Big bats fly towards extinction with hunters in pursuit
RESEARCH HIGHLIGHT
03 March 2023
Human hunt at least 19% of bat species worldwide — especially flying foxes, which can have wingspans of 1.5 metres. More
Subterms
113 Shares109 Views
in EcologyRESEARCH HIGHLIGHT
03 March 2023
Human hunt at least 19% of bat species worldwide — especially flying foxes, which can have wingspans of 1.5 metres. More
113 Shares199 Views
in EcologyBeer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).Article
CAS
PubMed
Google Scholar
Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv.3, e1602244 (2017).Article
PubMed
PubMed Central
Google Scholar
Chapin, F. S. III Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann. Bot. 91, 455–463 (2003).Article
PubMed
PubMed Central
Google Scholar
Chu, C. et al. Does climate directly influence NPP globally? Global Chan. Biol. 22, 12–24 (2016).Article
Google Scholar
Yao, Y. et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Chan. Biol. 24, 184–196 (2018).Article
Google Scholar
Fang, J., Lutz, J. A., Wang, L., Shugart, H. H. & Yan, X. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. Global Chan. Biol. 26, 6974–6988 (2020).Article
Google Scholar
Fernández-Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Global Chan. Biol. 26, 7067–7078 (2020).Article
Google Scholar
Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. 111, 13697–13702 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).Article
PubMed
Google Scholar
Lavorel, S. & Garnier, É. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Fun. Ecol. 16, 545–556 (2002).Article
Google Scholar
Enquist, B. J. et al. in Advances in Ecological Research 52 (eds Samraat P, Guy W, & Anthony I. D) 249–318 (Academic Press, 2015).Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).Article
Google Scholar
Enquist, B. J. et al. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecol. Biogeogr. 26, 1357–1373 (2017).Article
Google Scholar
Fyllas, N. M. et al. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett. 20, 730–740 (2017).Article
PubMed
Google Scholar
Van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).Article
PubMed
Google Scholar
Ali, A., Yan, E.-R., Chang, S. X., Cheng, J.-Y. & Liu, X.-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci. Total Environ. 574, 654–662 (2017).Article
CAS
PubMed
Google Scholar
Yang, J., Cao, M. & Swenson, N. G. Why Functional Traits Do Not Predict Tree Demographic Rates. Trend Ecol. Evol. 33, 326–336 (2018).Article
Google Scholar
Šímová, I. et al. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the Americas. J. Ecol. 107, 2278–2290 (2019).Article
Google Scholar
Li, Y. et al. Leaf size of woody dicots predicts ecosystem primary productivity. Ecol. Lett. 23, 1003–1013 (2020).Article
PubMed
PubMed Central
Google Scholar
He, N. et al. Ecosystem Traits Linking Functional Traits to Macroecology. Trend. Ecol. Evol. 34, 200–210 (2019).Article
Google Scholar
Rubio, V. E., Zambrano, J., Iida, Y., Umaña, M. N. & Swenson, N. G. Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation. J. Ecol. 109, 1331–1343 (2021).Article
Google Scholar
Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).Article
PubMed
Google Scholar
Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. Plant growth: the What, the How, and the Why. New Phytol. 232, 25–41 (2021).Article
PubMed
Google Scholar
Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. 112, 2788–2793 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Chan. Biol. 14, 1125–1140 (2008).Article
Google Scholar
Liu, C., Li, Y., Yan, P. & He, N. How to Improve the Predictions of Plant Functional Traits on Ecosystem Functioning? Front. Plant Sci. 12, 622260 (2021).Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. of Sci. 94, 13730–13734 (1997).Article
CAS
Google Scholar
Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article
Google Scholar
Monteith, J. L. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B. Biol. Sci. 281, 277–294 (1977).
Google Scholar
Garnier, E. Resource capture, biomass allocation and growth in herbaceous plants. Trend. Ecol. Evol. 6, 126–131 (1991).Article
CAS
Google Scholar
Farnsworth, K. D., Albantakis, L. & Caruso, T. Unifying concepts of biological function from molecules to ecosystems. Oikos 126, 1367–1376 (2017).Article
Google Scholar
Zhang, R. et al. Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global meta-analysis. Global Ecol. Biogeogr. 31, 155–167 (2022).Article
Google Scholar
Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).Article
Google Scholar
Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).Article
CAS
PubMed
Google Scholar
Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 1–15 (2021).Article
Google Scholar
Jing, X. et al. The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecol. Biogeogr. 31, 486–500 (2022).Article
Google Scholar
Jing, X. et al. Above-and belowground complementarity rather than selection drives tree diversity-productivity relationships in European forests. Funct Ecol. 35, 1756–1767 (2021).He, N. et al. Predicting ecosystem productivity based on plant community traits. Trend. Plant Sci. 28, 43–53 (2023).Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun. 13, 1–12 (2022).Article
Google Scholar
Michaletz, S. T., Kerkhoff, A. J. & Enquist, B. J. Drivers of terrestrial plant production across broad geographical gradients. Global Ecol. Biogeogr. 27, 166–174 (2018).Article
Google Scholar
Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 20, 565–574 (2006).Article
Google Scholar
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article
Google Scholar
Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).Article
Google Scholar
McGill, B. J. Matters of Scale. Science 328, 575 (2010).Article
CAS
PubMed
Google Scholar
Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Communi. Biol. 3, 1–11 (2020).
Google Scholar
Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).Article
CAS
PubMed
Google Scholar
Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl. Acad. Sci. 114, 10160–10165 (2017).Article
CAS
PubMed
PubMed Central
Google Scholar
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).Article
CAS
PubMed
Google Scholar
Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).Article
PubMed
Google Scholar
Liu, Y. et al. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biol. Biochem. 121, 35–42 (2018).Article
CAS
Google Scholar
Zhao, N. et al. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Global Ecol. Biogeogr. 25, 359–367 (2016).Article
Google Scholar
Zhang, J. et al. C: N: P stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 32, 50–60 (2018).Article
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article
Google Scholar
Dirk Nikolaus, K. et al. Climatologies at high resolution for the earth’s land surface areas. EnviDat. https://doi.org/10.16904/envidat.332 (2021).Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol. Biogeogr. 14, 585–598 (2005).Article
Google Scholar
Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).Article
CAS
PubMed
Google Scholar
Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Sci. Data 4, 170165 (2017).Article
PubMed
PubMed Central
Google Scholar
Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. Soc. A Math. Phys. Eng. Sci. 374, 20150202 (2016).Article
Google Scholar
Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).Article
CAS
PubMed
Google Scholar
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Method Ecol. Evol. 7, 573–579 (2016).Article
Google Scholar
Bürkner, P.-C. Advanced bayesian multilevel modeling with the R Package brms. R J. 10, 395–411 (2018).Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Software 80, 1–28 (2017).Article
Google Scholar
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article
Google Scholar
Vehtari, A. et al. loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2, 1003 (2019).
Google Scholar
Gabry, J. & Mahr, T. bayesplot: Plotting for Bayesian models. R package version 1 (2017).Mac Nally, R. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659 (2004).Article
Google Scholar
Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).Article
PubMed
Google Scholar
Yan, P., He, N., Yu, K., Xu, L. & Van Meerbeek, K. Integrating multiple functional traits to predict ecosystem productivity. figshare (2023). Dataset. https://doi.org/10.6084/m9.figshare.22081634.v1. More
150 Shares149 Views
in EcologyWe performed data acquisition, processing, analysis and visualization using Python23 version 3.8 with the packages Numpy24, Pandas25, Geopandas26, Matplotlib27, Selenium, Beautiful Soup28, SciPy14 and scikit-learn29. The functions used for specific tasks are explicitly mentioned to allow validation and replication studies.Data acquisition and processingHuman PUUV-incidenceHantavirus disease has been notifiable in Germany since 2001. The Robert Koch Institute collects anonymized data from the local and state public health departments and offers via the SurvStat application2 a freely available, limited version of its database for research and informative purposes. We retrieved the reported laboratory-confirmed human PUUV-infections (({text{n}}=text{11,228}) from 2006 to 2021, status: 2022-02-07). From the attributes available for each case, we retrieved the finest temporal and spatial resolution, i.e., the week and the year of notification, together with the district (named “County” in the English version of the SurvStat interface).To avoid bias through underreporting, our dataset was limited to PUUV-infections since 2006. The years 2006–2021 contain 91.9% of the total cases from 2001 to 2021. Human PUUV-incidence was calculated as the number of infections per 100,000 people, by using population data from Eurostat30. For each year, we used the population reported for the January 1 of that year. The population for 2020 was also used for 2021.In the analysis, we only included districts where the total infections were (ge {20}) and the maximum annual incidence was (ge {2}) in the period 2006–2021. The spatial information about the infections provided by the SurvStat application refers to the district where the infection was reported. Therefore, in most of the cases, the reported district corresponds to the residence of the infected person, which may differ from the district of infection. To compensate partially for differences between the reported place of residence and the place of infection, we combined most of the urban districts with their surrounding rural district. The underlying assumption was that most infections reported in urban districts occurred in the neighboring or surrounding rural district. In addition, some urban and rural districts have the same health department. Supplementary Table 1 lists the combined districts.Weather dataFrom the German Meteorological Service31 we retrieved grids of the following monthly weather parameters over Germany from 2004 to 2021: mean daily air temperature—Tmean, minimum daily air temperature—Tmin, and maximum daily air temperature—Tmax (all temperatures are the monthly averages of the corresponding daily values, in 2 m height above ground, in °C); total precipitation in mm—Pr, total sunshine duration in hours—SD, mean monthly soil temperature in 5 cm depth under uncovered typical soil of location in °C—ST, and soil moisture under grass and sandy loam in percent plant useable water—SM. The dataset version for Tmean, Tmin, Tmax, Pr, and SD was v1.0; for ST and SM the dataset version was 0. × . The spatial resolution was 1 × 1 km2.The data acquisition was performed with the Selenium package. The processing was based on the geopandas package26 using a geospatial vector layer for the district boundaries of Germany32. Each grid was processed to obtain the average value of the parameter over each district. We first used the function within to define a mask based on the grid centers contained in the district; we then applied this mask to the grid. In this method, called “central point rasterizing”33, each rectangle of the grid was assigned to a single district, the one that contained its center. The typical processing error was estimated to be about 1%, which agrees with the rasterizing error reported by Bregt et al.33; we consider that most likely this error is significantly less than the uncertainties of the grids themselves, caused by calculation, interpolation, and erroneous or missing observations.Data structureOur analysis was performed at the district level based on the annual infections, acquired by aggregating the weekly cases. From each monthly weather parameter, we created 24 records, for all months of the two previous years. Each observation in our dataset characterized one district in one year. Its target was acquired by transforming the annual incidence, as described in the following section. Each observation comprised all 168 available predictors from the weather parameters (7 parameters × 24 months), thereafter called “variables”. The notation for the naming of the variables follows the format Vx__, where “Vx” can be V1 or V2 that corresponds to one or two years before, respectively; is the abbreviation of the weather parameter (see previous subsection: “Weather data”); and is the numerical value of the month, i.e., from 1 to 12.The observations for combined districts retained the label of the rural district. For their infections and populations, we aggregated the individual values, and recalculated the incidence. For their weather variables, we assigned the mean values weighted by the area of each district.Target transformationTo consider the effects that drive the occurrence of high district-relative incidence, we discretized the incidence at the district level. The incidence scaled at its maximum value for each district showed extreme values for minima and maxima. About 49% of all observations were in the range [0, 0.1) and 8% in the range [0.9, 1] (Fig. 5). Therefore, we specifically selected to discretize the scaled incidence with two bins, i.e., to binarize it.Figure 5Histograms of the annual PUUV incidence from 2006 to 2021, scaled to its maximum value for each of the selected districts. Left: Raw incidence. Right: Log-transformed incidence, according to Eq. (6).Full size imageWe first applied a log-transformation to the incidence values34, described in Eq. (6).$${text{Log – incidence}} = log_{10} left( {{text{incidence}} + 1} right)$$
(6)
The addition of a positive constant ensured a noninfinite value for zero incidence, with 1 selected so that the log-incidence is nonnegative, and a zero incidence was transformed into a zero log-incidence. This transformation aimed to increase the influence of nonzero incidence values; values that are not pronounced, but still hint at a nonzero infection risk. Its effect is demonstrated in the right plot of Fig. 5, where the positive skewness of the original data is reduced, i.e., low incidence values are spread to higher values, resulting to more uniform bin heights in the range [0.05, 0.95] after the transformation. Formally, in this case the log-transformation achieves a more uniform distribution for the non-extreme incidence values.For the binarization, we performed unsupervised clustering of the log-transformed incidence, separately for each district, applying the function KBinsDiscretizer of the scikit-learn package29. Our selected strategy was the k-means clustering with two bins, because it does not require a pre-defined threshold, and it can operate with the same fixed number of bins for every district, by automatically adjusting the cluster centroids accordingly.Classification methodWe concentrated only on those variable combinations that led to a linear decision boundary for the classification of our selected target. We selected support vector machines (SVM)35 with a linear kernel, because they combine high performance with low model complexity, in that they return the decision boundary as a linear equation of the variables. In addition, SVM is geometrically motivated36 and expected to be less prone to outliers and overfitting than other machine-learning classification algorithms, such as the logistic regression. For the complete modelling process, the regularization parameter C was set to 1, that is the default value in the applied SVC method of the scikit-learn package29, and the weights for both risk classes were also set to 1.Feature selectionOur aim was to use the smallest possible number of weather parameters as variables for a classification model with sufficient performance. To identify the optimal variable combination, we first applied an SVM with a linear kernel for all 2-variable combinations of the monthly weather variables from V2 and V1, i.e., 168 variables (7 weather parameters × 2 years × 12 months). Only for this step, the variables were scaled to their minimum and maximum values, which significantly reduced the processing time. For all the following steps, the scaler was omitted, because the unscaled support vectors were required for the final model. From the total 14,028 models for each unique pair ((frac{168!}{2!cdot left(168-2right)!})), we kept the 100 models with the best F1-score, i.e., of the harmonic mean of sensitivity and precision, and counted the occurrences of each year-month combination in the variables. The best F1-score was 0.752 for the pair (V1_Tmean_9 and V2_Tmax_4); and the best sensitivity was 83% for the pair (V2_Tmax_9 and V1_ST_9).The year-month combinations with more than 10% occurrences were: V1_9 (September of the previous year, with 49% occurrences), V2_9 (September of two years before, with 12%) and V2_4 (April of two years before, with 10%). To avoid sets with highly correlated variables, we formed 3-variable combinations, with exactly one variable from each year-month combination (threefold Cartesian product). From the total 343 models (73 combinations, i.e., 7 weather parameters for 3 year-month combinations), we selected the model with the best sensitivity and at least 70% precision, i.e., the variable set (V2_ST_4, V2_SD_9, and V1_ST_9). We consider that the criteria for this selection are not particularly crucial; and we expect comparable performance for most variable sets with a high F1-score, because the variables for each dimension of the Cartesian product were highly correlated. The eight variable sets with at least 70% precision and at least 80% sensitivity are shown in Supplementary Table 2.The SVM classifier has two hyperparameters: the regularization parameter C and the class weights. By decreasing C, the decision boundary becomes softer and more misclassifications are allowed. On the other hand, increasing the high-risk class weight, the misclassifications of high-risk observations are penalized higher, which is expected to increase the sensitivity and decrease the precision. The simultaneous adjustment of both hyperparameters ensures that the resulting model has the optimal performance with respect to the preferred metric. However, in order to avoid overfitting, we considered redundant a further model optimization with these two hyperparameters. For completeness, we examined SVM models for different values of the hyperparameters and found that the global maximum for the F1-score is in the region of 0.001 for C and 1.5 for the high-risk class weight. Our selected values C = 1 and high-risk class weight equal to 1 give the second best F1-score, which is a local maximum with comparable performance, mostly insensitive to the selection of C from the range [0.2, 5.5].The addition of a fourth variable from V1_6 (June of the previous year) resulted in a model with higher sensitivity but lower precision and specificity (for V1_Pr_6). The highest F1-score was achieved for the quadruple (V2_ST_4, V2_SD_9, V1_ST_9, V1_Pr_6). Because of the increased complexity without significant improvement in the performance, we considered unnecessary a further expansion of our variable triplet. More
125 Shares129 Views
in EcologyMassey, J. H. & Wittkopp, P. J. The genetic basis of pigmentation differences within and between Drosophila species. Curr. Top. Dev. Biol. 119, 27–61 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Yassin, A. et al. The pdm3 locus is a hotspot for recurrent evolution of female-limited color dimorphism in Drosophila. Curr. Biol. 26, 2412–2422 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Williams, T. M. et al. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134, 610–623 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Bastide, H. et al. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster. PLoS Genet. 9, e1003534 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Pool, J. E. & Aquadro, C. F. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol. Ecol. 16, 2844–2851 (2007).Article
PubMed
PubMed Central
Google Scholar
Wittkopp, P. J. et al. Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila. Science 326, 540–544 (2009).Article
ADS
CAS
PubMed
Google Scholar
Jeong, S. et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132, 783–793 (2008).Article
CAS
PubMed
Google Scholar
Rajpurohit, S. et al. Pigmentation and fitness trade-offs through the lens of artificial selection. Biol. Lett. 12, (2016).Massey, J. H. et al. Pleiotropic effects of ebony and tan on pigmentation and cuticular hydrocarbon composition in Drosophila melanogaster. Front. Physiol. 10, 518 (2019).Article
PubMed
PubMed Central
Google Scholar
Parkash, R., Rajpurohit, S. & Ramniwas, S. Impact of darker, intermediate and lighter phenotypes of body melanization on desiccation resistance in Drosophila melanogaster. J. Insect Sci. 9, 1–10 (2009).Article
PubMed
Google Scholar
Dombeck, I. & Jaenike, J. Ecological genetics of abdominal pigmentation in Drosophila falleni: A pleiotropic link to nematode parasitism. Evolution 58, 587–596 (2004).PubMed
Google Scholar
Kutch, I. C., Sevgili, H., Wittman, T. & Fedorka, K. M. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. J. Exp. Biol. 217, 3664–3669 (2014).PubMed
Google Scholar
Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20, 65–71 (2009).Article
CAS
PubMed
Google Scholar
Bastide, H., Yassin, A., Johanning, E. J. & Pool, J. E. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evol. Biol. 14, 179 (2014).Article
PubMed
PubMed Central
Google Scholar
Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).Article
Google Scholar
Gibert, P., Moreteau, B. & David, J. R. Developmental constraints on an adaptive plasticity: Reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol. Dev. 2, 249–260 (2000).Article
CAS
PubMed
Google Scholar
Parkash, R., Rajpurohit, S. & Ramniwas, S. Changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster. J. Insect Physiol. 54, 1050–1056 (2008).Article
CAS
PubMed
Google Scholar
Telonis-Scott, M., Hoffmann, A. A. & Sgro, C. M. The molecular genetics of clinal variation: A case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Mol. Ecol. 20, 2100–2110 (2011).Article
PubMed
Google Scholar
Munjal, A. K. et al. Thoracic trident pigmentation in Drosophila melanogaster: latitudinal and altitudinal clines in Indian populations. Genet. Sel. Evol. 29, 601–610 (1997).Article
PubMed Central
Google Scholar
David, J. R., Capy, P., Payant, V. & Tsakas, S. Thoracic trident pigmentation in Drosophila melanogaster: Differentiation of geographical populations. Genet. Sel. Evol. 17, 211–224 (1985).Article
CAS
Google Scholar
Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).Cordero, R. J. B. et al. Impact of yeast pigmentation on heat capture and latitudinal distribution. Curr. Biol. 28, 2657-2664.e3 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Sibilia, C. D. et al. Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae). J. Insect Sci. 18, (2018).Jong, P., Gussekloo, S. & Brakefield, P. Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J. Exp. Biol. 199, 2655–2666 (1996).Article
CAS
PubMed
Google Scholar
Zverev, V., Kozlov, M. V., Forsman, A. & Zvereva, E. L. Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: Roles of thermal melanism and developmental plasticity. J. Therm. Biol 74, 100–109 (2018).Article
PubMed
Google Scholar
Watt, W. B. Adaptive significance of pigment polymorphisms in Colias butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme. Proc. Natl. Acad. Sci. USA 63, 767–74 (1969).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kuyucu, A. C., Sahin, M. K. & Caglar, S. S. The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. J. Therm. Biol. 71, 212–220 (2018).Article
PubMed
Google Scholar
Köhler, G. & Schielzeth, H. Green-brown polymorphism in alpine grasshoppers affects body temperature. Ecol. Evol. 10, 441–450 (2020).Article
PubMed
Google Scholar
Willmer, P. G. & Unwin, D. M. Field analyses of insect heat budgets: Reflectance, size and heating rates. Oecologia 50, 250–255 (1981).Article
ADS
CAS
PubMed
Google Scholar
Pecsenye, K., Bokor, K., Lefkovitch, L. P., Giles, B. E. & Saura, A. Enzymatic responses of Drosophila melanogaster to long- and short-term exposures to ethanol. Mol. Gen. Genet. 255, 258–268 (1997).Article
CAS
PubMed
Google Scholar
De Castro, S., Peronnet, F., Gilles, J.-F., Mouchel-Vielh, E. & Gibert, J.-M. bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet. 14, e1007573 (2018).Article
PubMed
PubMed Central
Google Scholar
Cooley, A. M., Shefner, L., McLaughlin, W. N., Stewart, E. E. & Wittkopp, P. J. The ontogeny of color: Developmental origins of divergent pigmentation in Drosophila americana and D. novamexicana. Evol. Dev. 14, 317–25 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
John, A. V., Sramkoski, L. L., Walker, E. A., Cooley, A. M. & Wittkopp, P. J. Sensitivity of allelic divergence to genomic position: Lessons from the Drosophila tan Gene. G3 (Bethesda) (2016) doi:https://doi.org/10.1534/g3.116.032029.Liu, Y. et al. Changes throughout a genetic network mask the contribution of hox gene evolution. Curr. Biol. 29, 2157-2166.e6 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
David, J. R. et al. Evolution of assortative mating following selective introgression of pigmentation genes between two Drosophila species. Ecol. Evol. 12, e8821 (2022).Article
PubMed
PubMed Central
Google Scholar
Wittkopp, P. J., True, J. R. & Carroll, S. B. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129, 1849–1858 (2002).Article
CAS
PubMed
Google Scholar
Davis, J. S. & Moyle, L. C. Desiccation resistance and pigmentation variation reflects bioclimatic differences in the Drosophila americana species complex. BMC Evol. Biol. 19, 204 (2019).Article
PubMed
PubMed Central
Google Scholar
Nagy, O. et al. Correlated evolution of two copulatory organs via a single cis-regulatory nucleotide change. Curr. Biol. 28, 3450-3457.e13 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Lachaise, D. et al. Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé. Proc. Biol. Sci. 267, 1487–1495 (2000).Article
CAS
PubMed
PubMed Central
Google Scholar
Haldane, J. B. S. Sex ratio and unisexual sterility in hybrid animals. J. Gen. 12, 101–109 (1922).Article
Google Scholar
Turissini, D. A. & Matute, D. R. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade. PLoS Genet. 13, e1006971 (2017).Article
PubMed
PubMed Central
Google Scholar
Hoffmann, A. A. Physiological climatic limits in Drosophila: Patterns and implications. J. Exp. Biol. 213, 870–880 (2010).Article
CAS
PubMed
Google Scholar
Sunaga, S., Akiyama, N., Miyagi, R. & Takahashi, A. Factors underlying natural variation in body pigmentation of Drosophila melanogaster. Genes Genet. Syst. 91, 127–137 (2016).Article
CAS
PubMed
Google Scholar
Rajpurohit, S. & Schmidt, P. S. Latitudinal pigmentation variation contradicts ultraviolet radiation exposure: A case study in Tropical Indian Drosophila melanogaster. Front. Physiol. 10, 84 (2019).Article
PubMed
PubMed Central
Google Scholar
Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).Article
PubMed
PubMed Central
Google Scholar
Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).Fabian, D. K. et al. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol. Ecol. 21, 4748–4769 (2012).Article
PubMed
PubMed Central
Google Scholar
Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 3874 (2014).Article
ADS
CAS
PubMed
Google Scholar
Brakefield, P. M. & de Jong, P. W. A steep cline in ladybird melanism has decayed over 25 years: A genetic response to climate change?. Heredity (Edinb) 107, 574–578 (2011).Article
CAS
PubMed
Google Scholar
Zvereva, E. L., Hunter, M. D., Zverev, V., Kruglova, O. Y. & Kozlov, M. V. Climate warming leads to decline in frequencies of melanic individuals in subarctic leaf beetle populations. Sci. Total Environ. 673, 237–244 (2019).Article
ADS
CAS
PubMed
Google Scholar
Balanyá, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. & Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775 (2006).Article
ADS
PubMed
Google Scholar More
200 Shares99 Views
in EcologyHui, C. & Richardson, D. M. Invasion Dynamics (Oxford University Press, 2017).Book
MATH
Google Scholar
Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).Book
Google Scholar
Shigesada, N., Kawasaki, K. & Takeda, Y. Modeling stratified diffusion in biological invasions. Am. Nat. 146, 229–251 (1995).Article
Google Scholar
Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article
ADS
Google Scholar
Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Q. Rev. Biol. 95, 36 (2020).Article
Google Scholar
Measey, G. J. et al. A global assessment of alien amphibian impacts in a formal framework. Divers. Distrib. 22, 970–981 (2016).Article
Google Scholar
Antonelli, A., Smith, R. J., Perrigo, A. L. & Crottini, A. Madagascar’s extraordinary biodiversity: Evolution, distribution, and use. Science 378, eabf0869 (2022).
Article
CAS
PubMed
Google Scholar
Marshall, B. M. et al. Widespread vulnerability of Malagasy predators to the toxins of an introduced toad. Curr. Biol. 28, R654–R655 (2018).Article
CAS
PubMed
Google Scholar
Licata, F. et al. Toad invasion of Malagasy forests triggers severe mortality of a predatory snake. Biol. Inv. 24, 1189–1198 (2022).Article
Google Scholar
Licata, F. et al. Abundance, distribution and spread of the invasive Asian toad Duttaphrynus melanostictus in eastern Madagascar. Biol. Inv. 21, 1615–1626 (2019).Article
Google Scholar
McClelland, P., Reardon, J. T., Kraus, F., Raxworthy, C. J. & Randrianantoandro, C. Asian toad eradication feasibility report for Madagascar (Te Anau, 2015).Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations?. Ecography 28, 110–128 (2005).Article
Google Scholar
Shine, R. et al. Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Sci. Rep. 11, 23574 (2021).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).Article
Google Scholar
Van Petegem, K. H. P. et al. Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evol. Ecol. 29, 299–310 (2015).Article
Google Scholar
Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).Article
ADS
CAS
PubMed
Google Scholar
Licata, F., Andreone, F., Crottini, A., Harison, R. F. & Ficetola, G. F. Does spatial sorting occur in the invasive Asian toad in Madagascar? Insights into the invasion unveiled by morphological analyses. JZSER 2021, 1–9 (2021).
Google Scholar
Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506 (2002).Article
Google Scholar
Brown, G. P., Kelehear, C. & Shine, R. Effects of seasonal aridity on the ecology and behaviour of invasive cane toads in the Australian wet–dry tropics. Funct. Ecol. 25, 1339–1347 (2011).Article
Google Scholar
Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).Book
Google Scholar
Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010). https://doi.org/10.7208/9780226893334.Book
Google Scholar
Shaw, A. K., Kokko, H. & Neubert, M. G. Sex difference and Allee effects shape the dynamics of sex-structured invasions. J. Anim. Ecol. 87, 36–46 (2018).Article
PubMed
Google Scholar
Schwarzkopf, L. & Alford, R. A. Desiccation and shelter-site use in a tropical amphibian: Comparing toads with physical models. Funct. Ecol. 10, 193–200 (1996).Article
Google Scholar
Wogan, G. O. U., Stuart, B. L., Iskandar, D. T. & McGuire, J. A. Deep genetic structure and ecological divergence in a widespread human commensal toad. Biol. Lett. 12, 20150807 (2016).Article
PubMed
PubMed Central
Google Scholar
Licata, F. Exploring the invasion dynamics and impacts of the invasive Asian common toad in Madagascar (University of Porto, 2022).
Google Scholar
Reilly, S. B. et al. Toxic toad invasion of Wallacea: A biodiversity hotspot characterized by extraordinary endemism. Glob. Change Biol. 23, 5029–5031 (2017).Article
ADS
Google Scholar
Jørgensen, C. B., Shakuntala, K. & Vijayakumar, S. Body size, reproduction and growth in a tropical toad, Bufo melanostictus, with a comparison of ovarian cycles in tropical and temperate zone anurans. Oikos 46, 379 (1986).Article
Google Scholar
Vences, M. et al. Tracing a toad invasion: Lack of mitochondrial DNA variation, haplotype origins, and potential distribution of introduced Duttaphrynus melanostictus in Madagascar. Amphib. Reptilia 38, 197–207 (2017).Article
Google Scholar
Ngo, B. V. & Ngo, C. D. Reproductive activity and advertisement calls of the Asian common toad Duttaphrynus melanostictus (Amphibia, Anura, Bufonidae) from Bach Ma National Park, Vietnam. Zool. Stud. 52, 12 (2013).Article
Google Scholar
Licata, F. et al. The Asian toad (Duttaphrynus melanostictus) in Madagascar: A report of an ongoing invasion. In Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions (eds Angelici, F. M. & Rossi, L.) 617–638 (Springer, 2020). https://doi.org/10.1007/978-3-030-42335-3_21.Chapter
Google Scholar
Moore, M., Solofo Niaina Fidy, J. F. & Edmonds, D. The new toad in town: Distribution of the Asian toad, Duttaphrynus melanostictus, in the Toamasina area of eastern Madagascar. Trop. Conserv. Sci. 8, 440–455 (2015).Article
Google Scholar
Licata, F. et al. Using public surveys to rapidly profile biological invasions in hard-to-monitor areas. Anim. Conserv. https://doi.org/10.1111/acv.12835 (2023).Article
Google Scholar
Zhang, M. et al. Automatic high-resolution land cover production in madagascar using sentinel-2 time series, tile-based image classification and google earth engine. Remote Sensing 12, 3663 (2020).Article
ADS
Google Scholar
Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 4, 439–473 (2007).
Google Scholar
Merkel, A. Toamasina Climate (Madagascar). Accessed 20 July 2022. https://en.climate-data.org/africa/madagascar/toamasina/toamasina-4029/
(2021).Gordon, A. Secondary sexual characters of Bufo melanostictus schneider. Copeia 1933, 204–207 (1933).Article
Google Scholar
Alford, R. & Rowley, J. Techniques for tracking amphibians: The effects of tag attachment, and harmonic direction finding versus radio telemetry. Amphib. Reptilia 28, 367–376 (2007).Article
Google Scholar
Lassueur, T., Joost, S. & Randin, C. F. Very high resolution digital elevation models: Do they improve models of plant species distribution?. Ecol. Modell. 198, 139–153 (2006).Article
Google Scholar
Abrams, M., Crippen, R. & Fujisada, H. ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sensing 12, 1156 (2020).Article
ADS
Google Scholar
Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94 (2006).Article
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article
MATH
Google Scholar
Hijmans, R. J. et al. raster: Geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2021).Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).Article
Google Scholar
Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).Article
Google Scholar
Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the australian semi-desert. PLoS ONE 6, e25979 (2011).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Richards, S. J., Sinsch, U. & Alford, R. A. Radio Tracking. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds Heyer, R. et al.) 155–158 (Smithsonian Institution, 1994).
Google Scholar
Altobelli, J. T., Dickinson, K. J. M., Godfrey, S. S. & Bishop, P. J. Methods in amphibian biotelemetry: Two decades in review. Austral. Ecol. 47, 1382–1395 (2022).Article
Google Scholar
Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002). https://doi.org/10.1007/978-1-4757-2917-7_3.Book
MATH
Google Scholar
Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. (2021).Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. (2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article
Google Scholar
Barton, K. MuMIn: Multi-Model Inference. (2022).Hodges, C. W., Marshall, B. M., Hill, J. G. & Strine, C. T. Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape. bioRxiv https://doi.org/10.1101/2021.09.08.459477 (2021).Article
Google Scholar
Muller, B. J., Cade, B. S. & Schwarzkopf, L. Effects of environmental variables on invasive amphibian activity: Using model selection on quantiles for counts. Ecosphere 9, e02067 (2018).Article
Google Scholar
Linsenmair, K. E. & Spieler, M. Migration patterns and diurnal use of shelter in a ranid frog of a West African savannah: A telemetric study. Amphib. Reptilia 19, 43–64 (1998).Article
Google Scholar
Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).Article
PubMed
Google Scholar
Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane yoads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).Article
PubMed
PubMed Central
Google Scholar
Huang, W.-S., Lin, J.-Y. & Yu, J.Y.-L. Male reproductive cycle of the toad Bufo melanostictus in Taiwan. Zool. Sci. 14, 497–503 (1997).Article
Google Scholar
Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: the evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B 281, 20141385 (2014).Article
PubMed
PubMed Central
Google Scholar
Perkins, T. A., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).Article
PubMed
Google Scholar
Ochocki, B. M. & Miller, T. E. X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 14315 (2017).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Phillips, B. L., Brown, G. P., Travis, J. M. J. & Shine, R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48 (2008).Article
PubMed
Google Scholar
Kot, M., Lewis, M. A. & van den Driessche, P. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996).Article
Google Scholar
Deguise, I. & Richardson, J. S. Movement behaviour of adult western toads in a fragmented, forest landscape. Can. J. Zool. 87, 1184–1194 (2009).Article
Google Scholar
Mitrovich, M. J., Gallegos, E. A., Lyren, L. M., Lovich, R. E. & Fisher, R. N. Habitat use and movement of the endangered Arroyo toad (Anaxyrus californicus) in coastal southern California. J. Herpetol. 45, 319–328 (2011).Article
Google Scholar
Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).Article
PubMed
Google Scholar
Enriquez-Urzelai, U., Montori, A., Llorente, G. A. & Kaliontzopoulou, A. Locomotor mode and the evolution of the hindlimb in western mediterranean anurans. Evol. Biol. 42, 199–209 (2015).Article
Google Scholar
Junior, B. T. & Gomes, F. R. Relation between water balance and climatic variables associated with the geographical distribution of anurans. PLoS ONE 10, e0140761 (2015).Article
Google Scholar
Klockmann, M., Günter, F. & Fischer, K. Heat resistance throughout ontogeny: Body size constrains thermal tolerance. Glob. Change Biol. 23, 686–696 (2017).Article
ADS
Google Scholar
Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking behavior creates the impression of a Lévy flight. PNAS 108, 8704–8707 (2011).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. PNAS 110, 13452–13456 (2013).Article
ADS
PubMed
PubMed Central
Google Scholar
Tingley, R. et al. New weapons in the toad toolkit: A review of methods to control and mitigate the biodiversity impacts of invasive Cane toads (Rhinella marina). Q. Rev. Biol. 92, 123–149 (2017).Article
PubMed
Google Scholar
Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).Article
Google Scholar
DeVore, J. L., Crossland, M. R., Shine, R. & Ducatez, S. The evolution of targeted cannibalism and cannibal-induced defenses in invasive populations of cane toads. Proc. Natl. Acad. Sci. 118, e2100765118 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Muller, B. J. & Schwarzkopf, L. Relative effectiveness of trapping and hand-capture for controlling invasive cane toads (Rhinella marina). Int. J. Pest Manag. 64, 185–192 (2018).Article
CAS
Google Scholar More
138 Shares169 Views
in EcologyPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Zhu, L. et al. Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation. Nat. Geosci. https://doi.org/10.1038/s41561-023-01137-y (2023). More
188 Shares159 Views
in EcologyAll procedures involving animals were conducted in accordance with the guidelines and regulations from Institutional Animal Care and Use Committee (IACUC) of the University of Florida (protocol #201509019). Tis manuscript is reported in accordance with ARRIVE guidelines.Site descriptionThis study was carried out at the North Florida Research and Education Center, in Marianna, FL (30°46′35″N 85°14′17″W, 51 m.a.s.l). The trial was performed in two experimental years (2019 and 2020) in a greenhouse.The soil used was collected from a pasture of rhizoma peanut (Arachis glabrata Benth.) and Argentine bahiagrass (Paspalum notatum Flügge) as the main forages. Without plant and root material, only soil was placed into buckets, as described below in the bucket assemblage section. Soil was classified as Orangeburg loamy sand (fine-loamy-kaolinitic, thermic Typic Kandiudults), with a pHwater of 6.7, Mehlich-1-extratable P, K, Mg and Ca concentrations of 41, 59, 63, 368 mg kg−1, respectively. Average of minimum and maximum daily temperature and relative humidity in the greenhouse for September and November (September for beetle trial due seasonal appearance of beetles, and October and November to the Pear Millet trial) in 2019 and 2020 were 11 and 33 °C, 81%; 10 and 35 °C, 77%, respectively.Biological material determinationTo select the species of beetles, a previous dung beetle sampling was performed in the grazing experiment in the same area (grass and legume forage mixture) to determine the number of dung beetle species according to the functional groups as described by Conover et al.44. Beetles were pre-sampled from March 2017 to June 2018, where Tunnelers group were dominant and represented by Onthophagus taurus (Schreber), Digitonthophagus gazella (Fabricius), Phanaeus vindex (MacLeay), Onthophagus oklahomensis (Brown), and Euniticellus intermedius (Reiche). Other species were present but not abundant, including Aphodius psudolividus (Linnaeus), Aphodius carolinus (Linnaeus), and Canthon pilularius (Linnaeus) identified as Dweller and Roller groups, respectively. The pre-sampling indicated three species from the Tunneler group were more abundant, and thereby, were chosen to compose the experimental treatments (Fig. 4).Figure 4Most abundant dung beetle species in Marianna, FL used in the current study. Credits: Carlos C.V. García.Full size imageBeetles collection and experimental treatmentsThree species of common communal dung beetles were used: O. taurus (1), D. gazella (2), and P. vindex (3). Treatments included two treatments containing only soil and soil + dung without beetles were considered as Control 1 (T1) and Control 2 (T2), respectively. Isolated species T3 = 1, T4 = 2, T5 = 3 and their combinations T6 = 1 + 2 and T7 = 1 + 2 + 3. Dung beetles were trapped in the pasture with grazing animals using the standard cattle-dung-baited pitfall traps, as described by Bertone et al.41. To avoid losing samples due to cattle trampling, 18 traps were randomized in nine paddocks (two traps per paddock) and installed protected by metal cages, and after a 24-h period, beetles were collected, and the traps removed. Table 1 shows the number of dung beetles, their total mass (used to standardize treatments) per treatment, and the average mass per species. To keep uniformity across treatments we kept beetle biomass constant across species at roughly 1.7 to 1.8 g per assemblage (Table 1). Twenty-four hours after retrieving the beetles from the field traps, they were separated using an insect rearing cage, classified, and thereafter stored in small glass bottles provided with a stopper and linked to a mesh to keep the ventilation and maintaining the beetles alive.Table 1 Total number and biomass of dung beetles per treatment.Full size tableBuckets assemblageThe soil used in the buckets was collected from the grazing trial in two experimental years (August 2019 and August 2020) across nine paddocks (0.9 ha each). The 21 plastic buckets had a 23-cm diameter and 30-cm (0.034 m2) and each received 10 kg of soil (Fig. 5). At the bottom of the recipient, seven holes were made for water drainage using a metallic mesh with 1-mm diameter above the surface of the holes to prevent dung beetles from escaping. Water was added every four days to maintain the natural soil conditions at 60% of the soil (i.e., bucket) field capacity (measured with the soil weight and water holding capacity of the soil). Because soil from the three paddocks had a slightly different texture (sandy clay and sandy clay loam), we used them as the blocking factor.Figure 5Bucket plastic bucket details for dung beetle trial.Full size imageThe fresh dung amount used in the trial was determined based on the average area covered by dung and dung weight (0.05 to 0.09 m2 and 1.5 to 2.7 kg) from cattle in grazing systems, as suggested by Carpinelli et al.45. Fresh dung was collected from Angus steers grazing warm-season grass (bahiagrass) pastures and stored in fridge for 24 h, prior to start the experiment. A total of 16.2 kg of fresh dung was collected, in which 0.9 kg were used in each bucket. After the dung application, dung beetles were added to the bucket. To prevent dung beetles from escaping, a mobile plastic mesh with 0.5 mm diameter was placed covering the buckets before and after each evaluation. The experiment lasted for 24 days in each experimental year (2019 and 2020), with average temperature 28 °C and relative humidity of 79%, acquired information from the Florida Automated Weather Network (FAWN).Chamber measurementsThe gas fluxes from treatments were evaluated using the static chamber technique46. The chambers were circular, with a radius of 10.5 cm (0.034 m2). Chamber bases and lids were made of polyvinyl chloride (PVC), and the lid were lined with an acrylic sheet to avoid any reactions of gases of interest with chamber material (Fig. 6). The chamber lids were covered with reflective tape to provide insulation, and equipped with a rubber septum for sampling47. The lid was fitted with a 6-mm diameter, 10-cm length copper venting tube to ensure adequate air pressure inside the chamber during measurements, considering an average wind speed of 1.7 m s−148,49. During measurements, chamber lids and bases were kept sealed by fitting bicycle tire inner tubes tightly over the area separating the lid and the base. Bases of chambers were installed on top of the buckets to an 8-cm depth, with 5 cm extending above ground level. Bases were removed in the last evaluation day (24th) of each experimental year.Figure 6Static chamber details and instruments for GHG collection in the dung beetle trial.Full size imageGas fluxes measurementsThe gas fluxes were measured at 1000 h following sampling recommendations by Parkin & Venterea50, on seven occasions from August 28th to September 22nd in both years (2019 and 2020), being days 0, 1, 2, 3, 6, 12, and 24 after dung application. For each chamber, gas samples were taken using a 60-mL syringe at 15-min intervals (t0, t15, and t30). The gas was immediately flushed into pre-evacuated 30-mL glass vials equipped with a butyl rubber stopper sealed with an aluminium septum (this procedure was made twice per vial and per collection time). Time zero (t0) represented the gas collected out of the buckets (before closing the chamber). Immediately thereafter, the bucket lid was tightly closed by fitting the lid to the base with the bicycle inner tube, followed by the next sample deployment times.Gas sample analyses were conducted using a gas chromatograph (Trace 1310 Gas Chromatograph, Thermo Scientific, Waltham, MA). For N2O, an electron capture detector (350 °C) and a capillary column (J&W GC packed column in stainless steel tubing, length 6.56 ft (2 M), 1/8 in. OD, 2 mm ID, Hayesep D packing, mesh size 80/100, pre-conditioned, Agilent Technologies) were used. Temperature of the injector and columns were 80 and 200 °C, respectively. Daily flux of N2O-N (g ha−1 day−1) was calculated as described in Eq. (1):$${text{F}}, = ,{text{A}}*{text{dC}}/{text{dt}}$$
(1)
where F is flux of N2O (g ha−1 day−1), A is the area of the chamber, and dC/dt is the change of concentration in time calculated using a linear method of integration by Venterea et al.49.Ammonia volatilization measurementAmmonia volatilization was measured using the open chamber technique, as described by Araújo et al.51. The ammonia chamber was made of a 2-L volume polyethylene terephthalate (PET) bottle. The bottom of the bottle was removed and used as a cap above the top opening to keep the environment controlled, free of insects and other sources of contamination. An iron wire was used to support the plastic jar. A strip of polyfoam (250 mm in length, 25 mm wide, and 3 mm thick) was soaked in 20 ml of acid solution (H2SO4 1 mol dm−3 + glycerine 2% v/v) and fastened to the top, with the bottom end of the foam remaining inside the plastic jar. Inside each chamber there was a 250-mm long wire designed with a hook to support it from the top of the bottle, and wire basket at the bottom end to support a plastic jar (25 mL) that contained the acid solution to keep the foam strip moist during sampling periods (Fig. 7). The ammonia chambers were placed installed in the bucket located in the middle of each experimental block after the last gas sampling of the day and removed before the start of the next gas sampling.Figure 7Mobile ammonia chamber details for ammonia measurement in dung beetle trial. Adapted from Araújo et al.51.Full size imageNutrient cyclingPhotographs of the soil and dung portion of each bucket were taken twenty-four hours after the last day of gas flux measurement sampling to determine the dung removal from single beetle species and their combination. In the section on statistical analysis, the programming and statistical procedures are described. After this procedure, seeds of pearl millet were planted in each bucket. After 5 days of seed germination plants were thinned, maintaining four plants per bucket. Additionally, plants were clipped twice in a five-week interval, with the first cut occurring on October 23rd and the second cut occurring on November 24th, in both experimental years. Before each harvest, plant height was measured twice in the last week. In the harvest day all plants were clipped 10 cm above the ground level. Samples were dried at 55 °C in a forced-air oven until constant weight and ball-milled using a Mixer Mill MM 400 (Retsch, Newton, PA, USA) for 9 min at 25 Hz, and analyzed for total N concentration using a C, H, N, and S analyzer by the Dumas dry combustion method (Vario Micro Cube; Elementar, Hanau, Germany).Statistical analysisTreatments were distributed in a randomized complete block design (RCBD), with three replications. Data were analyzed using the Mixed Procedure from SAS (ver. 9.4., SAS Inst., Cary, NC) and LSMEANS compared using PDIFF adjusted by the t-test (P More
150 Shares139 Views
in EcologyPan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article
Google Scholar
Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).Article
Google Scholar
Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).Article
Google Scholar
Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).Article
Google Scholar
Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).Article
Google Scholar
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).Article
Google Scholar
Longo, M. et al. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob. Biogeochem. Cycles 30, 1639–1660 (2016).Article
Google Scholar
Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).Article
Google Scholar
Smith, I. A., Hutyra, L. R., Reinmann, A. B., Marrs, J. K. & Thompson, J. R. Piecing together the fragments: elucidating edge effects on forest carbon dynamics. Front. Ecol. Environ. 16, 213–221 (2018).Article
Google Scholar
Franklin, C. M. A., Harper, K. A. & Clarke, M. J. Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Can. J. For. Res. 51, 274–282 (2020).Article
Google Scholar
Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).Article
Google Scholar
Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article
Google Scholar
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).Article
Google Scholar
Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article
Google Scholar
Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).Article
Google Scholar
Schoene, D., Killmann, W., Lüpke, H. V. & LoycheWilkie, M. Forests and Climate Change Working Paper 5: Definitional Issues Related to Reducing Emissions from Deforestation in Developing Countries (FAO, 2007).Goetz, S. J. et al. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 10, 123001 (2015).Article
Google Scholar
Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).Article
Google Scholar
Cadenasso, M. L., Traynor, M. M. & Pickett, S. T. Functional location of forest edges: gradients of multiple physical factors. Can. J. For. Res. 27, 774–782 (1997).Article
Google Scholar
Schmidt, M., Jochheim, H., Kersebaum, K.-C., Lischeid, G. & Nendel, C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes – a review. Agric. For. Meteorol. 232, 659–671 (2017).Article
Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article
Google Scholar
Silva Junior, C. H. L. et al. Amazonian forest degradation must be incorporated into the COP26 agenda. Nat. Geosci. 14, 634–635 (2021).Article
Google Scholar
Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).Article
Google Scholar
Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).Article
Google Scholar
Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950 (2021).Article
Google Scholar
Chuvieco, E. et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 10, 2015–2031 (2018).Article
Google Scholar
Zhao, Z. et al. Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. https://doi.org/10.1038/s41561-021-00763-8 (2021).Cook, M., Schott, J. R., Mandel, J. & Raqueno, N. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive. Remote Sens. https://doi.org/10.3390/rs61111244 (2014).Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).Article
Google Scholar
Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).Article
Google Scholar
Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).Article
Google Scholar
Silva Junior, C. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).Article
Google Scholar
Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).Article
Google Scholar
Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).Article
Google Scholar
Zheng, C., Jia, L. & Hu, G. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite Earth observations. J. Hydrol. 613, 128444 (2022).Article
Google Scholar
Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).Article
Google Scholar
Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).Article
Google Scholar
de Paula, M. D., Costa, C. P. A. & Tabarelli, M. Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop. Conserv. Sci. 4, 349–358 (2011).Article
Google Scholar
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).Article
Google Scholar
Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26, 6844–6858 (2013).Article
Google Scholar
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article
Google Scholar
Kozlowski, T. T. Responses of woody plants to flooding and salinity. Tree Physiol. 17, 490–490 (1997).Article
Google Scholar
Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).Article
Google Scholar
Sze, J. S., Carrasco, L. R., Childs, D. & Edwards, D. P. Reduced deforestation and degradation in Indigenous lands pan-tropically. Nat. Sustain. 5, 123–130 (2022).Article
Google Scholar
Masson-Delmotte, V. et al. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds) (Cambridge Univ. Press, 2021).Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-Ground Biomass for the Years 2010, 2017 and 2018, v3 (NERC EDS Centre for Environmental Data Analysis, 2021); https://doi.org/10.5285/5f331c418e9f4935b8eb1b836f8a91b8Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).Article
Google Scholar
Alkama, R. et al. Vegetation-based climate mitigation in a warmer and greener world. Nat. Commun. 13, 606 (2022).Article
Google Scholar
Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).Article
Google Scholar
Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).Article
Google Scholar
Li, W. et al. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences 14, 5053–5067 (2017).Article
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article
Google Scholar More
This portal is not a newspaper as it is updated without periodicity. It cannot be considered an editorial product pursuant to law n. 62 of 7.03.2001. The author of the portal is not responsible for the content of comments to posts, the content of the linked sites. Some texts or images included in this portal are taken from the internet and, therefore, considered to be in the public domain; if their publication is violated, the copyright will be promptly communicated via e-mail. They will be immediately removed.