Suitability of spider mites and green peach aphids as prey for Eriopis connexa (Germar) (Coleoptera: Coccinellidae)
Sun, M. et al. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biol. 18, 1–14 (2018).ADS
CAS
Article
Google Scholar
Migeon, A. & Dorkeld, F. Spider Mites Web: A comprehensive database for the Tetranychidae. Available at http://www.montpellier.inra.fr/CBGP/spmweb (2021)Sato, M. E. et al. Spiromesifen resistance in Tetranychus urticae (Acari: Tetranychidae): Selection, stability, and monitoring. Crop Prot. 89, 278–283 (2016).CAS
Article
Google Scholar
Melville, C. C., Andrade, S. C., Oliveira, N. T. & Andrade, D. J. Impact of Tetranychus ogmophallos (Acari: Tetranychidae) on different phenological stages of peanuts. Bragantia 77, 116–123 (2018).Article
Google Scholar
Savi, P. J., de Moraes, G. J., Melville, C. C. & Andrade, D. J. Population performance of Tetranychus evansi (Acari: Tetranychidae) on African tomato varieties and wild tomato genotypes. Exp. Appl. Acarol. 77, 555–570 (2019).CAS
PubMed
Article
Google Scholar
Bass, C. et al. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51, 41–51 (2014).CAS
PubMed
Article
Google Scholar
Tabet, V. G., Vieira, M. R., Martins, G. L. M. & Sousa, C. G. N. M. Plant extracts with potential to control of two-spotted spider mite. Arq. Inst. Biol. 85, 1–8 (2018).Article
Google Scholar
Özkara, A., Akyil, D. & Konuk, M. Pesticides, environmental pollution, and health. In Environmental Health Risk—Hazardous Factors to Living Species (eds Larramendy, M. & Soloneski, S.) (InTech, 2016).
Google Scholar
Faraone, N., Evans, R., LeBlanc, J. & Hillier, N. K. Soil and foliar application of rock dust as natural control agent for two-spotted spider mites on tomato plants. Sci. Rep. 10, 12108 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Taghizadeh, M., Iraninejad, K. H., Iranipour, S. & Vahed, M. M. Comparative study on the efficiency and consumption rate of Stethorus gilvifrons (Coleoptera, Coccinellidae) and Orius albidipennis (Hemiptera, Anthocoridae), the predators of Tetranychus urticae Koch (Acari, Tetranychidae). North-West. J. Zool. 16, 125–133 (2020).
Google Scholar
Orr, D. & Lahiri, S. Biological control of insect pests in crops. In Integrated Pest Management: Current Concepts and Ecological Perspective (ed. Abrol, D. P.) 531–548 (Academic Press, 2014).Chapter
Google Scholar
Oliveira, N. C., Wilcken, C. F. & Matos, C. A. O. Biological cycle and predation of three coccinellid species (Coleoptera, Coccinellidae) on giant conifer aphid Cinara atlantica (Wilson) (Hemiptera, Aphididae). Rev. Bras. Entomol. 48, 529–533 (2004).Article
Google Scholar
Moghaddam, M. G. et al. Demographic traits of Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae) fed on Sitobion avenae Fabricius (Hemiptera: Aphididae). J. Crop Prot. 5, 431–445 (2016).Article
Google Scholar
Gómez, W. D. & Polanía, I. Z. Life table of the predatory beetle Eriopis connexa (Germar) (Coleoptera: Coccinellidae). Rev. UDCA Act. Divulg. Cient. 12, 147–155 (2009).
Google Scholar
Silva, R. B. et al. Biological aspects of Eriopis connexa (Germar) (Coleoptera: Coccinellidae) fed on different insect pests of maize (Zea mays L.) and sorghum [Sorghum bicolor L. (Moench)]. Braz. J. Biol. 73, 419–424 (2013).CAS
PubMed
Article
Google Scholar
Nascimento, D. V., Lira, R., Ferreira, E. K. S. & Torres, J. B. Performance of the aphidophagous coccinellid Eriopis connexa fed on single species and mixed-species prey. Biocontrol. Sci. Technol. 31, 951–963 (2021).Article
Google Scholar
Miller, J. C. A comparison of techniques for laboratory propagation of a South American ladybeetle, Eriopis connexa (Coleoptera: Coccinellidae). Biol. Control 5, 462–465 (1995).MathSciNet
Article
Google Scholar
Miller, J. C. & Paustian, J. W. Temperature-dependent development of Eriopis connexa (Coleoptera: Coccinellidae). Environ. Entomol. 21, 1139–1142 (1992).Article
Google Scholar
Sarmento, R. A. et al. Fat body morphology of Eriopis connexa (Coleoptera, Coccinellidae) in function of two alimentary sources. Braz. Arch. Biol. Technol. 47, 407–411 (2004).Article
Google Scholar
Van Driesche, R. et al. Catalog of Species Introduced into Canada, Mexico, the USA, or the USA Overseas Territories for Classical Biological Control of Arthropods 1985–2018 (USDA Forest Service, 2018).
Google Scholar
Fidelis, E. G. et al. Coccinellidae, Syrphidae and Aphidoletes are key mortality factors for Myzus persicae in tropical regions: A case study on cabbage crops. Crop Prot. 112, 288–294 (2018).Article
Google Scholar
Francesena, N. et al. Potential of predatory Neotropical ladybirds and minute pirate bug on strawberry aphid. Nat. Acad. Bras. Ciênc. 91, e20181001 (2019).Article
Google Scholar
Reed, D. K. & Pike, K. S. Summary of an exploration trip to South America. IOBC Nearctic Reg. Newsl. 36, 16–17 (1991).
Google Scholar
Li, Y., Zhou, X., Duan, W. & Pang, B. Food consumption and utilization of Hippodamia variegata (Coleoptera: Coccinellidae) is related to host plant species of its prey, Aphis gossypii (Hemiptera: Aphididae). Acta Entomol. Sin. 58, 1091–1097 (2015).
Google Scholar
Tian, M., Wei, Y., Zhang, S. & Liu, T. Suitability of Bemisia tabaci (Hemiptera: Aleyrodidae) biotype-B and Myzus persicae (Hemiptera: Aphididae) as prey for the ladybird beetle, Serangium japonicum (Coleoptera: Coccinellidae). Eur. J. Entomol. 114, 603–608 (2017).Article
Google Scholar
Chi, H. Life table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).Article
Google Scholar
Midthassel, A., Leather, S. R. & Baxter, I. H. Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Exp. Appl. Acarol. 61, 69–78 (2013).PubMed
Article
Google Scholar
Hosseini, A. et al. Life history responses of Hippodamia variegata (Coleoptera: Coccinellidae) to changes in the nutritional content of its prey, Aphis gossypii (Hemiptera: Aphididae), mediated by nitrogen fertilization. Biol. Control 130, 27–33 (2019).CAS
Article
Google Scholar
Almeida, D. P., Berber, G. C. M., Aguiar-Menezes, E. L. & Resende, A. L. S. Evaluation of biological parameters of Eriopis connexa (Germar, 1824) and Coleomegilla maculata (DeGeer, 1775) (Coleoptera: Coccinellidae) fed with alternative prey developed at the integrated center for pest management – UFRRJ. Sci. Electron. Arch. 14, 8–16 (2021).Article
Google Scholar
Duarte, W., Arévalo, H. & Polanía, I. Z. Influence of three aphid species used as prey on some biological aspects of the predator Eriopis connexa. J. Anim. Sci. 3, 193–199 (2013).
Google Scholar
Zazycki, L. C. F. et al. Biology and fertility life table of Eriopis connexa, Harmonia axyridis and Olla v-nigrum (Coleoptera: Coccinellidae). Braz. J. Biol. 75, 969–973 (2015).CAS
PubMed
Article
Google Scholar
Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 24, 225–240 (1985).
Google Scholar
Santos, N. R. et al. Biological aspects of Harmonia axyridis fed on two prey species and intraguild predation with Eriopis connexa. Pesq. Agropec. Bras. 44, 554–560 (2009).Article
Google Scholar
Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. National Chung Hsing University, Taichung, Taiwan. http://140.120.197.173/Ecology/prod02.htm (2021)Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Springer, 1993). https://doi.org/10.1007/978-1-4899-4541-9.Book
MATH
Google Scholar
Hesterberg, T. It’s time to retire the ‘n > = 30’ rule. In Proceedings of the American Statistical Association, Statistical Computing Section (CD-ROM). http://home.comcast.net/~timhesterberg/articles/JSM08-n30.pdf (2008)Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).Article
Google Scholar
Akkopru, E. P., Atlıhan, R., Okut, H. & Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378–387 (2015).PubMed
Article
Google Scholar
Smucker, M. D., Allan, J. & Carterette, B. A comparison of statistical significance tests for information retrieval evaluation. In Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management—CIKM ’07 623 (ACM Press, 2007).Wei, M. et al. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. J. Econ. Entomol. 113, 2343–2353 (2020).PubMed
Article
Google Scholar
Wu, X., Zhou, X. & Pang, B. Influence of five host plants of Aphis gossypii Glover on some population parameters of Hippodamia variegata (Goeze). J Pest Sci 83, 77–83 (2010).Article
Google Scholar
Kalushkov, P. & Hodek, I. New essential aphid prey for Anatis ocellata and Calvia quatuordecimguttata (Coleoptera: Coccinellidae). Biocontrol Sci. Technol. 11, 35–39 (2001).Article
Google Scholar
Hodek, I. & Honěk, A. Ecology of Coccinellidae (Springer, 1996).Book
Google Scholar
Hodek, I. & Evans, E. Food relationships. In Ecology and Behaviour of the Ladybird Beetles (Coccinellidae) (eds Hodek, I. et al.) (Wiley, 2012).Chapter
Google Scholar
Pervez, A. & Kumar, R. Preference of the aphidophagous ladybird Propylea dissecta for two species of aphids reared on toxic host plants. Eur. J. Environ. Sci 7, 130–134 (2017).
Google Scholar
Omkar, & Bind, R. B. Prey quality dependent growth, development and reproduction of a biocontrol agent, Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae). Biocontrol Sci. Technol. 14, 665–673 (2004).Article
Google Scholar
Omkar, & James, B. E. Influence of prey species on immature survival, development, predation and reproduction of Coccinella transversalis Fabricius (Col., Coccinellidae). J. Appl. Entomol. 128, 150–157 (2004).Article
Google Scholar
Farooq, M., Shakeel, M., Iftikhar, A., Shahid, M. R. & Zhu, X. Age-stage, two-sex life tables of the lady beetle (Coleoptera: Coccinellidae) feeding on different aphid species. J. Econ. Entomol. 111, 575–585 (2018).PubMed
Article
Google Scholar
Giles, K. L. et al. Host plants affect predator fitness via the nutritional value of herbivore prey: Investigation of a plant-aphid-ladybeetle system. Biocontrol 47, 1–21 (2002).Article
Google Scholar
Savi, P. J., de Moraes, G. J. & Andrade, D. J. Effect of tomato genotypes with varying levels of susceptibility to Tetranychus evansi on performance and predation capacity of Phytoseiulus longipes. Biocontrol 66, 687–700 (2021).CAS
Article
Google Scholar
Hodek, I. & Honěk, A. Scale insects, mealybugs, whiteflies and psyllids (Hemiptera, Sternorrhyncha) as prey of ladybirds. Biol. Control 51, 232–243 (2009).Article
Google Scholar
Qureshi, J. A. & Stansly, P. A. Three Homopteran pests of citrus as prey for the convergent lady beetle: Suitability and preference. Environ. Entomol. 40, 1503–1510 (2011).PubMed
Article
Google Scholar
Sarmento, R. A. et al. Functional response of the predator Eriopis connexa (Coleoptera: Coccinellidae) to different prey types. Braz. Arch. Biol. Technol. 50, 121–126 (2007).Article
Google Scholar
Oliveira, E. E. et al. Biological aspects of the predator Cycloneda sanguinea (Linnaeus, 1763) (Coleoptera: Coccinellidae) fed with Tetranychus evansi (Baker and Pritchard, 1960) (Acari: Tetranychidae) and Macrosiphum euphorbiae (Thomas, 1878) (Homoptera: Aphididae). Biosci. J. 21, 33–39 (2005).
Google Scholar
de Moraes, G. J., McMurtry, J. A. & Baker, E. W. Redescription and distribution of the spider mites Tetranychus evansi and T. marianae. Acarologia 28, 333–343 (1987).
Google Scholar
Iperti, G. Biodiversity of predaceous coccinellidae in relation to bioindication and economic importance. Agric. Ecosyst. Environ. 74, 323–342 (1999).Article
Google Scholar
Cruz-Rivera, E. & Hay, M. E. Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol. Monogr. 73, 483–506 (2003).Article
Google Scholar
Munyaneza, J. & Obrycki, J. J. Development of three populations of Coleomegilla maculata (Coleoptera: Coccinellidae) feeding on eggs of colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Entomol. 27, 117–122 (1998).Article
Google Scholar
Adams, T. S. Effect of diet and mating status on ovarian development in a predaceous stink bug Perillus bioculatus (Hemiptera: Pentatomidae). Ann. Entomol. Soc. Am. 93, 529–535 (2000).Article
Google Scholar
Lima, M. S., Pontes, W. J. T. & Nóbrega, R. L. Pollen did not provide suitable nutrients for ovary development in a ladybird Brumoides foudrasii (Coleoptera: Coccinellidae). Diversitas J. 5, 1486–1494 (2020).Article
Google Scholar
Melville, C. C. et al. Peanut cultivars display susceptibility by triggering outbreaks of Tetranychus ogmophallos (Acari: Tetranychidae). Exp. Appl. Acarol. 78, 295–314 (2019).PubMed
Article
Google Scholar More