1.Bastviken, D. Methane. in Encyclopedia of Inland Waters (ed. Likens, G. E.) 783–805 (Elsevier, 2009). https://doi.org/10.1016/B978-012370626-3.00117-42.Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).CAS
PubMed
PubMed Central
Google Scholar
3.Thottathil, S. D., Reis, P. C. J., del Giorgio, P. A. & Prairie, Y. T. The extent and regulation of summer methane oxidation in Northern Lakes. J. Geophys. Res. Biogeosciences 123, 3216–3230 (2018).CAS
ADS
Google Scholar
4.Kankaala, P., Taipale, S., Nykänen, H. & Jones, R. I. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J. Geophys. Res. Biogeosciences 112, 1–7 (2007).
Google Scholar
5.Kankaala, P., Huotari, J., Peltomaa, E., Saloranta, T. & Ojala, A. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol. Oceanogr. 51, 1195–1204 (2006).CAS
ADS
Google Scholar
6.Bastviken, D., Ejlertsson, J., Sundh, I. & Tranvik, L. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84, 969–981 (2003).
Google Scholar
7.Kankaala, P., Lopez Bellido, J., Ojala, A., Tulonen, T. & Jones, R. I. Variable production by different pelagic energy mobilizers in Boreal Lakes. Ecosystems 16, 1152–1164 (2013).CAS
Google Scholar
8.Morana, C. et al. Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Biogeosciences 12, 2077–2088 (2015).ADS
Google Scholar
9.Grey, J. The incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond. Front. Ecol. Evol. 4, 1–14 (2016).
Google Scholar
10.Jones, R. I. & Grey, J. Biogenic methane in freshwater food webs. Freshw. Biol. 56, 213–229 (2011).CAS
Google Scholar
11.Kankaala, P., Taipale, S. & Grey, J. Experimental d13C evidence for a contribution of methane to pelagic food webs in lakes. Limnol. Oceanogr. 51, 2821–2827 (2006).CAS
ADS
Google Scholar
12.Guérin, F. & Abril, G. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J. Geophys. Res. 112, 1–14 (2007).
Google Scholar
13.Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams. Sci. Total Environ. 579, 902–912 (2017).CAS
PubMed
ADS
Google Scholar
14.Soued, C. & Prairie, Y. T. The carbon footprint of a Malaysian tropical reservoir: measured versus modeled estimates highlight the underestimated key role of downstream processes. Biogeosciences 17, 515–227 (2020).CAS
ADS
Google Scholar
15.Del Giorgio, P. A. & Gasol, J. M. Physiological structure and single-cell activity in marine bacterioplankton. in Microbial Ecology of the Oceans: Second Edition (ed. Kirchman, D. L.) 243–298 (John Wiley & Sons, Inc, 2008). https://doi.org/10.1002/9780470281840.ch816.Reis, P. C. J., Ruiz-González, C., Soued, C., Crevecoeur, S. & Prairie, Y. T. Rapid shifts in methanotrophic bacterial communities mitigate methane emissions from a tropical hydropower reservoir and its downstream river. Sci. Total Environ. 748, 141374 (2020).CAS
PubMed
ADS
Google Scholar
17.Thottathil, S. D., Reis, P. C. J. & Prairie, Y. T. Methane oxidation kinetics in northern freshwater lakes. Biogeochemistry 143, 105–116 (2019).CAS
Google Scholar
18.Milucka, J. et al. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J. 9, 1991–2002 (2015).CAS
PubMed
PubMed Central
Google Scholar
19.Zigah, P. K. et al. Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol. Oceanogr. 60, 553–572 (2015).ADS
Google Scholar
20.Mayr, M. J. et al. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun. Biol. 3, 1–9 (2020).
Google Scholar
21.Bussmann, I., Rahalkar, M. & Schink, B. Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol. Ecol. 56, 331–344 (2006).CAS
PubMed
Google Scholar
22.Kankaala, P., Eller, G. & Jones, R. I. Could bacterivorous zooplankton affect lake pelagic methanotrophic activity? Fundam. Appl. Limnol. / Arch. f.ür. Hydrobiol. 169, 203–209 (2007).
Google Scholar
23.Khmelenina, V. N. et al. Structural and functional features of methanotrophs from hypersaline and alkaline lakes. Microbiology 79, 472–482 (2010).CAS
Google Scholar
24.Westfall, C. S. & Levin, P. A. Bacterial cell size: multifactorial and multifaceted. Annu. Rev. Microbiol. 71, 499–517 (2017).CAS
PubMed
PubMed Central
Google Scholar
25.Chien, A. C., Hill, N. S. & Levin, P. A. Cell size control in bacteria. Curr. Biol. 22, R340–R349 (2012).CAS
PubMed
PubMed Central
Google Scholar
26.Velimirov, B. Nanobacteria, ultramicrobacteria and starvation forms: a search for the smallest metabolizing bacterium. Microbes Environ. 16, 67–77 (2001).
Google Scholar
27.Reis, P. C. J., Thottathil, S. D., Ruiz-González, C. & Prairie, Y. T. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ. Microbiol. 22, 738–751 (2020).CAS
PubMed
Google Scholar
28.Garcia-Chaves, M. C., Cottrell, M. T., Kirchman, D. L., Ruiz-González, C. & del Giorgio, P. A. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. Isme J. 10, 1579–1588 (2016).CAS
PubMed
PubMed Central
Google Scholar
29.Jürgens, K. & Matz, C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 81, 413–434 (2002).
Google Scholar
30.Rautio, M. & Vincent, W. F. Benthic and pelagic food resources for–zooplankton in shallow high-latitude lakes and ponds. Freshw. Biol. 51, 1038–1052 (2006).CAS
Google Scholar
31.Rissanen, A. J. et al. Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters. Aquat. Microb. Ecol. 81, 257–276 (2018).
Google Scholar
32.Zimmermann, M. et al. Microbial methane oxidation efficiency and robustness during lake overturn. Limnol. Oceanogr. Lett. 6, 320–328 (2021).CAS
Google Scholar
33.Puri, A. W. et al. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl. Environ. Microbiol. 81, 1775–1781 (2015).PubMed
PubMed Central
ADS
Google Scholar
34.Strong, P. J., Kalyuzhnaya, M., Silverman, J. & Clarke, W. P. A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour. Technol. 215, 314–323 (2016).CAS
PubMed
Google Scholar
35.Oswald, K. et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol. Oceanogr. 61, S101–S118 (2016).
Google Scholar
36.Smith, E. M. & Prairie, Y. T. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol. Oceanogr. 49, 137–147 (2004).CAS
ADS
Google Scholar
37.Del Giorgio, P. A., Cole, J. J., Caraco, N. F. & Peters, R. H. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80, 1422–1431 (1999).
Google Scholar
38.Kellerman, A. M., Dittmar, T., Kothawala, D. N. & Tranvik, L. J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 5, 3804 (2014).CAS
PubMed
ADS
Google Scholar
39.Sun, L., Perdue, E. M., Meyer, J. L. & Weis, J. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol. Oceanogr. 42, 714–721 (1997).CAS
ADS
Google Scholar
40.Kellerman, A. M., Kothawala, D. N., Dittmar, T. & Tranvik, L. J. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat. Geosci. 8, 454–457 (2015).CAS
ADS
Google Scholar
41.Guillemette, F. & del Giorgio, P. A. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol. Oceanogr. 56, 734–748 (2011).CAS
ADS
Google Scholar
42.Logue, J. B. et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. 10, 533–545 (2016).CAS
PubMed
Google Scholar
43.Salcher, M. M., Posch, T. & Pernthaler, J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J. 7, 896–907 (2013).CAS
PubMed
Google Scholar
44.Sobek, S., Tranvik, L. J., Prairie, Y., Kortelainen, P. & Cole, J. J. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52, 1208–1219 (2007).CAS
ADS
Google Scholar
45.Kalyuzhnaya, M. G. et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013).CAS
PubMed
ADS
Google Scholar
46.Oshkin, I. Y. et al. Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J. 9, 1119–1129 (2014).PubMed
PubMed Central
Google Scholar
47.Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol 26, 703–714 (2018).CAS
PubMed
Google Scholar
48.Martinez-Cruz, K. et al. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci. Total Environ. 607–608, 23–31 (2017).PubMed
ADS
Google Scholar
49.Samad, M. S. & Bertilsson, S. Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes. Front. Microbiol. 8, 1–12 (2017).
Google Scholar
50.Ricão Canelhas, M., Denfeld, B. A., Weyhenmeyer, G. A., Bastviken, D. & Bertilsson, S. Methane oxidation at the water-ice interface of an ice-covered lake. Limnol. Oceanogr. 61, S78–S90 (2016).ADS
Google Scholar
51.Houser, J. N. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can. J. Fish. Aquat. Sci. 63, 2447–2455 (2006).
Google Scholar
52.Caplanne, S. & Laurion, I. Effect of chromophoric dissolved organic matter on epilimnetic stratification in lakes. Aquat. Sci. 70, 123–133 (2008).CAS
Google Scholar
53.Oswald, K. et al. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS ONE 10, e0132574 (2015).PubMed
PubMed Central
Google Scholar
54.Savvichev, A. S. et al. Light-dependent methane oxidation is the major process of the methane cycle in the water column of the Bol’shie Khruslomeny Polar Lake. Microbiology 88, 370–374 (2019).CAS
Google Scholar
55.Baines, S. B. & Pace, M. L. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36, 1078–1090 (1991).ADS
Google Scholar
56.Cole, J. J., Likens, G. E. & Strayer, D. L. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27, 1080–1090 (1982).CAS
ADS
Google Scholar
57.Dumestre, J. et al. Influence of light intensity on methanotrophic bacterial activity in Petit Saut reservoir, French Guiana. Appl. Environ. Microbiol. 65, 534–539 (1999).CAS
PubMed
PubMed Central
ADS
Google Scholar
58.Murase, J. & Sugimoto, A. Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan). Limnol. Oceanogr. 50, 1339–1343 (2005).CAS
ADS
Google Scholar
59.Moran, M. A. & Hodson, R. E. Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol. Oceanogr. 35, 1744–1756 (1990).CAS
ADS
Google Scholar
60.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS
Google Scholar
61.Roulet, N. & Moore, T. R. Browning the waters. Nature 444, 283–284 (2006).CAS
PubMed
ADS
Google Scholar
62.Weyhenmeyer, G. A., Prairie, Y. T. & Tranvik, L. J. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PLoS ONE 9, e88104 (2014).PubMed
PubMed Central
ADS
Google Scholar
63.O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).ADS
Google Scholar
64.Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).CAS
Google Scholar
65.Cantin, A., Beisner, B. E., Gunn, J. M., Prairie, Y. T. & Winter, J. G. Effects of thermocline deepening on lake plankton communities. Can. J. Fish. Aquat. Sci. 68, 260–276 (2011).
Google Scholar
66.Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107–114 (1992).
Google Scholar
67.Del Giorgio, P. A., Pace, M. L. & Fischer, D. Relationship of bacterial growth efficiency to spatial variation in bacterial activity in the Hudson River. Aquat. Microb. Ecol. 45, 55–67 (2006).
Google Scholar
68.Eller, G., Stubner, S. & Frenzel, P. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol. Lett. 198, 91–97 (2001).CAS
PubMed
Google Scholar
69.Zeder, M. ACME tool3. (2014).70.Callieri, C. et al. Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl. Environ. Microbiol. 75, 7298–7300 (2009).CAS
PubMed
PubMed Central
ADS
Google Scholar
71.Lew, S. & Glińska-Lewczuk, K. Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes. Sci. Total Environ. 645, 1201–1211 (2018).CAS
PubMed
ADS
Google Scholar
72.Fagerbakke, K. M., Heldal, M. & Norland, S. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 10, 15–27 (1996).
Google Scholar
73.Read J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling and Software. 26, 1325–1336 (2011).
Google Scholar
74.R Core Team. R: a language and environment for statistical computing. (2019). https://www.R-project.org/.75.RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MAURL. (2018). http://www.rstudio.com/.76.Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. (2019). https://cran.r-project.org/package=dplyr.77.Sievert, C. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC Florida. (2020).78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016). https://ggplot2.tidyverse.org.79.Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 1.0.0. (2019). https://CRAN.R-project.org/package=cowplot.80.Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics. R package version 2.3. (2017). https://CRAN.R-project.org/package=gridExtra.81.Reis, P. C. J., Thottathil, S. D. & Prairie, Y. T. Dataset: the role of methanotrophy in the microbial carbon metabolism of temperate lakes. (1.0.0) [Data set]. Zenodo. (2021). https://doi.org/10.5281/zenodo.5737277. More