen M, Dechesne A, Proctor C, Hammes F, Johnson D, Quintela-Baluja M, et al. A conceptual framework for invasion in microbial communities. ISME J. 2016;10:2773–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uyttendaele M, Jaykus LA, Amoah P, Chiodini A, Cunliffe D, Jacxsens L, et al. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr Rev Food Sci Food Saf. 2015;14:336–56.Article 

    Google Scholar 
    Litchman E. Invisible invaders: non‐pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett. 2010;13:1560–72.PubMed 
    Article 

    Google Scholar 
    Blackburn TM, Lockwood JL, Cassey P. The influence of numbers on invasion success. Mol Ecol. 2015;24:1942–53.PubMed 
    Article 

    Google Scholar 
    Hawkes CV, Connor EW. Translating Phytobiomes from Theory to Practice: Ecological and Evolutionary Considerations. Phytobiomes. Journal. 2017;1:57–69.
    Google Scholar 
    Meyer KM, Leveau JH. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia. 2012;168:621–9.PubMed 
    Article 

    Google Scholar 
    Jousset A, Schulz W, Scheu S, Eisenhauer N. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME J. 2011;5:1108–14.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martínez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ. 2014;29:123–35.Alegbeleye OO, Singleton I, Sant’Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol. 2018;73:177–208.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johannessen GS, Bengtsson GB, Heier BT, Bredholt S, Wasteson Y, Rørvik LM. Potential uptake of Escherichia coli O157: H7 from organic manure into crisphead lettuce. Appl Environ Microbiol. 2005;71:2221–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fett WF. Inhibition of Salmonella enterica by plant-associated pseudomonads in vitro and on sprouting alfalfa seed. J Food Prot. 2006;69:719–28.PubMed 
    Article 

    Google Scholar 
    Brandl MT, Cox CE, Teplitski M. Salmonella interactions with plants and their associated microbiota. Phytopathology. 2013;103:316–25.PubMed 
    Article 

    Google Scholar 
    Thao S, Brandl MT, Carter MQ. Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiol. 2019;84:103241.PubMed 
    Article 

    Google Scholar 
    Devarajan N, McGarvey JA, Scow K, Jones MS, Lee S, Samaddar S, et al. Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. J Appl Microbiol. 2021;131:1564–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams TR, Moyne A-L, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One. 2013;8:e68642.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang Y, Jewett C, Gilley J, Bartelt-Hunt SL, Snow DD, Hodges L, et al. Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiol Ecol. 2018;94:fiy135.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jarvis KG, White JR, Grim CJ, Ewing L, Ottesen AR, Beaubrun JJ-G, et al. Cilantro microbiome before and after nonselective pre-enrichment for Salmonella using 16S rRNA and metagenomic sequencing. BMC Microbiol. 2015;15:1–13.CAS 
    Article 

    Google Scholar 
    Allard SM, Callahan MT, Bui A, Ferelli AMC, Chopyk J, Chattopadhyay S, et al. Creek to rable: tracking fecal indicator bacteria, bacterial pathogens, and total bacterial communities from irrigation water to kale and radish crops. Sci Total Environ. 2019;666:461–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu G, Yin H-B, Ottesen A, Bolten S, Patel J, Rideout S, et al. Microbiomes in ground water and alternative irrigation water, and spinach microbiomes impacted by irrigation with different types of water. Phytobiomes J. 2019;3:137–47.Article 

    Google Scholar 
    Obayomi O, Edelstein M, Safi J, Mihiret M, Ghazaryan L, Vonshak A, et al. The combined effects of treated wastewater irrigation and plastic mulch cover on soil and crop microbial communities. Biology Fertility Soils. 2020;56:729–42.CAS 
    Article 

    Google Scholar 
    Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One. 2018;13:e0199291.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Distribution of invasive versus native whitefly species and their pyrethroid knock-down resistance allele in a context of interspecific hybridization

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).
    Google Scholar 
    Wilcove, D. S. & Chen, L. Y. Management costs for endangered species. Conserv. Biol. 12, 1405–1407 (1998).
    Google Scholar 
    Singer, M. C., Wee, B., Hawkins, S. & Butcher, M. Rapid natural and anthropogenic diet evolution: three examples from checkerspot butterflies in The Evolutionary Biology of Herbivorous Insects: Speciation, Specialization and Radiation (ed. Tilmon, K. J.). 311–324. (University of California Press, 2008).Ruesink, J. L., Parker, I. M., Groom, M. J. & Kareiva, P. M. Reducing the risks of nonindigenous species introductions. Bioscience 45, 465–477 (1995).
    Google Scholar 
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).
    Google Scholar 
    Vitousek, P. M., D’Antonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).ADS 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287, 443–449 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).PubMed 

    Google Scholar 
    Blackburn, T. M. & Jeschke, J. M. Invasion success and threat status: two sides of a different coin?. Ecography 32, 83–88 (2009).
    Google Scholar 
    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).PubMed 

    Google Scholar 
    Ellstrand, N. C. & Schierenbeck, K. A. Hybridization as a stimulus for the evolution of invasiveness in plants?. Proc. Natl. Acad. Sci. USA 97, 7043–7050 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verhoeven, K. J. F., Macel, M., Wolfe, L. M. & Biere, A. Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc. R. Soc. B-Biol. Sci. 278, 2–8 (2011).
    Google Scholar 
    Brevik, K., Lindström, L., McKay, S. D. & Chen, Y. H. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. Curr. Opin. Insect Sci. 26, 34–40 (2018).PubMed 

    Google Scholar 
    Kirk, W. D. J. & Terry, L. I. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agr. Forest. Entomol. 5, 301–310 (2003).
    Google Scholar 
    Piiroinen, S., Lyytinen, A. & Lindström, L. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evol. Appl. 6, 313–323 (2013).PubMed 

    Google Scholar 
    Margus, A. et al. Sublethal pyrethroid insecticide exposure carries positive fitness effects over generations in a pest insect. Sci. Rep. 9, 1–10 (2019).CAS 

    Google Scholar 
    Vais, H., Williamson, M. S., Devonshire, A. L. & Usherwood, P. N. R. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci. 57, 877–888 (2001).CAS 
    PubMed 

    Google Scholar 
    Smith, L. B., Kasai, S. & Scott, J. G. Voltage-sensitive sodium channel mutations S989P+ V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines. Pest Manag. Sci. 74, 737–745 (2018).CAS 
    PubMed 

    Google Scholar 
    Guerrero, F. D., Jamroz, R. C., Kammlah, D. & Kunz, S. E. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: Identification of kdr and super-kdr point mutations. Insect Biochem. Mol. 27, 745–755 (1997).CAS 

    Google Scholar 
    Morin, S. et al. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem. Mol. 32, 1781–1791 (2002).CAS 

    Google Scholar 
    Kasai, S. et al. First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn. J. Infect. Dis. 64, 217–221 (2011).CAS 
    PubMed 

    Google Scholar 
    Brito, L. P. et al. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS ONE 8, e60678 (2013).ADS 
    MathSciNet 

    Google Scholar 
    De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19 (2011).PubMed 

    Google Scholar 
    Perring, T. M. The Bemisia tabaci species complex. Crop Prot. 20, 725–737 (2001).
    Google Scholar 
    Navas-Castillo, J., Fiallo-Olivé, E. & Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49, 219–248 (2011).CAS 
    PubMed 

    Google Scholar 
    Mugerwa, H. et al. African ancestry of new world, Bemisia tabaci-whitefly species. Sci. Rep. 8, 2734 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanakala, S. & Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 14, e0213946 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, J. et al. New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) in China based on mitochondrial COI sequences. Mitochondr. DNA Part DNA Mapp. Seq. Anal. 29, 474–484 (2018).Vyskocilova, S., Tay, W. T., van Brunschot, S., Seal, S. & Colvin, J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 8, 10886 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheek, S. & Macdonald, O. Statutory controls to prevent the establishment of Bemisia tabaci in the United Kingdom. Pestic. Sci. 42, 135–137 (1994).CAS 

    Google Scholar 
    Horowitz, A. R. et al. Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31, 94–98 (2003).
    Google Scholar 
    Basit, M. Status of insecticide resistance in Bemisia tabaci: Resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica 47, 207–225 (2019).CAS 

    Google Scholar 
    Horowitz, A. R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58, 216–225 (2005).CAS 
    PubMed 

    Google Scholar 
    Horowitz, A. R., Ghanim, M., Roditakis, E., Nauen, R. & Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest. Sci. 93, 893–910 (2020).
    Google Scholar 
    Delatte, H. et al. A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. B. Entomol. Res. 95, 29–35 (2005).CAS 

    Google Scholar 
    Peterschmitt, M. et al. First report of tomato yellow leaf curl virus in Réunion Island. Plant Dis. 83, 303 (1999).CAS 
    PubMed 

    Google Scholar 
    Delatte, H., Lett, J.-M., Lefeuvre, P., Reynaud, B. & Peterschmitt, M. An insular environment before and after TYLCV introduction in Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance (ed. Czosnek, H.). 13–23. (Springer, 2007).Delatte, H. et al. Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment. Genet. Res. 87, 109–124 (2006).CAS 
    PubMed 

    Google Scholar 
    Delatte, H. et al. Genetic diversity, geographical range and origin of Bemisia tabaci (Hemiptera: Aleyrodidae) Indian Ocean Ms. B. Entomol. Res. 101, 487–497 (2011).CAS 

    Google Scholar 
    Thierry, M. et al. Mitochondrial, nuclear, and endosymbiotic diversity of two recently introduced populations of the invasive Bemisia tabaci MED species in La Réunion. Insect. Conserv. Divers. 8, 71–80 (2015).
    Google Scholar 
    Tsagkarakou, A. et al. Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pestic. Biochem. Phys. 94, 49–54 (2009).CAS 

    Google Scholar 
    Delatte, H. et al. Differential invasion success among biotypes: case of Bemisia tabaci. Biol. Invasions 11, 1059–1070 (2009).
    Google Scholar 
    Chu, D., Tao, Y.-L., Zhang, Y.-J., Wan, F.-H. & Brown, J. K. Effects of host, temperature and relative humidity on competitive displacement of two invasive Bemisia tabaci biotypes [Q and B]. Insect Sci. 19, 595–603 (2012).
    Google Scholar 
    Chu, D., Wan, F. H., Zhang, Y. J. & Brown, J. K. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ. Entomol. 39, 1028–1036 (2010).PubMed 

    Google Scholar 
    Pascual, S. & Callejas, C. Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. B. Entomol. Res. 94, 369–375 (2004).CAS 

    Google Scholar 
    Pan, H. et al. Insecticides promote viral outbreaks by altering herbivore competition. Ecol. Appl. 25, 1585–1595 (2015).PubMed 

    Google Scholar 
    Shatters, R. G. et al. Population genetics of Bemisia tabaci biotypes B and Q from the Mediterranean and the U.S. inferred using microsatellite markers. in Fourth International Bemisia Workshop International Whitefly Genomics Workshop (3–8 December 2006). (Duck Key: USDA/ARS US Horticultural Research Laboratory, 2006).McKenzie, C. L. & Osborne, L. S. Bemisia tabaci MED (Q biotype) (Hemiptera: Aleyrodidae) in Florida is on the move to residential landscapes and may impact open-field agriculture. Fla. Entomol. 100, 481–484 (2017).
    Google Scholar 
    Guo, X.-J. et al. Diversity and genetic differentiation of the whitefly Bemisia tabaci species complex in China based on mtCOI and cDNA-AFLP analysis. J. Integr. Agr. 11, 206–214 (2012).CAS 

    Google Scholar 
    Prabhaker, N., Castle, S., Henneberry, T. J. & Toscano, N. C. Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). B. Entomol. Res. 95, 535–543 (2005).CAS 

    Google Scholar 
    Taquet, A. et al. Insecticide resistance and fitness cost in Bemisia tabaci (Hemiptera: Aleyrodidae) invasive and resident species in La Réunion Island. Pest Manag. Sci. 76, 1235–1244 (2020).CAS 
    PubMed 

    Google Scholar 
    Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thierry, M. et al. Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Mol. Ecol. 20, 2172–2187 (2011).CAS 
    PubMed 

    Google Scholar 
    Gauthier, N. et al. Genetic structure of Bemisia tabaci Med populations from home-range countries, inferred by nuclear and cytoplasmic markers: impact on the distribution of the insecticide resistance genes. Pest Manag. Sci. 70, 1477–1491 (2014).CAS 
    PubMed 

    Google Scholar 
    Alon, M. et al. Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. 36, 71–79 (2006).CAS 

    Google Scholar 
    Vassiliou, V. et al. Insecticide resistance in Bemisia tabaci from Cyprus. Insect Sci. 18, 30–39 (2011).CAS 

    Google Scholar 
    Gnankiné, O., Hema, O., Namountougou, M., Mouton, L. & Vavre, F. Impact of pest management practices on the frequency of insecticide resistance alleles in Bemisia tabaci (Hemiptera: Aleyrodidae) populations in three countries of West Africa. Crop Prot. 104, 86–91 (2018).
    Google Scholar 
    Cahill, M., Byrne, F. J., Gorman, K., Denholm, I. & Devonshire, A. L. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). B. Entomol. Res. 85, 181–187 (1995).CAS 

    Google Scholar 
    Weill, M. et al. Insecticide resistance: A silent base prediction. Curr. Biol. 14, 552–553 (2004).
    Google Scholar 
    Bouvier, J.-C. et al. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): Inheritance and number of genes involved. Heredity (Edinb) 87, 456–462 (2001).CAS 

    Google Scholar 
    Calvert, L. A. et al. Morphological and mitochondrial DNA marker analyses of whiteflies (Homoptera: Aleyrodidae) colonizing cassava and beans in Colombia. Ann. Entomol. Soc. Am. 94, 512–519 (2001).CAS 

    Google Scholar 
    Tocko-Marabena, B. K. et al. Genetic diversity of Bemisia tabaci species colonizing cassava in Central African Republic characterized by analysis of cytochrome c oxidase subunit I. PLoS ONE 12, e0182749 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ally, H. M. et al. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades?. Sci. Rep. 9, 1–13 (2019).CAS 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Raymond, M. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).
    Google Scholar 
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2020).Jombart, T. & Ahmed, I. Adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).PubMed 

    Google Scholar 
    Vähä, J.-P. & Primmer, C. R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 15, 63–72 (2006).PubMed 

    Google Scholar  More

  • in

    Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem

    Dai, A. Drought under global warming: A review. Vo Lu Me 21, 2 (2011).
    Google Scholar 
    Sirdaş, S. & Sen, Z. Spatio-temporal drought analysis in the Trakya region Turkey. Hydrol. Sci. J. 48, 809–820 (2003).Article 

    Google Scholar 
    Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).ADS 
    Article 

    Google Scholar 
    Zhang, L., Jiao, W., Zhang, H., Huang, C. & Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 190, 96–106 (2017).ADS 
    Article 

    Google Scholar 
    Humphries, P. & Baldwin, D. S. Drought and aquatic ecosystems: An introduction: Drought and aquatic ecosystems. Freshw. Biol. 48, 1141–1146 (2003).Article 

    Google Scholar 
    Lake, P. S. Ecological effects of perturbation by drought in flowing waters: Effects of drought in streams. Freshw. Biol. 48, 1161–1172 (2003).Article 

    Google Scholar 
    Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R. & Luo, Z. Drought-induced tree mortality: Ecological consequences, causes, and modeling. Environ. Rev. 20, 109–121 (2012).Article 

    Google Scholar 
    Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).Article 

    Google Scholar 
    Trzcinski, M. K., Srivastava, D. S., Corbara, B. & De, O. The effects of food web structure on ecosystem function exceeds those of precipitation. J. Anim. Ecol. 14, 2 (2016).
    Google Scholar 
    Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).
    Google Scholar 
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS 
    Article 

    Google Scholar 
    Bartout, P. & Touchart, L. A New Approach to Inventorying Bodies of Water, from Local to Global Scale (Gesellschaft für Erdkunde zu, 2015).
    Google Scholar 
    Williams, P. et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341 (2004).Article 

    Google Scholar 
    Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39 (2017).Article 

    Google Scholar 
    Bonhomme, C. et al. In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13392 (2020).Article 
    PubMed 

    Google Scholar 
    Dewson, Z. S., James, A. B. W. & Death, R. G. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshw. Biol. 52, 357–369 (2007).CAS 
    Article 

    Google Scholar 
    Dézerald, O., Céréghino, R., Corbara, B., Dejean, A. & Leroy, C. Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshw. Biol. 60, 1917–1929 (2015).Article 

    Google Scholar 
    Wang, Y., Yu, S. & Wang, J. Biomass-dependent susceptibility to drought in experimental grassland communities. Ecol. Lett. 10, 401–410 (2007).PubMed 
    Article 

    Google Scholar 
    Pallarés, S., Velasco, J., Millán, A., Bilton, D. T. & Arribas, P. Aquatic insects dealing with dehydration: Do desiccation resistance traits differ in species with contrasting habitat preferences?. PeerJ 4, e2382 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).Article 

    Google Scholar 
    Atkinson, C. L., Julian, J. P. & Vaughn, C. C. Species and function lost: Role of drought in structuring stream communities. Biol. Conserv. 176, 30–38 (2014).Article 

    Google Scholar 
    Bogan, M. T., Boersma, K. S. & Lytle, D. A. Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw. Biol. 60, 2547–2558 (2015).Article 

    Google Scholar 
    Srivastava, D. S. et al. Ecological response to altered rainfall differs across the Neotropics. Ecology 101, 15 (2020).Article 

    Google Scholar 
    Amundrud, S. L. & Srivastava, D. S. Trophic interactions determine the effects of drought on an aquatic ecosystem. Ecology 97, 1475–1483 (2016).PubMed 
    Article 

    Google Scholar 
    Luo, Y., Keenan, T. F. & Smith, M. Predictability of the terrestrial carbon cycle. Glob. Change Biol. 21, 1737–1751 (2014).ADS 
    Article 

    Google Scholar 
    Givnish, T. J. et al. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78 (2014).PubMed 
    Article 

    Google Scholar 
    Brouard, O. et al. Understorey environments influence functional diversity in tank-bromeliad ecosystems: Functional diversity in bromeliad ecosystems. Freshw. Biol. 57, 815–823 (2012).Article 

    Google Scholar 
    Petermann, J. S. et al. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology 96, 428–439 (2015).PubMed 
    Article 

    Google Scholar 
    Romero, G. Q., Piccoli, G. C. O., de Omena, P. M. & Gonçalves-Souza, T. Food web structure shaped by habitat size and climate across a latitudinal gradient. Ecology 97, 2705–2715 (2016).PubMed 
    Article 

    Google Scholar 
    Srivastava, D. S. & Bell, T. Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecol. Lett. 12, 1016–1028 (2009).PubMed 
    Article 

    Google Scholar 
    Carrias, J.-F. et al. Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiol. Ecol. 96, 45 (2020).Article 
    CAS 

    Google Scholar 
    Romero, G. Q. et al. Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics. Nat. Commun. 11, 3215 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hairston, N. G. & Hairston, N. G. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 142, 379–411 (1993).Article 

    Google Scholar 
    Dézerald, O. et al. Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshw. Biol. 62, 229–242 (2017).Article 

    Google Scholar 
    Dézerald, O. et al. Tank bromeliads sustain high secondary production in neotropical forests. Aquat. Sci. 80, 14 (2018).Article 

    Google Scholar 
    Holt, R. D. & Hoopes, M. F. Food web dynamics in a metacommunity context: modules and beyond. In Metacommunities: Spatial Dynamics and Ecological Communities 68–83 (University of Chicago Press, 2005).
    Google Scholar 
    Srivastava, D. S., Trzcinski, M. K., Richardson, B. A. & Gilbert, B. Why are predators more sensitive to habitat size than their prey? Insights from bromeliad insect food webs. Am. Nat. 172, 761–771 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amundrud, S. L. et al. Drought alters the trophic role of an opportunistic generalist in an aquatic ecosystem. Oecologia 189, 733–744 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Adler, P. B. & Drake, J. M. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172, E186–E195 (2008).Article 

    Google Scholar 
    Anisiu, M.-C. Lotka Volterra and their model. Didact. Math. 32, 9–17 (2014).
    Google Scholar 
    Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).ADS 
    Article 

    Google Scholar 
    Bengtsson, J. Disturbance and resilience in soil animal communities. Eur. J. Soil Biol. 38, 119–125 (2002).Article 

    Google Scholar 
    Parkyn, S. M. & Collier, K. J. Interaction of press and pulse disturbance on crayfish populations: Flood impacts in pasture and forest streams. Hydrobiologia 527, 113–124 (2004).Article 

    Google Scholar 
    Rowe, L. & Richardson, J. S. Community responses to experimental food depletion: Resource tracking by stream invertebrates. Oecologia 129, 473–480 (2001).ADS 
    PubMed 
    Article 

    Google Scholar 
    McPeek, M. A. The growth/predation risk trade-off: So what is the mechanism?. Am. Nat. 163, E88–E111 (2004).PubMed 
    Article 

    Google Scholar 
    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 2 (2019).Article 

    Google Scholar 
    Powers, J. S. et al. Decomposition in tropical forests: A pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 97, 801–811 (2009).CAS 
    Article 

    Google Scholar 
    Pires, A. P. F. et al. Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology 99, 1203–1213 (2018).PubMed 
    Article 

    Google Scholar 
    Rodríguez Pérez, H. et al. Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition. Oecologia 187, 267–279 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change Biol. 15, 2958–2971 (2009).ADS 
    Article 

    Google Scholar 
    Marino, N. A. C. et al. Rainfall and hydrological stability alter the impact of top predators on food web structure and function. Glob. Change Biol. 23, 673–685 (2017).ADS 
    Article 

    Google Scholar 
    Hättenschwiler, S., Coq, S., Barantal, S. & Handa, I. T. Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytol. 189, 950–965 (2011).PubMed 
    Article 

    Google Scholar 
    Céréghino, R. et al. Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct. Ecol. 32, 2435–2447 (2018).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar  More