Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies
1.Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).CAS
PubMed
PubMed Central
Google Scholar
2.Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).CAS
PubMed
PubMed Central
Google Scholar
3.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).
Google Scholar
4.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).CAS
PubMed
Google Scholar
5.Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).CAS
PubMed
PubMed Central
Google Scholar
6.Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W. C. & Pitelka, L. F. Predicting ecosystem responses to elevated CO2 concentrations. Bioscience 41, 96–104 (1991).
Google Scholar
7.Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).CAS
PubMed
Google Scholar
8.Jackson, R. B., Sala, O. E., Field, C. B. & Mooney, H. A. CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98, 257–262 (1994).CAS
PubMed
Google Scholar
9.Morgan, J. A. et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140, 11–25 (2004).CAS
PubMed
Google Scholar
10.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).CAS
PubMed
Google Scholar
11.Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).CAS
Google Scholar
12.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).CAS
PubMed
Google Scholar
13.Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).PubMed
Google Scholar
14.Karnosky, D. F. et al. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct. Ecol. 17, 289–304 (2003).
Google Scholar
15.Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Syst. 42, 181–203 (2011).
Google Scholar
16.Nowak, R. S., Ellsworth, D. S. & Smith, S. D. Functional responses of plants to elevated atmospheric CO2— do photosynthetic and productivity data from FACE experiments support early predictions? N. Phytol. 162, 253–280 (2004).
Google Scholar
17.Ainsworth, E. A. & Long, S. P. What have we learned from fifteen years of free air carbon dioxide enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. N. Phytol. 165, 351–372 (2004).
Google Scholar
18.Lee, T. D., Tjoelker, M. G., Ellsworth, D. S. & Reich, P. B. Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. N. Phytol. 150, 405–418 (2001).CAS
Google Scholar
19.Warren, J. M. et al. Ecohydrological impact of reduced stomatal conductance in forests exposed to elevated CO2. Ecohydrology 4, 196–210 (2011).
Google Scholar
20.Morgan, J. A. et al. CO2 enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecol. Appl. 14, 208–219 (2004).
Google Scholar
21.Dukes, J. S. et al. Responses of grassland production to single and multiple global environmental changes. PLoS Biol. 3, 1829–1839 (2005).CAS
Google Scholar
22.Hovenden, M. J., Newton, P. C. D. & Wills, K. E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 511, 583–586 (2014).CAS
PubMed
Google Scholar
23.Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS
Google Scholar
24.Hebeisen, T. et al. Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Glob. Change Biol. 3, 149–160 (1997).
Google Scholar
25.Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the cost of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).PubMed
Google Scholar
26.Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).CAS
Google Scholar
27.Ponce Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 350–352 (2014).
Google Scholar
28.Oren, R., Ewers, B. E., Todd, P., Phillips, N. & Katul, G. Water balance delineates the soil layer in which moisture affects canopy conductance. Ecol. Appl. 8, 990–1002 (1998).
Google Scholar
29.Stanton, N. L. The underground in grasslands. Annu. Rev. Ecol. Syst. 19, 573–589 (1988).
Google Scholar
30.Owensby, C. E., Ham, J. M., Knapp, A. K. & Auen, L. M. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob. Change Biol. 5, 497–506 (1999).
Google Scholar
31.McCarthy, H. R. et al. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Glob. Change Biol. 13, 2479–2497 (2007).
Google Scholar
32.McCathy, H. R., Oren, R., Finzi, A. C. & Jonsen, K. H. Canopy leaf area constrains CO2-induced enhancement of productivity and partitioning among aboveground carbon pools. Proc. Natl Acad. Sci. USA 103, 19356–19361 (2006).
Google Scholar
33.Tor-ngern, P. et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. N. Phytol. 205, 518–525 (2015).CAS
Google Scholar
34.Naumburg, E. et al. Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Glob. Change Biol. 9, 276–285 (2003).
Google Scholar
35.Housman, D. C. et al. Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 9, 374–385 (2006).
Google Scholar
36.Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).PubMed
Google Scholar
37.Ellsworth, D. S. et al. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke Face. Glob. Change Biol. 18, 223–242 (2012).
Google Scholar
38.Mueller, K. E. et al. Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecol. Lett. 19, 956–966 (2016).CAS
PubMed
Google Scholar
39.Morgan, J. A., Milchunas, D. G., LeCain, D. R., West, M. & Mosier, A. R. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc. Natl Acad. Sci. USA 104, 14724–14729 (2007).CAS
PubMed
PubMed Central
Google Scholar
40.Farquhar, G. D. et al. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS
PubMed
Google Scholar
41.De Graaff, M. A., Van Groenigen, K. J., Six, J., Hungate, B. & Van Kessel, C. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob. Change Biol. 12, 2077–2091 (2006).
Google Scholar
42.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS
PubMed
Google Scholar
43.Bader, M. K. F. et al. Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J. Ecol. 101, 1509–1519 (2013).CAS
Google Scholar
44.Klein, T. et al. Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J. Ecol. 104, 1720–1733 (2016).CAS
Google Scholar
45.McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).
Google Scholar
46.Palmroth, S. et al. Aboveground sink strength in forests controls the allocation of carbon below ground and its CO2-induced enhancement. Proc. Natl Acad. Sci. USA 103, 19362–19367 (2006).CAS
PubMed
PubMed Central
Google Scholar
47.Wolf, A., Field, C. B. & Berry, J. A. Allometric growth and allocation in forests: a perspective from FLUXNET. Ecol. Appl. 21, 1546–1556 (2011).PubMed
Google Scholar
48.Hovenden, M. J. et al. Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nat. Plants 5, 167–173 (2019).CAS
PubMed
Google Scholar
49.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS
PubMed
Google Scholar
50.Phillips, O. L. et al. Increasing dominance of large lianas in Amazonian forests. Nature 418, 770–774 (2002).CAS
PubMed
Google Scholar
51.Zotz, G., Cueni, N. & Körner, C. In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct. Ecol. 20, 763–769 (2006).
Google Scholar
52.Smith, S. D. et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystems. Nature 408, 79–81 (2000).CAS
PubMed
Google Scholar
53.Saintilan, N. & Rogers, K. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. N. Phytol. 205, 1062–1070 (2015).
Google Scholar
54.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–003 (2011).CAS
PubMed
Google Scholar
55.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).CAS
PubMed
Google Scholar
56.Flato G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (Cambridge Univ. Press, 2013).57.
58.
https://facedata.ornl.gov/ornl/
59.Hymus, G. J. et al. Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem. Glob. Change Biol. 9, 1802–1812 (2003).
Google Scholar
60.Riley, R. D., Lambert, P. C. & Abo-Zaid, G. Meta-analysis of individual participant data: rationale, conduct, and reporting. Br. Med. J. 340, c221 (2010).
Google Scholar
61.Millar, R. B. & Anderson, M. J. Remedies for pseudo-replication. Fish. Res. 70, 397–407 (2004).
Google Scholar
62.Cashman, K. D. et al. Improved dietary guidelines for vitamin D: application of individual participant data (IPD)-level meta-regression analyses. Nutrients 9, 469 (2017).PubMed Central
Google Scholar More