More stories

  • in

    A dataset of winter wheat aboveground biomass in China during 2007–2015 based on data assimilation

    We selected eleven major wheat production provinces of China for the study area, which comprise the largest winter wheat-sowing fraction: Henan, Shandong, Anhui, Jiangsu, Hebei, Hubei, Shanxi, Shaanxi, Sichuan, Xinjiang, and Gansu (Fig. 1). The wheat planting area is about 22 million ha in these provinces, accounting for more than 93% of the total wheat planting area. The total wheat production in these regions contributes more than 96% of the total wheat production in China, with more than 128 million tons in 201933.We developed a methodological framework for high-resolution AGB mapping. It mainly includes three parts: (1) Data acquisition and processing. (2) The WOFOST model parameterization and calibration. (3) Data assimilation (Fig. 1). Each part is explained in more detail below.Data acquisition and processingMeteorological dataChina Meteorological Forcing Dataset34,35 is used as weather driving data for the WOFOST model. The dataset is based on the internationally existing Princeton reanalysis data, Global Land Data Assimilation System data, Global Energy and Water Cycle Experiment-Surface Radiation Budget radiation data, and Tropical Rainfall Measuring Mission precipitation data. It is made by fusing the conventional meteorological observation data of the China Meteorological Administration. It includes seven elements: near-surface air temperature, air pressure, near-surface total humidity, wind speed, ground downward shortwave radiation, ground downward longwave radiation, and ground precipitation rate. The meteorological drive elements required for WOFOST are daily radiation, minimum temperature, maximum temperature, water vapor pressure, average wind speed, and precipitation. Details of these variables that participated in the WOFOST model can be referred to in Table S1.Soil characteristics measurements and phenology observationsSoil and phenology data were collected at 177 agricultural meteorological stations (AMS) from 2007 to 2015 (Fig. 1). Soil characteristics include soil moisture content at wilting points, field capacity, and saturation. To be consistent with the corresponding units in the crop model, the original data in weight water content was converted into volume water content through the corresponding soil bulk density measurements. Winter wheat phenology observations include the date of emergence (more than 50% of the wheat seedlings in the field show the first green leaves and reached about 2 cm), anthesis (the inner and outer glumes of the middle and upper florets of more than 50% of the wheat ears in the whole field are open, and the anthers loose powder), and maturity (more than 80% of the wheat grains turn yellow, the glumes and stems turn yellow, and only the upper first and second nodes are still slightly green). In most cases, the phenological stage “anthesis” is missing. The anthesis date was calculated by adding seven days to the observed heading date (when more than 50% of the wheat in the whole field exposes the tip of the ear from the sheath of the flag leaf).County-level yield statistics dataThe county-level yield data was collected from city statistical yearbooks of the study area from 2007 to 2015. Since most statistical yearbooks do not directly record per-unit yield data, the county-level yield was obtained by dividing the total yield and planting area. It is worth noting that all yields were calculated in units of metric kilograms per cultivated hectares (kg·ha−1).The winter wheat land cover dataWe used a winter wheat land cover product from a 1 km resolution dataset named ChinaCropArea1km36. This data was derived from GLASS leaf area index products and crop phenology from 2000 to 2015. This dataset is the base map of our data production.The MODIS LAI dataWe used the improved 8-days MODIS LAI products (i.e., 1 km) generated by Yuan et al.32 to assimilate the WOFOST model. The products applied the modified temporal-spatial filter and Savitzky-Golay filter to overcome the spatial-temporal discontinuity and inconsistence of raw MODIS LAI products, which makes them more applicable for the realm of land surface and climate modeling. The products can be accessed via the Land-Atmosphere Interaction Research Group website at Sun Yat-sen University (http://globalchange.bnu.edu.cn/research/lai).The WOFOST model parameterization and calibrationThe WOFOST model introductionThe WOFOST model was initially developed as a crop growth simulation model to evaluate the yield potential of various crops in tropical countries37. In this study, we chose the WOFOST model because the model reaches a trade-off of the complexity of the crop model and is suitable for large-scale simulations3. The WOFOST model is a typical crop growth model that explains crop growth based on underlying processes such as photosynthesis and respiration and their response to changing environmental conditions38. The WOFOST model estimates phenology, LAI, aboveground biomass, and storage organ biomass (i.e., grain yield) at a daily time step39 (Fig. 2).Fig. 2Schematic overview of the major processes implemented in WOFOST. The Astronomical module calculates day length, some variables relating to solar elevation, and the fraction of diffuse radiation.Full size imageZonal parameterizationWe first divided the study area covered by AMS into seamless Thiessen polygon zones. Each Thiessen polygon contains only a single AMS. These zones represent the whole areas where any location is closer to its associated AMS point than any other AMS point. Then, we assigned parameters to the entire zone based on the AMS data, including crop calendar (date of emergence) and soil water retention parameters (soil moisture content at wilting point, field capacity, and saturation). Besides, we also optimized two main crop parameters for controlling phenological development stages, namely TSUM1 (accumulated temperature required from emergence to anthesis) and TSUM2 (accumulated temperature required from anthesis to maturity), by minimizing the cost function of the observational and simulated date corresponding to anthesis and maturity.Parameter calibration within a single zoneWe implemented the calibration of parameters within every single zone, as illustrated in Fig. 3. We calculated the average statistical yield of each county within every single zone from 2007 to 2015, then ranked the counties in descending order and divided them into three groups, namely high, medium, and low-level yield counties, by the 33% quantile and 67% quantile of the average statistical yield. The three counties corresponding to 17% quantile, 50% quantile, and 83% quantile would be used for subsequent calibration and represent the corresponding three yield level groups. We used the statistical yields (converted to dry matter mass based on the standard moisture content of 12.5%) of the three counties for multiple years and a harvest index for each province to convert the county-level yield to AGB for calibration. The harvest index of each province was mainly estimated from the AMS’s dynamic growth records on the biomass composition of the dominant winter wheat varieties of the province and a published literature40. Besides, we collected the maximum LAI observations on all agrometeorological stations in all years in the study area, according to its histogram. We found that the histogram follows a normal distribution with a mean of 6.5 and a standard deviation of 1.5. Finally, we calibrated three sets of parameters corresponding to three yield level groups in each single zone according to the three selected counties.Fig. 3Flow chart of parameter calibration within a single zone.Full size imageWe designed a three-step calibration strategy for a specific yield level group. Firstly, as winter wheat varieties did not change significantly according to information recorded by agrometeorological stations from 2007 to 2015, we assumed the crop parameters of winter wheat remain unchanged every three years to combine three years of observational data to calibrate the parameters of the WOFOST model better. We maximized a log-likelihood function based on the maximum LAI statistics and every three-year county-level yield and AGB data mentioned to optimize selected crop parameters (see Table S2 in the Supplement Materials).The log-likelihood function was constructed as follows:$$log;{{rm{L}}}_{{rm{LAI}}}=-frac{1}{2}left[dlogleft(2pi right)+logleft(left|{Sigma }_{{rm{LAI}}}right|right)+{rm{MD}}{left({{bf{x}}}_{{rm{LAI}}};{mu }_{{rm{LAI}}},{Sigma }_{{rm{LAI}}}right)}^{2}right]$$
    (1)
    $$log;{{rm{L}}}_{{rm{TWSO}}}=-frac{1}{2}left[dlog(2pi )+logleft(left|{{boldsymbol{Sigma }}}_{{rm{TWSO}}}right|right)+{rm{MD}}{left({{bf{x}}}_{{rm{TWSO}}};{{boldsymbol{mu }}}_{{rm{TWSO}}},{{boldsymbol{Sigma }}}_{{rm{TWSO}}}right)}^{2}right]$$
    (2)
    $$log;{{rm{L}}}_{{rm{AGB}}}=-frac{1}{2}left[dlog(2pi )+logleft(left|{{boldsymbol{Sigma }}}_{{rm{AGB}}}right|right)+{rm{MD}}{left({{bf{x}}}_{{rm{AGB}}};{{boldsymbol{mu }}}_{{rm{AGB}}},{{boldsymbol{Sigma }}}_{{rm{AGB}}}right)}^{2}right]$$
    (3)
    $$log;{rm{L}}=log;{L}_{{rm{LAI}}}+log;{L}_{{rm{TWSO}}}+log;{L}_{{rm{AGB}}}$$
    (4)
    Where log L is the natural logarithm of the likelihood function, d is the dimension, that is, the number of years of joint calibration, which is set to 3 in this study xLAI is the vector composed of the maximum value of the 3-year LAI simulated by WOFOST, μLAI and ΣLAI are the mean vector and error covariance matrix of maximum LAI based on observation statistics. The annual maximum LAI was assumed to be independent, and the mean and standard deviation for each year was set the same as the result of Fig. 3. Similarly, xTWSO and xAGB are the yield vector and AGB vector at maturity of 3 years simulated by WOFOST, and μTWSO, μAGB are their corresponding county-level statistic vector, ΣTWSO and ΣAGB are their corresponding error covariance matrix. In this study, we assumed that the annual yield or AGB was independent, and their corresponding standard deviation was 10% of their statistical value. |Σ| is the determinant of Σ. The expression ({rm{MD}}{({bf{x}};{boldsymbol{mu }},{boldsymbol{Sigma }})}^{2}={({bf{x}}-{boldsymbol{mu }})}^{{rm{T}}}{{boldsymbol{Sigma }}}^{-1}({bf{x}}-{boldsymbol{mu }})), where MD is the Mahalanobis distance between the point x and the mean vector μ.Secondly, we optimized the inter-annual irrigation. We optimized two parameters every year: the critical value of soil moisture (denoted as SMc) and the amount of irrigation (denoted as V). When the soil moisture simulated by WOFOST is lower than SMc, an irrigation event will be triggered, and the irrigation amount is V cm. In this study, we combined three-year data for calibration with six parameters for optimization. The optimization strategy is the same as the previous step by maximizing the log-likelihood function. Finally, we fixed the optimized irrigation parameters and repeated the first step to calibrate the selected crop parameters and obtain the final optimal parameters.Data assimilationConsidering that MODIS LAI is relatively low compared to the actual LAI of winter wheat41, we select a weak-constraint cost function based on the least square of normalized observational and simulated LAI as shown in Eq. (5), which is assimilating the trend information of MODIS LAI into the crop growth model.$$J={sum }_{{rm{t}}=1}^{{rm{n}}}{left(frac{{{rm{LAI}}}_{{rm{MODIS}}}^{{rm{t}}}-{{rm{LAI}}}_{{rm{MODIS}}}^{min}}{{{rm{LAI}}}_{{rm{MODIS}}}^{max}-{{rm{LAI}}}_{{rm{MODIS}}}^{min}}-frac{{{rm{LAI}}}_{{rm{WOFOS}}}^{{rm{t}}}-{{rm{LAI}}}_{{rm{WOFOS}}}^{min}}{{{rm{LAI}}}_{{rm{WOFOS}}}^{max}-{{rm{LAI}}}_{{rm{WOFOS}}}^{min}}right)}^{2}$$
    (5)
    Where ({{rm{LAI}}}_{{rm{MODIS}}}^{{rm{t}}}) and .. are MODIS LAI and WOFOST simulated LAI of time t. ({{rm{LAI}}}_{{rm{MODIS}}}^{max}) and ({{rm{LAI}}}_{{rm{WOFOS}}}^{max}) are maximum of MODIS LAI and WOFOST simulated LAI. ({{rm{LAI}}}_{{rm{MODIS}}}^{min}) and ({{rm{LAI}}}_{{rm{WOFOS}}}^{min}) are minimum of MODIS LAI and WOFOST simulated LAI. J is the value of the cost function.We reinitialize the day of emergence (IDEM), the life span of leaves growing at 35 °C (SPAN), and thermal time from emergence to anthesis (TSUM1) in the WOFOST model on each 1 km winter wheat pixel according to cost function between WOFOST LAI and MODIS LAI. Besides, we applied the Subplex algorithm from the NLOPT library (https://github.com/stevengj/nlopt) for parameter optimization. More

  • in

    Bacterial matrix metalloproteases and serine proteases contribute to the extra-host inactivation of enteroviruses in lake water

    Virus propagation and enumerationEchovirus-11 (E11, Gregory strain, ATCC VR737) and Coxsackievirus-A9 (CVA9, environmental strain from sewage, kindly provided by the Finnish National Institute for Health and Welfare) stocks were produced by infecting sub-confluent monolayers of BGMK cells as described previously [7]. Viruses were released from infected cells by freezing and thawing the culture flasks three times. To eliminate cell debris, the suspensions were centrifuged at 3000 × g for 5 min. Each stock solution was stored at −20 °C until use. Infectious virus concentrations were enumerated by a most probable number (MPN) infectivity assay as described in the Supplementary Information. The assay limit of detection (LoD), defined as the concentration corresponding to one positive cytopathic effect in the lowest dilution of the MPN assay under the experimental conditions used, corresponding to 2 MPN/mL.Inactivation of enteroviruses by bacterial consortia from lake waterTo study the inactivation of CVA9 and E11 by a bacterial consortium from lake water, four surface water samples were collected from Lake Geneva (Ecublens, Switzerland) during the summer 2021. Each sampling event was conducted on warm and sunny days, to minimize biological variation. Immediately after sampling, large particles of the sample were removed by filtering 500 mL of water on a 8 μm nitrocellulose filter membrane (Merck Millipore, Cork, Ireland). The sample was then filtered through a 0.8 μm nitrocellulose filter membrane (Merck Millipore) to remove large microorganisms such as protists. The resulting water sample corresponds to the bacterial fraction used to study virus inactivation.For inactivation experiments, each virus was spiked into individual 1 mL aliquots of fractionated lake water to a final concentration of 106 MPN/mL, and samples were incubated for 48 h at 30 °C without shaking. Duplicate experiments were conducted for each virus and each lake water sample. Experiments to control for thermal inactivation were conducted using the same procedure but by replacing the fractionated lake water with sterile milliQ water. Viral infectivity at times 0 h and 48 h was determined by MPN as described above. Virus decay was calculated as log10 (C/C0), where C is the residual titer after 48 h of incubation, and C0 is the initial titer. The experimental LoD was approximately 5-log10.These same experiments were conducted for three new water samples in the presence of four protease inhibitors with the following final concentrations: E64—10 μM (E3132, Sigma–Aldrich, Saint-Louis, MO, USA), GM6001—4 μM (CC1010, Sigma–Aldrich), Chymostatin—100 μM (C7268, Sigma–Aldrich), and PMSF—100 μM (P7626, Sigma–Aldrich). Each inhibitor was added to 1 mL of fractionated lake water, vortexed for 30 seconds, and incubated at room temperature for 15 min, before adding the two viral strains under the same conditions as described above.Bacterial isolation, cultivation, and storageBacteria were isolated from two water samples from Lake Geneva’s Ecublens beach, taken in November 2019 (Fall, 89 isolates) and May 2020 (Spring, 47 isolates). Bacteria recovery was performed on R2A agar plate (BD Difco, Franklin Lakes, NJ, USA) as described previously [15]. Briefly, successive dilutions from 10−1 to 10−5 were carried out in sterile water for each sample. For each dilution, a volume of 1 mL was deposited on three separate R2A plates, before being incubated at 22, 30, and 37 °C. After 5 days of incubation, each colony was picked and enriched on a new R2A plate. To ensure purity, each isolate was successively plated five times on R2A plate and incubated at the same temperature as the initial isolation. Each purified isolate was cryopreserved in R2A / 20% glycerol at −80 °C. The isolates were named based on the water body (Lake (L)), isolation temperature, and the isolation order (L-T°C-number).Bacterial identificationThe identification of each isolate was performed by 16 S rRNA gene sequencing using the pair of primers 27 F (5’- AGA GTT TGA TCM TGG CTC AG- 3’, Microsynth AG, Balgach, Switzerland) / 786 R (5’- CTA CCA GGG TAT CTA ATC – 3’, Microsynth AG), following a methodology previously described [15]. The thermocycling conditions and the purification of PCR products are described in the Supplementary Information. The complete list of isolated bacteria and associated accession numbers is given in Supplementary Table 1.Phylogenetic inference and metadata visualizationThe consensus from 16 S rRNA gene sequences of the 136 isolates was aligned using the MUSCLE algorithm [16]. The phylogenetic analysis of 566 bp aligned sequences from the V2-V4 16 S rRNA gene regions (Positions: 152–717) was performed using Molecular Evolutionary Genetics Analysis X software [17]. Phylogeny was inferred by maximum likelihood, with 1000 bootstrap iterations to test the robustness of the nodes. The resulting tree was uploaded and formatted using iTOL [18].Virus incubation with bacterial isolatesFor the preparation of the bacteria before co-incubation, each one was first cultured on R2A agar for 48 h at their initial isolation temperature. Overnight suspensions of each bacterial isolate were grown in R2A broth at room temperature under constant agitation (180 rpm). For co-incubation experiments, 200 μL of each bacterial suspension were mixed with 100 μL of a 105 MPN/mL stock of E11 or CVA9. Then, each condition was supplemented with 600 μL of R2A broth. Incubation was carried out for 96 h at room temperature, without shaking. At the end of the co-incubation, each tube was centrifuged for 15 min at 9000 × g (4 °C) to eliminate bacteria, and the residual infectious viral titer was enumerated by MPN assay as described above [7]. Each co-incubation experiment was carried out in triplicate. Control experiments were performed under the same conditions but using sterile R2A. Virus decay was quantified as log10 (Cexp/Cctrl), where Cexp is the residual titer after a co-incubation for 96 h, and Cctrl is the titer after incubation of the virus in sterile R2A for 96 h. The experimental LoD was 3-log10.Protease activity measurement using casein and gelatin agar platesCasein agar was prepared as follows: 20 g of skim milk (BD Difco), supplemented with 1 g glucose were reconstituted with 200 mL of distilled water. Likewise, a 10% bacteriological agar solution was prepared in a final volume of 200 mL. Finally, a solution consisting of 0.8% NaCl, 0.02% KCl, 0.144% Na2HPO4, and 0.024% KH2PO4 was reconstituted in 600 mL of water. All solutions were autoclaved for 15 min at 110 °C. The solutions were mixed, and 25 mL were poured into each Petri dish. Gelatin agar was composed of 0.4% peptone, 0.1% yeast extract, 1.5% gelatin and 1.5% bacteriological agar. The mixture was autoclaved 15 min at 120 °C, and 25 mL of medium was poured into each Petri dish.For each isolate, an overnight suspension was performed in R2A broth at room temperature, before spotting 15 μL of each suspension at the center of both gelatin and casein agar plates. Each plate was incubated at 22, 30, or 37 °C for 72 h, depending on the initial isolation temperature of the bacteria. Casein-degrading activity (cas), which is exerted by many different protease classes, and gelatin-degrading activity (gel), which is mostly caused by MMPs, were revealed by a hydrolysis halo around the producing bacteria. Hydrolysis diameters were measured in millimeters (mm) to report the extent of the proteolytic effect of each strain on both substrates.Protease activity quantification in cell-free supernatantUsing the same bacterial suspensions as for bacterial/virus co-incubation, 200 μL of each suspension was inoculated into 600 μL of R2A broth and incubated without shaking for 96 h at room temperature. Each culture was centrifuged for 15 min at 9000 × g at 4 °C. The resulting cell-free supernatants (CFS) were stored at −20 °C until use. For each CFS, protease activity was measured using the Protease Activity Assay Kit (ab112152, Abcam, Cambridge, UK), which measures general protease activity (pgen) except MMPs, and the MMP Activity Assay Kit (ab112146, Abcam), which selectively measures MMP activity (mmp). Briefly, for the Protease Activity Assay kit, 50 μL of the substrate was added into each well of a dark-bottom plate containing 50 μL of each CFS. Standard trypsin provided by the kit was used as a positive control. For the MMP Activity Assay kit, 50 μL of each CFS was incubated with 50 μL of 2 mM APMA for 3 h at 37 °C, prior to the activity test. Collagenase I (C0130, Sigma–Aldrich) was used as a positive control. R2A broth was used as a negative control for each assay. Protease activity was measured at time 0 and after 60 min, using a Synergy MX fluorescence reader (BioTek). The excitation and emission wavelengths were set to 485 and 530 nm, respectively. The emitted fluorescence, generated by proteolytic cleavage of the substrate of each kit, was calculated as follows: ∆RFU = RFU (60 min) − RFU (0 min). Proteolytic activity was calculated in mmol/min/μL based on the emitted fluorescence measured for trypsin and collagenase I at known proteolytic activities.Data analysisStatistical analyses to compare inactivation data were performed by one-way t-test or one-way ANOVA with Dunnett’s post-hoc test in GraphPad Prism v.9. An alpha value of 0.05 was used as a threshold for statistical significance. For each dataset we confirmed that data were normally distributed.To analyze a potential correlation between protease activity and viral decay, the decay values for each virus strain was related to the four protease activity tests of this study using a scatterplot combined with a Kernel density estimation. The analyses were performed with R v.3.6.1 using the SmoothScatter function of the R Base package.A Left-Censored Tobit model (CTM) with mixed effects was chosen to investigate interactions between protease activity and the decay measured for each virus strain. Briefly, the CTM with mixed effect was chosen for three reasons: (1) The protocol used to measure viral decay had a limit of quantification of −3-log10, and 152 measurement points reached the detection limit, requiring the use of this value as the left-censored value of the model; (2) The two virus strains used in the study showed distinct responses after exposure to environmental bacteria, preventing the use of a multiple linear regression model; (3) Among biological replicates of co-incubation experiments, inactivation variability was observed, suggesting the concomitant action of random biological effects (e.g., production of other compounds than proteases by bacteria, or differences in protease production rate between replicates for each bacterial isolate). The resulting statistical model was then formulated as follows:$$log left( {frac{{C_{{{{{{mathrm{exp}}}}}}}}}{{C_{{{{{{mathrm{ctrl}}}}}}}}}} right) = ; beta _0 + beta _1;{rm I}_{{{{{{{{mathrm{virus}}}}}}}}_i = 2} + beta _2sqrt {left[ {pgen} right]_i} + beta _3sqrt {left[ {mmp} right]_i} + beta _4sqrt {left[ {cas} right]_i} \ + beta _5sqrt {left[ {gel} right]_i} + beta _6I_{{{{{{{{mathrm{virus}}}}}}}}_i = 2}sqrt {left[ {pgen} right]_i} + beta _7I_{{{{{{{{mathrm{virus}}}}}}}}_i = 2}sqrt {left[ {mmp} right]_i} \ + beta _8I_{{{{{{{{mathrm{virus}}}}}}}}_i = 2}sqrt {left[ {cas} right]_i} + beta _9I_{{{{{{{{mathrm{virus}}}}}}}}_i = 2}sqrt {left[ {gel} right]_i} + alpha _{{{{{{{{mathrm{id}}}}}}}}_i} + varepsilon _i$$$${{{mbox{where}}}}; log left( {frac{{C_{{{{{{mathrm{exp}}}}}}}}}{{C_{{{{{{mathrm{ctrl}}}}}}}}}} right) = left{ {begin{array}{*{20}{c}} { – 3} & {{{{{{{{mathrm{if}}}}}}}};{{{{{{{mathrm{log}}}}}}}}left( {frac{{C_{{{{{{mathrm{exp}}}}}}}}}{{C_{{{{{{mathrm{ctrl}}}}}}}}}} right) le – 3} \ {{{{{{{{mathrm{log}}}}}}}}left( {frac{{C_{{{{{{mathrm{exp}}}}}}}}}{{C_{{{{{{mathrm{ctrl}}}}}}}}}} right)} & {{{{{{{{mathrm{otherwise}}}}}}}}} end{array}} right.$$$$alpha _{{{{{{{{mathrm{id}}}}}}}}_i}sim {{{{{{{mathrm{i}}}}}}}}.{{{{{{{mathrm{i}}}}}}}}.;{{{{{{{mathrm{d}}}}}}}}.;{rm N}left( {0,;sigma _{{{{{{{{mathrm{id}}}}}}}}}^2} right)$$$${{{{{{{mathrm{for}}}}}}}};i in left{ {1,2, ldots } right}$$for which β0 defines the model intercept, (beta _1{rm I}_{{{{{{{{mathrm{virus}}}}}}}}_i = 2}) corresponds to the main effect of the virus factor on the viral decay, (beta _2,;beta _3,;beta _4,;{{{{{{{mathrm{and}}}}}}}};beta _5) corresponds to the main effects of the different protease activity measurements on viral decay, (beta _6I_{{{{{{{{mathrm{virus}}}}}}}}_i = 2},;beta _7I_{{{{{{{{mathrm{virus}}}}}}}}_i = 2},;beta _8I_{{{{{{{{mathrm{virus}}}}}}}}_i = 2},{{{{{{{mathrm{and}}}}}}}};beta _9I_{{{{{{{{mathrm{virus}}}}}}}}_i = 2}) corresponds to the interaction effects between each of these variables and the viral decay, (alpha _{{{{{{{{mathrm{id}}}}}}}}_i}) corresponds to the mixed effect of the model and (varepsilon _i) corresponds to the error term of the model. The selection of the model is further detailed in the Supplementary Information (Supplementary Material and Figs. S1 and S2).The full dataset included in the correlation analysis and the CTM is provided in Supplementary Table 2. A description of the variables used is given in the Supplementary Information. The dataset was analyzed using the censReg package in R [19]. The R code is given in the Supplementary Information. More

  • in

    Enhanced spring warming in a Mediterranean mountain by atmospheric circulation

    Foster, G. & Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011).ADS 
    Article 

    Google Scholar 
    Cahill, N., Rahmstorf, S. & Parnell, A. C. Change points of global temperature. Environ. Res. Lett. 10, 084002 (2015).ADS 
    Article 

    Google Scholar 
    Yan, X. H. et al. The global warming hiatus: Slowdown or redistribution?. Earth’s Future 4, 472–482 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 5632 (2015).Article 

    Google Scholar 
    Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, 04705. https://doi.org/10.1029/2011GL050582 (2012).ADS 
    Article 

    Google Scholar 
    Pepin, N. C. & Lundquist, J. D. Temperature trends at high elevations: patterns across the globe. Geophys. Res. Lett. 35, 14 (2008).Article 

    Google Scholar 
    Rangwala, I. & Miller, J. R. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim. Change 114, 527–547 (2012).ADS 
    Article 

    Google Scholar 
    Wang, Q., Fan, X. & Wang, M. Recent warming amplification over high elevation regions across the globe. Clim. Dyn. 43, 87–101 (2014).CAS 
    Article 

    Google Scholar 
    Fan, X., Wang, Q., Wang, M. & Jiménez, C. V. Warming amplification of minimum and maximum temperatures over high-elevation regions across the globe. PLoS ONE 10, e0140213 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424 (2015).ADS 
    Article 

    Google Scholar 
    Piccarreta, M., Lazzari, M. & Pasini, A. Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int. J. Climatol. 35, 1964–1975 (2015).Article 

    Google Scholar 
    Gonzalez-Hidalgo, J. C., Peña-Angulo, D., Brunetti, M. & Cortesi, N. Recent trend in temperature evolution in Spanish mainland (1951–2010): from warming to hiatus. Int. J. Climatol. 36, 2405–2416 (2016).Article 

    Google Scholar 
    McCullough, I. M. et al. High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landsc. Ecol. 31, 1063–1075 (2016).Article 

    Google Scholar 
    Sanz-Elorza, M., Dana, E. D., González, A. & Sobrino, E. Changes in the high-mountain vegetation of the central Iberian Peninsula as a probable sign of global warming. Ann. Bot. 92, 273–280 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peñuelas, J. & Boada, M. A global change induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol. 9, 131–140 (2003).ADS 
    Article 

    Google Scholar 
    Linares, J. C. & Tíscar, P. A. Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol. 30, 795–806 (2010).PubMed 
    Article 

    Google Scholar 
    Giorgi, F., Hurrell, J. W., Marinucci, M. R. & Beniston, M. Elevation dependency of the surface climate change signal: a model study. J. Clim. 10, 288–296 (1997).ADS 
    Article 

    Google Scholar 
    Palazzi, E., Mortarini, L., Terzago, S. & Von Hardenberg, J. Elevation-dependent warming in global climate model simulations at high spatial resolution. Clim. Dyn. 52, 2685–2702 (2019).Article 

    Google Scholar 
    Poyatos, R., Latron, J. & Llorens, P. Land use and land cover change after agricultural abandonment. Mt. Res. Dev. 23, 362–368 (2003).Article 

    Google Scholar 
    Mouillot, F., Ratte, J. P., Joffre, R., Mouillot, D. & Rambal, S. Long-term forest dynamic after land abandonment in a fire prone Mediterranean landscape (central Corsica, France). Landsc. Ecol. 20, 101–112 (2005).Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ríos-Cornejo, D., Penas, Á., Álvarez-Esteban, R. & Del Río, S. Links between teleconnection patterns and mean temperature in Spain. Theor. Appl. Climatol. 122, 1–18 (2015).ADS 
    Article 

    Google Scholar 
    Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martinez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Chang. 17, 420–428 (2007).Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., El Kenawy, A. M. & Angulo-Martínez, M. Daily atmospheric circulation events and extreme precipitation risk in northeast Spain: Role of the North Atlantic Oscillation, the Western Mediterranean Oscillation, and the Mediterranean Oscillation. J. Geophys. Res. Atmos. 114, D8 (2009).Article 

    Google Scholar 
    Guzman-Morales, J. & Gershunov, A. Climate change suppresses Santa Ana winds of southern California and sharpens their seasonality. Geophys. Res. Lett. 46, 2772–2780. https://doi.org/10.1029/2018GL080261 (2019).ADS 
    Article 

    Google Scholar 
    Yu, M. & Ruggieri, E. Change point analysis of global temperature records. Int. J. Climatol. 39, 3679–3688 (2019).Article 

    Google Scholar 
    Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, 08707. https://doi.org/10.1029/2006GL025734 (2006).ADS 
    Article 

    Google Scholar 
    García, M. J. L. Recent warming in the Balearic Sea and Spanish Mediterranean coast: Towards an earlier and longer summer. Atmósfera 28, 149–160 (2015).Article 

    Google Scholar 
    Toreti, A., Desiato, F., Fioravanti, G. & Perconti, W. Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Clim. Change 99, 211–227 (2010).ADS 
    Article 

    Google Scholar 
    Scorzini, A. R. & Leopardi, M. Precipitation and temperature trends over central Italy (Abruzzo Region): 1951–2012. Theor. Appl. Climatol. 135, 959–977 (2019).ADS 
    Article 

    Google Scholar 
    Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, 21408. https://doi.org/10.1029/2007.GL03129 (2007).ADS 
    Article 

    Google Scholar 
    Boulant, N., Kunstler, G., Rambal, S. & Lepart, J. Seed supply, drought, and grazing determine spatio-temporal patterns of recruitment for native and introduced invasive pines in grasslands. Divers. Distrib. 14, 862–874 (2008).Article 

    Google Scholar 
    Améztegui, A. Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob. Ecol. Biogeogr. 19, 632–641 (2010).
    Google Scholar 
    Rambal, S. Relations entre couverts végétaux des parcours et cycle de l’eau. In L’eau des troupeaux en alpages et sur parcours: une ressource à gérer, aménager, partager (ed. Lepart, J.) 25–37 (Association Française de Pastoralisme et Cardère éditeur, 2015).
    Google Scholar 
    Fonderflick, J., Lepart, J., Caplat, P., Debussche, M. & Marty, P. Managing agricultural change for biodiversity conservation in a Mediterranean upland. Biol. Conserv. 143, 737–746 (2010).Article 

    Google Scholar 
    Abadie, J. et al. Forest recovery since 1860 in a Mediterranean region: Drivers and implications for land use and land cover spatial distribution. Landsc. Ecol. 33, 289–305 (2018).Article 

    Google Scholar 
    Cervera, T., Pino, J., Marull, J., Padró, R. & Tello, E. Understanding the long-term dynamics of forest transition: From deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005). Land Use Policy 80, 318–331 (2019).Article 

    Google Scholar 
    Wolpert, F., Quintas-Soriano, C. & Plieninger, T. Exploring land-use histories of tree-crop landscapes: a cross-site comparison in the Mediterranean Basin. Sustain. Sci. 15, 1267–1283 (2020).Article 

    Google Scholar 
    Lasanta-Martínez, T., Vicente-Serrano, S. M. & Cuadrat-Prats, J. M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 25, 47–65 (2005).Article 

    Google Scholar 
    Malandra, F., Vitali, A., Urbinati, C., Weisberg, P. J. & Garbarino, M. Patterns and drivers of forest landscape change in the Apennines range, Italy. Reg. Environ. Change 19, 1973–1985 (2019).Article 

    Google Scholar 
    Zhang, Q. et al. Reforestation and surface cooling in temperate zones: Mechanisms and implications. Glob. Change Biol. 26, 3384–3401 (2020).ADS 
    Article 

    Google Scholar 
    Rambal, S., Lacaze, B. & Winkel, T. Testing an area-weighted model for albedo or surface temperature of mixed pixels in Mediterranean woodlands. Int. J. Remote Sens. 11, 1495–1499 (1990).Article 

    Google Scholar 
    Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393. https://doi.org/10.1038/nclimate2196 (2014).ADS 
    Article 

    Google Scholar 
    Novick, K. A. & Katul, G. G. The duality of reforestation impacts on surface and air temperature. J. Geophys. Res. Biogeosci. 125, e05543 (2020).Article 

    Google Scholar 
    Davy, R. & Esau, I. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nat. Commun. 7, 1–8 (2016).Article 

    Google Scholar 
    Serafin, S. et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 9, 102. https://doi.org/10.3390/atmos9030102 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12, 053002 (2017).ADS 
    Article 

    Google Scholar 
    Visbeck, M. H., Hurrell, J. W., Polvani, L. & Cullen, H. M. The North Atlantic oscillation: Past, present, and future. Proc. Natl. Acad. Sci. 98, 12876–12877 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hurrell, J. W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 269, 676–679 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Martín, P., Sabatés, A., Lloret, J. & Martin-Vide, J. Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim. Change 110, 925–939 (2012).ADS 
    Article 

    Google Scholar 
    Schwingshackl, C., Hirschi, M. & Seneviratne, S. I. Global contributions of incoming radiation and land surface conditions to maximum near surface air temperature variability and trend. Geophys. Res. Lett. 45, 5034–5044 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806. https://doi.org/10.1029/2008GL036350 (2009).ADS 
    Article 

    Google Scholar 
    Schwarz, M., Folini, D., Yang, S., Allan, R. P. & Wild, M. Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nat. Geosci. 13, 110–115 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Norris, J. R. & Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming”, and solar “brightening”. J. Geophys. Res. Atmos. 112, D08214. https://doi.org/10.1029/2006JD007794 (2007).ADS 
    Article 

    Google Scholar 
    Mateos, D. et al. Quantifying the respective roles of aerosols and clouds in the strong brightening since the early 2000s over the Iberian Peninsula. J. Geophys. Res. Atmos. 119, 10–382 (2014).Article 

    Google Scholar 
    Sanchez-Lorenzo, A. et al. Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).ADS 
    Article 

    Google Scholar 
    Kambezidis, H. D., Kaskaoutis, D. G., Kalliampakos, G. K., Rashki, A. & Wild, M. The solar dimming/brightening effect over the Mediterranean Basin in the period 1979–2012. J. Atmos. Solar Terr. Phys. 150, 31–46 (2016).ADS 
    Article 

    Google Scholar 
    Chiacchio, M. & Wild, M. Influence of NAO and clouds on long-term seasonal variations of surface solar radiation in Europe. J. Geophys. Res. Atmos. 115, 0022. https://doi.org/10.1029/2009JD012182 (2010).Article 

    Google Scholar 
    Wild, M. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdiscipl. Rev. Clim. Change 7, 91–107 (2016).Article 

    Google Scholar 
    Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).Article 

    Google Scholar 
    Dessler, A. E. & Sherwood, S. C. A matter of humidity. Science 323, 1020–1021 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruckstuhl, C., Philipona, R., Morland, J. & Ohmura, A. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res. Atmos. 112(D03302), 2007. https://doi.org/10.1029/2006JD007850 (2007).Article 

    Google Scholar 
    Parras-Berrocal, I. M. et al. The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model. Ocean Sci. 16, 743–765. https://doi.org/10.5194/os-16-743-2020 (2020).ADS 
    Article 

    Google Scholar 
    Reale, M. et al. The regional earth system model RegCM-ES: Evaluation of the Mediterranean climate and marine biogeochemistry. J. Adv. Model. Earth Syst. 12, e001812 (2020).Article 

    Google Scholar 
    Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Kelliher, F. M., Leuning, R. & Schulze, E. D. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95, 153–163 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Linacre, E. T. Simpler empirical expression for actual evapotranspiration rates-a discussion. Agric. Meteorol. 11, 451–452 (1973).Article 

    Google Scholar 
    Jones, P. D., Jónsson, T. & Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).Article 

    Google Scholar 
    Palutikof, J. P. Analysis of Mediterranean climate data: measured and modelled. In Mediterranean Climate: Variability and Trends (ed. Bolle, H. J.) (Springer, 2003).
    Google Scholar 
    Martin-Vide, J. & Lopez-Bustins, J. A. The western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int. J. Climatol. 26, 1455–1475 (2006).Article 

    Google Scholar  More

  • in

    Modern aridity in the Altai-Sayan mountain range derived from multiple millennial proxies

    1500-year stable carbon and oxygen isotopes in larch tree-ring celluloseThe δ13Ccell (Fig. 1a, Fig. S2) and δ18Ocell (Fig. 1b, Fig. S3) records span 516–2016 CE, at annual resolution. The δ13Ccell timeseries shows mostly increasing trends during the first millennium of the Common Era (516–1120 CE), and similarly at the end of the last millennium (1720–2016 CE). The maximum δ13Ccell value occurs in 2016 CE (−19.6‰; + 3.2σ), while the minimum occurs in 686 CE (−24.7‰, −3.6σ) relative to the average for the period 516–2016 CE (−22.04‰) (Table S2, Fig. S2). The standard error (SE) for the whole analysed period is 0.02.Figure 1Annually resolved δ13Ccell (a) and δ18O cell (b) in Siberian larch tree-ring cellulose chronologies for the period from 516 to 2016 CE. Chronologies are smoothed by a 101-year Hamming window to highlight a centennial scale. The dotted and dashed lines indicate the number of trees analysed.Full size imageThe δ18Ocell timeseries (Fig. 1b, Fig. S3) showed two positive and one negative extreme over the past 1500 years, with the minimum value (19.9‰; −6.3σ), occurring in 536 CE, and maximum values (31.9‰; + 3.8σ and 32.2‰; + 4.4σ), occurring in 1266 and 2008 CE, respectively (Table S2, Fig. S3). The SE for the whole analysed period is 0.03. The δ18Ocell data has higher standard deviation (SD) (1.15) than δ13Ccell (0.75).Less than 1% of values in the δ18Ocell record are classified as extreme, with the standard deviation ≥  ± 3σ. The δ13Ccell and δ18Ocell records are significantly correlated (r = 0.1, p = 0.0001, n = 1500).Local climate signals preserved in δ13Ccell and δ18Ocell recordsWe used weather observations from the local Mugur-Aksy weather station (50°N, 90°E, 1850 m asl) (Table S1) to derive quantitative paleoclimatic reconstructions from our δ13Ccell and δ18Ocell timeseries. A multiple linear regression analysis revealed significant correlations between δ13Ccell and July precipitation (r = −0.58; p  More

  • in

    Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change https://doi.org/10.1038/s41558-019-0412-1 (2019).Article 

    Google Scholar 
    Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 374, eabj3593 (2021).CAS 
    Article 

    Google Scholar 
    Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364. https://doi.org/10.1038/s41586-018-0383-9 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Oliver, et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. https://doi.org/10.1038/s41467-018-03732-9 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00734 (2019).Article 

    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 
    Article 

    Google Scholar 
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).ADS 
    Article 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/nclimate1627 (2013).ADS 
    Article 

    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change https://doi.org/10.1038/s41558-018-0096-y (2018).Article 

    Google Scholar 
    Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225, 1447–1454 (2020).Article 

    Google Scholar 
    Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121. https://doi.org/10.1371/journal.pone.0185121 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. https://doi.org/10.1038/ncomms16101 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montie, S., Thomsen, M. S., Rack, W. & Broady, P. A. Extreme summer marine heatwaves increase chlorophyll a in the Southern Ocean. Antarct. Sci. 32, 508–509 (2020).ADS 
    Article 

    Google Scholar 
    Gupta, A. S. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 1–15 (2020).ADS 
    Article 

    Google Scholar 
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1. https://doi.org/10.1007/s10584-021-03094-0 (2021).ADS 
    Article 

    Google Scholar 
    Thomsen, et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00084 (2019).Article 

    Google Scholar 
    Strydom, S. et al. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26, 3525–3538. https://doi.org/10.1111/gcb.15065 (2020).ADS 
    Article 

    Google Scholar 
    Leggat, W. P. et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 29, 2723-2730.e2724. https://doi.org/10.1016/j.cub.2019.06.077 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172. https://doi.org/10.1126/science.aad8745 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thomsen, M. S. & McGlathery, K. Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar. Coast. Shelf Sci. 62, 63–73. https://doi.org/10.1016/j.ecss.2004.08.007 (2005).ADS 
    Article 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527. https://doi.org/10.1016/j.cub.2017.04.060 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tait, L. W., Thoral, F., Pinkerton, M. H., Thomsen, M. S. & Schiel, D. R. Loss of giant kelp, Macrocystis pyrifera, driven by marine heatwaves and exacerbated by poor water clarity in New Zealand. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.721087 (2021).Article 

    Google Scholar 
    Marin, M., Feng, M., Phillips, H. E. & Bindoff, N. L. A global, multiproduct analysis of coastal marine heatwaves: Distribution, characteristics, and long-term trends. J. Geophys. Res. Oceans 126, e2020JC016708. https://doi.org/10.1029/2020JC016708 (2021).ADS 
    Article 

    Google Scholar 
    Kain, J. M. The seasons in the subtidal. Brit. Phycol. J. 24, 203–215 (1989).Article 

    Google Scholar 
    Atkinson, J., King, N. G., Wilmes, S. B. & Moore, P. J. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 56, 1591–1600. https://doi.org/10.1111/jpy.13051 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023 (2019).ADS 
    Article 

    Google Scholar 
    Amaya, D. J., Miller, A. J., Xie, S.-P. & Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 11, 1–9 (2020).Article 

    Google Scholar 
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047. https://doi.org/10.1038/nclimate3082 (2016).ADS 
    Article 

    Google Scholar 
    Cayan, D. R. Large-scale relationships between sea surface temperature and surface air temperature. Mon. Weather Rev. 108, 1293–1301 (1980).ADS 
    Article 

    Google Scholar 
    Hipel, K. W. & McLeod, A. I. Time Series Modelling of Water Resources and Environmental Systems (Elsevier, 1994).
    Google Scholar 
    trend: non-parametric trend tests and changepoint detection.–R package ver. 1.1. 2 (2020).Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871.x (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    Thomsen, M. S. & South, P. M. Communities and attachment networks associated with primary, secondary and alternative foundation species; a case study of stressed and disturbed stands of southern bull kelp. Diversity 11, 56. https://doi.org/10.3390/d11040056 (2019).Article 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).Article 

    Google Scholar 
    Thomsen, M. S. et al. Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species. Divers. Distrib. (2021).Rogers-Bennett, L. & Catton, C. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 1–11 (2020).Article 

    Google Scholar 
    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474. https://doi.org/10.1111/gcb.12694 (2015).ADS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 14999. https://doi.org/10.1038/s41598-017-14794-y (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smale, D. A., Wernberg, T. & Vanderklift, M. A. Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Mar. Ecol. Prog. Ser. 568, 17–30. https://doi.org/10.3354/meps12080 (2017).ADS 
    Article 

    Google Scholar 
    Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography (Washington D.C.) https://doi.org/10.5670/oceanog.2016.32 (2016).Article 

    Google Scholar 
    Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. 10, 12726. https://doi.org/10.1038/s41598-020-69665-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collette, B. B. in Reproduction and sexuality in marine fishes 21–64 (University of California Press, 2010).Yatsu, A. & Shimada, H. Distributions of Epipelagic Fishes, Squids, Marine Mammals. Bulletin 53 North Pacific Commission, 111–146.Hirst, A., Roff, J. & Lampitt, R. A synthesis of growth rates in marine epipelagic invertebrate zooplankton. Adv. Mar. Biol. 44, 1–142 (2003).CAS 
    Article 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 387, 27–37 (2009).ADS 
    Article 

    Google Scholar 
    Bernardello, R., Serrano, E., Coma, R., Ribes, M. & Bahamon, N. A comparison of remote-sensing SST and in situ seawater temperature in near-shore habitats in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 559, 21–34 (2016).ADS 
    Article 

    Google Scholar 
    Brewin, R. J. et al. Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sens. 10, 925 (2018).ADS 
    Article 

    Google Scholar 
    Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed data sets around the Coast of South Africa. PLoS ONE 8, e81944. https://doi.org/10.1371/journal.pone.0081944 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marin, M., Bindoff, N. L., Feng, M. & Phillips, H. E. Slower long-term coastal warming drives dampened trends in coastal marine heatwave exposure. J. Geophys. Res. Oceans https://doi.org/10.1029/2021jc017930 (2021).Article 

    Google Scholar 
    Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43, 1595–1607. https://doi.org/10.1111/jbi.12744 (2016).Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531. https://doi.org/10.1007/s00531-003-0328-9 (2003).Article 

    Google Scholar 
    El Glynn, P. W. Nino-southern oscillation 1982–1983: Nearshore population, community, and ecosystem responses. Annu. Rev. Ecol. Syst. 19, 309–346. https://doi.org/10.1146/annurev.es.19.110188.001521 (1988).Article 

    Google Scholar 
    Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191. https://doi.org/10.1007/bf00265009 (1990).ADS 
    Article 

    Google Scholar 
    Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in panama and ecuador during the 1997–1998 El Niño-Southern Oscillation Event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).
    Google Scholar 
    Podestá, G. P. & Glynn, P. W. The 1997–98 El Niño event in Panama and Galápagos: An update of thermal stress indices relative to coral bleaching. Bull. Mar. Sci. 69, 43–59 (2001).
    Google Scholar 
    Ladah, L. B. & Zertuche-Gonzalez, J. A. Giant kelp (Macrocystis pyrifera) survival in deep water (25–40 m) during El Nino of 1997–1998 in Baja California, Mexico. Bot. Marina 47, 367–372. https://doi.org/10.1515/bot.2004.054 (2004).Article 

    Google Scholar 
    Kayanne, H. Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific. Coral Reefs 36, 63–70 (2017).ADS 
    Article 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).ADS 
    Article 

    Google Scholar 
    Marba, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x (2010).ADS 
    Article 

    Google Scholar 
    Bennett, S., Wernberg, T., Arackal Joy, B., de Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun. 6, 10280. https://doi.org/10.1038/ncomms10280 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388. https://doi.org/10.1038/s41598-020-70273-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snover, M. L. Ontogenetic habitat shifts in marine organisms: Influencing factors and the impact of climate variability. Bull. Mar. Sci. 83, 53–67 (2008).
    Google Scholar 
    Harley, C. D. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Kelaher, B. P., Coleman, M. A. & Bishop, M. J. Ocean warming, but not acidification, accelerates seagrass decomposition under near-future climate scenarios. Mar. Ecol. Prog. Ser. 605, 103–110 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Senerpont Domis, L. N. et al. Plankton dynamics under different climatic conditions in space and time. Freshw. Biol. 58, 463–482 (2013).Article 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677. https://doi.org/10.1038/nclimate2647 (2015).ADS 
    Article 

    Google Scholar 
    Morales-Nin, B. & Panfili, J. Seasonality in the deep sea and tropics revisited: What can otoliths tell us?. Mar. Freshw. Res. 56, 585–598 (2005).Article 

    Google Scholar 
    Alongi, D. M. Ecology of tropical soft-bottom benthos: A review with emphasis on emerging concepts. Rev. Biol. Trop. 37, 85–100 (1989).
    Google Scholar 
    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56. https://doi.org/10.1111/fog.12083 (2016).Article 

    Google Scholar 
    Spillman, C. M., Smith, G. A., Hobday, A. J. & Hartog, J. R. Onset and decline rates of marine heatwaves: Global trends, seasonal forecasts and marine management. Front. Clim. https://doi.org/10.3389/fclim.2021.801217 (2021).Article 

    Google Scholar 
    Schlegel, R. W., Oliver, E. C. J., Wernberg, T. & Smit, A. J. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog. Oceanogr. 151, 189–205. https://doi.org/10.1016/j.pocean.2017.01.004 (2017).ADS 
    Article 

    Google Scholar 
    Huang, B. et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939. https://doi.org/10.1175/jcli-d-20-0166.1 (2021).ADS 
    Article 

    Google Scholar 
    OBPG, N. & Stumpf, R. P. Distance to Nearest Coastline: 0.01-Degree Grid. Distributed by the Pacific Islands Ocean Observing System (PacIOOS). http://pacioos.org/metadata/dist2coast_1deg.html and https://data.noaa.gov/dataset/dataset/distance-to-nearest-coastline-0-01-degree-grid2http://www.pacioos.hawaii.edu/metadata/dist2coast_1deg.html (2012).Schlegel, R. W. & Smit, A. J. heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3(27), 821 (2018).ADS 
    Article 

    Google Scholar 
    Sakurai, T., Yukio, K. & Kuragano, T. in Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. 2606–2608 (IEEE). More

  • in

    Taking metagenomics under the wings

    AffiliationsSanger Institute, Wellcome Trust Genome Campus, Hinxton, UKPhysilia Ying Shi ChuaLaboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, DenmarkJacob Agerbo RasmussenCenter for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DenmarkJacob Agerbo RasmussenAuthorsPhysilia Ying Shi ChuaJacob Agerbo RasmussenCorresponding authorCorrespondence to
    Physilia Ying Shi Chua. More

  • in

    Reef larval recruitment in response to seascape dynamics in the SW Atlantic

    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641. https://doi.org/10.1126/science.1255641 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).ADS 
    Article 

    Google Scholar 
    IPBES The global assessment report on biodiversity and ecosystem services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://ipbes.net/global-assessment (2019).Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596. https://doi.org/10.1038/nature09268 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Canonico, G. et al. Global observational needs and resources for marine biodiversity. Front. Mar. Sci. 6, 367. https://doi.org/10.3389/fmars.2019.00367 (2019).Article 

    Google Scholar 
    Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 211. https://doi.org/10.3389/fmars.2018.00211 (2018).Article 

    Google Scholar 
    Ehrnsten, E., Norkko, A., Timmermann, K. & Gustafsson, B. G. Benthic-pelagic coupling in coastal seas—Modelling macrofaunal biomass and carbon processing in response to organic matter supply. J. Mar. Sys. 196, 36–47. https://doi.org/10.1016/j.jmarsys.2019.04.003 (2019).Article 

    Google Scholar 
    Centurioni, L. R. et al. Global in situ observations of essential climate and ocean variables at the air-sea interface. Front. Mar. Sci. 6, 419. https://doi.org/10.3389/fmars.2019.00419 (2019).Article 

    Google Scholar 
    Murphy, S. E. et al. Fifteen years of lessons from the Seascape approach: A framework for improving ocean management at scale. Conserv. Sci. Pract. 3, e423. https://doi.org/10.1111/csp2.423 (2021).Article 

    Google Scholar 
    Pittman, S. J. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29. https://doi.org/10.3354/meps13661 (2021).ADS 
    Article 

    Google Scholar 
    Swanborn, D. J., Huvenne, V. A., Pittman, S. J. & Woodall, L. C. Bringing seascape ecology to the deep seabed: A review and framework for its application. Limnol. Oceanogr. 67, 66–88. https://doi.org/10.1002/lno.11976 (2022).ADS 
    Article 

    Google Scholar 
    Flint, L. E. & Flint, A. L. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol. Process 1, 2. https://doi.org/10.1186/2192-1709-1-2 (2012).Article 

    Google Scholar 
    Fagundes, M. et al. Downscaling global ocean climate models improves estimates of exposure regimes in coastal environments. Sci. Rep. 10, 14227. https://doi.org/10.1038/s41598-020-71169-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zacarias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: A review and critique. Aquatic Conser: Mar. Freshw. Ecosyst. 11, 59–76. https://doi.org/10.1002/aqc.429 (2001).Article 

    Google Scholar 
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25(3155), 153–160. https://doi.org/10.1016/j.tree.2009.10.001 (2009).Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81(8), 2250–2263. https://doi.org/10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2 (2000).Article 

    Google Scholar 
    Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3(5), 41. https://doi.org/10.1890/ES11-00366.1 (2012).Article 

    Google Scholar 
    Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500. https://doi.org/10.1146/annurev.ecolsys.27.1.477 (1996).Article 

    Google Scholar 
    Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine populations. Bull. Mar. Sci. 70(1), 377–396 (2002).
    Google Scholar 
    Roughgarden, J., Gaines, S. & Iwasa, Y. Recruitment dynamics in complex life cycles. Science 241, 1460–1466. https://doi.org/10.1126/science.11538249 (1988).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Gilg, M. R. & Hilbish, T. J. The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84(11), 2989–2998. https://doi.org/10.1890/02-0498 (2003).Article 

    Google Scholar 
    D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl. Acad. Sci. USA 112(45), 13940–13945. https://doi.org/10.1073/pnas.1513754112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fogarty, M. J., Sissenwine, M. P. & Cohen, E. B. Recruitment variability and the dynamics of exploited marine populations. Trends Ecol. Evol. 6(8), 241–246. https://doi.org/10.1016/0169-5347(91)90069-A (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wahle, R. A. Revealing stock–recruitment relationships in lobsters and crabs:is experimental ecology the key?. Fish. Res. 65, 3–32. https://doi.org/10.1016/j.fishres.2003.09.004 (2003).Article 

    Google Scholar 
    Gosselin, L. A. & Qian, P. Y. Early post-settlement mortality of an intertidal barnacle: a critical period for survival. Mar. Ecol. Prog. Ser. 135, 69–75. https://doi.org/10.3354/meps135069 (1996).ADS 
    Article 

    Google Scholar 
    Penin, L. et al. Early post-settlement mortality and the structure of coral assemblages. Mar. Ecol. Prog. Ser. 408, 55–64. https://doi.org/10.3354/meps08554 (2010).ADS 
    Article 

    Google Scholar 
    Broitman, B. R., Mieszkowaska, N., Helmuth, B. & Blanchette, C. A. Climate recruitment of rocky shore intertidal invertebrates in the eastern North Atlantic. Ecology 89(11), S81–S90. https://doi.org/10.1890/08-0635.1 (2008).Article 
    PubMed 

    Google Scholar 
    Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15. https://doi.org/10.3354/meps308001 (2006).ADS 
    Article 

    Google Scholar 
    Mazzuco, A. C. A., Christofoletti, R. A., Coutinho, R. & Ciotti, A. M. The influence of atmospheric cold fronts on larval supply and settlement of intertidal invertebrates: Case studies in the Cabo Frio coastal upwelling system (SE Brazil). J. Sea Res. 137, 47–56. https://doi.org/10.1016/j.seares.2018.02.010 (2018).Article 

    Google Scholar 
    Morgan, S. G., Fisher, J. L. & Mace, A. J. Larval recruitment in a region of strong, persistent upwelling and recruitment limitation. Mar. Ecol. Prog. Ser. 394, 79–99. https://doi.org/10.3354/meps08216 (2009).ADS 
    Article 

    Google Scholar 
    Pfaff, M. C., Branch, G. M., Wieters, E. A., Branch, R. A. & Broitman, B. R. Upwelling intensity and wave exposure determine recruitment of intertidal mussels and barnacles in the southern Benguela upwelling region. Mar. Ecol. Prog. Ser. 425, 141–152. https://doi.org/10.3354/meps09003 (2001).ADS 
    Article 

    Google Scholar 
    Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395. https://doi.org/10.1007/s00338-008-0461-9 (2009).ADS 
    Article 

    Google Scholar 
    Groom, S. et al. Satellite ocean colour: Current status and future perspective. Front. Mar. Sci. 6, 485. https://doi.org/10.3389/fmars.2019.00485 (2019).Article 

    Google Scholar 
    Moltmann, T. et al. A global ocean observing system (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies. Front. Mar. Sci. 6, 291. https://doi.org/10.3389/fmars.2019.00291 (2019).Article 

    Google Scholar 
    Kavanaugh, M. T. et al. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology. Prog. Oceanogr. 120, 291–304. https://doi.org/10.1016/j.pocean.2013.10.013 (2014).ADS 
    Article 

    Google Scholar 
    Kavanaugh, M. T. et al. Seascapes as a new vernacular for ocean monitoring, management and conservation. ICES J. Mar. Sci. 73(7), 1839–1850. https://doi.org/10.1093/icesjms/fsw086 (2016).Article 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/nclimate1627 (2013).ADS 
    Article 

    Google Scholar 
    Montes, E. et al. Dynamic satellite seascapes as a biogeographic framework for understanding phytoplankton assemblages in the Florida Keys National Marine Sanctuary United States. Front. Mar. Sci. 7, 575. https://doi.org/10.3389/fmars.2020.00575 (2020).Article 

    Google Scholar 
    Mazzuco, A. C. A. et al. Lower diversity of recruits in coastal reef assemblages are associated with higher sea temperatures in the tropical South Atlantic. Mar. Environ. Res. 148, 87–98. https://doi.org/10.1016/j.marenvres.2019.05.008 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mazzuco, A. C. A., Stelzer, P. S. & Bernardino, A. F. Substrate rugosity and temperature matters: Patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic. PeerJ Life Environ. 8, e8289. https://doi.org/10.7717/peerj.8289 (2020).Article 

    Google Scholar 
    Stelzer, P. S. et al. Taxonomic and functional diversity of benthic macrofauna associated with rhodolith beds in SE Brazil. PeerJ 9, e11903. https://doi.org/10.7717/peerj.11903 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernardino, A. F. et al. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions. Estuar. Coast. Shelf S. 166, 74–82. https://doi.org/10.1016/j.ecss.2015.05.021 (2015).ADS 
    Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Dynamics of coral reef benthic assemblages of the Abrolhos bank, eastern Brazil: Inferences on natural and anthropogenic drivers. PLoS ONE 8(1), e54260. https://doi.org/10.1371/journal.pone.0054260 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Araújo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038. https://doi.org/10.1016/j.marenvres.2020.105038 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fulton, E. A. et al. Modelling marine protected areas: insights and hurdles. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370(1681), 201. https://doi.org/10.1098/rstb.2014.0278 (2015).Article 

    Google Scholar 
    Carr, M. H. et al. The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquat. Conserv. Mar. Freshw. Ecosyst. 27(S1), 6–29. https://doi.org/10.1002/aqc.2800 (2017).Article 

    Google Scholar 
    Krueck, N. C. et al. Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol. Appl. 27, 925–941. https://doi.org/10.1002/eap.1495 (2017).Article 
    PubMed 

    Google Scholar 
    Ekau, W. & Knoppers, B. An introduction to the pelagic system of the Northeast and East Brazilian shelf. Arch. Fish. Mar. Res. 47(2/3), 5–24 (1999).
    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57(7), 573–583. https://doi.org/10.1641/B570707 (2007).Article 

    Google Scholar 
    Vermeij, M. J. A., Fogarty, N. D. & Miller, M. W. Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 310, 119–128. https://doi.org/10.3354/meps310119 (2006).ADS 
    Article 

    Google Scholar 
    Gímenez, L. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology 91(5), 1401–1403. https://doi.org/10.1890/09-1028.1 (2010).Article 
    PubMed 

    Google Scholar 
    Jenkins, S. R., Marshall, D. & Fraschetti, S. Settlement and Recruitment. In Marine Hard Bottom Communities. Ecological Studies Analysis and Synthesis (ed. Wahl, M.) (Springer, 2009). https://doi.org/10.1007/b76710_12.Chapter 

    Google Scholar 
    von der Meden, C. E. O., Porri, F., Radloff, S. & McQuaid, C. D. Settlement intensification and coastline topography: Understanding the role of habitat availability in the pelagic–benthic transition. Mar. Ecol. Prog. Ser. 459, 63–71. https://doi.org/10.3354/meps09762 (2012).ADS 
    Article 

    Google Scholar 
    Gorman, D. et al. Decadal losses of canopy-forming algae along the warm temperate coastline of Brazil. Glob. Change Biol. 26, 1446–1457. https://doi.org/10.1111/gcb.14956 (2020).ADS 
    Article 

    Google Scholar 
    Pianca, C., Mazzini, P. L. F. & Siegle, E. Brazilian offshore wave climate based on NWW3 reanalysis. Braz. J. Oceanogr. 58(1), 53–70. https://doi.org/10.1590/S1679-87592010000100006 (2010).Article 

    Google Scholar 
    Muñiz, C., McQuaid, C. D. & Weidberg, N. Seasonality of primary productivity affects coastal species more than its magnitude. Sci. Total Environ. 757, 143740. https://doi.org/10.1016/j.scitotenv.2020.143740 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Edmunds, P. J. Finding signals in the noise of coral recruitment. Coral Reefs 41, 81–93. https://doi.org/10.1007/s00338-021-02204-9 (2022).Article 

    Google Scholar 
    Zuercher, R. Pelagic-benthic coupling in kelp forests of central California. Mar. Ecol. Prog. Ser. 682, 79–96. https://doi.org/10.3354/meps13937 (2022).ADS 
    Article 

    Google Scholar 
    Manríquez, P. H. & Castilla, J. C. Significance of marine protected areas in central Chile as seeding grounds for the gastropod Concholepas concholepas. Mar. Ecol. Prog. Ser. 215, 201–211. https://doi.org/10.3354/meps215201 (2001).ADS 
    Article 

    Google Scholar 
    Domingues, C. P., Nolasco, R., Dubert, J. & Queiroga, H. Model-derived dispersal pathways from multiple source populations explain variability of invertebrate larval supply. PLoS ONE 7(4), e35794. https://doi.org/10.1371/journal.pone.0035794 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nickols, K. J., Miller, S. H., Gaylord, B., Morgan, S. G. & Largier, J. L. Spatial differences in larval abundance within the coastal boundary layer impact supply to shoreline habitats. Mar. Ecol. Prog. Ser. 494, 191–203. https://doi.org/10.3354/meps10572 (2013).ADS 
    Article 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 14999. https://doi.org/10.1038/s41598-017-14794-y (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Meehl, G. A. & Tebaldi, C. More Intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le, C., Lehrter, J. C., Hu, C. & Obenour, D. R. Satellite-based empirical models linking river plume dynamics with hypoxic area and volume. Geophys. Res. Lett. 43, 2693–2699. https://doi.org/10.1002/2015GL067521 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Runge, J. et al. Inferring causation from time series in earth system sciences. Nat. Commun. 10, 2553. https://doi.org/10.1038/s41467-019-10105-3 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abbas, M. M., Melesse, A. M., Scinto, L. J. & Rehage, J. S. Satellite estimation of chlorophyll-a using moderate resolution imaging spectroradiometer (MODIS) sensor in shallow coastal water bodies: validation and improvement. Water 11, 1621. https://doi.org/10.3390/w11081621 (2019).CAS 
    Article 

    Google Scholar 
    Scrosati, R. A. & Ellrich, J. A. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005–2016): relationships with sea surface temperature and phytoplankton abundance. PeerJ Life Environ. 4, e2623. https://doi.org/10.7717/peerj.2623 (2016).Article 

    Google Scholar 
    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24(6), 2416–2433. https://doi.org/10.1111/gcb.14108 (2018).ADS 
    Article 

    Google Scholar 
    Muelbert, J. H. et al. ILTER-the International long-term ecological research network as a platform for global coastal and ocean observation. Front. Mar. Sci. 6, 527. https://doi.org/10.3389/fmars.2019.00527 (2019).Article 

    Google Scholar 
    Pereira, A. F., Belém, A. L., Castro, B. M. & Geremias, R. G. Tide-topography interaction along the eastern Brazilian shelf. Cont. Shelf Res. 25, 1521–1539. https://doi.org/10.1016/j.csr.2005.04.008 (2005).ADS 
    Article 

    Google Scholar 
    Longo, P.A.S., Fernandes, M.C., Leite, F.P.P. & Passos, F.D. Gastropoda (Mollusca) associados a bancos de Sargassum sp. no Canal de São Sebastião–São Paulo, Brasil. Biota Neotropica 14(4), e20140115; doi: https://doi.org/10.1590/1676-06032014011514 (2014)Broitman, B. et al. Spatial and temporal patterns of invertebrate recruitment along the West coast of the United States. Ecol. Monogr. 78, S81–S90. https://doi.org/10.1890/06-1805.1 (2008).Article 

    Google Scholar 
    Todd, C. D. Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe?. Hydrobiologia 375, 1–21. https://doi.org/10.1023/A:1017007527490 (1998).Article 

    Google Scholar 
    Jenkins, S.R., Marshall, D. & Fraschetti, S. Settlement and Recruitment in Marine Hard Bottom Communities Ecological Studies (Analysis and Synthesis) (ed. Wahl, M.), vol 206; doi: https://doi.org/10.1007/b76710_12 (Springer, 2009)Shanks, A.L. An Identification Guide to the Larval Marine Invertebrates of the Pacific Northwest. Oregon State University Press, Corvallis, Oregon. 320 pages. ISBN 0–87071–531–3 (2001).Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Climate 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).ADS 
    Article 

    Google Scholar 
    Simons, R.A. ERDDAP. Monterey, CA: NOAA/NMFS/SWFSC/ERD; https://coastwatch.pfeg.noaa.gov/erddap . (2020).Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, John Wiley & Sons Ltd; doi: https://doi.org/10.1002/9781118445112.stat07841 (2017).Sokal, R. & Rohlf, F. J. Biometry: the principles and practice of statistics in biological research. (WH Freeman and Company, 2003).Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).Article 

    Google Scholar 
    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5(1), 3–21. https://doi.org/10.1093/jpe/rtr044 (2012).Article 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. The evolutionary ecology of offspring size in marine invertebrates. Adv. Mar. Biol. 53, 1–60. https://doi.org/10.1016/S0065-2881(07)53001-4 (2007).Article 
    PubMed 

    Google Scholar 
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525. https://doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 (2003).Article 

    Google Scholar 
    Quintana, C. O., Bernardino, A. F., Moraes, P. C., Valdemarsen, T. & Sumida, P. Y. G. Effects of coastal upwelling on the structure of macrofaunal communities in SE Brazil. J. Mar. Syst. 143, 120–129. https://doi.org/10.1016/j.jmarsys.2014.11.003 (2015).Article 

    Google Scholar 
    Hastie, T. & Tibshirani, R. Generalized Additive Models. (Chapman and Hall, 1990).Hastie, T. Generalized additive models in Statistical Models (eds. Chambers, J. M., Hastie, T.J.) (Wadsworth & Brooks, 1992).Garcia, L. Escaping the bonferroni iron claw in ecological studies. Oikos 105, 657–663. https://doi.org/10.1111/j.0030-1299.2004.13046.x (2004).Article 

    Google Scholar 
    Verhoeven, J. F., Simonsen, K. L. & McIntyre, L. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x (2005).Article 

    Google Scholar 
    Schmunk, R. B. Panoply 3.2.1. Available at http://www.giss.nasa.gov/ tools/panoply (2013).R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Sandrini-Neto, L. & Camargo, M.G. GAD: an R package for ANOVA designs from general principles. Available on CRAN (2020).Komsta, L. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).Oksanen J., et al. vegan: Community Ecology Package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan (2019).Rossi, J.-P. rich: an R package to analyse species richness. Diversity 3(1), 112–120 (2011).Article 

    Google Scholar 
    Hastie, T. gam: Generalized Additive Models. R package version 1.16.1. https://CRAN.R-project.org/package=gam (2019). More

  • in

    Retinas revived after donor's death open door to new science

    Listen to the latest from the world of science, with Shamini Bundell and Benjamin Thompson.

    Your browser does not support the audio element.

    Download MP3

    In this episode:00:57 Reviving retinas to understand eyesResearch efforts to learn more about diseases of the human eye have been hampered as these organs degrade rapidly after death, and animal eyes are quite different to those from humans. To address this, a team have developed a new method to revive retinas taken from donors shortly after their death. They hope this will provide tissue for new studies looking into the workings of the human eye and nervous system.Research article: Abbas et al.08:05 Research HighlightsA technique that simplifies chocolate making yields fragrant flavours, and 3D imaging reveals some of the largest-known Native American cave art.Research Highlight: How to make a fruitier, more floral chocolateResearch Highlight: Cramped chamber hides some of North America’s biggest cave art10:54 Did life emerge in an ‘RNA world’?How did the earliest biochemical process evolve from Earth’s primordial soup? One popular theory is that life began in an ‘RNA world’ from which proteins and DNA evolved. However, this week a new paper suggests that a world composed of RNA alone is unlikely, and that life is more likely to have begun with molecules that were part RNA and part protein.Research article: Müller et al.News and Views: A possible path towards encoded protein synthesis on ancient Earth17:52 Briefing ChatWe discuss some highlights from the Nature Briefing. This time, the ‘polarised sunglasses’ that helped astronomers identify an ultra-bright pulsar, and how a chemical in sunscreen becomes toxic to coral.Nature: A ‘galaxy’ is unmasked as a pulsar — the brightest outside the Milky WayNature: A common sunscreen ingredient turns toxic in the sea — anemones suggest whySubscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed. More