More stories

  • in

    Extinction drives a discontinuous temporal pattern of species–area relationships in a microbial microcosm system

    Preparation of the pao cai soupFirst, 35 kg of white radish (Raphanus sativus), 35 kg of cabbage (Brassica oleracea), 2 kg of chili pepper (Capsicum frutescens), 1 kg of ginger (Zingiber officinale), 1 kg of peppercorns (Zanthoxylum bungeanum), 2.5 kg of rock sugar, and 210 kg of cold boiled water (containing 6% salt) were divided into six ceramic jars. After 7 days of natural fermentation at room temperature, the pao cai was filtered out with sterile gauze to obtain 200 kg of pao cai soup. To ensure an even distribution of microorganisms in the soup, the soup was mixed well and then left to rest for 12 h, the supernatant was taken, and the soup was left to rest for 12 h again.The plants used in this study were cultivated vegetables which purchased from the vegetable market at the study site. All local, national or international guidelines and legislation were adhered to in the production of this study.Establishment of the microcosm systemSeventy-eight for each size of 10 ml, 20 ml, 50 ml, 100 ml, 250 ml, 500 ml, and 1000 ml sterile glass culture flasks were filled with pao cai soup, the bottle mouth was sealed with sterile sealing film, and the bottle was capped without leaving any air (Fig. 1). Each flask became a microcosm and was cultured in a 25 °C incubator.Figure 1Schematic diagram of the establishment of the microcosmic system.Full size imageSample collectionBefore the microcosm system was established, a sample of well-mixed pao cai soup was taken as a reference to establish background biodiversity. The microbial community dynamics should change the fastest at the beginning of the microcosm system establishment and gradually become slower over time. Considering the workload and cost, this study collected samples daily for 1–10 day after the establishment of the microcosm and then collected every 2 days for 10–30 day and every 5 days for 30–60 day. Three different microcosms of the same volume were established. Monitoring was carried out for 60 days, and a total of 546 samples of 7 volumetric gradients were obtained at 26 time points. At the time of sampling, the pao cai soup in the microcosm was mixed, and 50 mL of sample (10 mL of sample was collected for microcosm systems with a volume of less than 50 mL) was collected. The sample was centrifuged at 8000 rpm for 10 min, the supernatant was collected for pH determination, and the pellet was stored in a − 80 °C freezer.Microbial analysesMicrobial DNA was extracted from pao cai samples using the E.Z.N.A.® Soil DNA Kit (Omega Biotek, Norcross, GA, U.S.) according to the manufacturer’s protocols. For bacteria, we targeted the V3-V4 region of the 16S ribosomal RNA (rRNA) gene, using the 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) primer pairs. For fungi, we targeted the ITS1-1F region of the nuclear ribosomal internal transcribed spacer region (ITS rDNA) gene, using ITS1-1F-F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS-1F-R (5′-GCTGCGTTCTTCATCGATGC-3′). PCRs were performed in triplicate in a 20 μL mixture containing 4 μL of 5 × FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu Polymerase and 10 ng of template DNA. The PCR program for the 16S rRNA gene was as follows: 3 min of denaturation at 95 °C; 27 cycles of 30 s at 95 °C, 30 s of annealing at 55 °C, and 45 s of elongation at 72 °C; and a final extension at 72 °C for 10 min. For the ITS1-1F region, the PCR program was as follows: samples were initially denatured at 98 °C for 1 min, followed by 30 cycles of denaturation at 98 °C for 10 s, primer annealing at 50 °C for 30 s, and extension at 72 °C for 30 s. A final extension step of 5 min at 72 °C was added to ensure complete amplification of the target region. The resulting PCR products were extracted from a 2% agarose gel, further purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and quantified using QuantiFluor™-ST (Promega, Madison, WI, USA).Purified amplicons were pooled in equimolar amounts and paired-end sequenced (2 × 300) on an Illumina NovaSeq platform (Illumina, San Diego, CA, USA) according to standard protocols. The analysis was conducted by following the “Atacama soil microbiome tutorial” of QIIME2 docs along with customized program scripts (https://docs.qiime2.org/2019.1/). Briefly, raw data FASTQ files were imported in the QIIME2 system using the qiime tools import program. Demultiplexed sequences from each sample were quality filtered, trimmed, denoised, and merged, and then the chimeric sequences were identified and removed using the QIIME2 DADA2 plugin to obtain the feature table of amplicon sequence variants (ASVs)24. Compared with traditional OTU that clusters at 97% similarity, ASV has higher accuracy, equivalent to 99% similarity clustering. The QIIME2 feature-classifier plugin was then used to align ASV sequences to the pretrained GREENGENES 13_8 99% database (trimmed to the V3-V4 region bound by the 338F/806R primer pair for bacteria) and UNITE database (for fungi) to generate the taxonomy table25. Any contaminating mitochondrial and chloroplast sequences were filtered using the QIIME2 feature-table plugin. Based on the sequence number of the lowest sample, perform the resampling to make the sequence number equal for each sample. Due to the random nature of sequencing, ASVs specific to each sample in this study were present. To reduce the uncertainty introduced by the sequencing process, we filtered out rare ASVs with less than 0.001% of the total sequence volume.Data analysisIn this study, the data of fungi and bacteria were integrated and analyzed, and all microbial diversity appearing in the text represent the sum of all fungi and bacteria. Species richness is equal to the number of taxa, which is equal to the total number of all bacterial and fungal ASVs. The vegan package in R 4.2.1 was used to calculate the species richness of each sample based on the ASV feature table26. Using flask volume instead of area, SAR fitting was performed using a semi-logarithmic model, and its significance was tested. The semi-logarithmic model is the function S = c + b*logA, where S is species richness, A is area (in this case, volume is used instead), and b and c are fit parameters27.The microcosmic system in this study is hermetically sealed, and all microorganisms originate from a single portion of well-mixed paocai soup (ie species pool). The speciation process in the 60-day experimental system should be negligible due to the short experimental period. The extinction rate of a microcosm system is equal to the number of ASVs lost in the microcosm system compared to the species pool divided by the total number of ASVs in the species pool. The extinction rate is the number of extinct ASVs in each system compared to the species pool. Pearson correlation analysis was performed with volume as the independent variable and extinction rate as the dependent variable to determine the correlation between volume and extinction rate at each time point. When microorganisms of a microcosmic system disappear entirely or cannot be detected, the microcosm is recorded as an annihilated microcosm. The annihilation rate at a time point is equal to the number of microcosms annihilated at that time, divided by the total number of microcosms. The difference between the extinction rate and annihilation rate defined in this paper is that the extinction rate is for ASVs within each sample, and the annihilation rate is for microcosmic system at each sampling time point. The two indicators jointly characterize the local extinction of microorganisms from different perspectives. Non-linear regression with a bell-shaped form was performed with time as an independent variable and pH and annihilation rate as dependent variables, and regression lines were plotted based on R 4.2.1.According to the taxonomy table, bacterial ASVs were divided into acid-producing and non-acid-producing categories, and their extinction rates were calculated separately. The agricola, ggplot2, vegan and ggpubr packages were used to draw alpha diversity box plots and perform the Wilcoxon rank sum test for differences between groups26,28,29,30. Non-metric multidimensional scaling (NMDS) analysis was performed with the vegan package based on Bray–Curtis dissimilarity. In addition, the potential Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologue (KO) functional profiles of microbial communities were predicted with PICRUSt31. Resistance-related genes were screened using the gene function predictions. The relationship between the relative abundance of resistance-related genes and the volume of the microcosm was analysed by Pearson correlation, and a forest map was plotted to present the results. More

  • in

    Applying an ecosystem services framework on nature and mental health to recreational blue space visits across 18 countries

    We investigated the complex relationships between the environmental characteristics of blue spaces and visit-related mental well-being in a multi-country study including 17 bluespace types and four facets of subjective well-being. Our aim was to operationalise, and consider the utility of, the Bratman et al.9 conceptual model that links ecosystem services (ESS) with mental health.Consistent with the proposed conceptual model, mental well-being outcomes relied on a complex interplay of individual, environmental, and visit characteristics.Summary of findingsOverall, bluespace visits were associated with better subjective mental well-being outcomes if the visits took place in nearby coastal areas or rural rivers, were perceived as safe and to have good water quality, and had a long duration. They could involve a range of activities such as playing with children, socialising, or walking. The degree to which the perceived presence of wildlife predicted visit satisfaction varied depending on the bluespace type, suggesting that the importance of ecosystem features such as biodiversity may vary by the setting.We can also identify the combination of environmental and visit characteristics associated with particularly high levels of well-being for a specific outcome. For example, an optimal visit in terms of happiness might be to sandy beaches where there are high levels of perceived safety and excellent water quality; with a visit lasting at least three hours; and possibly involving playing with children, socialising, sunbathing/paddling and/or walking with a dog; and has short travel times that do not involve public transport.RQ1—natural and environmental featuresResearch question 1a—Which bluespace type(s) were associated with the highest levels of recalled visit mental well-being?Four of the five bluespace types associated with the highest levels of visit satisfaction were coastal (sea cliffs, rocky shore, sandy beaches, rural river and seaside promenade), indicating that these environments may be particularly beneficial for well-being. Visits to these environments were also associated with the lowest levels of visit anxiety, with the exception of seaside promenade and sea cliffs, which were not significantly different to the grand mean. Seaside promenade was the only urban environment in the top five.In addition, only coastal sites were associated with significantly higher levels of visit happiness (compared to the grand mean), further highlighting the potential importance of these environments. Although not explored here, coastal scenes tend to be associated with particularly high aesthetic and scenic value25,26 which may also be positively related to subjective well-being.These findings are broadly consistent with other studies from the UK17,27, but are extended here to our international sample. White et al.28 also used data from the BlueHealth International Survey (BIS) and explored visit frequency to different environments and associations with general mental health and well-being outcomes, including the World Health Organisation five-item Well-being index referring to the two weeks prior to the survey. Consistent with the results here, they found that visit frequency to “coastal blue” environments was more strongly associated with psychological well-being in general than visit frequency to “inland blue” environments. Our study adds to these more general findings by showing that these associations may come as a direct result of the recalled well-being experienced on specific visits to these locations.Confidence in our results was strengthened as we included general mental well-being in our analysis to adjust for whether happier people tend to visit sandy beaches, for example. The results for visit anxiety were not always the inverse of the trends observed in the positive measures of well-being, supporting the need to look at multiple aspects of mental well-being when considering the effects of nature contact.Research question 1b—Which bluespace qualities were associated with the highest levels of recalled visit mental well-being?Of the range of qualities that we investigated as predictors, perceived safety and ‘excellent’ water quality (vs. ‘sufficient’) consistently exhibited the strongest relationships with subjective mental well-being. Perceived safety has been found to be important when visiting blue spaces in several qualitative studies29,30,31, as well as a quantitative study with older adults in Hong Kong14. Blue spaces have particular safety issues with respect to drowning32,33, but fear of crime29,30,33 or pedestrian safety34 may also be relevant.Water quality has also been found to be important in previous economic valuation studies of recreational use and enjoyment of lakes and estuaries in the USA and Australia35,36 as well as a contingent behaviour experiment carried out as part of the BlueHealth International Survey (in European countries only)37. We recognise that here we used a metric of perceived water quality, rather than measures based on biological or toxicological sampling. Nevertheless, perceptions have been reported to positively correlate with sampled water quality parameters38, although assessments can vary systematically such as by bluespace type39. Highly visible harmful algal blooms, for instance, have also been found to affect experiences of blue spaces40.Further, and again consistent with earlier work15,41,42, the presence of facilities and wildlife, and absence of litter, were generally associated with better subjective mental well-being. Both perceived presence of wildlife and facilities were also associated with higher levels of anxiety however, indicating complexities between environmental qualities and well-being. Some wildlife may be deemed unpleasant or an ecosystem disservice, for example. The presence of good facilities may indicate the presence of more people; and visitor density in natural environments can be related to preference43. These results highlight the importance of environmental quality and not just type, consistent with other frameworks12,37.Research question 2—How is exposure, as operationalised by visit duration, related to recalled visit mental well-being?Broadly consistent with research in the green and bluespace literature14,17,44, we found that mental well-being outcomes were generally higher with greater exposure as indicated by visit duration. For decreasing visit anxiety, this was only significant when visits were longer than an hour and a half. As we did not measure pre-visit anxiety levels, we are cautious about identifying this as a potential temporal threshold for reducing anxiety at this stage.Similarly, also using the BlueHealth International Survey, White et al.28 found that well-being outcomes were higher with greater visit exposure to green and blue spaces using a metric of visit frequency. However, in contrast to this and other research which looked at overall weekly aggregated time in nature (e.g.28,45), we have no evidence of diminishing marginal returns as the effect sizes associated with specific visit duration continued to increase with increasing duration.Research question 3—What experiences in blue spaces, in terms of activities (3a) and companions (3b), are associated with the most positive recalled visit mental well-being outcomes?Although walking was the most popular activity, the activity with the highest mental well-being ratings was playing with children, especially in certain locations such as beaches (Fig. 4). However, we also find that anxiety tended to be higher when children were present. We speculate that the purpose of the visit may be important. For example, many who go to the beach with children do so in order to play. However, if children are present on more adult-oriented activities such as hiking, this may increase adult anxiety during the visit. From a representative sample of English adults, White et al.17 found that recent nature visits with children were associated with the lowest levels of well-being. Therefore, visits with children may be associated with a more complex set of emotions, being both slightly more stressful, but also potentially more rewarding and ‘meaningful’46. Ecosystem features of beaches may be particularly supportive of high well-being activities. A qualitative study in the UK, for instance, highlighted the particular opportunities for adults and children to play together at the beach, including rock-pooling and making sandcastles as well as water-based activities47.Visits with other adults were associated with higher levels of both visit satisfaction and worthwhile-ness, and socialising as an activity was associated with better visit well-being for all outcomes compared to the grand mean. This is consistent with studies using the day reconstruction method, which link activities with experiential well-being, in the USA48 and Germany49 where socialising was associated with the highest, or second highest, levels of well-being for all the activities assessed. Further, social interactions have been recognised as an important benefit by many of those visiting freshwater blue spaces in a previous study18.Research question 4—Does the relationship between wildlife presence and recalled visit well-being vary by bluespace settings?The relationship between the presence of wildlife and visit satisfaction varied with bluespace type. The strongest positive association was found for fen, marsh and bog areas, which may also be related to the purpose of visit. For instance, those who visit places such as fens, marshes and bogs, may do so for the explicit purpose of observing wildlife (often birds) and the presence of wildlife would therefore be important for satisfaction with the visit.Perceptions towards wildlife have been found to vary by location in other studies. For example, in Sweden, greater prior experience with geese at beaches was associated with a negative attitude towards geese50. Further, the species present are likely to vary across different environments. In three urban areas in the UK, green spaces correlated with the abundance and species richness of birds considered to provide cultural services (songbirds and woodpeckers), while an abundance of birds considered to provide disservices (e.g. some gull species, feral pigeons) was independent of green spaces51. Preferences for some species over others may explain some of the negative or null relationships between the presence of wildlife at different blue spaces. These examples from the literature, alongside our own results, indicate the potential for benefits from the management of wildlife for psychological ecosystem services differentially across environments, although these should be considered alongside other conservation and ESS goals.MechanismsSeveral mechanisms potentially explain the beneficial effects of visiting blue spaces on mental health and well-being12, including the provision of opportunities for physical activity52,53; social interaction18; cognitive restoration and stress reduction17,54; emotion regulation55 and connecting with nature12. Consistent with these mechanisms, we found that respondents were using blue spaces for both physical activity and social interaction; and that playing with children and socialising were associated with particularly high levels of well-being.In addition to the positive association we find between some ESS and well-being, including presence of wildlife and water quality, additional bluespace ESS not considered here, may also affect mental health and well-being12. For example, the provision of a cooling effect56 and air pollution mitigation57.Strengths and limitationsA key strength is our operationalisation of the Bratman et al.9 conceptual model for mental health using data from a large, 18 country survey that included 17 different bluespace types, five quality metrics and four subjective mental well-being outcomes. The relatively high explanatory power of our models suggests all the variables we explored were important for subjective well-being.Despite the strengths, however, there were also several limitations. The survey was cross-sectional and causality cannot be inferred. For example, happier people may choose to visit a beach rather than another location, although we also controlled for general levels of subjective mental well-being in an attempt to control for this possibility (See Supplemental Materials). Further, although the majority of respondents (53%) recalled a visit within the last 7 days, some were recalling visits up to a month ago, with potential memory biases increasing in line with length of recall.Although our data were collected by an international market research company to be representative of age, gender and region within country, our online sample may not be fully representative across more characteristics and any country-level conclusions need to be treated with caution. We also acknowledge that there were no results from Africa, the Middle East or South America; and Hong Kong was the only representative from Asia. This suggests far more research is needed in other regions to better understand how bluespace ecosystems interact with subjective well-being globally.There may also be socioeconomic confounds that we did not include in our models which may account for some of the effects. Not everyone visits nature for recreation58, including about 4000 people here who did not visit a bluespace in the four weeks prior to responding to the survey. Some groups may therefore have been under-represented; and we should be careful in assuming that our findings generalise to all sub-population groups.Nevertheless, our visit sub-sample distributions were generally similar to that of the weighted percentages in the full sample, with the exception of age where those aged over 60 were under-represented (Table S2); therefore, we suspect these issues were not too influential for the overall results, although care needs to be extended to inferences with respect to older adults.A further limitation was that we only considered the qualities of places where people reported making recreational visits, with respondents presumably less likely to visit places where they feel really unsafe or lacking in facilities29. Further research may want to study responses to a broader range of bluespace settings, including those that are less visited, to determine the generalisability of the generally positive results found here. Such studies could use pre-existing tools to objectively assess the quality of blue spaces59.ImplicationsOur finding that coastal environments are particularly beneficial adds to the body of evidence linking coastal environments with health and well-being and suggests this is consistent across many countries. Previous research has found that greater proximity to blue spaces, especially coastal settings, predicts visit frequency14,60,61 as well as other health outcomes—e.g. reduced risk of mortality and better general health, well-being and physical activity53,62. Here, we found that shorter travel times also predict visit well-being, highlighting the importance of having equitable access to good quality natural environments near to people’s homes.We also identified that different types of coastal and inland blue spaces (e.g. seaside promande, rural rivers), with different qualities (e.g. wildlife present), involving particular types of activities in specific social configurations (e.g. playing with children), were especially good at promoting well-being. This moves beyond a simple location-based assessment of benefit to one that recognises the complex interplay between location, behavioural and social processes. Numerous commentators63 (including Bratman et al.9 on which we have based this paper) have argued that we need to go beyond the determinate effects of green and blue spaces and develop a far richer, more nuanced understanding. The approach we have taken here is intended as a step in this direction.In terms of policy applications, these results provide support for the potential health benefits of efforts to improve equitable access to high quality environments, such as the English Coast Path (https://englandcoastpath.co.uk/) and the creation of beaches in Barcelona with the Olympic project in 199264. Our results also hint at the importance of high-level legislation, such as the EU’s Bathing Waters Directive65 for mental well-being37. If conducted on a more fine-grained geographical level, results could have the potential to leverage public support for more localised conservation initiatives. Furthermore, such results could be used as a basis for integration into more systematic conservation planning66.Further researchAlthough we incorporate a range of variables in our analysis, and our pseudo-R2 values are relatively high for a social research context, considerable variation remains unexplained. Although other individual characteristics may be important, such as nature connectedness67 and memories68, further research could explore the specific ecosystem features and social contexts associated with the particular positive results from coastal spaces, which would be of interest to policy makers and environmental managers. We also speculated that purpose of visit may explain some of our findings. Further research could explore the interactions between motivations and location, experience, and well-being outcomes.The presence of wildlife was differentially important across bluespace types and further research could unpack this. Exploring similar possibilities for the other quality metrics, as well as considering additional ecosystem characteristics, would also be informative. For example, identifying which factors are important in perceptions of safety in blue spaces. Bratman et al.9 also considered effect modification by visitor characteristics and further research could include interactions, or sub-group analysis, by socio-demographic factors.Further research could also explore longer-term benefits of these features over repeated visits; the potential for ecosystem disservices, such as the relationships we find between an interaction of wildlife and ice rinks and well-being; the potential for negative outcomes associated with ecosystem degradation69; and the potential for positive mental health outcomes from ecological restoration70.We have demonstrated some of the complexities involved in the human-nature relationship and that many factors are related to the outcome from a visit. The conceptual model applied allows the investigation of a wide range of variables including natural features and other environmental qualities, and characteristics of the exposure and experience, as well as individual parameters. We suggest that other researchers can apply this conceptual model and design data collection accordingly to target specific research questions and hypotheses (as opposed to where we have fitted already collected data). More

  • in

    Ontogenetic changes in the body structure of the Arctic fish Leptoclinus maculatus

    Meyer Ottesen, C. A. et al. Early life history of the daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Mar. Biodivers. 41(3), 383–394 (2011).Article 

    Google Scholar 
    Murzina, S.A. Role of Lipids and Their Fatty Acid Components in Ecological and Biochemical Adaptations of Fish of the Northern Seas. Dr. Sci. Thesis (IPEE RAS, 2019).Murzina, S. A. et al. Tiny but fatty: Lipids and fatty acids in the Daubed Shanny (Leptoclinus maculatus), a small fish in Svalbard waters. Biomolecules 10, 368 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Falk-Petersen, S., Falk-Petersen, I. B. & Sargent, J. R. Structure and function of an unusal lipid storage organ in the Arctic fish Lumpenus maculatus Fries. Sarsia 71(1), 1–6 (1986).Article 
    CAS 

    Google Scholar 
    Murzina S.A. The Role of Lipids and Their Fatty Acid Components in the Biochemical Adaptations of the Daubed Shanny Leptoclinus maculatus F. of the Northwestern Coast of Svalbard. PhD Thesis 184 (IB KarRC RAS, 2010)Pekkoeva, S. N. et al. Ecological role of lipids and fatty acids in the early postembryonic development of daubed shanny, Leptoclinus maculatus (Fries, 1838) from Kongsfjorden, West Spitsbergen in winter. Rus. J. Ecol. 48(3), 240–244 (2017).Article 
    CAS 

    Google Scholar 
    Hovde, S. C., Albert, O. T. & Nilssen, E. M. Spatial, seasonal and ontogenetic variation in diet of Northeast Arctic Greenland halibut (Reinhardtius hippoglossoides). ICES J. Mar. Sci. 59, 421–437 (2002).Article 

    Google Scholar 
    Labansen, A. L., Lydersen, C., Haug, T. & Kovacs, K. M. Spring diet of ringed seals (Phoca hispida) from northwestern Spitsbergen. Norway. ICES J. Mar. Sci. 64, 1246–1256 (2007).Article 

    Google Scholar 
    Moser, H. G. Morphological and functional aspect of marine fish larvae. in Marine Fish Larvae—Morphology, Ecology, and Relation to Fisheries (ed. Lasker, R.). 89–131. (University of Washington Press, 1981).Moser, H. G. et al. Ontogeny and systematics of fishes. in American Society Ichthyologists Herpetologists Special Publication. Vol. 760 (Allen Press, 1984).Webb, J. F. Larvae in fish development and evolution in The Origin and Evolution of Larval Forms. 109–158 (Academic Press, 1999).Govoni, J. J., Olney, J. E., Markle, D. F. & Curtsinger, W. R. Observations on structure and evaluation of possible functions of the vexillum in larval Carapidae (Ophidiiformes). Bull. Mar. Sci. 34, 60–70 (1984).
    Google Scholar 
    Pekkoeva, S. N. et al. Fatty acid composition of the postlarval daubed shanny (Leptoclinus maculatus) during the polar night. Polar Biol. 43, 657–664 (2020).Article 

    Google Scholar 
    Pekkoeva, S. N. et al. Ecological groups of the Daubed Shanny Leptoclinus maculatus (Fries, 1838), an Arcto-boreal species, regarding growth and early development. Rus. J. Ecol. 49(3), 253–259 (2018).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Version 12/2021. (R Foundation for Statistical Computing, 2020.)Kabakoff, R. R in Action: Data Analysis and Graphics with R 588 (DMK Press, 2014).
    Google Scholar 
    Murzina, S. A. et al. Oogenesis and lipids in gonad and liver of daubed shanny (Leptoclinus maculatus) females from Svalbard waters. Fish Physiol. Biochem. 38(5), 1393–1407 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kondakova, E. A., Efremov, V. I. & Nazarov, V. A. Structure of the yolk syncytial layer in Teleostei and analogous structures in animals of the meroblastic type of development. Biol. Bull. 43(3), 208–215 (2016).Article 

    Google Scholar 
    Webster, M., Witkin, K. L. & Cohen-Fix, O. Sizing up the nucleus: Nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122(10), 1477–1486 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jevtić, P., Edens, L. J., Vuković, L. D. & Levy, D. L. Sizing and shaping the nucleus: mechanisms and significance. Curr. Opin. Cell Biol. 28, 16–27 (2014).Article 
    PubMed 

    Google Scholar 
    Kondakova, E. A., Efremov, V. I. & Kozin, V. V. Common and specific features of organization of the yolk syncytial layer of teleostei as exemplified in Gasterosteus aculeatus L. Biol. Bull. 46(1), 26–32 (2019).Article 

    Google Scholar 
    Enders, A. C. Reasons for diversity of placental structure. Placenta 30, 15–18 (2009).Article 

    Google Scholar 
    Carvalho, L. & Heisenberg, C. P. The yolk syncytial layer in early zebrafish development. Trends Cell Biol. 20(10), 586–592 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jaroszewska, M. & Dabrowski, K. Utilization of yolk: transition from endogenous to exogenous nutrition in fish. in Larval Fish Nutrition. 183–218 (2011).Kondakova, E. A., Efremov, V. I. & Bogdanova, V. A. Structure of the yolk syncytial layer in the larvae of whitefishes: A histological study. Russ. J. Dev. Biol. 48(3), 176–184 (2017).Article 
    CAS 

    Google Scholar 
    Kondakova, E. A. & Bogdanova, V. A. The fate of the yolk syncytial layer during postembryonic development of Stenodus leucichthys nelma. Ann. Zool. Fenn. 58(4–6), 155–160 (2021).
    Google Scholar 
    Chanet, B. & Meunier, F. J. The anatomy of the thyroid gland among “fishes”: phylogenetic implications for the Vertebrata. Cybium 38(2), 89–116 (2014).
    Google Scholar 
    Zenzerov, V.S. Features of the Structure and Functioning of the Thyroid Gland of Fish in the Barents Sea. Doctor of Science Thesis. Vol. 42 (PetrGU, 2007).Chalde, T. & Miranda, L. A. Pituitary–thyroid axis development during the larval–juvenile transition in the pejerrey Odontesthes bonariensis. J. Fish Biol. 91(3), 818–834 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Otero, A. P., Rodrigues, R. V., Sampaio, L. A., Romano, L. A. & Tesser, M. B. Thyroid gland development in Rachycentron canadum during early life stages. An. Acad. Bras. Ciênc. 86(3), 1507–1516 (2014).Article 
    PubMed 

    Google Scholar 
    Nilsson, M. & Fagman, H. Development of the thyroid gland. Development 144(12), 2123–2140 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Eales, J. G. & Brown, S. B. Measurement and regulation of thyroidal status in teleost fish. Rev. Fish Biol. Fish. 3(4), 299–347 (1993).Article 

    Google Scholar 
    Raine, J. C. & Leatherland, J. F. Morphological and functional development of the thyroid tissue in rainbow trout (Oncorhynchus mykiss) embryos. Cell Tissue Res. 301(2), 235–244 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Jesus, E. G., Inui, Y. & Hirano, T. Cortisol enhances the stimulating action of thyroid hormones on dorsal fin-ray resorption of flounder larvae in vitro. Gen. Comp. Endocrinol. 79(2), 167–173 (1990).Article 
    PubMed 

    Google Scholar 
    Inui, Y. & Miwa, S. Metamorphosis of flatfish (Pleuronectiformes). in Metamorphosis in Fish. 107–153 (Taylor & Francis, 2012)Nemova, N. N., Rendakov, N. L., Pekkoeva, S. N., Nikerova, K. M. & Murzina, S. A. Dynamics of estradiol level during metamorphosis in the Daubed Shanny (Leptoclinus maculatus, Fries, 1838) from Spitsbergen Island. Dokl. Biol. Sci. 482, 188–190 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Icardo, J. M. The teleost heart: A morphological approach in Ontogeny and Phylogeny of the Vertebrate Heart. 35–53 (Springer, 2012).Icardo, J. M. Heart morphology and anatomy. in Fish Physiology. 1–54 (Academic Press, 2017).Hu, N., Yost, H. J. & Clark, E. B. Cardiac morphology and blood pressure in the adult zebrafish. Anatomic. Rec. 264(1), 1–12 (2001).Article 
    CAS 

    Google Scholar 
    Icardo, J. M., Colvee, E., Cerra, M. C. & Tota, B. The bulbus arteriosus of stenothermal and temperate teleosts: A morphological approach. J. Fish Biol. 57, 121–135 (2000).Article 

    Google Scholar 
    Benjamin, M., Norman, D., Santer, R. M. & Scarborough, D. Histological, histochemical and ultrastructural studies on the bulbus arteriosus of the sticklebacks, Gasterosteus aculeatus and Pungitius pungitius (Pisces: Teleostei). J. Zool. 200(3), 325–346 (1983).Article 

    Google Scholar 
    Braun, M. H., Brill, R. W., Gosline, J. M. & Jones, D. R. Form and function of the bulbus arteriosus in yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans): static properties. J. Exp. Biol. 206(19), 3311–3326 (2003).Article 
    PubMed 

    Google Scholar 
    Icardo, J. M. Conus arteriosus of the teleost heart: Dismissed, but not missed. Anat. Rec. Part A Discov. Mol. Cell. Evolut. Biol. 288(8), 900–908 (2006).Article 

    Google Scholar 
    Tota, B. Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. A Physiol. 76(3), 423–437 (1983).Article 
    CAS 

    Google Scholar 
    Gardinal, M. V. B. et al. Myocardium arrangement and coronary vessel distribution in the ventricle of three neotropical freshwater teleosts. Zool. Sci. 35(4), 360–367 (2018).Article 

    Google Scholar 
    BuzeteGardinal, M. V. et al. Heart structure in the Amazonian teleost Arapaima gigas (Osteoglossiformes, Arapaimidae). J. Anat. 234(3), 327–337 (2019).Article 
    CAS 

    Google Scholar 
    Icardo, J. M. & Colvee, E. The atrioventricular region of the teleost heart. A distinct heart segment. Anatomic. Rec. Adv. Integr. Anat. Evolut. Biol. 294(2), 236–242 (2011).Article 

    Google Scholar 
    Kock, K. H. Antarctic icefishes (Channichthyidae): A unique family of fishes. A review, Part I. Polar Biol. 28, 862–895 (2005).Article 

    Google Scholar 
    Cocca, E. et al. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes. Proc. Natl. Acad. Sci. 92(6), 1817–1821 (1995).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    di Prisco, G., Cocca, E., Parker, S. K. & Detrich, H. W. III. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295(2), 185–191 (2002).Article 
    PubMed 

    Google Scholar 
    Sidell, B. D. & O’Brien, K. M. When bad things happen to good fish: The loss of hemoglobin and myoglobin expression in Antarctic icefishes. J. Exp. Biol. 209(10), 1791–1802 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaufman, Z. S. Adaptation of aquatic organisms to existence in high latitudes. Proc. Karelian Sci. Center Russ. Acad. Sci. 1, 3–19 (2015).
    Google Scholar 
    Jakubowski, M. Dimensions of respiratory surfaces of the gills and skin in the Antarctic white-blooded fish, Chaenocephalus aceratus Lönnberg (Chaenichthyidae). Z. Mikrosk.-Anat. Forschung. 96(1), 145–156 (1982).CAS 

    Google Scholar 
    Graham, J. B. Air-breathing fishes: The biology, diversity, and natural history of air-breathing fishes. in Encyclopedia of Fish Physiology. 1861–1874 (Elsevier, 2011).Maniatis, G. M. & Ingram, V. M. Erythropoiesis during amphibian metamorphosis: I. Site of maturation of erythrocytes in Rana catesbeiana. J. Cell Biol. 49(2), 372–379 (1971).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maruyama, K., Yasumasu, S. & Iuchi, I. Characterization and expression of embryonic and adult globins of the teleost Oryzias latipes (medaka). J. Biochem. 132(4), 581–589 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brownlie, A. et al. Characterization of embryonic globin genes of the zebrafish. Dev. Biol. 255(1), 48–61 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Feng, J. et al. Channel catfish hemoglobin genes: Identification, phylogenetic and syntenic analysis, and specific induction in response to heat stress. Comp. Biochem. Physiol. D Genom. Proteom. 9, 11–22 (2014).CAS 

    Google Scholar 
    Miwa, S. & Inui, Y. Thyroid hormone stimulates the shift of erythrocyte populations during metamorphosis of the flounder. J. Exp. Zool. 259(2), 222–228 (1991).Article 
    CAS 

    Google Scholar 
    Hansen, A., Reutter, K. & Zeiske, E. Taste bud development in the zebrafish, Danio rerio. Dev. Dyn. 223(4), 483–496 (2002).Article 
    PubMed 

    Google Scholar 
    Wang, C. A. et al. The development of pharyngeal taste buds in Hucho taimen (Pallas, 1773) larvae. Iran. J. Fish. Sci. 15(1), 426–435 (2016).ADS 

    Google Scholar 
    Fraser, G. J., Graham, A. & Smith, M. M. Conserved deployment of genes during odontogenesis across osteichthyans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271(1555), 2311–2317 (2004).Article 

    Google Scholar 
    Zambonino-Infante, J. L. et al. Ontogeny and physiology of the digestive system of marine fish larvae. in Feeding and Digestive Functions of Fishes. 281–348 (Science Publishers, 2008)Rønnestad, I. et al. Feeding behaviour and digestive physiology in larval fish: Current knowledge, and gaps and bottlenecks in research. Rev. Aquac. 5, S59–S98 (2013).Article 

    Google Scholar 
    Wallace, R. A. & Selman, K. Physiological aspects of oogenesis in two species of stickelebacks, Gasterosteus aculeatus (L.) and Apeltes quadracus (Mitchill). J. Fish Biol. 14, 551–564 (1979).Article 

    Google Scholar  More

  • in

    Genetic structuring and invasion status of the perennial Ambrosia psilostachya (Asteraceae) in Europe

    Van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–101 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).Article 
    PubMed 

    Google Scholar 
    Fried, G., Chauvel, B., Reynaud, P. & Sache, I. Decreases in crop production by non-native weeds, pests, and pathogens. In Impact of Biological Invasions on Ecosystem Services (ed. Vilà, M.) 83–101 (Springer, 2017).Chapter 

    Google Scholar 
    Nentwig, W., Mebs, D. & Vilà, M. Impact of non-native animals and plants on human health. In Impact of Biological Invasions on Ecosystem Services (ed. Vilà, M.) 277–293 (Springer, 2017).Chapter 

    Google Scholar 
    Smith, M., Cecchi, L., Skjøth, C. A., Karrer, G. & Šikoparija, B. Common ragweed: A threat to environmental health in Europe. Environ. Int. 61, 115–126 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Strother, J. L. Ambrosia L. in Flora of North America, Vol. 21 efloras.org. http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=101325 (2007). Accessed 10 August 2022.Oswalt, M. L. & Marshall, G. D. Ragweed as an example of worldwide allergen expansion. All. Asth. Clin. Immun. 4, 130–135 (2008).Article 

    Google Scholar 
    Payne, W. W. Biosystematic studies of four widespread weedy species of ragweeds, Ambrosia: Compositae. PhD Thesis, University of Michigan (1962).Burbach, G. J. et al. Ragweed sensitization in Europe—GA(2)LEN study suggests increasing prevalence. Allergy 64, 664–665 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ghosh, B. et al. Immunological and molecular characterization of Amb P V allergens from Ambrosia psilostachya (western ragweed) pollen. J. Immunol. 152, 2882–2889 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Karrer, G. et al. Ambrosia in Europe. Habitus, Leaves, Seeds, 6 European Ragweed Species. Comparison of traits. EU-COST-Action FA-1203 ‘Sustainable management of Ambrosia artemisiifolia in Europe’. http://internationalragweedsociety.org/smarter/wp-content/uploads/6AmbrosiaSpecies.pdf (2016). Accessed 10 August 2022.Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia L.. J. Ecol. 103, 1069–1098 (2015).Article 

    Google Scholar 
    Payne, W. W. A re-evaluation of the genus Ambrosia (Compositae). J. Arnold Arbor. 45, 401–438 (1964).Article 

    Google Scholar 
    Müller-Schärer, H. et al. Cross-fertilizing weed science and plant invasion science. Basic Appl. Ecol. 33, 1–13 (2018).Article 

    Google Scholar 
    Chapman, D. S. et al. Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Glob. Change Biol. 22, 3067–3079 (2016).Article 
    ADS 

    Google Scholar 
    Mang, T., Essl, F., Moser, D. & Dullinger, S. Climate warming drives invasion history of Ambrosia artemisiifolia in central Europe. Preslia 90, 59–81 (2018).Article 

    Google Scholar 
    Liu, X.-L. et al. The current and future potential geographical distribution of common ragweed, Ambrosia artemisiifolia in China. Pak. J. Bot. 53, 167–172 (2021).ADS 

    Google Scholar 
    Allard, H. A. The North American ragweeds and their occurrence in other parts of the world. Science 98, 292–293 (1943).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Greuter, W. Compositae (pro parte majore) in Compositae. Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity (ed. Greuter, W. & Raab-Straube, E. von) https://europlusmed.org/cdm_dataportal/taxon/76610e67-b2d4-4aef-a785-c4555af5b150 (Accessed 22 August 2022).Abramova, L. M. Expansion of invasive alien plant species in the Republic of Bashkortostan, the Southern Urals: Analysis of causes and ecological consequences. Russ. J. Ecol. 43, 352–357 (2012).Article 

    Google Scholar 
    Montagnani, C., Gentili, R., Smith, M., Guarino, M. F. & Citterio, S. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit. Rev. Plant. Sci. 36, 139–178 (2017).Article 

    Google Scholar 
    Vermeire, L. T. & Gillen, R. L. Western ragweed effects on herbaceous standing crop in Great Plains grasslands. J. Range Manag. 53, 335–341 (2000).Article 

    Google Scholar 
    Reece, P. E., Brummer, J. E., Northup, B. K., Koehler, A. E. & Moser, L. E. Interactions among western ragweed and other sandhills species after drought. J. Range Manag. 57, 583–589 (2000).Article 

    Google Scholar 
    Wagner, W. H. & Beals, T. F. Perennial ragweeds (Ambrosia) in Michigan, with description of a new, intermediate Taxon. Rhodora 60, 177–204 (1958).
    Google Scholar 
    Hansen, A. Ambrosia L. In Flora Europaea Vol. 4 (eds Tutin, T. G. et al.) (Cambridge University Press, 1976).
    Google Scholar 
    Sell, P. & Murrell, G. Flora of Great Britain and Ireland, Campanulaceae–Asteraceae Vol. 4, 513–514 (Cambridge University Press, 2006). Book 

    Google Scholar 
    Pignatti, S. Flora d’Italia Vol. 3 (Edagricola, 1982).
    Google Scholar 
    Amor Morales, À., Navarro Andrés, F. & Sánchez Anta, M. Datos corológicos y morfológicos de las especies del género Ambrosia L. (Compositae) presentes en la Península Ibérica. Bot. Complut. 36, 85–96 (2012).Article 

    Google Scholar 
    Karrer, G. Ambrosia. In Flora d’Italia 2nd edn, Vol. 3 (eds Guarino, R. & La Rosa, M.) 808–810 (Edagricola, 2018).
    Google Scholar 
    Rich, T. C. G. Ragweeds (Ambrosia L.) in Britain. Grana 33, 38–43 (1994).Article 

    Google Scholar 
    Chauvel, B., Fried, G., Monty, A., Rossi, J. P. & Le Bourgeois, T. Analyse de Risques Relative à L’ambroisie à Épis Lisses (Ambrosia Psilostachya DC.) et Élaboration de Recommandation De gestion (ANSES, 2017).
    Google Scholar 
    Lawalreé, A. Les Ambrosia adventices en Europe occidentale. Bull. Jard. Botan. l’Etat Bruxelles 18, 305–315 (1947).Article 

    Google Scholar 
    Karrer, G. Interessante Gefäßpflanzenfunde aus Österreich, 1. Neilreichia 12, 183–187 (2021).
    Google Scholar 
    Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55, 463–476 (1975).Article 

    Google Scholar 
    Djemaa, S. Caractérisation de la banque de graines de l’Ambroisie à épis lisses Ambrosia psilostachya DC (Asteraceae) et moyens de contrôle de cette espèce envahissante et allergène (Rapport de stage de Master 1 – Université de Montpellier 2 – Master IEGB, 2014).Chun, Y. J., Le Corre, V. & Bretagnolle, F. Adaptive divergence for a fitness-related trait among invasive Ambrosia artemisiifolia populations in France. Mol. Ecol. 20, 1378–1388 (2011).Article 
    PubMed 

    Google Scholar 
    Genton, B. J. et al. Isolation of five polymorphic microsatellite loci in the invasive weed Ambrosia artemisiifolia (Asteraceae) using an enrichment protocol. Mol. Ecol. Notes 5, 381–383. https://doi.org/10.1111/j.1365-294X.2005.02750.x (2005).Article 
    CAS 

    Google Scholar 
    Genton, B. J., Shykoff, J. A. & Giraud, T. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol. Ecol. 14, 4275–4285 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gaudeul, M., Giraud, T., Kiss, L. & Shykoff, J. A. Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common Ragweed Ambrosia artemisiifolia. PLoS One 6, e17658. https://doi.org/10.1371/journal.pone.0017658 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chun, Y. J., Fumanal, B., Laitung, B. & Bretagnolle, F. Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol. 185, 1100–1107 (2010).Article 
    PubMed 

    Google Scholar 
    Gladieux, P. et al. Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biol. Invasions 13, 933–944 (2010).Article 

    Google Scholar 
    Li, X.-M., Liao, W.-J., Wolfe, L. M. & Zhang, D.-Y. No evolutionary shift in the mating system of North American Ambrosia artemisiifolia (Asteraceae) following its introduction to China. PLoS One 7(2), e31935. https://doi.org/10.1371/journal.pone.0031935 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kočiš Tubić, N., Djan, M., Veličković, N., Anačkov, G. & Obreht, D. Microsatellite DNA variation within and among invasive populations of Ambrosia artemisiifolia from the southern Pannonian Plain. Weed Res. 55, 268–277 (2015).Article 

    Google Scholar 
    Ciappetta, S. et al. Invasion of Ambrosia artemisiifolia in Italy: Assessment via analysis of genetic variability and herbarium data. Flora 223, 106–113 (2016).Article 

    Google Scholar 
    Meyer, L. et al. New gSSr and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS One 12(5), e0176197. https://doi.org/10.1371/journal.pone.0176197 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).Article 
    PubMed 

    Google Scholar 
    Kropf, M., Huppenberger, A. S. & Karrer, G. Genetic structuring and diversity patterns along rivers—Local invasion history of Ambrosia artemisiifolia (Asteraceae) along the Danube River in Vienna (Austria) shows non-linear pattern. Weed Res. 58, 131–140 (2018).Article 
    CAS 

    Google Scholar 
    Sun, Y. & Roderick, G. K. Rapid evolution of invasive traits facilitates the invasion of common ragweed Ambrosia artemisiifolia. J. Ecol. 107, 2673–2687 (2019).Article 

    Google Scholar 
    Li, F. et al. Patterns of genetic variation reflect multiple introductions and pre-admixture sources of common ragweed (Ambrosia artemisiifolia) in China. Biol. Invasions 21, 2191–2209 (2019).Article 

    Google Scholar 
    Payne, W. W., Raven, P. H. & Kyhos, D. W. Chromosome numbers in Compositae. IV. Ambrosieae. Am. J. Bot. 51, 419–424 (1964).Article 

    Google Scholar 
    Miller, H. E., Mabry, T. J., Turner, B. L. & Payne, W. W. Infraspecific variation of sesquiterpene lactones in Ambrosia psilostachya (Compositae). Am. J. Bot. 55, 316–324 (1968).Article 
    CAS 

    Google Scholar 
    Del Amo Rodriguez, S. & Gomez-Pompa, A. Variability in Ambrosia cumanensis (Compositae). Syst. Bot. 1, 363–372 (1976).Article 

    Google Scholar 
    Grünwald, N. J., Everhart, S. E., Knaus, B. J. & Kamvar, Z. N. Best practices for population genetic analyses. Phytopathology 107, 1000–1010 (2017).Article 
    PubMed 

    Google Scholar 
    Arnaud-Haond, S., Stoeckel, S. & Bailleul, D. New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol. Ecol. 29, 3248–3260 (2020).Article 
    PubMed 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watkinson, A. & Powell, J. Seedling recruitment and the maintenance of clonal diversity in plant populations—A computer simulation of Ranunculus repens. J. Ecol. 81, 707–717 (1993).Article 

    Google Scholar 
    Balloux, F., Lehmann, L. & de Meeus, T. The population genetics of clonal and partially clonal diploids. Genetics 164, 1635–1644 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: A r package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guretzky, J., Anderson, A. & Fehmi, J. Grazing and military vehicle effects on grassland soils and vegetation. Great Plains Res. 16, 51–61 (2006).
    Google Scholar 
    Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. NeoBiota 8, 53–60 (2009).
    Google Scholar 
    Karrer, G. Das österreichische Ragweed Projekt—übertragbare Erfahrungen. The Austrian Ragweed Project—Experiences and Generalisations. Julius-Kühn-Archiv 445, 27–33 (2014).
    Google Scholar 
    Lemke, A., Buchholz, S., Kowarik, I., Starfinger, U. & von der Lippe, M. Interaction of traffic intensity and habitat features shape invasion dynamics of an invasive alien species (Ambrosia artemisiifolia) in a regional road network. NeoBiota 64, 155–175 (2021).Article 

    Google Scholar 
    Orlić, M., Gačić, M. & La Violette, P. E. The currents and circulation of the Adriatic Sea. Oceanol. Acta 15, 109–124 (1992).
    Google Scholar 
    Fumanal, B., Chauvel, B., Sabatier, A. & Bretagnolle, F. Variability and cryptic heteromorphism of Ambrosia artemisiifolia seeds: What consequences for its invasion in France?. Ann. Bot. 100, 305–313 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González, L. et al. An Atlantic Odissey: The fate of invading propagules across the coastline of the Iberian Peninsula. In 15th Ecology and Management of Alien Plant Invasions (EMAPi) Book of Abstracts: Integrating Research, Management and Policy (eds Pyšek, P. et al.) 24 (Institute of Botany, Czech Academy of Sciences, 2019).
    Google Scholar 
    Ward, S. Genetic analysis of invasive plant populations at different spatial scales. Biol. Invasions 8, 541–552 (2006).Article 

    Google Scholar 
    Halkett, F., Simon, J.-C. & Balloux, F. Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol. Evol. 20, 194–201 (2005).Article 
    PubMed 

    Google Scholar 
    Kočiš Tubić, N., Djan, M., Veličković, N., Anačkov, G. & Obreht, D. Gradual loss of genetic diversity of Ambrosia artemisiifolia L. populations in the invaded range of central Serbia. Genetika 46, 255–268 (2014).Article 

    Google Scholar 
    Suehs, C. M., Affre, L. & Médail, F. Invasion dynamics of two alien Carpobrotus (Aizoaceae) taxa on a Mediterranean island: I. Genetic diversity and introgression. Heredity 92, 31–40 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stoeckel, S. et al. Heterozygote excess in a self-incompatible and partially clonal forest tree species—Prunus avium L. Mol. Ecol. 15, 2109–2118 (2005).Article 

    Google Scholar 
    Balloux, F. Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58, 1891–1900 (2004).PubMed 

    Google Scholar 
    Hansson, B. & Westerberg, L. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 11, 2467–2474 (2002).Article 
    PubMed 

    Google Scholar 
    Hewitt, A., Rymer, P., Holford, P., Morris, E. C. & Renshaw, A. Evidence for clonality, breeding system, genetic diversity and genetic structure in large and small populations of Melaleuca deanei (Myrtaceae). Aust. J. Bot. 67, 36–45 (2019).Article 

    Google Scholar 
    Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Novak, S. J. & Mack, R. N. Genetic bottlenecks in alien plant species: influences of mating systems and introduction dynamics. In Species Invasions: Insights into Ecology, Evolution, and Biogeography (eds Sax, D. F. et al.) 201–228 (Sinauer Associates, 2005).
    Google Scholar 
    Karnkowski, W. Pest Risk Analysis and Pest Risk Assessment for the territory of the Republic of Poland (as PRA area) on Ambrosia spp., updated version. (Torun, 2001).Karrer, G. et al. Ausbreitungsbiologie und Management einer extrem allergenen, eingeschleppten Pflanze – Wege und Ursachen der Ausbreitung von Ragweed (Ambrosia artemisiifolia) sowie Möglichkeiten seiner Bekämpfung. (Final Report, BMLFUW, Vienna, Austria). https://dafne.at/projekte/ragweed (2011). Accessed 10 August 2022.Honnay, O. & Jacquemyn, H. A meta-analysis of the relation between mating system, growth form and genotypic diversity in clonal plant species. Evol. Ecol. 22, 299–312 (2008).Article 

    Google Scholar 
    Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. H. The ecological and evolutionary consequences of clonality for plants mating. Annu. Rev. Ecol. Syst. 41, 193–213 (2010).Article 

    Google Scholar 
    McKey, D., Elias, M., Pujol, B. & Duputiè, A. The evolutionary ecology of clonally propagated domesticated plants. New Phytol. 186, 318–332 (2010).Article 
    PubMed 

    Google Scholar 
    WFO Ambrosia psilostachya DC. http://www.worldfloraonline.org/taxon/wfo-0000137200 (accessed 21 July 2022).Tomasello, S., Stuessy, T. F., Oberprieler, C. & Heubl, G. Ragweeds and relatives: Molecular phylogenetics of Ambrosiinae (Asteraceae). Mol. Phylogenet. Evol. 130, 104–114 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Délye, C., Matéjicek, A. & Gasquez, J. PCR-based detection of resistance to Acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58, 474–478 (2002).Article 
    PubMed 

    Google Scholar 
    Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article 

    Google Scholar 
    Brookfield, J. F. Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Harper, J. L. Population Biology of Plants (Academic Press, 1977).
    Google Scholar 
    Lambertini, C. et al. Genetic diversity in three invasive clonal aquatic species in New Zealand. BMC Genet. 11(52), 1–18. https://doi.org/10.1186/1471-2156-11-52 (2010).Article 
    CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, A. H. D., Feldman, M. W. & Nevo, E. Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96, 523–536 (1980).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kropf, M., Comes, H. P. & Kadereit, J. W. An AFLP clock for the absolute dating of shallow-time evolutionary history based on the intraspecific divergence of southwestern European alpine plant species. Mol. Ecol. 18, 697–708 (2009).Article 
    PubMed 

    Google Scholar 
    Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).Article 

    Google Scholar 
    Jombart, T. adegenet: A r package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).Book 
    MATH 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diversity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article 

    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Pathways to sustainable plastics

    OECD Global Plastics Outlook. Economic drivers, Environmental Impacts and Policy Options (OECD, 2022).Jambeck, J. R. et al. Science 347, 768–771 (2015).Article 
    CAS 

    Google Scholar 
    Bachmann, M. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-01054-9 (2023).Article 

    Google Scholar 
    Rockström, J. et al. Nature 461, 472–475 (2009).Article 

    Google Scholar 
    Bjørn, A. et al. Environ. Res. Lett. 15, 083001 (2020).Article 

    Google Scholar 
    van den Berg, N. J. et al. Clim. Change 162, 1805–1822 (2020).Article 

    Google Scholar 
    Bjørn, A. et al. Curr. Clim. Change Rep. 8, 53–69 (2022).Article 

    Google Scholar 
    Ryberg, M. W. et al. Ecol. Indic. 88, 250–262 (2018).Article 

    Google Scholar 
    Bunsen, J. et al. Ecol. Indic. 121, 107022 (2021).Article 

    Google Scholar 
    Persson, L. et al. Environ. Sci. Technol. 56, 1510–1521 (2022).Article 
    CAS 

    Google Scholar 
    Ryberg, M. W. et al. J. Clean. Prod. 276, 123287 (2020).Article 

    Google Scholar  More

  • in

    Land loss due to human-altered sediment budget in the Mississippi River Delta

    Day, J. W. et al. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23, 425–438 (2000).Article 

    Google Scholar 
    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).Article 
    CAS 

    Google Scholar 
    Higgins, S., Overeem, I., Tanaka, A. & Syvitski, J. P. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 40, 3898–3902 (2013).Article 

    Google Scholar 
    Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Climate change: protect the world’s deltas. Nature 516, 31–33 (2014).Couvillion, B. R., Beck, H., Schoolmaster, D. & Fischer, M. Land Area Change in Coastal Louisiana (1932 to 2016) (USGS, 2017); https://doi.org/10.3133/sim3381Corthell, E. L. The delta of the Mississippi River. Natl Geogr. Mag. 12, 351–354 (1897).
    Google Scholar 
    Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).Article 
    CAS 

    Google Scholar 
    Gagliano, S. M., Meyer-Arendt, K. J. & Wicker, K. M. Land Loss in the Mississippi River Deltaic Plain. Gulf Coast Assoc. Geol. Soc. Trans. 31, 295–300 (1981).Day, J. W., Clark, H. C., Chang, C., Hunter, R. & Norman, C. R. Life cycle of oil and gas fields in the Mississippi River Delta: a review. Water 12, 1492 (2020).Article 
    CAS 

    Google Scholar 
    Morton, R., Bernier, J., Barras, J. & Ferina, N. Rapid Subsidence and Historical Wetland Loss in the Mississippi Delta Plain: Likely Causes and Future Implications (USGS, 2005).Kolker, A. S., Allison, M. A. & Hameed, S. An evaluation of subsidence rates and sea‐level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38, L21404 (2011).Roy, S., Robeson, S. M., Ortiz, A. C. & Edmonds, D. A. Spatial and temporal patterns of land loss in the Lower Mississippi River Delta from 1983 to 2016. Remote Sens. Environ. 250, 112046 (2020).Sanks, K. M., Shaw, J. B. & Naithani, K. Field-based estimate of the sediment deficit in coastal Louisiana. J. Geophys. Res. Earth Surf. 125, e2019JF005389 (2020).Article 

    Google Scholar 
    Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).Article 
    CAS 

    Google Scholar 
    Turner, R. E. & McClenachan, G. Reversing wetland death from 35,000 cuts: opportunities to restore Louisiana’s dredged canals. PLoS ONE 13, e0207717 (2018).Article 

    Google Scholar 
    Falcini, F. et al. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation. Nat. Geosci. 5, 803–807 (2012).Chamberlain, E. L., Törnqvist, T. E., Shen, Z., Mauz, B. & Wallinga, J. Anatomy of Mississippi Delta growth and its implications for coastal restoration. Sci. Adv. 4, eaar4740 (2018).Article 

    Google Scholar 
    Roberts, H. H. Dynamic changes of the Holocene Mississippi River delta plain: the delta cycle. J. Coast. Res. 13, 605–627 (1997).
    Google Scholar 
    Siverd, C. G. et al. Coastal Louisiana landscape and storm surge evolution: 1850–2110. Clim. Change 157, 445–468 (2019).Article 

    Google Scholar 
    Tweel, A. W. & Turner, R. E. Watershed land use and river engineering drive wetland formation and loss in the Mississippi River birdfoot delta. Limnol. Oceanogr. 57, 18–28 (2012).Article 

    Google Scholar 
    Shen, Z. et al. Episodic overbank deposition as a dominant mechanism of floodplain and delta-plain aggradation. Geology 43, 875–878 (2015).Article 

    Google Scholar 
    Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020).Article 
    CAS 

    Google Scholar 
    Meade, R. H. & Moody, J. A. Causes for the decline of suspended‐sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process. 24, 35–49 (2010).
    Google Scholar 
    Xu, K., Bentley, S. J., Day, J. W. & Freeman, A. M. A review of sediment diversion in the Mississippi River Deltaic Plain. Estuar. Coast. Shelf Sci. 225, 106241 (2019).Article 

    Google Scholar 
    Vogel, H. D. Report on control of floods of the Lower Mississippi River, Annex no. 5, Basic data Mississippi River. House Doc. 798, 61–137 (1930).Craig, N. J., Turner, R. E. & Day, J. W. Land loss in coastal Louisiana (U.S.A.). Environ. Manage. 3, 133–144 (1979).Article 

    Google Scholar 
    Ko, J.-Y. & Day, J. W. A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean Coast. Manage. 47, 597–623 (2004).Article 

    Google Scholar 
    Penland, S., Beall, A. D., Britsch, L. D. & Jeffress, W. S. Geologic classification of coastal land loss between 1932 and 1990 in the Mississippi River Delta Plain, Southeastern Louisiana. Gulf Coast Assoc. Geol. Soc. Trans. 52, 799–807 (2002).
    Google Scholar 
    Turner, R. Coastal wetland subsidence arising from local hydrologic manipulations. Estuaries 27, 265–272 (2004).Article 

    Google Scholar 
    Nienhuis, J. H., Törnqvist, T. E. & Erkens, G. Altered surface hydrology as a potential mechanism for subsidence in coastal Louisiana. Proc. IAHS 382, 333–337 (2020).Morton, R. A., Bernier, J. C. & Barras, J. A. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ. Geol. 50, 261–274 (2006).Karegar, M. A., Dixon, T. H. & Malservisi, R. A three-dimensional surface velocity field for the Mississippi Delta: implications for coastal restoration and flood potential. Geology 43, 519–522 (2015).Article 

    Google Scholar 
    Gambolati, G. & Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 51, 3922–3955 (2015).Article 

    Google Scholar 
    Chang, C., Mallman, E. & Zoback, M. Time-dependent subsidence associated with drainage-induced compaction in Gulf of Mexico shales bounding a severely depleted gas reservoir. AAPG Bull. 98, 1145–1159 (2014).Article 

    Google Scholar 
    Guzy, A. & Malinowska, A. A. State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water 12, 2051 (2020).Article 

    Google Scholar 
    Ortiz, A. C., Roy, S. & Edmonds, D. A. Land loss by pond expansion on the Mississippi River Delta Plain. Geophys. Res. Lett. 44, 3635–3642 (2017).Article 

    Google Scholar 
    Mariotti, G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss? J. Geophys. Res. Earth Surf. 121, 1391–1407 (2016).Article 

    Google Scholar 
    Louisiana’s Comprehensive Master Plan for a Sustainable Coast. Coastal Protection and Restoration Authority https://coastal.la.gov/wp-content/uploads/2023/01/230105_CPRA_MP-Draft_Final-for-web_spreads-main.pdf (2023).Siverd, C. G. et al. Hydrodynamic storm surge model simplification via application of land to water isopleths in coastal Louisiana. Coast. Eng. 137, 28–42 (2018).Article 

    Google Scholar 
    Twilley, R. R. et al. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain. Sustain. Sci. https://doi.org/10.1007/s11625-016-0374-4 (2016).Edmonds, D. A. et al. in Treatise on Geomorphology 2nd edn (ed. Shroder, J. F.) 110–140 (Academic Press, 2022).Xu, K., Harris, C. K., Hetland, R. D. & Kaihatu, J. M. Dispersal of Mississippi and Atchafalaya sediment on the Texas–Louisiana shelf: model estimates for the year 1993. Cont. Shelf Res. 31, 1558–1575 (2011).Article 

    Google Scholar 
    Baptist, M. et al. On inducing equations for vegetation resistance. J. Hydraul. Res. 45, 435–450 (2007).Article 

    Google Scholar 
    Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123, 2444–2465 (2018).Article 
    CAS 

    Google Scholar 
    Danielson, J. et al. Topobathymetric Model of the Northern Gulf of Mexico, 1885 to 2021 (USGS, 2022); https://doi.org/10.5066/P99JULDNBomer, E. J. et al. Deltaic morphodynamics and stratigraphic evolution of Middle Barataria Bay and Middle Breton Sound regions, Louisiana, USA: implications for river-sediment diversions. Estuar. Coast. Shelf Sci. 224, 20–33 (2019).Article 
    CAS 

    Google Scholar 
    Wolinsky, M., Edmonds, D. A., Martin, J. M. & Paola, C. Delta allometry: growth laws for river deltas. Geophys. Res. Lett. 37, L21403 (2010).Article 

    Google Scholar 
    Mariotti, G., Elsey-Quirk, T., Bruno, G. & Valentine, K. Mud-associated organic matter and its direct and indirect role in marsh organic matter accumulation and vertical accretion. Limnol. Oceanogr. 65, 2627–2641 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues

    Des Marais, D. J. The biogeochemistry of hypersaline microbial mats. Adv. Microb. Ecol. 14, 251–274 (1995).Article 

    Google Scholar 
    Belnap, J., Welter, J., Grimm, N., Barger, N. & Ludwig, J. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86, 298–307 (2005).Article 

    Google Scholar 
    Houghton, J. et al. Spatial variability in photosynthetic and heterotrophic activity drives locale δ13Corg fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology 12, 557–574 (2014).Article 

    Google Scholar 
    Allwood, A., Walter, M., Burch, I. & Kamber, B. 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res. 158, 198–227 (2007).Article 
    ADS 

    Google Scholar 
    Al-Najjar, M. et al. Spatial patterns and links between microbial community composition and function in cyanobacterial mats. Front. Microbiol. 5, 406 (2014).Article 

    Google Scholar 
    Warren-Rhodes, K., Dungan, J., Piatek, J. & McKay, C. Ecology and spatial pattern of cyanobacterial island patches in the Atacama Desert. J. Geophys. Res. Biogeosciences 112, G04S15 (2007).Article 

    Google Scholar 
    Allwood, A., Walter, M., Kamber, B., Marshall, C. & Burch, I. Stromatolite reef from the early Archaean era of Australia. Nature 441, 714–718 (2006).Article 
    ADS 

    Google Scholar 
    Meslier, V. et al. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ. Microbiol. 20, 1765–1781 (2018).Article 

    Google Scholar 
    Finstad, K. et al. Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics. Front. Microbiol. 8, 1435 (2017).Article 

    Google Scholar 
    Wilhelm, M. et al. Constraints on the metabolic activity of microorganisms in Atacama surface soils inferred from refractory biomarkers: Implications for Martian habitability and biomarker detection. Astrobiology 18, 955–966 (2018).Dillon, J. et al. Spatial and temporal variability in a stratified microbial mat community. FEMS Microbiol. Ecol. 68, 46–58 (2009).Article 

    Google Scholar 
    Rillig, M. & Antonovics, J. Microbial biospherics: the experimental study of ecosystem function and evolution. Proc. Natl Acad. Sci. USA 116, 11093–11098 (2019).Article 
    ADS 

    Google Scholar 
    Sephton, M. & Carter, J. The chances of detecting life on Mars. Planet. Space Sci. 112, 15–22 (2015).Article 
    ADS 

    Google Scholar 
    Naveh, Z., & Lieberman, A. S. Landscape Ecology: Theory and Application (Springer, 2013).Mony, C., Vandenkoornhuyse, P., Bohannan, B. J. M., Peay, K. & Leibold, M. A. A landscape of opportunities for microbial ecology research. Front. Microbiol. 11, 2964 (2020).Article 

    Google Scholar 
    Summons, R. et al. Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).Article 
    ADS 

    Google Scholar 
    Farmer, J. & Des Marais, D. J. Exploring for a record of ancient Martian life. J. Geophys. Res. 104, 26,977–26,995 (1999).Article 
    ADS 

    Google Scholar 
    Stoker et al. We should search for extant life on Mars in this decade. Bull. AAS 53 (2021); https://doi.org/10.3847/25c2cfeb.36ef5e33Jakowsky, B. et al. Mars, the nearest habitable world—a comprehensive program for future Mars exploration. Bull. AAS 53 (2021); https://doi.org/10.3847/25c2cfeb.e5222017Hinman, N. et al. Surface morphologies in a Mars analog Ca sulfate salar, High Andes, Northern Chile. Front. Astron. Space Sci. 8, 797591 (2022).Article 

    Google Scholar 
    Cabrol, N. et al. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2, 19 (2014).Article 

    Google Scholar 
    Phillips, M.S. et al. Planetary mapping using Deep Learning: a method to evaluate feature identification confidence applied to habitats in Mars-analogue terrain. Astrobiology 23 (2023).Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 934 (2015).Article 

    Google Scholar 
    Lynch, K. et al. Near-infrared spectroscopy of lacustrine sediments in the Great Salt Lake Desert: an analog study for Martian paleolake basins. J. Geophys. Res. Planets 120, 599–623 (2015).Article 
    ADS 

    Google Scholar 
    El-Maarry, M., Pommerol, A. & Thomas, N. Analysis of polygonal cracking patterns in chloride-bearing terrains of Mars: indicators of ancient playa settings. J. Geophys. Res. 113, 2263–2278 (2013).Article 

    Google Scholar 
    Onstott, T. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).Article 
    ADS 

    Google Scholar 
    Davila, A. & Schulze-Makuch, D. The last possible outposts for life on Mars. Astrobiology 16, 159–168 (2016).Article 
    ADS 

    Google Scholar 
    Osterloo, M. M. et al. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010).Article 
    ADS 

    Google Scholar 
    Flauhaut, J., Martinot, M., Bishop, J.L., Davies, G.R. & Potts, N.J. Remote sensing and in situ mineralogic survey of the Chilean salars: an analog to Mars evaporate deposits? Icarus 282, 152–173 (2017).Bosak, T., Moore, K., Gong, J. & Grotzinger, J. Searching for biosignatures in sedimentary rocks from early Earth and Mars. Nat. Rev. Earth Environ. 2, 490–506 (2021).Article 
    ADS 

    Google Scholar 
    Balci, N. et al. Biotic and abiotic imprints on Mg-rich stromatolites: lessons from Lake Salda, SW Turkey. Geomicrobiol. J. 37, 401–425 (2020).Article 

    Google Scholar 
    Williams, A., Buck, B., Soukup, D. & Merkler, D. Geomorphic controls on biological soil crust distribution: a conceptual model from the Mojave Desert (USA). Geomorphology 195, 99–109 (2013).Article 
    ADS 

    Google Scholar 
    Warren, J. Evaporites: a Geological Compendium 2nd edn (Springer, 2016).Wierzchos, J. et al. Microbial colonization of Ca sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9, 44–60 (2010).Article 

    Google Scholar 
    Robinson, C. K. et al. Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol. 17, 299–315 (2013).Article 

    Google Scholar 
    Jørgesen, B. & Des Marais, D. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol. Oceanogr. 33, 99–113 (1988).Article 
    ADS 

    Google Scholar 
    Szynkiewicz, A., Moore, C., Glamoclija, M., Bustos, D. & Pratt, L. Origin of coarsely crystalline gypsum domes in a saline playa environment at the White Sands National Monument, New Mexico. J. Geophys. Res. 115, F02021 (2010).Article 
    ADS 

    Google Scholar 
    Walker, J., Spear, J. & Pace, N. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434, 1011–1013 (2005).Article 
    ADS 

    Google Scholar 
    Rasuk, M. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494 (2014).Article 

    Google Scholar 
    Chen, L., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Preprint at arXiv https://arxiv.org/abs/1412.7062 (2014).Chan, M. et al. Exploring, mapping and data management integration of habitable environments in astrobiology. Frontiers in Microbiology 10, 147 (2019).Farmer, J. in From Habitability to Life on Mars 1–12 (Elsevier, 2018).Hays, L. et al. Biosignature preservation and detection in Mars analog environments. Astrobiology 17, 363–400 (2017).Article 
    ADS 

    Google Scholar 
    Fairen, A. et al. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10, 821 (2010).Article 
    ADS 

    Google Scholar 
    Green, J. et al. Call for a framework for reporting evidence for life beyond Earth. Nature 598, 575–579 (2021).Article 
    ADS 

    Google Scholar 
    He, K., Xiangyu, Z., Shaoqing, R. & Jian, S. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In 2015 IEEE International Conference on Computer Vision (ICCV) 1026–1034 (IEEE, 2015).Adams, J. B. & Filice, A. L. Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J. Geophys. Res. 72, 5705–5715 (1967).National Academies of Sciences, Engineering & Medicine. Origins, Worlds and Life: a Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (National Academies Press, 2022).Rodríguez Albornoz, C. Geology and Controls on Microbiota of the Salar de Pajonales (7.209.000–7.226.500 N.–510.000–530.000 E), Antofagasta, Northern Chile. Master’s thesis, Univ. Católica del Norte Antofagasta (2018).Naranjo, J., Villa, V. & Venegas, C. Geology of the Salar de Pajonales Area and Cerro Moño. Antofagasta and Atacama Regions (Geological Maps of Chile Basic Geology Series No. 153 (1: 100.000), National Geological Service, Geology and Mining Subsection, 2013).Schween, J., Hoffmeister, D. & Löhnert, U. Filling the observational gap in the Atacama Desert with a new network of climate stations. Glob. Planet. Chang. 184, 103034 (2020).Gutiérrez, F. & Cooper, A. Surface morphology of gypsum karst. Treatise Geomorphol. 6, 425–437 (2013).Article 

    Google Scholar 
    Bishop, J. L. et al. Spectral properties of Ca-sulfates: gypsum, bassanite and anhydrite. Am. Mineral. 99, 2105–2115 (2014).Article 
    ADS 

    Google Scholar 
    Green, A., Berman, M., Switzer, P. & Craig, M. D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26, 65–74 (1988).Article 
    ADS 

    Google Scholar 
    Davis, W., Pater, I. & McKay, C. P. Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile. Planet. Space Sci. 58, 616–622 (2010).Article 
    ADS 

    Google Scholar 
    McKay, C. P. et al. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observation including the El Niño of 1997–1998. Astrobiology 3, 393–406 (2003).Article 
    ADS 

    Google Scholar 
    Warren-Rhodes, K., Rhodes, K., Liu, S., Zhou, P. & McKay, C. Nanoclimate environment of cyanobacterial communities in China’s hot and cold hyperarid deserts. J. Geophys. Res. 112, G01016 (2007).Article 
    ADS 

    Google Scholar 
    Warren-Rhodes, K. et al. Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat and light. J. Geophys. Res. 118, 1451–1460 (2013).Article 

    Google Scholar 
    Lange, O., Kilian, E. & Ziegler, H. Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue–green algae as phycobionts. Oecologia 71, 104–110 (1986).Article 
    ADS 

    Google Scholar 
    Lange, O. L., Meyer, A. & Büdel, B. Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with a Microcoleus sociatus isolated from a desert soil crust. Funct. Ecol. 8, 52–57 (1994).Article 

    Google Scholar 
    Palmer, R. & Friedmann, E. I. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb. Ecol. 18, 111–118 (1990).Article 

    Google Scholar 
    Potts, M. & Friedmann, E. Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch. Microbiol. 130, 267–271 (1981).Article 

    Google Scholar 
    Tracy, C. et al. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ. Microbiol. 12, 592–607 (2010).Article 

    Google Scholar 
    Azúa-Bustos, A. et al. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb. Ecol. 51, 568–581 (2011).Article 

    Google Scholar 
    Rull, F. et al. ExoMars Raman Laser Spectrometer for ExoMars. Proc. SPIE 8152, 81520J (2011).Kontoyannis, C. G., Orkoula, M. & Koutsoukos, P. Quantitative analysis of sulphated calcium carbonates using Raman spectrometry and X-ray powder diffraction. Analyst 122, 33–38 (1997).Lopez-Reyes, G. et al. Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer Instrument. Eur. J. Mineral. 25, 721–733 (2013).Hunt, G. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42, 501–513 (1977).Article 
    ADS 

    Google Scholar 
    Bishop, J. L. in Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces (eds Bishop, J. L. et al.) 68–101 (Cambridge Univ. Press, 2019).Morris, R. V. et al. Evidence for pigmentary hematite on Mars based on optical, magnetic and Mössbauer studies of superparamagnetic (nanocrystalline) hematite. J. Geophys. Res. 94, 2760–2778 (1989).Article 
    ADS 

    Google Scholar 
    Bishop, J. L., Pieters, C. M. & Burns, R. G. Reflectance and Mössbauer spectroscopy of ferrihydrite–montmorillonite assemblages as Mars soil analog materials. Geochim. Cosmochim. Acta 57, 4583–4595 (1993).Article 
    ADS 

    Google Scholar 
    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    Underwood, A. J., Chapman, M. G. & Connell, S. D. Observations in ecology: you can’t make progress on processes without understanding the patterns. J. Exp. Mar. Biol. Ecol. 250, 97–115 (2000).Article 

    Google Scholar 
    Turner, M. G. Landscape ecology: the effect of pattern on process. Annu. Rev. Ecol. Syst. 20, 171–197 (1989).Article 

    Google Scholar 
    Turner, M. G., Gardner, R. H. & O’Neill, R. V. Landscape Ecology in Theory and Practice (Springer, 2001).Wiens, J. A., Chr, N., Van Horne, B. & Ims, R. A. Ecological mechanisms and landscape ecology. Oikos 66, 369–380 (1993).Article 

    Google Scholar 
    Urban, D., O’Neill, R. & Shugart, H. Landscape ecology. BioScience 37, 119–127 (1987).Article 

    Google Scholar 
    Underwood, A. J. et al. Experiments in Ecology: their Logical Design and Interpretation using Analysis of Variance (Cambridge Univ. Press, 1997).Quinn, G. P., & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).Neyman, J. & Pearson, E. S. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. A 231, 289–337 (1933).Article 
    ADS 
    MATH 

    Google Scholar 
    Zar, J. H. Biostatistical Analysis 5th edn (Prentice-Hall/Pearson, 2010).Ripley, B. D. Journal of the Royal Statistical Society Series B (Methodological) 39, 172-212 (1977).Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777–790 (2003).Article 

    Google Scholar 
    Krebs, C. Ecological Methodology 2nd edn (Addison-Wesley, 1999).Warren-Rhodes, K., Dungan, J., Piatek, J. & McKay, C. Ecology and spatial pattern of cyanobacterial community island patches in the Atacama Desert. J. Geophys. Res. 112, G04S15 (2007).Article 

    Google Scholar 
    Belnap, J., Phillips, S., Witwicki, D. & Miller, M. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J. Arid Environ. 72, 1257–1264 (2008).Article 
    ADS 

    Google Scholar 
    Warren-Rhodes, K. et al. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389–398 (2006).Article 

    Google Scholar 
    Yingst, R. et al. Is a linear or a walkabout protocol more efficient when using a rover to choose biologically relevant samples in a small region of interest? Astrobiology 20, 327–347 (2020).Article 
    ADS 

    Google Scholar 
    Shen, J., Wyness, A., Claire, M. & Zerkle, A. Spatial variability of microbial communities and salt distributions across a latitudinal gradient in the Atacama Desert. Microb. Ecol. 82, 442–458 (2021).Article 

    Google Scholar 
    Barrett, J. et al. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85, 3105–3118 (2004).Article 

    Google Scholar 
    Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 19964–19969 (2009).Article 
    ADS 

    Google Scholar 
    Chiodini, R. et al. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. PloS ONE 10, e0134382 (2015).Article 

    Google Scholar 
    Rivas, L. A. et al. A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Anal. Chem. 80, 7970–7979 (2008).Article 

    Google Scholar 
    Sanchez-Garcia, L. et al. Microbial biomarker transition in high-altitude sinter mounds from El Tatio (Chile) through different stages of hydrothermal activity. Front. Microbiol. 9, 3350 (2019).Article 

    Google Scholar 
    Parro, V. et al. SOLID3, a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11, 15–28 (2011).Article 
    ADS 

    Google Scholar 
    Parro, V. et al. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11, 969–996 (2011).Article 
    ADS 

    Google Scholar 
    Blanco, Y., Moreno-Paz, M., Aguirre, J. & Parro, V. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) Ch. 159 (Springer, 2017).Moreno-Paz, M. et al. Detecting nonvolatile life and nonlife-derived organics in a carbonaceous chrondrite analogue with a new multiplex immunoassay and its relevance for planetary exploration. Astrobiology 18, 1041–1056 (2018).Article 
    ADS 

    Google Scholar 
    Ekwealor, J. & Fisher, K. Life under quartz: hypolithic mosses in the Mojave Desert. PLoS ONE 15, e0235928 (2020).Article 

    Google Scholar 
    Williams, A., Buck, B. & Beyene, M. Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. 76, 1685–1695 (2012).Article 

    Google Scholar 
    Archer, S. et al. Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol. 40, 997–1006 (2017).Article 

    Google Scholar 
    Noffke, N., Gerdes, G., Klenke, T. & Krumbein, W. Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J. Sediment. Res. 71, 649–656 (2001).Article 
    ADS 

    Google Scholar 
    Fierer, N. & Jackson, R. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).Article 
    ADS 

    Google Scholar 
    Caruso, T. et al. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J. 5, 1406–1413 (2011).Article 

    Google Scholar 
    Valverde et al. Prokaryotic community structure and metabolisms in shallow subsurface of Atacama Desert playas and alluvial fans after heavy rains: repairing and preparing for next dry period. Front. Microbiol. 10, 1641 (2019).Article 

    Google Scholar 
    Sun, H. Endolithic microbial life in extreme cold climate: snow is required, but perhaps less is more. Biology 2, 693–701 (2013).Maier, S. et al. Photoautotrophic organisms control microbial abundance, diversity and physiology in different types of biological soil crusts. ISME J. 12, 1032–1046 (2018).Article 

    Google Scholar 
    Roldan, M., Ascaso, C. & Weirzchos, J. Fluorescent fingerprint of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. Appl. Environ. Microbiol. 80, 2998–3006 (2014).Article 
    ADS 

    Google Scholar 
    Cockell, C. et al. 0.25 Ga salt deposits preserve geological signatures of habitable conditions and ancient lipids. Astrobiology 20, 864–877 (2019).Article 
    ADS 

    Google Scholar 
    Ripley, B. D. Spatial Statistics (Wiley, 1981).Gelfand, A. E., Diggle, P., Guttorp, P., & Fuentes, M. (eds) Handbook of Spatial Statistics (CRC Press, 2010).Dixon, P. M. in Encyclopedia of Environmetrics, 1796-1803 (Wiley, 2006).Baddeley, A., Rubak, E. & Turner, R. Spatial point patterns: methodology and applications with R. J. Stat. Softw. 75, 2 (2016).Wood, S. Generalized Additive Models: an Introduction with R Ch 3–5 (Chapman and Hall/CRC, 2006).Simon, R. & Wood, N. GAMS in practice: mgcv. In Generalized Additive Models: an Introduction with R 2nd ed (eds Blitzstein, J., Faraway, J., Tanner, M. & Zidek, J.) Ch 7 (Chapman and Hall/CRC, 2017).Fang, X. & Chan, K.-S. Generalized Additive Models with Spatio-temporal Data (Univ. Iowa); https://stat.uiowa.edu/sites/stat.uiowa.edu/files/techrep/tr396.pdfLeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).Article 

    Google Scholar 
    Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).Article 

    Google Scholar 
    Shelhamer, E., Long J. & Darrell, T. Fully convolutional networks for semantic segmentation. Preprint at arXiv https://arxiv.org/abs/1605.06211 (2016).Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Preprint at arXiv https://arxiv.org/abs/1506.02142 (2016).Bishop, J. L. & Murad, E. in Volcano–Ice Interactions on Earth and Mars (eds Smellie, J. L. & Chapman, M. G.) 357–370 (Special Publication No. 202, Geological Society, 2002).Buzgar, N., Buzatu, A. & Sanislav, I. V. The Raman study of certain sulfates. An. Stiintificie Univ. Al. I. Cuza IASI Geol. 55, 5–23 (2009).Jehlicka, J., Edwards, H. & Oren, A. Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 80, 3286–3295 (2013). More

  • in

    Climate, caribou and human needs linked by analysis of Indigenous and scientific knowledge

    Forbes, B. C. & Kumpula, T. The ecological role and geography of reindeer (Rangifer tarandus) in Northern Eurasia. Geogr. Compass 3, 1356–1380 (2009).Article 

    Google Scholar 
    Post, E. & Pedersen, C. Opposing plant community responses to warming with and without herbivores. Proc. Natl Acad. Sci. USA 105, 12353–12358 (2008).Article 
    CAS 

    Google Scholar 
    Berkes, F., Colding, J. & Folke, C. Navigating Social-Ecological Systems: Building Resilience for Complexity and Change (Cambridge Univ. Press, 2003).Tremblay, R., Landry-Cuerrier, M. & Humphries, M. M. Culture and the social-ecology of local food use by Indigenous communities in northern North America. Ecol. Soc. 25, 8 (2020).Kenny, T.-A., Fillion, M., Simpkin, S., Wesche, S. & Chan, L. Caribou (Rangifer tarandus) and Inuit nutrition security in Canada. Ecohealth 15, 590–607 (2018).Article 

    Google Scholar 
    Benson, K. Gwich’in Knowledge of Porcupine Caribou: State of Current Knowledge and Gaps Assessment (Department of Cultural Heritage, Gwich’in Tribal Council, 2019); https://thelastgreatherd.com/wp-content/uploads/2020/06/GTC-current-knowledge-and-gaps-assessment.pdfParlee, B. & Caine, K. When the Caribou Do Not Come: Indigenous Knowledge and Adaptive Management in the Western Arctic (UBC Press, 2018).Herds: Status of Herds (CircumArctic Rangifer Monitoring and Assessment Network, accessed 3 November 2021); https://carma.caff.is/herdsFesta-Bianchet, M., Ray, J. C., Boutin, S., Côté, S. D. & Gunn, A. Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future. Can. J. Zool. 89, 419–434 (2011).Article 

    Google Scholar 
    Gunn, A. Voles, lemmings and caribou: population cycles revisited? Rangifer 23, 105–111 (2003).Article 

    Google Scholar 
    Ferguson, M. A. D., Williamson, R. G. & Messier, F. Inuit knowledge of long-term changes in a population of Arctic tundra caribou. Arctic 51, 201–219 (1998).Article 

    Google Scholar 
    Beaulieu, D. Dene traditional knowledge about caribou cycles in the Northwest Territories. Rangifer 32, 59–67 (2012).Article 

    Google Scholar 
    Mallory, C. D. & Boyce, M. S. Observed and predicted effects of climate change on Arctic caribou and reindeer. Environ. Rev. 26, 13–25 (2018).Article 

    Google Scholar 
    Uboni, A. et al. Long-term trends and role of climate in the population dynamics of Eurasian reindeer. PLoS ONE 11, e0158359 (2016).Article 

    Google Scholar 
    Chapin, F. S. III et al. Directional changes in ecological communities and social-ecological systems: a framework for prediction based on Alaskan examples. Am. Nat. 168, S36–S49 (2006).Article 

    Google Scholar 
    Tengö, M. et al. Weaving knowledge systems in IPBES, CBD and beyond – lessons learned for sustainability. Curr. Opin. Environ. Sustain. 26, 17–25 (2017).Article 

    Google Scholar 
    Berkes, F. Sacred Ecology 4th edn (Routledge, 2018).Stuart Chapin, F. III et al. Earth stewardship: science for action to sustain the human-earth system. Ecosphere 2, 89 (2011).Parlee, B. L., Sandlos, J. & Natcher, D. C. Undermining subsistence: barren-ground caribou in a ‘tragedy of open access’. Sci. Adv. 4, e1701611 (2018).Article 

    Google Scholar 
    Johnson, J. T. et al. Weaving Indigenous and sustainability sciences to diversify our methods. Sustain. Sci. 11, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    Reid, A. J. et al. ‘Two-eyed seeing’: an Indigenous framework to transform fisheries research and management. Fish Fish. 22, 243–261 (2021).Article 

    Google Scholar 
    Tengö, M., Brondizio, E. S., Elmqvist, T., Malmer, P. & Spierenburg, M. Connecting diverse knowledge systems for enhanced ecosystem governance: the multiple evidence base approach. AMBIO 43, 579–591 (2014).Article 

    Google Scholar 
    Aminpour, P. et al. The diversity bonus in pooling local knowledge about complex problems. Proc. Natl Acad. Sci. USA 118, e2016887118 (2021).Article 
    CAS 

    Google Scholar 
    Henri, D. A. et al. Weaving Indigenous knowledge systems and Western sciences in terrestrial research, monitoring and management in Canada: a protocol for a systematic map. Ecol. Solut. Evid. 2, e12057 (2021).Article 

    Google Scholar 
    Ljubicic, G. J., Mearns, R., Okpakok, S. & Robertson, S. Nunami iliharniq (learning from the land): reflecting on relational accountability in land-based learning and cross-cultural research in Uqšuqtuuq (Gjoa Haven, Nunavut). Arct. Sci. 8, 252–291 (2022).Article 

    Google Scholar 
    Stern, E. R. & Humphries, M. M. Interweaving local, expert, and Indigenous knowledge into quantitative wildlife analyses: a systematic review. Biol. Conserv. 266, 109444 (2022).Article 

    Google Scholar 
    Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the last glacial maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).Article 

    Google Scholar 
    Kuhnlein, H. V., McDonald, M., Spigelski, D., Vittrekwa, E. & Erasmus, B. in Indigenous Peoples’ Food Systems: the Many Dimensions of Culture, Diversity and Environment for Nutrition and Health (eds Kuhnlein, H. V. et al.) Ch. 3 (FAO, Centre for Indigenous Peoples’ Nutrition and Environment, 2009).Porcupine Caribou Technical Committee. Porcupine Caribou Annual Summary Report 2018–2019 (Porcupine Caribou Management Board, Whitehorse, Yukon, 2019); https://pcmb.ca/wp-content/uploads/2020/06/PCH_annual_summ_report_Nov29_2019_FINAL.pdfIPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Zhang, X. et al. in Canada’s Changing Climate Report (eds Bush, E. & Lemmen, D. S.) Ch. 4 (Government of Canada, 2019).Griffith, B. et al. in Arctic Refuge Coastal Plain Terrestrial Wildlife Research Summaries Biological Science Report USGS/BRD BSR-2002-0001 (eds Douglas, D. C. et al.) 8–37 (US Geological Survey, 2002).Russell, D. & Gunn, A. Vulnerability Analysis of the Porcupine Caribou Herd to Potential Development of the 1002 lands in the Arctic National Wildlife Refuge, Alaska (Environment Yukon, Canadian Wildlife Service and GNWT Department of Environment and Natural Resources, 2019); https://pcmb.ca/wp-content/uploads/2021/10/Russell-and-Gunn-PCH-vulnerability-analysis-2019.pdfKruse, J. A. et al. Modeling sustainability of Arctic communities: an interdisciplinary collaboration of researchers and local knowledge holders. Ecosystems 7, 815–828 (2004).Berman, M., Nicolson, C., Fofinas, G., Tetlichi, J. & Martin, S. Adaptation and sustainability in a small Arctic community: results of an agent-based simulation model. Arctic 57, 401–414 (2004).Article 

    Google Scholar 
    Kofinas, G., Aklavik, Arctic Village, Old Crow & Fort McPherson. in The Earth is Faster Now: Indigenous Observations of Arctic Environmental Change (eds Krupnik, I. & Jolly, D.) 55–91 (Arctic Research Consortium of the United States, 2002).Eamer, J. in Bridging Scales and Knowledge Systems: Concepts and Applications in Ecosystem Assessment (eds Reid, W. V. et al.) 185–206 (Island Press, 2006).Shipley, B. Cause and Correlation in Biology: a User’s Guide to Path Analysis, Structural Equations and Causal Inference with R 2nd edn (Cambridge Univ. Press, 2016).Parlee, B. & Furgal, C. Well-being and environmental change in the Arctic: a synthesis of selected research from Canada’s International Polar Year program. Clim. Change 115, 13–34 (2012).Article 

    Google Scholar 
    Kofinas, G. P. The Costs of Power Sharing: Community Involvment in Canadian Porcuine Caribou Co-management. PhD thesis, Univ. of British Columbia (1998).Ford, J. D. et al. Including indigenous knowledge and experience in IPCC assessment reports. Nat. Clim. Change 6, 349–353 (2016).Article 

    Google Scholar 
    Brinkman, T. J. et al. Arctic communities perceive climate impacts on access as a critical challenge to availability of subsistence resources. Clim. Change 139, 413–427 (2016).Article 

    Google Scholar 
    McNeil, P., Russell, D. E., Griffith, B., Gunn, A. & Kofinas, G. Where the wild things are: seasonal variation in caribou distribution in relation to climate change. Rangifer 25, 51–63 (2005).Berman, M. & Kofinas, G. Hunting for models: grounded and rational choice approaches to analyzing climate effects on subsistence hunting in an Arctic community. Ecol. Econ. 49, 31–46 (2004).Article 

    Google Scholar 
    Hansen, B. B. et al. Climate events synchronize the dynamics of a resident vertebrate community in the High Arctic. Science 339, 313–315 (2013).Article 
    CAS 

    Google Scholar 
    Collings, P., Marten, M. G., Pearce, T. & Young, A. G. Country food sharing networks, household structure, and implications for understanding food insecurity in Arctic Canada. Ecol. Food Nutr. 55, 30–49 (2016).Article 

    Google Scholar 
    BurnSilver, S., Magdanz, J., Stotts, R., Berman, M. & Kofinas, G. Are mixed economies persistent or transitional? Evidence using social networks from Arctic Alaska. Am. Anthropol. 118, 121–129 (2016).Article 

    Google Scholar 
    Baggio, J. A. et al. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proc. Natl Acad. Sci. USA 113, 13708–13713 (2016).Article 
    CAS 

    Google Scholar 
    Gagnon, C. A. et al. Merging Indigenous and scientific knowledge links climate with the growth of a large migratory caribou population. J. Appl. Ecol. 57, 1644–1655 (2020).Article 

    Google Scholar 
    Houde, N. The six faces of traditional ecological knowledge: challenges and opportunities for Canadian co-management arrangements. Ecol. Soc. 12, 34 (2007).Article 

    Google Scholar 
    Fancy, S. G., Pank, L. F., Whitten, K. R. & Regelin, W. L. Seasonal movements of caribou in Arctic Alaska as determined by satellite. Can. J. Zool. 67, 644–650 (1989).Article 

    Google Scholar 
    Porcupine Caribou Technical Committee. Porcupine Caribou Annual Summary Report 2014 (Porcupine Caribou Management Board, Whitehorse, Yukon, 2014); https://pcmb.ca/wp-content/uploads/2021/07/PCH_annual_summ_report_2014_2015_NOV19_FINAL.pdfEastland, W. G. Influence of Weather on Movements and Migrations of Caribou. PhD thesis, Univ. of Alaska (1991).Tyler, N. J. C. Climate, snow, ice, crashes, and declines in populations of reindeer and caribou (Rangifer tarandus L.). Ecol. Monogr. 80, 197–219 (2010).Article 

    Google Scholar 
    Hansen, B. B., Aanes, R. & Saether, B. E. Feeding-crater selection by high-arctic reindeer facing ice-blocked pastures. Can. J. Zool. 88, 170–177 (2010).Article 

    Google Scholar 
    Solberg, E. J. et al. Effects of density-dependence and climate on the dynamics of a Svalbard reindeer population. Ecography 24, 441–451 (2001).Article 

    Google Scholar 
    Hansen, B. B., Aanes, R., Herfindal, I., Kohler, J. & Sæther, B.-E. Climate, icing, and wild arctic reindeer: past relationships and future prospects. Ecology 92, 1917–1923 (2011).Article 

    Google Scholar 
    Langlois, A. et al. Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry: a context for Peary caribou habitat in the Canadian Arctic. Remote Sens. Environ. 189, 84–95 (2017).Article 

    Google Scholar 
    Russell, D. E., Gunn, A. & White, R. G. CircumArctic collaboration to monitor caribou and wild reindeer. Arctic 68, 6–10 (2015).Article 

    Google Scholar 
    Russell, D. E. et al. CARMA’s MERRA-based caribou range climate database. Rangifer 33, 145–152 (2013).Article 

    Google Scholar 
    ArcGIS version 10 (Environmental Systems Resource Institute, 2010).Cai, J., Russell, D. & Whitfield, P. Methodology and Algorithms for Constructing CARMA Bio-climate Tables (Simon Fraser Univ., 2011).Stenseth, N. C. & Mysterud, A. Weather packages: finding the right scale and composition of climate in ecology. J. Anim. Ecol. 74, 1195–1198 (2005).Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn (Springer, 2013).Bivand, R. S., Keitt, T. & Rowlingson, B. Rgdal: Bindings for the Geospatial Data Abstraction Library. R package version 0.8-16 (R Foundation for Statistical Computing, 2014); https://cran.r-project.org/web/packages/rgdal/index.htmlBivand, R. S. & Rundel, C. Rgeos: Interface to Geometry Engine – Open Source (GEOS). R package version 0.3-4 (R Foundation for Statistical Computing, 2014); https://cran.r-project.org/web/packages/rgeos/index.htmlLefcheck, J. S. piecewise SEM: piecewise structural equation modelling in R for ecology, evolution and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).Article 

    Google Scholar 
    Thomas, D. W. et al. Common paths link food abundance and ectoparasite loads to physiological performance and recruitment in nestling blue tits. Funct. Ecol. 21, 947–955 (2007).Article 

    Google Scholar 
    Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, 2002).Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 593, 103–113 (2010).Article 

    Google Scholar  More