More stories

  • in

    Personality, density and habitat drive the dispersal of invasive crayfish

    1.Clobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. D. Dispersal (Oxford University Press, 2001).
    Google Scholar 
    2.Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
    Google Scholar 
    3.Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).
    Google Scholar 
    4.Cote, J., Fogarty, S., Brodin, T., Weinersmith, K. & Sih, A. Personality-dependent dispersal in the invasive mosquitofish: Group composition matters. Proc. R. Soc. B Biol. Sci. 278, 1670–1678 (2011).
    Google Scholar 
    5.Quinn, J. L., Cole, E. F., Patrick, S. C. & Sheldon, B. C. Scale and state dependence of the relationship between personality and dispersal in a great tit population. J. Anim. Ecol. 80, 918–928 (2011).PubMed 

    Google Scholar 
    6.Brodin, T., Lind, M. I., Wiberg, M. K. & Johansson, F. Personality trait differences between mainland and island populations in the common frog (Rana temporaria). Behav. Ecol. Sociobiol. 67, 135–143 (2013).
    Google Scholar 
    7.Wilson, D. S. Adaptive individual differences within single populations. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 199–205 (1998).
    Google Scholar 
    8.Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 

    Google Scholar 
    9.Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 79, 241–277 (2004).PubMed 

    Google Scholar 
    10.Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 

    Google Scholar 
    11.Wolf, M. & Weissing, F. J. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).PubMed 

    Google Scholar 
    12.Juette, T., Cucherousset, J. & Cote, J. Animal personality and the ecological impacts of freshwater non-native species. Curr. Zool. 60, 417–427 (2014).
    Google Scholar 
    13.Duckworth, R. A. & Badyaev, A. V. Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc. Natl. Acad. Sci. 104, 15017–15022 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).CAS 
    PubMed 

    Google Scholar 
    15.Cote, J., Fogarty, S., Weinersmith, K., Brodin, T. & Sih, A. Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. B Biol. Sci. 277, 1571–1579 (2010).
    Google Scholar 
    16.Malange, J., Izar, P. & Japyassú, H. Personality and behavioural syndrome in Necromys lasiurus (Rodentia: Cricetidae): Notes on dispersal and invasion processes. Acta Ethol. 19, 189–195 (2016).
    Google Scholar 
    17.Rees, E. M. A. et al. Socio-economic drivers of specialist anglers targeting the non-native European catfish (Silurus glanis) in the UK. PLoS ONE 12, e0178805 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    18.Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    19.Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed 

    Google Scholar 
    20.Dukes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).CAS 
    PubMed 

    Google Scholar 
    21.Gozlan, R. E., Britton, J. R., Cowx, I. & Copp, G. H. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 76, 751–786 (2010).
    Google Scholar 
    22.Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).
    Google Scholar 
    23.Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).PubMed 

    Google Scholar 
    24.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B Biol. Sci. 282, 20142201 (2015).
    Google Scholar 
    25.Duckworth, R. A. Evolution of personality: Developmental constraints on behavioral flexibility. Auk 127, 752–758 (2010).
    Google Scholar 
    26.Trillmich, F., Müller, T. & Müller, C. Understanding the evolution of personality requires the study of mechanisms behind the development and life history of personality traits. Biol. Lett. 14, 20170740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Dingemanse, N. J. & Réale, D. Natural selection and animal personality. Behaviour 142, 1159–1184 (2005).
    Google Scholar 
    28.Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. Ecological implications of behavioural syndromes. Ecol. Lett. 15, 278–289 (2012).PubMed 

    Google Scholar 
    29.Stamps, J. A. Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol. Lett. 10, 355–363 (2007).PubMed 

    Google Scholar 
    30.Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Can behavioral and personality traits influence the success of unintentional species introductions?. Trends Ecol. Evol. 27, 57–64 (2012).PubMed 

    Google Scholar 
    31.Hirsch, P. E., Thorlacius, M., Brodin, T. & Burkhardt-Holm, P. An approach to incorporate individual personality in modeling fish dispersal across in-stream barriers. Ecol. Evol. 7, 720–732 (2017).PubMed 

    Google Scholar 
    32.Groen, M. et al. Is there a role for aggression in round goby invasion fronts?. Behaviour 149, 685–703 (2012).
    Google Scholar 
    33.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).PubMed 

    Google Scholar 
    34.Lopez, D. P., Jungman, A. A. & Rehage, J. S. Nonnative African jewelfish are more fit but not bolder at the invasion front: A trait comparison across an Everglades range expansion. Biol. Invasions 14, 2159–2174 (2012).
    Google Scholar 
    35.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B Biol. Sci. 365, 3947–3958 (2010).
    Google Scholar 
    36.Dingemanse, N. J. & Réale, D. What is the evidence that natural selection maintains variation in animal personalities? In Animal Personalities: Behavior, Physiology, and Evolution (eds Carere, C. & Maestripieri, D.) 201–220 (University of Chicago Press, 2013).
    Google Scholar 
    37.Weiss, A. Personality traits: A view from the animal kingdom. J. Pers. 86, 12–22 (2018).PubMed 

    Google Scholar 
    38.Archard, G. A. & Braithwaite, V. A. The importance of wild populations in studies of animal temperament. J. Zool. 281, 149–160 (2010).
    Google Scholar 
    39.Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: Single species approaches. Oikos 108, 18–27 (2005).
    Google Scholar 
    40.Liedvogel, M., Chapman, B. B., Muheim, R. & Åkesson, S. The behavioural ecology of animal movement: Reflections upon potential synergies. Anim. Migr. 1, 39–46 (2013).
    Google Scholar 
    41.Campos-Candela, A., Palmer, M., Balle, S., Álvarez, A. & Alós, J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol. Lett. 22, 213–232 (2019).PubMed 

    Google Scholar 
    42.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement, dispersal and refuge use of co-occurring introduced and native crayfish. Freshw. Biol. 51, 1359–1368 (2006).
    Google Scholar 
    43.Luque, G. M. et al. The 100th of the world’s worst invasive alien species. Biol. Invasions 16, 981–985 (2014).
    Google Scholar 
    44.Galib, S. M., Findlay, J. S. & Lucas, M. C. Strong impacts of signal crayfish invasion on upland stream fish and invertebrate communities. Freshw. Biol. 66, 223–240 (2021).
    Google Scholar 
    45.Lindstrom, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. 110, 13452–13456 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bubb, D. H., Thom, T. J. & Lucas, M. C. The within-catchment invasion of the non-indigenous signal crayfish Pacifastacus leniusculus (Dana), in upland rivers. Bull. Fr. Pêche Piscic. 376–377, 665–673 (2005).
    Google Scholar 
    47.Závorka, L., Lassus, R., Britton, J. R. & Cucherousset, J. Phenotypic responses of invasive species to removals affect ecosystem functioning and restoration. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15271 (2020).Article 
    PubMed 

    Google Scholar 
    48.Sbragaglia, V. & Breithaupt, T. Daily activity rhythms, chronotypes, and risk-taking behavior in the signal crayfish. Curr. Zool. https://doi.org/10.1093/cz/zoab023 (2021).Article 

    Google Scholar 
    49.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).50.Pintor, L. M., Sih, A. & Bauer, M. L. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117, 1629–1636 (2008).
    Google Scholar 
    51.Rupia, E. J., Binning, S. A., Roche, D. G. & Lu, W. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish. J. Anim. Ecol. 85, 927–937 (2016).PubMed 

    Google Scholar 
    52.Karavanich, C. & Atema, J. Individual recognition and memory in lobster dominance. Anim. Behav. 56, 1553–1560 (1998).CAS 
    PubMed 

    Google Scholar 
    53.Houlihan, D., Govind, C. & El Haj, A. Energetics of swimming in Callinectes sapidus and walking in Homarus americanus. Comp. Biochem. Physiol. Part A Physiol. 82, 267–279 (1985).
    Google Scholar 
    54.Vogt, G. Functional anatomy. In Biology of Freshwater Crayfish (ed. Holdich, D. M.) 53–151 (Blackwell Science Ltd., 2002).
    Google Scholar 
    55.Southwood, T. R. E. & Henderson, P. A. Ecological Methods (Blackwell Science Ltd., 2000).
    Google Scholar 
    56.Clark, J. & Kershner, M. Size-dependent effects of visible implant elastomer marking on crayfish (Orconectes obscurus) growth, mortality, and tag retention. Crustaceana 79, 275–284 (2006).
    Google Scholar 
    57.Streissl, F. & Hödl, W. Habitat and shelter requirements of the stone crayfish, Austropotamobius torrentium Schrank. Hydrobiologia 477, 195–199 (2002).
    Google Scholar 
    58.Chadwick, D. D. A. et al. A novel ‘triple drawdown’ method highlights deficiencies in invasive alien crayfish survey and control techniques. J. Appl. Ecol. 58, 316–326 (2021).
    Google Scholar 
    59.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    60.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).MathSciNet 
    MATH 

    Google Scholar 
    61.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).
    Google Scholar 
    62.Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).
    Google Scholar 
    63.Budaev, S. V. Using principal components and factor analysis in animal behaviour research: Caveats and guidelines. Ethology 116, 472–480 (2010).
    Google Scholar 
    64.Robinson, C. A., Thom, T. J. & Lucas, M. C. Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshw. Biol. 44, 509–521 (2000).
    Google Scholar 
    65.Bubb, D. H., O’Malley, O. J., Gooderham, A. C. & Lucas, M. C. Relative impacts of native and non-native crayfish on shelter use by an indigenous benthic fish. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 448–455 (2009).
    Google Scholar 
    66.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
    Google Scholar 
    67.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inferences: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    68.Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6. (2019).69.Kleiber, C. & Zeileis, A. Applied Econometrics with R (Springer, 2008).MATH 

    Google Scholar 
    70.Edwards, D. D., Rapin, K. E. & Moore, P. A. Linking phenotypic correlations from a diverse set of laboratory tests to field behaviors in the crayfish, Orconectes virilis. Ethology 124, 311–330 (2018).
    Google Scholar 
    71.Teknomo, K. Similarity Measurements. https://people.revoledu.com/kardi/tutorial/Similarity (2015).72.Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    73.Vainikka, A., Rantala, M. J., Niemelä, P., Hirvonen, H. & Kortet, R. Boldness as a consistent personality trait in the noble crayfish, Astacus astacus. Acta Ethol. 14, 17–25 (2011).
    Google Scholar 
    74.Fraser, D. F., Gilliam, J. F., Daley, M. J., Le, A. N. & Skalski, G. T. Explaining leptokurtic movement distributions: Intrapopulation variation in boldness and exploration. Am. Nat. 158, 124–135 (2001).CAS 
    PubMed 

    Google Scholar 
    75.Dingemanse, N. J., Both, C., van Noordwijk, A. J., Rutten, A. L. & Drent, P. J. Natal dispersal and personalities in great tits (Parus major). Proc. R. Soc. London. Ser. B Biol. Sci. 270, 741–747 (2003).
    Google Scholar 
    76.McMahon, T. E. & Tash, J. C. Experimental analysis of the role of emigration in population regulation of desert pupfish. Ecology 69, 1871–1883 (1988).
    Google Scholar 
    77.Porter, J. H. & Dooley, J. L. Animal dispersal patterns: A reassessment of simple mathematical models. Ecology 74, 2436–2443 (1993).
    Google Scholar 
    78.Einum, S., Sundt-Hansen, L. & Nislow, K. H. The partitioning of density-dependent dispersal, growth and survival throughout ontogeny in a highly fecund organism. Oikos 113, 489–496 (2006).
    Google Scholar 
    79.Lodge, D. M. & Hill, A. M. Factors governing species composition, population size and productivity of coolwater crayfishes. Nord. J. Freshw. Res. 69, 111–136 (1994).
    Google Scholar 
    80.Berthouly-Salazar, C., van Rensburg, B. J., Le Roux, J. J., van Vuuren, B. J. & Hui, C. Spatial sorting drives morphological variation in the invasive bird, Acridotheris tristis. PLoS ONE 7, e38145 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Juanes, F. & Smith, L. D. The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. J. Exp. Mar. Biol. Ecol. 193, 197–223 (1995).
    Google Scholar 
    82.Wilshin, S. et al. Limping following limb loss increases locomotor stability. J. Exp. Biol. 221, jeb174268 (2018).PubMed 

    Google Scholar 
    83.Podgorniak, T., Blanchet, S., De Oliveira, E., Daverat, F. & Pierron, F. To boldly climb: Behavioural and cognitive differences in migrating European glass eels. R. Soc. Open Sci. 3, 150665 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement patterns of the invasive signal crayfish determined by PIT telemetry. Can. J. Zool. 84, 1202–1209 (2006).
    Google Scholar 
    85.Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
    Google Scholar 
    86.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers. Freshw. Biol. 49, 357–368 (2004).
    Google Scholar 
    87.Hudina, S., Kutleša, P., Trgovčić, K. & Duplić, A. Dynamics of range expansion of the signal crayfish (Pacifastacus leniusculus) in a recently invaded region in Croatia. Aquat. Invasions 12, 67–75 (2017).
    Google Scholar 
    88.Wutz, S. & Geist, J. Sex- and size-specific migration patterns and habitat preferences of invasive signal crayfish (Pacifastacus leniusculus Dana). Limnologica 43, 59–66 (2013).
    Google Scholar 
    89.Fraser, H., Barnett, A., Parker, T. H. & Fidler, F. The role of replication studies in ecology. Ecol. Evol. 10, 5197–5207 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    90.Linzmaier, S. M., Goebel, L. S., Ruland, F. & Jeschke, J. M. Behavioral differences in an over-invasion scenario: marbled vs. spiny-cheek crayfish. Ecosphere 9, e02385 (2018).
    Google Scholar 
    91.Wang, X. et al. Anthropogenic habitat loss accelerates the range expansion of a global invader. Divers. Distrib. https://doi.org/10.1111/ddi.13359 (2021).Article 

    Google Scholar  More

  • in

    Hydrological properties predict the composition of microbial communities cycling methane and nitrogen in rivers

    Relationships between microbial diversity and base flow indexThe number of reads obtained per sample and total number of OTUs obtained after rarefaction for each gene dataset are summarised in Table S2. According to taxonomic analyses of our 16S rRNA gene dataset, archaeal communities in our river sediment samples consisted largely of OTUs assigned to the Woesarchaeota (20.8% of OTUs and 24.7% of reads) and Methanomicrobia (16.9% of OTUs and 31.8% of reads). Of the functional groups analysed here, ten OTUs were assigned to AOA, Nitrososphaera (n = 8) and Nitrosopumilus (n = 2), that together formed 4.8% of all archaeal 16S rRNA reads. A total of 137 OTUs were assigned to orders of methanogenic archaea, with 15.3% and 16% of archaeal reads assigned to the orders Methanomicrobiales and Methanosarcinales, respectively, with other methanogen orders constituting a further 6.7% of reads.Bacterial communities were more diverse and OTUs assigned to taxa within the functional groups analysed here formed a relatively small proportion of our bacterial 16S rRNA gene dataset. Ammonia oxidising bacteria were represented by only five OTUs (all assigned to Nitrosospira) that together constituted 0.02% of the total bacterial community across our sediments. A further 84 OTUs were assigned to methanotrophic genera, and these OTUs contributed a total of 0.88% of all bacterial 16S rRNA sequences. These were Methylobacter (30 OTUs, 0.7% of bacterial sequences), Methylophilus (15 OTUs, 0.1% of bacterial sequences), Methylosoma (7 OTUs, 0.004% of bacterial sequences), Methylomonas and Methylotenera (6 OTUs each, 0.02 and 0.002% of bacterial sequences, respectively), and Methylosarcina (5 OTUs, 0.002% of bacterial sequences), with a further eight genera represented by a total of 15 OTUs. As reported previously, no OTUs were assigned to known anammox genera, which were likely below the limit of detection in our study [8].The OTU richness of archaeal communities (based on 16S rRNA amplicons) was negatively, albeit weakly, related to BFI (coef = 0.52, z = −2.95, adj-D2 = 0.12, P  More

  • in

    Effectiveness of protection areas in safeguarding biodiversity and ecosystem services in Tibet Autonomous Region

    1.Cao, S. & Zhang, J. Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res. 28, 898–903 (2015).ADS 

    Google Scholar 
    2.Kinzig, A. P. et al. Response—Ecosystem services: Free lunch no more. Science 335, 656 (2012).ADS 
    CAS 

    Google Scholar 
    3.Zhang, J. et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. For. Ecol. Manage. 319, 1–9 (2014).
    Google Scholar 
    4.Chen, Z. et al. Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment. Sci. Total Environ. 648, 1097–1104 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Boerema, A., Van Passel, S. & Meire, P. Cost-effectiveness analysis of ecosystem management with ecosystem services: From theory to practice. Ecol. Econ. 152, 207–218 (2018).
    Google Scholar 
    6.Bouwma, I. et al. Adoption of the ecosystem services concept in EU policies. Ecosyst. Serv. 29, 213–222 (2018).
    Google Scholar 
    7.Carpenter, S. R. et al. Millennium ecosystem assessment: Research needs. Science 314, 257 (2006).CAS 
    PubMed 

    Google Scholar 
    8.Xiao, Q., Tao, J., Xiao, Y. & Qian, F. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data. Environ. Monit. Assess. 189, 493 (2017).PubMed 

    Google Scholar 
    9.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    10.Zhang, J. et al. Modeling activity patterns of wildlife using time-series analysis. Ecol. Evol. 7, 2575–2584 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    11.Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).ADS 
    CAS 

    Google Scholar 
    12.Ouyang, W. et al. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 613–614, 798–809 (2018).ADS 
    PubMed 

    Google Scholar 
    13.Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Feng, X. et al. Human cystic and alveolar echinococcosis in the Tibet Autonomous Region (TAR), China. J. Helminthol. 89, 671–679 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Hallquist, M. et al. Photochemical smog in China: Scientific challenges and implications for air-quality policies. Natl. Sci. Rev. 3, 401–403 (2016).CAS 

    Google Scholar 
    17.Zhang, G. G. et al. Abundance and conservation of waterbirds breeding on the Changtang Plateau, Tibet Autonomous Region, China. Waterbirds 38, 19–29 (2015).CAS 

    Google Scholar 
    18.Sun, D. et al. Soil erosion and water retention varies with plantation type and age. For. Ecol. Manage. 422, 1–10 (2018).
    Google Scholar 
    19.Wangdwei, M., Steele, B. & Harris, R. B. Demographic responses of plateau pikas to vegetation cover and land use in the Tibet Autonomous Region, China. J. Mammal. 94, 1077–1086 (2013).
    Google Scholar 
    20.Zhuo, G., La, B., Pubu, C. & Luo, B. Study on daily surface evapotranspiration with SEBS in Tibet Autonomous Region. J. Geogr. Sci. 24, 113–128 (2014).ADS 

    Google Scholar 
    21.Butarbutar, T., Soedirman, S., Neupane, P. R. & Köhl, M. Carbon recovery following selective logging in tropical rainforests in Kalimantan, Indonesia. For. Ecosyst. https://doi.org/10.1186/s40663-019-0195-x (2019).Article 

    Google Scholar 
    22.Yu, W. J. & Zhou, W. Q. Spatial pattern of urban change in two Chinese megaregions: Contrasting responses to national policy and economic mode. Sci. Total Environ. 634, 1362–1371 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Storch, F., Kändler, G. & Bauhus, J. Assessing the influence of harvesting intensities on structural diversity of forests in south-west Germany. For. Ecosyst. https://doi.org/10.1186/s40663-019-0199-6 (2019).Article 

    Google Scholar 
    24.Xiao, Y. & Xiao, Q. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China. Environ. Monit. Assess 190, 258 (2018).PubMed 

    Google Scholar 
    25.Ge, J. et al. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 218, 162–173 (2018).ADS 

    Google Scholar 
    26.Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Xin, S. et al. Forestland-cover changes in China’s tropical area: Historical patterns, implications, and policy options-a case study from Xishuangbanna. J. Sustain. For. 36, 18–31 (2017).
    Google Scholar 
    28.Rao, Y. et al. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 186, 662–672 (2018).
    Google Scholar 
    29.Ricketts, T. H. et al. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 7, 13106 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Nguyen, M. D., Ancev, T. & Randall, A. Forest governance and economic values of forest ecosystem services in Vietnam. Land Use Policy 97, 103297 (2018).
    Google Scholar 
    31.Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A. 114, 1601–1606 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. U.S.A. 117, 14593–14601 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Anne, B. et al. Towards an operational methodology to optimize ecosystem services provided by urban soils. Landsc. Urban Plan. 176, 1–9 (2018).
    Google Scholar 
    34.Karlen, D. L., Peterson, G. A. & Westfall, D. G. Soil and water conservation: Our history and future challenges. Soil Sci. Soc. Am. J. 78, 1493–1499 (2014).ADS 

    Google Scholar 
    35.Tuo, D., Xu, M. & Gao, G. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau. Sci. Total Environ. 633, 1032–1040 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Rubio-Delgado, J., Schnabel, S., Gómez-Gutiérrez, Á. & Sánchez-Fernández, M. Estimation of soil erosion rates in dehesas using the inflection point of holm oaks. CATENA 166, 56–67 (2018).
    Google Scholar 
    37.Abouabdillah, A. et al. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use Manage. 30, 539–549 (2014).
    Google Scholar 
    38.Dominati, E. J., Mackay, A., Lynch, B., Heath, N. & Millner, I. An ecosystem services approach to the quantification of shallow mass movement erosion and the value of soil conservation practices. Ecosyst. Serv. 9, 204–215 (2014).
    Google Scholar 
    39.Engdawork, A. & Bork, H.-R. Long-term indigenous soil conservation technology in the Chencha Area, Southern Ethiopia: Origin, characteristics, and sustainability. Ambio 43, 932–942 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    40.Sverdrup, H. U. & Olafsdottir, A. H. Considerations on the future biomass production potential of Iceland, and what role that could have in future fuel supply and carbon balances. J. Sustain. For. 36, 647–665 (2017).
    Google Scholar 
    41.Ofoegbu, C. & Speranza, C. I. Assessing rural peoples’ intention to adopt sustainable forest use and management practices in South Africa. J. Sustain. For. 36, 729–746 (2017).
    Google Scholar 
    42.Munyati, C. & Sinthumule, N. I. Cover gradients and the forest-community frontier: Indigenous forests under communal management at Vondo and Xanthia, South Africa. J. Sustain. For. 33, 757–775 (2014).
    Google Scholar 
    43.Xiao, Q., Gao, Y., Hu, D., Tan, H. & Wang, T. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: A case study for China’s Hunan Province. Int. J. Environ. Res. Public Health 8, 2937–2950 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    44.Sun, Q., Miao, C., Qiao, Y. & Duan, Q. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Clim. Dyn. 49, 4281–4292 (2017).
    Google Scholar 
    45.Cao, S., Chen, L., Xu, C. & Liu, Z. Impact of three soil types on afforestation in China’s Loess Plateau: Growth and survival of six tree species and their effects on soil properties. Landsc. Urban Plan. 83, 208–217 (2007).
    Google Scholar 
    46.Setten, G. & Brown, K. M. Ecosystem services as an integrative framework: What is the potential? Land Use Policy 75, 549–556 (2018).
    Google Scholar 
    47.Arroyo-Vargas, P., Fuentes-Ramírez, A., Muys, B. & Pauchard, A. Impacts of fire severity and cattle grazing on early plant dynamics in old-growth Araucaria-Nothofagus forests. For. Ecosyst. https://doi.org/10.1186/s40663-019-0202-2 (2019).Article 

    Google Scholar 
    48.Paudel, S. & Sah, J. P. Effects of different management practices on stand composition and species diversity in subtropical forests in Nepal: Implications of community participation in biodiversity conservation. J. Sustain. For. 34, 738–760 (2015).
    Google Scholar 
    49.Su, L., Miao, C., Borthwick, A. G. L. & Duan, Q. Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales. Gondwana Res. 49, 94–105 (2017).ADS 

    Google Scholar 
    50.Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Schuldt, A. et al. Multiple plant diversity components drive consumer communities across ecosystems. Nat. Commun. 10, 1460 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Miao, C., Sun, Q., Duan, Q. & Wang, Y. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Clim. Dyn. 47, 3221–3234 (2016).
    Google Scholar 
    53.Zhang, J. et al. Divergent responses of sympatric species to livestock encroachment at fine spatiotemporal scales. Biol. Conserv. 209, 119–129 (2017).
    Google Scholar 
    54.Cao, S., Liu, Y., Su, W., Zheng, X. & Yu, Z. The net ecosystem services value in mainland China. Sci. China Earth Sci. 61, 595–603 (2018).ADS 

    Google Scholar 
    55.Waiswa, D., Stern, M. J. & Prisley, S. P. Drivers of deforestation in the Lake Victoria crescent, Uganda. J. Sustain. For. 34, 259–275 (2015).
    Google Scholar 
    56.Xiao, Q. & Hu, D. Dynamic characteristics of a water resource structure in an urban ecological system: Structure modelling based on input–occupancy–output technology. J. Clean. Prod. 153, 548–557 (2017).
    Google Scholar  More

  • in

    Cryofouling avoidance in the Antarctic scallop Adamussium colbecki

    The Antarctic scallop Adamussium colbecki is one of the few species of benthic organisms that we routinely observed in the icy upper reaches of the shallow anchor-ice zone in Explorer’s Cove, in western McMurdo Sound, Antarctica (Supplementary Movie 1). They inhabit both the deep, ice-free zones and the shallowest, iciest areas27 where they can even be found sitting atop the thick, growing anchor-ice blanket (Fig. 1c–e). The external surfaces of this benthic bivalve (hereafter referred to as “shell”) appear to remain ice-free, while rocks and other inanimate materials in the scallops’ vicinity are completely covered with ice (Supplementary Movie 1). In possessing an inanimate calcitic shell, this species may provide a unique example of a marine invertebrate that avoids cryofouling by truly passive means.Similar to the well-studied locales in southeastern McMurdo Sound17,26, diver observations in Explorer’s Cove (2015, 2017, 2018, by PAC) revealed that the prevalence and thickness of the anchor-ice formations are highest in the shallowest locales and decreased with increasing depth of the seabed. From the underside of the surface sea ice (~2–3 m) to about 6 m depth, anchor ice formed a 60-cm-thick mat, covering greater than 90% of the seabed (Zone 1, Fig. 1c). From ~6 to 20 m depth, the anchor-ice cover was patchier, appearing to cover only 30–50% of the seabed (Zone 2; Fig. 1d). Anchor ice was never observed at depths below ~20 m (Zone 3; Fig. 1e). This depth may demarcate the maximum depth of supercooling occurrence in the study area (Fig. 1b). Live scallops were found to be distributed in all three zones. At the shallowest depths, aggregations of scallops were common even atop the growing anchor-ice blanket (Fig. 1c and Supplementary Movie 1). Interestingly, the shells of live scallops were never observed to be cryofouled during ~30 research dives completed during the peak anchor-ice growth periods in Austral spring (October to December of 2015, 2017, and 2018), nor did any scallops appear to be frozen to the actively growing anchor-ice matrix on which they sat.Demonstrating the potential dangers of cryofouling for Antarctic scallops is non-trivial because the scallops themselves appear to naturally avoid cryofouling. However, on numerous occasions, PAC documented cryofouling on bush sponges (Homaxinella balfourensis) that had colonized the external shell surfaces of Antarctic scallops. In these observations, the growth of ice24 on the epizoic sponges caused involuntary flotation of the host scallops due to the buoyancy28 of the ice attached to the sponge (Supplementary Movie 2). This resulted in the transport of both species to the underside of the growing sea-ice cover above, where they presumably froze in and died (Fig. 2a–f). Strikingly, the shells of cryofouled sponge-colonized scallops themselves, as well as uncolonized scallops in their immediate vicinity, appeared to remain devoid of ice. These observations suggest that the scallops themselves must be cryofouling-avoidant compared to the sponge, as well as to non-biogenic minerals in their vicinity (rocks, sand, and fine sediment) (Supplementary Movie 2).Fig. 2: Sea sponge-colonized Antarctic scallops demonstrate the potential dangers for organisms that do not avoid cryofouling.a–c Unless colonized by the cryofouling-susceptible bush sponge (H. balfourensis), Antarctic scallops appear to be unaffected by cryofouling, even in areas where underwater ice growth is prevalent (Zones 1 and 2). d–h Photographic images depicting the progression of cryofouling-induced uplift (by buoyant ice) of sponge-colonized scallops in Zone 2. The negative consequence of cryofouling for scallops becomes apparent only when its surfaces have been colonized by the bush sponge H. balfourensis, which readily accrete ice. g When a sufficient volume of ice has accreted on the sponge, both species are rafted to the underside of the sea ice by buoyant flotation, where both appear to freeze in and die. Scallop is freezing into the underside of the sea ice. Scallop shell exteriors appear to be free of icing even after arriving at the underside of the sea ice. Note: Scallops arriving and freezing into the underside of the sea ice will eventually be enveloped by further sea ice growth. Scale bars indicated are approximates.Full size imageCryofouling of Antarctic scallops could potentially be deleterious in multiple ways beyond that resulting in buoyant uplift and relatively rapid death. For example, ice adhered to a scallop’s shell could impact their swimming and escape behaviors or occlude water flow paths necessary for filter-feeding. In this case, if the Antarctic scallops do not possess anti-cryofouling capabilities, a larger proportion of the population may likely suffer from the same hazards posed by icing to epizoic sponges: ice growth, involuntary flotation, and likely death when merged into the sea ice. Given that no observations of a cryofouled live scallop exist, the icing process on scallops may be different, posing lower risks for accumulation and flotation. The negative consequences on both feeding and motility functionalities (Fig. 2c–h) associated with cryofouling suggest that for organisms inhabiting areas of supercooled seawater, the selection pressure to evolve passive or active anti-icing strategies could be relatively strong.The ability of surfaces to avoid in-air icing is influenced by properties like micro-structuring, surface roughness, hydrophobicity, chemical composition, or specific topological patterns4,5. Figure 3a–e shows the morphological characterization of the shells of the Antarctic scallop. In contrast to two non-Antarctic control species (bay scallop and sea scallop), the shells of the Antarctic scallop are macroscopically smooth, with only minute, elevated concentric growth rings and gently undulated primary ridges apparent to the naked eye. Scanning electron microscopy (SEM) images of the Antarctic scallop shells revealed a highly structured surface29 with concentric growth rings that separate micro-ridges and micro-valleys, forming a distinctive, regular hierarchical texture (Fig. 3f–h). That is, the areas between growth rings are defined by a series of relatively uniform radial micro-ridges. The shell surfaces of the two control species did not exhibit any ordered or repeating microstructures (Supplementary Figs. 2 and 3). For the Antarctic scallop, the spacing between concentric growth rings and radial micro-ridges along a line from the umbo to the margin were determined to be ~250 and ~10 µm wide, respectively. These features are not strictly uniform over the shell and may vary up to an order of magnitude, with the spacing of features increasing as a function of distance from the umbo. The microscopic surface features of larger (older) shells were slightly abraded, with surface wear appearing to increase towards the umbo–the oldest portion of the shell.Fig. 3: Surface characteristics of the Antarctic scallop’s shell features.a–c Terminology and schematics of features on the shell surface, a, b in-plane, and c section view. d, e Macroscopic images in visible light of the Antarctic scallop’s shell surface without magnification. The shell is covered by a thin, proteinaceous covering (periostracum), under which the calcitic material lies throughout the thickness of the shell. Radial rounded, primary ridges, and concentric growth rings are visible. f–h Scanning electron micrographs showing increasing magnification. f Concentric growth rings separating repeating series of g radial micro-ridges (c. 20 µm peak-to-peak). h Small protuberances are irregularly dispersed throughout the radial micro-valleys (Supplementary Fig. 3). Shells are oriented with the umbo at the top in all panels, except c. Shells of temperate control species are substantially rougher and less ordered than those of the Antarctic scallop (Supplementary Fig. 2).Full size imageNext, we determined the elemental composition and roughness at different positions on the shell surface. Energy-dispersive X-ray spectroscopy revealed that the shell surface predominately consists of oxygen, carbon, calcium, traces of silicon, sodium, aluminum, and magnesium (Supplementary Fig. 4). These findings are consistent with a typical calcitic shell (CaCO3) laminated with proteinaceous periostracum. Surface composition was found to be identical at different locations of the analyses, including along concentric growth rings, micro-ridges, or the micro-valleys in between. The surface roughness was determined using atomic force microscopy (AFM) and revealed that the peaks of the concentric growth rings were the roughest (RMS roughness of 135 ± 57 nm), followed by the radial micro-ridges (RMS roughness of 96 ± 3 nm). In contrast, valley floors between these micro-ridges were relatively smooth (RMS roughness of 38 ± 9 nm), interrupted only by small protuberances (nano-grains, diameter of 83 ± 26 nm) that were irregularly dispersed throughout the radial micro-valleys.In nature, unwanted ice accretion on surfaces can occur either by the accumulation of suspended adhesive frazil ice particles or by in situ initiation of ice growth (heterogeneous ice nucleation) on a surface18,25. To test the possibility of preferential ice nucleation, the scallops were subjected to ice nucleation measurements and an in-air frosting assay. Figure 4a, d shows the results of in-air frosting experiments performed using a custom-built apparatus30,31 in an air-filled climate-controlled (20 °C) chamber at controlled humidity (60%). Compared to the temperate control species, ice nucleation on the Antarctic scallop shell occurred later and subsequent ice growth was directed toward specific surface features (Fig. 4a, b and Supplementary Movie 3). Ice appears to accumulate only on the growth rings, leaving ice-free micro-ridges. As the experiment progressed, ice that had nucleated on the growth rings continued to grow vertically, thereby preventing further imaging of the ice-shell interface (Supplementary Movie 3). We observed no inter-ring bridging of ice and nucleated ice crystals grew preferentially upwards while enlarging in size. In contrast, neither control species showed any obvious signs of directed ice nucleation and appeared to frost uniformly over the surface (Fig. 4d, e). These results indicate that the Antarctic scallop may possess an ability to control ice nucleation and directed ice growth on its shell surfaces.Fig. 4: In-air frosting of scallop shells.The progression of ice accumulation was observed for shells placed atop a cold source in a temperature- and humidity-controlled chamber (20 °C, 60% relative humidity). a The Antarctic scallop preferentially directed ice nucleation and subsequent growth to the shell’s growth rings, termed directed frosting. b This patterned ice accumulation may also apply to ice growth in underwater environments, where it could reduce overall ice-shell contact area (c). d Directed frosting was not observed in control species (e.g., Bay scallop), where ice accreted in a patchy or uniform fashion over the entire surface (e). Likewise, such random but homogenously distributed nucleation-growth behaviors are likely to apply for ice growth in underwater environments, with continuous ice mats over the surface of the shell establishing higher overall contact adhesion force (f).Full size imageFor the Antarctic scallop, the mechanism of directed frosting occurs over two sequential steps: (1) initial condensation-frosting on growth rings, followed by (2) continuous frost growth. (1) The presence of sharp/rough edges (such as those on the growth rings), is known to enhance liquid nucleation by reducing the energy barrier32. Since more liquid water resides at the growth rings, here the nucleation of microscopic ice is more likely33. (2) Upon the formation of these microscopic ice domains as ice stripes (on growth rings), the vapor field around the ridges becomes compressed. The compressed vapor field generates locally steeper vapor gradients and thus stronger vapor fluxes towards the ice on the ridges (Fig. 4b). As a consequence, ice growth on the stripes is enhanced compared to the valleys. The vapor transport in the air during frosting is analogous to the heat transport underwater during icing. At the ridges, the latent heat generated is removed more quickly, facilitating accelerated growth34,35. Furthermore, since the vapor pressure of ice is lower than that of water36, the condensed water in the micro-valleys would be redirected to the ridges. This process would result in the micro-valleys being left comparatively free of ice, per Fig. 4a.A caveat remains, as the shell surface temperature during frosting assays (in-air) is significantly lower (c. −10 to −15 °C) than in nature. In its natural habitat, the lowest temperatures experienced by surfaces immersed in seawater (Fig. 4c, f) are rarely much below the equilibrium freezing point (~−1.9 °C), thus making heterogeneous ice nucleation on shells unlikely. However, the ability to direct ice growth may influence the probability of frazil ice adhering and anchoring strongly to the shell surface, thus facilitating easier removal through mechanical or passive environmental forces.We performed ice-adhesion measurements to test whether the apparent cryofouling avoidance of the Antarctic scallop’s shell in nature could arise from reduced adhesion forces between adhered ice and the shell’s surface. If adhesion is sufficiently low, ice could detach and float away under behavioral (movements, locomotion37) and/or environmentally induced forces (physical interactions, water currents, buoyancy of ice), or a combination of the above. This is particularly relevant once a sufficiently high ratio of ice volume to attachment surface area has been achieved. To provide complementary insight, both in-air and underwater ice-adhesion measurements were performed.The in-air ice-adhesion strength was determined30 by laterally shearing off drops of frozen freshwater from target scallop shells (Supplementary Movie 4). The recorded force curves show that ice adheres less strongly to the Antarctic scallop compared to the control species, the sea and bay scallops, as shown in Fig. 5a. For the Antarctic scallop, the in-air ice-adhesion strength was 145 ± 24 kPa (mean ± SE), ~2–3 times lower than both control species, with adhesion strengths of 335 ± 23 and 405 ± 27 kPa for the sea scallop and bay scallop respectively (Fig. 5a). We further observed that when the frozen drops sheared off the Antarctic scallop, the ice-shell fracture interface exhibited distinct growth ring-patterned fracture lines. In contrast, frozen drops detached from the control species appeared to have a uniform fracture interface (Supplementary Fig. 5 and Supplementary Movie 5). This observation could be explained by the incomplete contact adhesion of the frozen drops to the Antarctic scallop’s shell due to the spacing of small repetitive structural elements on the shell’s surface. As such, the overall area of ice-shell adhesion is reduced, thereby lowering the overall effective adhesion force.Fig. 5: Ice-adhesion measurements for Antarctic, Sea, and Bay scallops.a Displacement (lateral) of ice drops (10 µL) from the surface of shells in a humidity-controlled chamber. Shell temperature: −10 to −15 °C (thickness-dependent). Peak force was achieved immediately before the complete detachment of the drop from the surface. b Displacement (normal) of accreted ice grown in simulated seawater at its freezing point (35 g/L NaCl, c. −2 °C). Mean peak recorded force (dashed lines) ±1 SE (shaded areas) for three repetitions of each experiment are shown. Experimental details are available in the Supplementary Methods and Materials.Full size imageThe strength of ice adhesion (N/m2 or Pa) to shells underwater was determined using a custom-built apparatus. The apparatus determined the forces required for ice detachment when adhered ice was pulled perpendicular to and away from the shell surface. Underwater ice-adhesion experiments were performed in saltwater (35 g/L NaCl), simulating the seawater conditions in Antarctica. A cold source beneath a small section of the shell induced ice growth up to 6 mm in height above the shell surface, (Supplementary Movie 6), thereby encasing a perforated titanium plate (1 cm square, 4 × 2 mm-diameter holes) which was in turn connected to the force probe. The probe was then drawn upwards (normal to the shell, at 30 µm/s, Supplementary Movie 7). As for experiments in air, the recorded force curves in underwater experiments reveal that ice adheres weakly to the Antarctic scallop shell as compared to those of the two control species (Fig. 5b and Supplementary Movie 8). The Antarctic scallop experiences up to 3 times lower ice adhesion (37 ± 7 kPa, mean ± SE) than the sea scallop (112 ± 14 kPa) and more than 6 times lower adhesion than the bay scallop (243 ± 14 kPa) (Fig. 5b). At 37 ± 7 kPa, the Antarctic scallop’s shell shows underwater ice adhesion (normal to the surface) comparable to industrially-developed in-air anti-icing surfaces (1–50 kPa)4. However, if attachment forces in nature approach this value in a static environment (i.e., no water currents or scallop swimming behaviors), ≥3.7 cm3 of ice would need to be attached per mm2 of ice-shell contact area for the passive removal of ice under its own buoyant forces. Therefore, the “passive” removal of ice from Antarctic scallops must result from a combination of surface-to-environment factors. That is, the removal of ice crystals with small contact areas, such as platelet ice with its fine dendritic structure, may be facilitated by drag forces arising in natural water currents or induced by the rapid opening and closing of the scallop’s valves during swimming behaviors37. In these cases, adherent ice on the microstructures of the shell would likely experience the initiation of cracks that would subsequently facilitate ice removal given water movements or other physical disturbances.Whether the cryofouling-avoidant surfaces of the Antarctic scallop’s shell arose under evolutionary selection pressure remains unclear. Based on fossil records, the exclusively Antarctic scallop genus Adamussium first appeared in the early Oligocene, some 33 million years ago (mya)38,39. This time period roughly coincides with the onset of the major glaciation of Antarctica (c. 35 mya). The Antarctic scallop, Adamussium colbecki, appears to have arisen more recently, in the late Pliocene ( More

  • in

    Unique high Arctic methane metabolizing community revealed through in situ 13CH4-DNA-SIP enrichment in concert with genome binning

    1.Ferrari, B. C., Winsley, T., Gillings, M. & Binnerup, S. Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat. Protoc. 3, 1261–1269 (2008).CAS 
    PubMed 

    Google Scholar 
    2.Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Gies, E. A., Konwar, K. M., Beatty, J. T. & Hallam, S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. AEM. 80, 6807–6818 (2014).ADS 

    Google Scholar 
    5.Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533 (2013).CAS 
    PubMed 

    Google Scholar 
    6.Lazar, C. S., Baker, B. J., Seitz, K. W. & Teske, A. P. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 11, 1118–1129 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Dumont, M. G. & Murrell, J. C. Stable isotope probing—Linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).CAS 
    PubMed 

    Google Scholar 
    9.Gadkari, P. S., McGuinness, L. R., Männistö, M. K., Kerkhof, L. J. & Häggblom, M. M. Arctic tundra soil bacterial communities active at subzero temperatures detected by stable isotope probing. FEMS Microbiol. Ecol. 96, fiz192 (2020).CAS 
    PubMed 

    Google Scholar 
    10.Achouak, W. & el Zahar Haichar, F. Stable isotope probing of microbiota structure and function in the plant rhizosphere. Methods Mol. Biol. 2046, 233–243 (2019).CAS 
    PubMed 

    Google Scholar 
    11.Graef, C., Hestnes, A. G., Svenning, M. M. & Frenzel, P. The active methanotrophic community in a wetland from the High Arctic. Environ. Microbiol. Rep. 3, 466–472 (2011).CAS 
    PubMed 

    Google Scholar 
    12.He, R. et al. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ. Microbiol. 14, 1403–1419 (2012).CAS 
    PubMed 

    Google Scholar 
    13.Martineau, C., Whyte, L. G. & Greer, C. W. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian High Arctic. Appl. Environ. Microbiol. 76, 5773–5784 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 1–63. https://doi.org/10.1016/s0065-2113(07)96005-8 (2007).CAS 
    Article 

    Google Scholar 
    16.Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Ricke, P. et al. First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidiphila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. Appl. Environ. Microbiol. 71, 7472–7482 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    19.Jørgensen, C. J., Johansen, K. M. L., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).ADS 

    Google Scholar 
    20.Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11, 3095–3106 (2014).ADS 

    Google Scholar 
    21.Martineau, C. et al. Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. FEMS Microbiol. Ecol. 89, 257–269 (2014).CAS 
    PubMed 

    Google Scholar 
    22.Christiansen, J. R. et al. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122, 15–33 (2015).CAS 

    Google Scholar 
    23.Lau, M. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Altshuler, I. et al. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH4 and CO2 gas fluxes. Environ. Microbiol. 21, 3711–3727 (2019).CAS 
    PubMed 

    Google Scholar 
    25.Holmes, A. J. et al. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65, 3312–3318 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7, 1150–1161 (2005).CAS 
    PubMed 

    Google Scholar 
    27.Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A. K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20, 1016–1029 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl. Acad. Sci. 116, 8515–8524 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Cai, Y., Zheng, Y., Bodelier, P. L., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Curry, C. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6, 2355–2367 (2009).ADS 
    CAS 

    Google Scholar 
    31.Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 120, 1764–1784 (2015).CAS 

    Google Scholar 
    32.Collier, S. M., Ruark, M. D., Oates, L. G., Jokela, W. E. & Dell, C. J. Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. JoVE 90, 52110 (2014).
    Google Scholar 
    33.Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266 (2002).CAS 
    PubMed 

    Google Scholar 
    34.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 

    Google Scholar 
    35.Martineau, C., Whyte, L. G. & Greer, C. W. Development of a SYBR safe™ technique for the sensitive detection of DNA in cesium chloride density gradients for stable isotope probing assays. J. Microbiol. Methods 73, 199–202 (2008).CAS 
    PubMed 

    Google Scholar 
    36.McDonald, I. R., Bodrossy, L., Chen, Y. & Murrell, J. C. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 74, 1305–1315 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    37.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    38.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner (Lawrence Berkeley National Lab. (LBNL), Berkeley, 2014).
    Google Scholar 
    40.Li, F., Zhu, R., Bao, T., Wang, Q. & Xu, H. Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra. Sci. Total Environ. 572, 1150–1160 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    41.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    42.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Rodriguez-R, L. M. et al. The Microbial Genomes Atlas (MiGA) webserver: Taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46, W282–W288 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).CAS 

    Google Scholar 
    45.Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132–e132 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    46.Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).
    Google Scholar 
    47.Huntemann, M. et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v. 4). Stand. Genom. Sci. 10, 86 (2015).
    Google Scholar 
    48.Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v. 4). Stand. Genom. Sci. 11, 17 (2016).
    Google Scholar 
    49.Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Holm, L. Using Dali for Protein Structure Comparison. In Structural Bioinformatics. Methods in Molecular Biology. (ed. Gáspári Z.) vol 2112 (Humana, New York, 2020) https://doi.org/10.1007/978-1-0716-0270-6_3.51.Yang, J. et al. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 12, 7 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Wen, X., Yang, S. & Liebner, S. Evaluation and update of cutoff values for methanotrophic pmoA gene sequences. Arch. Microbiol. 198, 629–636 (2016).CAS 
    PubMed 

    Google Scholar 
    53.Shrestha, P. M., Kammann, C., Lenhart, K., Dam, B. & Liesack, W. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME J. 6, 1115–1126 (2012).CAS 
    PubMed 

    Google Scholar 
    54.Tremblay, J. & Yergeau, E. Systematic processing of ribosomal RNA gene amplicon sequencing data. GigaScience 8, giz146 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    55.Fish, J. A. et al. FunGene: The functional gene pipeline and repository. Front. Microbiol. 4, 291 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    56.Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Doxey, A. C., Mansfield, M. J. & Montecucco, C. Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 147, 2–12 (2018).CAS 
    PubMed 

    Google Scholar 
    58.Pearson, W. R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinform. 42, 1–8 (2013).
    Google Scholar 
    59.Sachs, T., Giebels, M., Boike, J. & Kutzbach, L. Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Glob. Change Biol. 16, 3096–3110 (2010).
    Google Scholar 
    60.Brummell, M. E., Farrell, R. E., Hardy, S. P. & Siciliano, S. D. Greenhouse gas production and consumption in High Arctic deserts. Soil Biol. Biochem. 68, 158–165 (2014).CAS 

    Google Scholar 
    61.Allan, J. et al. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ. Microbiol. Rep. 6, 136–144 (2014).CAS 
    PubMed 

    Google Scholar 
    62.Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).CAS 

    Google Scholar 
    63.Qiu, Q., Noll, M., Abraham, W.-R., Lu, Y. & Conrad, R. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J. 2, 602–614 (2008).CAS 
    PubMed 

    Google Scholar 
    64.Esson, K. C. et al. Alpha-and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl. Environ. Microbiol. 82, 2363–2371 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Kolb, S., Knief, C., Stubner, S. & Conrad, R. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69, 2423–2429 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Belova, S. E., Danilova, O. V., Ivanova, A. A., Merkel, A. Y. & Dedysh, S. N. Methane-oxidizing communities in lichen-dominated forested tundra are composed exclusively of high-affinity USCα methanotrophs. Microorganisms 8, 2047 (2020).CAS 
    PubMed Central 

    Google Scholar 
    68.Hirayama, H. et al. Methylomarinovum caldicuralii gen. nov., sp. Nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int. J. Syst. Evol. Microbiol. 64, 989–999 (2014).CAS 
    PubMed 

    Google Scholar 
    69.Graham, D. W., Chaudhary, J. A., Hanson, R. S. & Arnold, R. G. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb. Ecol. 25, 1–17 (1993).CAS 
    PubMed 

    Google Scholar 
    70.Macalady, J. L., McMillan, A. M., Dickens, A. F., Tyler, S. C. & Scow, K. M. Population dynamics of type I and II methanotrophic bacteria in rice soils. Environ. Microbiol. 4, 148–157 (2002).PubMed 

    Google Scholar 
    71.Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 

    Google Scholar 
    72.Zarzycki, J. & Fuchs, G. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus. Appl. Environ. Microbiol. 77, 6181–6188 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Ward, L. M. et al. Genomic evidence for phototrophic oxidation of small alkanes in a member of the chloroflexi phylum. bioRxiv 531582 (2019) https://doi.org/10.1101/531582.74.Khadem, A. F. et al. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193, 4438–4446 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Rasigraf, O., Kool, D. M., Jetten, M. S., Damsté, J. S. S. & Ettwig, K. F. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl. Environ. Microbiol. 80, 2451–2460 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Kalyuzhnaya, M. G., Gomez, O. A., Murrell J. C. The Methane-Oxidizing Bacteria (Methanotrophs). In: McGenity T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_10 (2019).77.Contin, M., Rizzardini, C. B., Catalano, L. & De Nobili, M. Contamination by mercury affects methane oxidation capacity of aerobic arable soils. Geoderma 189, 250–256 (2012).ADS 

    Google Scholar 
    78.Boden, R. & Murrell, J. C. Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 324, 106–110 (2011).CAS 
    PubMed 

    Google Scholar 
    79.Yan, X., Chu, F., Puri, A. W., Fu, Y. & Lidstrom, M. E. Electroporation-based genetic manipulation in type I methanotrophs. Appl. Environ. Microbiol. AEM 82, 2062–2069 (2016).ADS 
    CAS 

    Google Scholar 
    80.Strong, P. J. et al. The opportunity for high-performance biomaterials from methane. Microorganisms 4, 11 (2016).PubMed Central 

    Google Scholar 
    81.Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction. ISME J. 12, 1929–1939 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Iguchi, H., Yurimoto, H. & Sakai, Y. Soluble and particulate methane monooxygenase gene clusters of the type I methanotroph Methylovulum miyakonense HT12. FEMS Microbiol. Lett. 312, 71–76 (2010).CAS 
    PubMed 

    Google Scholar 
    83.Semrau, J. D. et al. Methanobactin and MmoD work in concert to act as the ‘copper-switch’in methanotrophs. Environ. Microbiol. 15, 3077–3086 (2013).CAS 
    PubMed 

    Google Scholar 
    84.Csaki, R., Bodrossy, L., Klem, J., Murrell, J. C. & Kovacs, K. L. Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): Cloning, sequencing and mutational analysis. Microbiology 149, 1785–1795 (2003).CAS 
    PubMed 

    Google Scholar 
    85.Lund, J., Woodland, M. P. & Dalton, H. Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 297–305 (1985).CAS 
    PubMed 

    Google Scholar 
    86.Lund, J. & Howard, D. Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH: Acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 291–296 (1985).CAS 
    PubMed 

    Google Scholar 
    87.Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl. Acad. Sci. 107, 14390–14395 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Katayama, T. et al. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl. Environ. Microbiol. 73, 2360–2363 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Scanlan, J., Dumont, M. G. & Murrell, J. C. Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol. Lett. 301, 181–187 (2009).CAS 
    PubMed 

    Google Scholar 
    90.Ali, H. & Murrell, J. C. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology 155, 761–771 (2009).CAS 
    PubMed 

    Google Scholar 
    91.Yu, Z., Groom, J., Zheng, Y., Chistoserdova, L. & Huang, J. Synthetic methane-consuming communities from a natural lake sediment. MBio 10, e01072-01019 (2019).
    Google Scholar 
    92.Tarlera, S. & Denner, E. B. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria. Int. J. Syst. Evol. Microbiol. 53, 1085–1091 (2003).CAS 
    PubMed 

    Google Scholar 
    93.Beller, H. R. et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol. 188, 1473–1488 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Kojima, H. & Fukui, M. Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 60, 2862–2866 (2010).CAS 
    PubMed 

    Google Scholar 
    95.Boden, R., Hutt, L. P. & Rae, A. W. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov. Transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and 4 new families within the orders Nitrosomonadales and Rhodocyclales. Int. J. Syst. Evol. Microbiol. 67, 1191–1205 (2017).CAS 
    PubMed 

    Google Scholar 
    96.Yoon, S., Cruz-García, C., Sanford, R., Ritalahti, K. M. & Löffler, F. E. Denitrification versus respiratory ammonification: Environmental controls of two competing dissimilatory NO3−/NO2− reduction pathways in Shewanella loihica strain PV-4. ISME J. 9, 1093 (2015).CAS 
    PubMed 

    Google Scholar 
    97.Bonin, P. Anaerobic nitrate reduction to ammonium in two strains isolated from coastal marine sediment: A dissimilatory pathway. FEMS Microbiol. Ecol. 19, 27–38 (1996).CAS 

    Google Scholar 
    98.Tiedje, J. M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol. Anaerob. Microorg. 717, 179–244 (1988).
    Google Scholar 
    99.Stein, L. Y. & Klotz, M. G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans. 39, 1826–1831 (2011).CAS 
    PubMed 

    Google Scholar 
    100.Tays, C., Guarnieri, M. T., Sauvageau, D. & Stein, L. Y. Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 9, 2239 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    101.van den Berg, E. M., Boleij, M., Kuenen, J. G., Kleerebezem, R. & van Loosdrecht, M. DNRA and denitrification coexist over a broad range of acetate/N-NO3− ratios, in a chemostat enrichment culture. Front. Microbiol. 7, 1842 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    102.Edwards, C. R. et al. Draft genome sequence of uncultured upland soil cluster Gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announc. 5, e00047-e117 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    103.Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Gupta, V., Smemo, K. A., Yavitt, J. B. & Basiliko, N. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Microb. Ecol. 63, 438–445 (2012).CAS 
    PubMed 

    Google Scholar  More

  • in

    The choice of the white clover population alters overyielding of mixtures with perennial ryegrass and chicory and underlying processes

    1.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720. https://doi.org/10.1038/379718a0 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127. https://doi.org/10.1126/science.286.5442.1123 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Kirwan, L. et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 95, 530–539. https://doi.org/10.1111/j.1365-2745.2007.01225.x (2007).Article 

    Google Scholar 
    4.Sturludóttir, E. et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 69, 229–240. https://doi.org/10.1111/gfs.12037 (2014).CAS 
    Article 

    Google Scholar 
    5.Roscher, C. et al. Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecol. Lett. 8, 419–429. https://doi.org/10.1111/j.1461-0248.2005.00736.x (2005).Article 

    Google Scholar 
    6.Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 1–5. https://doi.org/10.1038/nplants.2015.33 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Fridley, J. D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271–277. https://doi.org/10.1007/s00442-002-0965-x (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    8.Sanderson, M. A. et al. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 44, 1132–1144. https://doi.org/10.2135/cropsci2004.1132 (2004).Article 

    Google Scholar 
    9.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35. https://doi.org/10.1890/04-0922 (2005).Article 

    Google Scholar 
    10.Spehn, E. M. et al. Ecosystem effects of biodiversity manipulations in European grasslands. Ecol. Monogr. 75, 37–63. https://doi.org/10.1890/03-4101 (2005).Article 

    Google Scholar 
    11.Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390. https://doi.org/10.1016/j.tree.2017.02.011 (2017).Article 
    PubMed 

    Google Scholar 
    12.Brophy, C. et al. Major shifts in species’ relative abundance in grassland mixtures alongside positive effects of species diversity in yield: a continental-scale experiment. J. Ecol. 105, 1210–1222. https://doi.org/10.1111/1365-2745.12754 (2017).CAS 
    Article 

    Google Scholar 
    13.Nyfeler, D. et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 46, 683–691. https://doi.org/10.1111/j.1365-2664.2009.01653.x (2009).Article 

    Google Scholar 
    14.Søegaard, K., Gierus, M., Hopkins, A. & Halling, M. Temporary grassland – challenges in the future. Grassl. Sci. Eur. 12, 27–38. https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2007_GSE_vol12.pdf (2007).15.Høgh-Jensen, H., Nielsen, B. & Thamsborg, S. M. Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. Eur. J. Agron. 24, 247–256. https://doi.org/10.1016/j.eja.2005.10.007 (2006).CAS 
    Article 

    Google Scholar 
    16.Cong, W. F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-01632-4 (2017).CAS 
    Article 

    Google Scholar 
    17.Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. https://doi.org/10.1038/35083573 (2001).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Loreau, M., Sapijanskas, J., Isbell, F. & Hector, A. Niche and fitness differences relate the maintenance of diversity to ecosystem function: comment. Ecology 93, 1482–1487. https://doi.org/10.1890/11-0792.1 (2012).Article 
    PubMed 

    Google Scholar 
    19.Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 187–202. https://doi.org/10.1007/s11104-017-3496-2 (2018).CAS 
    Article 

    Google Scholar 
    20.Vermeulen, P. J., Van Ruijven, J., Anten, N. P. & Van der Werf, W. An evolutionary game theoretical model shows the limitations of the additive partitioning method for interpreting biodiversity experiments. J. Ecol. 105, 345–353. https://doi.org/10.1111/1365-2745.12706 (2017).Article 

    Google Scholar 
    21.Hille Ris Lambers, J. H. R., Harpole, W. S., Tilman, D., Knops, J. & Reich, P. B. Mechanisms responsible for the positive diversity–productivity relationship in Minnesota grasslands. Ecol. Lett. 7, 661–668. https://doi.org/10.1111/j.1461-0248.2004.00623.x (2004).22.Marquard, E. et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302. https://doi.org/10.1890/09-0069.1 (2009).Article 
    PubMed 

    Google Scholar 
    23.Lüscher, A., Suter, M., Finn, J., Collins, R. & Gastal, F. Quantification of the effect of legume proportion in the sward on yield advantage and options to keep stable legume proportions (over climatic zones relevant for livestock production). HAL 7, 1–35. https://hal.archives-ouvertes.fr/hal-01611404 (2014).24.Roscher, C., Schumacher, J., Weisser, W. W., Schmid, B. & Schulze, E. D. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia 154, 535–549. https://doi.org/10.1007/s00442-007-0846-4 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    25.Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J. Appl. Ecol. 50, 365–375. https://doi.org/10.1111/1365-2664.12041 (2013).Article 

    Google Scholar 
    26.Grange, G., Finn, J. A. & Brophy, C. Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. J. Appl. Ecol. 58, 1864–1875. https://doi.org/10.1111/1365-2664.13894 (2021).CAS 
    Article 

    Google Scholar 
    27.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. U.S.A. 104, 18123–18128. https://doi.org/10.1073/pnas.0709069104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Marquard, E. et al. Changes in the abundance of grassland species in monocultures versus mixtures and their relation to biodiversity effects. PLoS ONE 8, e75599. https://doi.org/10.1371/journal.pone.0075599 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642. https://doi.org/10.1038/s41559-017-0325-1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. Royal Soc. B 274, 871–876. https://doi.org/10.1098/rspb.2006.0351 (2007).Article 

    Google Scholar 
    31.Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C. & Jentsch, A. Extreme weather events and plant-plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol. Res. 29, 991–1001. https://doi.org/10.1007/s11284-014-1187-5 (2014).Article 

    Google Scholar 
    32.Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. https://doi.org/10.1126/science.1217909 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Roscher, C., Schmid, B., Kolle, O. & Schulze, E. D. Complementarity among four highly productive grassland species depends on resource availability. Oecologia 181, 571–582. https://doi.org/10.1007/s00442-016-3587-4 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    34.Frankow-Lindberg, B. E., Brophy, C., Collins, R. P. & Connolly, J. Biodiversity effects on yield and unsown species invasion in a temperate forage ecosystem. Ann. Bot. 103, 913–921. https://doi.org/10.1093/aob/mcp008 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Caradus, J. R. & Woodfield, D. R. World checklist of white clover varieties II. New Zealand J. Agric. Res. 40, 115–206. https://doi.org/10.1080/00288233.1997.9513239 (1997).Article 

    Google Scholar 
    36.Annicchiarico, P., Barrett, B., Brummer, E. C., Julier, B. & Marshall, A. H. Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 34, 327–380. https://doi.org/10.1080/07352689.2014.898462 (2015).CAS 
    Article 

    Google Scholar 
    37.Abberton, M. T. & Marshall, A. H. Progress in breeding perennial clovers for temperate agriculture. J. Agric. Sci. 143, 117–135. https://doi.org/10.1017/S0021859605005101 (2005).Article 

    Google Scholar 
    38.Evans, D. R., Williams, T. A. & Mason, S. A. Contribution of white clover varieties to total sward production under typical farm management. Grass Forage Sci. 45, 129–134. https://doi.org/10.1111/j.1365-2494.1990.tb02193.x (1990).Article 

    Google Scholar 
    39.Hooper, D. U. & Dukes, J. S. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 7, 95–105. https://doi.org/10.1046/j.1461-0248.2003.00555.x (2004).Article 

    Google Scholar 
    40.Ergon, Å. et al. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies: 1. dry-matter yield and dynamics of species composition. Grass Forage Sci. 71, 667–682. https://doi.org/10.1111/gfs.12250 (2016).CAS 
    Article 

    Google Scholar 
    41.Van Ruijven, J. & Berendse, F. Diversity–productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl. Acad. Sci. U.S.A. 102, 695–700. https://doi.org/10.1073/pnas.0407524102 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180. https://doi.org/10.1016/j.tree.2018.10.013 (2019).Article 
    PubMed 

    Google Scholar 
    43.Annicchiarico, P. Breeding white clover for increased ability to compete with associated grasses. J. Agric. Sci. 140, 255–266. https://doi.org/10.1017/S0021859603003198 (2003).Article 

    Google Scholar 
    44.Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111. https://doi.org/10.1038/nature13869 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Schöb, C. et al. Intraspecific genetic diversity and composition modify species-level diversity–productivity relationships. New Phytol. 205, 720–730. https://doi.org/10.1111/nph.13043 (2015).Article 
    PubMed 

    Google Scholar 
    46.Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology A review. Agron. Sustain. Dev. 37, 13. https://doi.org/10.1007/s13593-017-0418-x (2017).Article 

    Google Scholar 
    47.Van Ruijven, J. & Berendse, F. Long-term persistence of a positive plant diversity–productivity relationship in the absence of legumes. Oikos 118, 101–106. https://doi.org/10.1111/j.1600-0706.2008.17119.x (2009).Article 

    Google Scholar 
    48.Roscher, C. et al. A functional trait-based approach to understand community assembly and diversity–productivity relationships over 7 years in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 15, 139–149. https://doi.org/10.1016/j.ppees.2013.02.004 (2013).Article 

    Google Scholar 
    49.Roscher, C., Thein, S., Schmid, B. & Scherer-Lorenzen, M. Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. J. Ecol. 96, 477–488. https://doi.org/10.1111/j.1365-2745.2008.01353.x (2008).Article 

    Google Scholar 
    50.Kayser, M., Müller, J. & Isselstein, J. Grassland renovation has important consequences for C and N cycling and losses. Food Energy Secur. 7, e00146. https://doi.org/10.1002/fes3.146 (2018).Article 

    Google Scholar 
    51.Bundessortenamt. Beschreibende Sortenliste Futtergräser Esparsette, Klee, Luzerne 2020. https://www.bundessortenamt.de/bsa/media/Files/BSL/bsl_futtergraeser_2020.pdf (2020).52.Rognli, O. A., Pecetti, L., Kovi, M. R. & Annicchiarico, P. Grass and legume breeding matching the future needs of European grassland farming. Grass Forage Sci. 76, 175–185. https://doi.org/10.1111/gfs.12535 (2021).Article 

    Google Scholar 
    53.Annicchiarico, P. et al. Do we need specific breeding for legume-based mixtures?. Adv. Agron. 157, 141–215. https://doi.org/10.1016/bs.agron.2019.04.001 (2019).Article 

    Google Scholar 
    54.Sampoux, J. P., Giraud, H. & Litrico, I. Which recurrent selection scheme to improve mixtures of crop species? Theoretical expectations. G3-Genes Genom. Genet. 10, 89–107. https://doi.org/10.1534/g3.120.401092 (2020).55.Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).Article 

    Google Scholar 
    56.Pinheiro, J. et al. Nlme: Linear and nonlinear mixed effects models. R package version 3.1–137. https://CRAN.R-project.org/package=nlme (2018).57.Bartón, K. MuMIn: Multi-model inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019). More

  • in

    Heat sensitivity of first host and cercariae may restrict parasite transmission in a warming sea

    1.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    PubMed 

    Google Scholar 
    2.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 

    Google Scholar 
    3.Hoegh-Guldberg, O. et al. Impacts of 1.5 °C global warming on natural and human systems. In: […]. in Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 175–311 (2018).4.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).PubMed 

    Google Scholar 
    5.Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).ADS 

    Google Scholar 
    6.Marcogliese, D. J. The impact of climate change on the parasites and infectious diseases of aquatic animals. OIE Rev. Sci. Tech. 27, 467–484 (2008).CAS 

    Google Scholar 
    7.Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).
    Google Scholar 
    8.Mouritsen, K. N. & Poulin, R. Parasitism, climate oscillations and the structure of natural communities. Oikos 97, 462–468 (2002).
    Google Scholar 
    9.Poulin, R. & Mouritsen, K. N. Climate change, parasitism and the structure of intertidal ecosystems. J. Helminthol. 80, 183–191 (2006).CAS 
    PubMed 

    Google Scholar 
    10.Mouritsen, K. N., Sørensen, M. M., Poulin, R. & Fredensborg, B. L. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function. Glob. Change Biol. 24, 4340–4356 (2018).ADS 

    Google Scholar 
    11.James, C. C. et al. Marine host–pathogen dynamics: Influences of global climate change. Oceanography 31, 182–193 (2018).
    Google Scholar 
    12.Friesen, O. C., Poulin, R. & Lagrue, C. Temperature and multiple parasites combine to alter host community structure. Oikos 130(9), 1500–1511 (2021).

    Google Scholar 
    13.Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed 

    Google Scholar 
    14.Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Galaktionov, K. V. & Dobrovolskij, A. A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes. The American Journal of Semiotics vol. 4 (Springer-Science+Business Media Dordrecht, 2003).16.Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).CAS 
    PubMed 

    Google Scholar 
    17.Pietrock, M. & Marcogliese, D. J. Free-living endohelminth stages: At the mercy of environmental conditions. Trends Parasitol. 19, 293–299 (2003).PubMed 

    Google Scholar 
    18.Morley, N. J. Thermodynamics of cercarial survival and metabolism in a changing climate. Parasitology 138, 1442–1452 (2011).CAS 
    PubMed 

    Google Scholar 
    19.Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143–151 (2006).CAS 
    PubMed 

    Google Scholar 
    20.Thieltges, D. W. & Rick, J. Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis. Aquat. Organ. 73, 63–68 (2006).PubMed 

    Google Scholar 
    21.Selbach, C. & Poulin, R. Some like it hotter: Trematode transmission under changing temperature conditions. Oecologia 194, 745–755 (2020).ADS 
    PubMed 

    Google Scholar 
    22.Morley, N. J. Inbred laboratory cultures and natural trematode transmission under climate change. Trends Parasitol. 27, 286–287 (2011).PubMed 

    Google Scholar 
    23.Paull, S. H. & Johnson, P. T. J. Experimental warming drives a seasonal shift in the timing of host–parasite dynamics with consequences for disease risk. Ecol. Lett. 17, 445–453 (2014).PubMed 

    Google Scholar 
    24.Paull, S. H., Lafonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host–parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).ADS 

    Google Scholar 
    25.Studer, A., Poulin, R. & Tompkins, D. M. Local effects of a global problem: Modelling the risk of parasite-induced mortality in an intertidal trematode-amphipod system. Oecologia 172, 1213–1222 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    26.Studer, A., Thieltges, D. W. & Poulin, R. Parasites and global warming: Net effects of temperature on an intertidal host–parasite system. Mar. Ecol. Prog. Ser. 415, 11–22 (2010).ADS 

    Google Scholar 
    27.Mouritsen, K. N., Tompkins, D. M. & Poulin, R. Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146, 476–483 (2005).ADS 
    PubMed 

    Google Scholar 
    28.Selbach, C., Barsøe, M., Vogensen, T. K., Samsing, A. B. & Mouritsen, K. N. Temperature–parasite interaction: Do trematode infections protect against heat stress?. Int. J. Parasitol. 50, 1189–1194 (2020).PubMed 

    Google Scholar 
    29.Werding, B. Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Mar. Biol. 3, 306–333 (1969).
    Google Scholar 
    30.Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    31.Fredensborg, B. L., Mouritsen, K. N. & Poulin, R. Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarcinatus. Mar. Ecol. Prog. Ser. 290, 109–117 (2005).ADS 

    Google Scholar 
    32.Morón Lugo, S. C. et al. Warming and temperature variability determine the performance of two invertebrate predators. Sci. Rep. 10, 1–14 (2020).ADS 

    Google Scholar 
    33.Wolf, F. et al. High resolution water temperature data between January 1997 and December 2018 at the GEOMAR pier surface. Bremen PANGAEA. https://doi.org/10.1594/PANGAEA.919186 (2020).34.Franz, M., Lieberum, C., Bock, G. & Karez, R. Environmental parameters of shallow water habitats in the SW Baltic Sea. Earth Syst. Sci. Data 11, 947–957 (2019).ADS 

    Google Scholar 
    35.Lajeunesse, M. J. Bias and correction for the log response ratio in ecological meta-analysis. Ecology 96, 2056–2063 (2015).PubMed 

    Google Scholar 
    36.Gräwe, U., Friedland, R. & Burchard, H. The future of the western Baltic Sea: Two possible scenarios. Ocean Dyn. 63, 901–921 (2013).ADS 

    Google Scholar 
    37.Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).ADS 

    Google Scholar 
    38.Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).CAS 
    PubMed 

    Google Scholar 
    39.Clarke, A. P., Mill, P. J. & Grahame, J. The nature of heat coma in Littorina littorea (Mollusca: Gastropoda). Mar. Biol. 137, 447–451 (2000).
    Google Scholar 
    40.McDaniel, S. J. Littorina littorea: Lowered heat tolerance due to Cryptocotyle lingua. Exp. Parasitol. 25, 13–15 (1969).CAS 
    PubMed 

    Google Scholar 
    41.Ataev, G. Temperature influence on the development and biology of rediae and cercariae of Philophthalmus rhionica (Trematoda). Parazitologiâ 25, 349–359 (1991).
    Google Scholar 
    42.Paull, S. H. & Johnson, P. T. J. High temperature enhances host pathology in a snail-trematode system: Possible consequences of climate change for the emergence of disease. Freshw. Biol. 56, 767–778 (2011).
    Google Scholar 
    43.Paull, S. H., Raffel, T. R., Lafonte, B. E. & Johnson, P. T. J. How temperature shifts affect parasite production: Testing the roles of thermal stress and acclimation. Funct. Ecol. 29, 941–950 (2015).
    Google Scholar 
    44.Kuris, A. M. Effect of exposure to Echinostoma liei miracidia on growth and survival of young Biomphalaria glabrata snails. Int. J. Parasitol. 10, 303–308 (1980).CAS 
    PubMed 

    Google Scholar 
    45.Mouritsen, K. N. & Haun, S. C. B. Community regulation by herbivore parasitism and density: Trait-mediated indirect interactions in the intertidal. J. Exp. Mar. Biol. Ecol. 367, 236–246 (2008).
    Google Scholar 
    46.Bommarito, C. et al. Effects of first intermediate host density, host size and salinity on trematode infections in mussels of the south-western Baltic Sea. Parasitology 148, 486–494 (2021).CAS 
    PubMed 

    Google Scholar 
    47.McCarthy, A. M. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383–388 (1999).PubMed 

    Google Scholar 
    48.Morley, N. J. & Lewis, J. W. Thermodynamics of trematode infectivity. Parasitology 142, 585–597 (2015).CAS 
    PubMed 

    Google Scholar 
    49.Mouritsen, K. N. & Jensen, K. T. Parasite transmission between soft-bottom invertebrates: Temperature mediated infection rates and mortality in Corophium volutator. Mar. Ecol. Prog. Ser. 151, 123–134 (1997).ADS 

    Google Scholar 
    50.de Montaudouin, X., Wegeberg, A. M., Jensen, K. T. & Sauriau, P. G. Infection characteristics of Himasthla elongata cercariae in cockles as a function of water current. Dis. Aquat. Organ. 34, 63–70 (1998).
    Google Scholar 
    51.Vajedsamiei, J. et al. Simultaneous recording of filtration and respiration in marine organisms in response to short-term environmental variability. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10414 (2021).Article 

    Google Scholar 
    52.Koehler, A. V., Brown, B., Poulin, R., Thieltges, D. W. & Fredensborg, B. L. Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evol. Ecol. 26, 1497–1512 (2012).
    Google Scholar 
    53.Stunkard, H. W. The morphology and life history of the digenetic trematode, Himasthla littorinae sp. n. (Echinostomatidae). J. Parasitol. 52, 367–372 (2014).
    Google Scholar 
    54.Selbach, C. & Poulin, R. Parasites in space and time: A novel method to assess and illustrate host-searching behaviour of trematode cercariae. Parasitology 145, 1469–1474 (2018).PubMed 

    Google Scholar 
    55.Gorbushin, A. M. & Levakin, I. A. Encystment in vitro of the cercariae Himasthla elongata (Trematoda: Echinostomatidae). J. Evol. Biochem. Physiol. 41, 428–436 (2005).
    Google Scholar 
    56.Gorbushin, A. M. & Shaposhnikova, T. G. In vitro culture of the avian echinostome Himasthla elongata: From redia to marita. Exp. Parasitol. 101, 234–239 (2002).CAS 
    PubMed 

    Google Scholar 
    57.Levakin, I. A., Losev, E. A., Nikolaev, K. E. & Galaktionov, K. V. In vitro encystment of Himasthla elongata cercariae (Digenea, Echinostomatidae) in the haemolymph of blue mussels Mytilus edulis as a tool for assessing cercarial infectivity and molluscan susceptibility. J. Helminthol. 87, 180–188 (2013).CAS 
    PubMed 

    Google Scholar 
    58.Choisy, M., Brown, S. P., Lafferty, K. D. & Thomas, F. Evolution of trophic transmission in parasites: Why add intermediate hosts?. Am. Nat. 162, 172–181 (2003).PubMed 

    Google Scholar 
    59.Pechenik, J. & Fried, B. Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: A test of the energy limitation hypothesis. Parasitology 111, 373–378 (1995).
    Google Scholar 
    60.Fried, B. & Ponder, E. L. Effects of temperature on survival, infectivity and in vitro encystment of the cercariae of Echinostoma caproni. J. Helminthol. 77, 235–238 (2003).CAS 
    PubMed 

    Google Scholar 
    61.Bommarito, C. et al. Freshening rather than warming drives trematode transmission from periwinkles to mussels. Mar. Biol. 167, 1–12 (2020).
    Google Scholar 
    62.Morley, N. J. & Lewis, J. W. Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140, 121–1214 (2013).
    Google Scholar 
    63.Büttger, H. et al. Community dynamics of intertidal soft-bottom mussel beds over two decades. Helgol. Mar. Res. 62, 23–36 (2008).ADS 

    Google Scholar 
    64.Jaatinen, K., Westerbom, M., Norkko, A., Mustonen, O. & Koons, D. N. Detrimental impacts of climate change may be exacerbated by density-dependent population regulation in blue mussels. J. Anim. Ecol. 90, 562–573 (2021).PubMed 

    Google Scholar 
    65.Studer, A. & Poulin, R. Analysis of trait mean and variability versus temperature in trematode cercariae: Is there scope for adaptation to global warming?. Int. J. Parasitol. 44, 403–413 (2014).CAS 
    PubMed 

    Google Scholar 
    66.Berkhout, B. W., Lloyd, M. M., Poulin, R. & Studer, A. Variation among genotypes in responses to increasing temperature in a marine parasite: Evolutionary potential in the face of global warming?. Int. J. Parasitol. 44, 1019–1027 (2014).PubMed 

    Google Scholar 
    67.Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of salinity and temperature on egg development and miracidial emergence. Parasitology 82, 459–465 (1981).
    Google Scholar 
    68.Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of temperature and salinity on the life-span of the miracidium and the infection of the first intermediate host, Hydrobia ventrosa. Parasitology 84, 131–135 (1982).
    Google Scholar 
    69.de Montaudouin, X. et al. Digenean trematode species in the cockle Cerastoderma edule: Identification key and distribution along the North-Eastern Atlantic Shoreline. J. Mar. Biol. Assoc. U.K. 89, 543–556 (2009).
    Google Scholar 
    70.Richard, A., de Montaudouin, X., Rubiello, A. & Maire, O. Cockle as second intermediate host of trematode parasites: Consequences for sediment bioturbation and nutrient fluxes across the benthic interface. J. Mar. Sci. Eng. 9, 749 (2021).
    Google Scholar 
    71.Magalhães, L., Freitas, R. & de Montaudouin, X. How costly are metacercarial infections in a bivalve host? Effects of two trematode species on biochemical performance of cockles. J. Invertebr. Pathol. 177, 107479 (2020).PubMed 

    Google Scholar 
    72.Magalhães, L., de Montaudouin, X., Figueira, E. & Freitas, R. Trematode infection modulates cockles biochemical response to climate change. Sci. Total Environ. 637–638, 30–40 (2018).ADS 
    PubMed 

    Google Scholar 
    73.Magalhães, L. et al. Seasonal variation of transcriptomic and biochemical parameters of cockles (Cerastoderma edule) related to their infection by trematode parasites. J. Invertebr. Pathol. 148, 73–80 (2017).PubMed 

    Google Scholar 
    74.Bakhmet, I., Nikolaev, K. & Levakin, I. Effect of infection with Metacercariae of Himasthla elongata (Trematoda: Echinostomatidae) on cardiac activity and growth rate in blue mussels (Mytilus edulis) in situ. J. Sea Res. 123, 51–54 (2017).ADS 

    Google Scholar 
    75.Stier, T., Drent, J. & Thieltges, D. W. Trematode infections reduce clearance rates and condition in blue mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 529, 137–144 (2015).ADS 

    Google Scholar 
    76.de Montaudouin, X., Bazairi, H. & Culloty, S. Effect of trematode parasites on cockle Cerastoderma edule growth and condition index: A transplant experiment. Mar. Ecol. Prog. Ser. 471, 111–121 (2012).ADS 

    Google Scholar 
    77.Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 1–14 (2019).ADS 

    Google Scholar 
    78.Österblom, H. et al. Human-induced trophic cascades and ecological regime shifts in the baltic sea. Ecosystems 10, 877–889 (2007).
    Google Scholar 
    79.Zander, C. D. & Reimer, L. W. Parasitism at the ecosystem level in the Baltic Sea. Parasitology 124, 119–135 (2002).
    Google Scholar 
    80.Johnson, P. T. J. et al. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc. Natl. Acad. Sci. U. S. A. 104, 15781–15786 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Budria, A. & Candolin, U. How does human-induced environmental change influence host–parasite interactions?. Parasitology 141, 462–474 (2014).PubMed 

    Google Scholar 
    82.Aalto, S. L., Decaestecker, E. & Pulkkinen, K. A three-way perspective of stoichiometric changes on host–parasite interactions. Trends Parasitol. 31, 333–340 (2015).PubMed 

    Google Scholar 
    83.Vajedsamiei, J., Melzner, F., Raatz, M., Moron, S. & Pansch, C. Cyclic thermal fluctuations can be burden or relief for an ectotherm depending on fluctuations’ average and amplitude. Funct. Ecol. 35, 2483–2496 (2021).
    Google Scholar 
    84.Moisez, E., Spilmont, N. & Seuront, L. Microhabitats choice in intertidal gastropods is species-, temperature- and habitat-specific. J. Therm. Biol. 94, 102785 (2020).PubMed 

    Google Scholar 
    85.Bates, A. E., Leiterer, F., Wiedeback, M. L. & Poulin, R. Parasitized snails take the heat: A case of host manipulation?. Oecologia 167, 613–621 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    86.Shinagawa, K., Urabe, M. & Nagoshi, M. Relationships between trematode infection and habitat depth in a freshwater snail, Semisulcospira libertina (Gould). Hydrobiologia 397, 171–178 (1999).
    Google Scholar 
    87.Friesen, O. C., Poulin, R. & Lagrue, C. Parasite-mediated microhabitat segregation between congeneric hosts. Biol. Lett. 14, 20170671 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    88.Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).
    Google Scholar 
    89.Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS One 11, 1–21 (2016).
    Google Scholar 
    90.Solovyeva, A. et al. Reduced infectivity in Himasthla elongata (Trematoda, Himasthlidae) cercariae with deviant photoreaction. J. Helminthol. 94, 1–5 (2020).
    Google Scholar 
    91.de Montaudouin, X., Blanchet, H., Desclaux-Marchand, C., Lavesque, N. & Bachelet, G. Cockle infection by Himasthla quissetensis—I. From cercariae emergence to metacercariae infection. J. Sea Res. 113, 99–107 (2016).
    Google Scholar 
    92.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health vol. 36 (Springer, 2009).93.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    94.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.0. (2018).
    https://CRAN.R-project.org/package=DHARMa 1–36 https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf. Accessed 26 Feb 2021.95.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC, 2017).MATH 

    Google Scholar 
    96.Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).MathSciNet 
    CAS 

    Google Scholar 
    97.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    98.Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 1–11 (2017).
    Google Scholar 
    99.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Assessment of Regression Models Performance. CRAN. CRAN https://easystats.github.io/performance/ (2020) https://doi.org/10.1098/rsif.2017.0213. Accessed 1 Sept 2021.100.Fox, J. & Weisberg, S. An R Companion to Applied Regression. Robust Regression in R (Sage, 2019).
    Google Scholar 
    101.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar  More

  • in

    Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors

    1.Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).CAS 
    PubMed 

    Google Scholar 
    2.Hou, Q. & Kolodkin-Gal, I. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS Microbiol Ecol., https://doi.org/10.1093/femsec/fiaa142 (2020).3.Frost, I. et al. Cooperation, competition and antibiotic resistance in bacterial colonies. ISME J. 12, 1582–1593 (2018).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Niehus, R. & Mitri, S. Handling unpredictable ecosystems. Nat. Ecol. Evol. 2, 1207–1208 (2018).PubMed 

    Google Scholar 
    5.Cordero, O. X. et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337, 1228–1231 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Zhu, H., Sandiford, S. K. & van Wezel, G. P. Triggers and cues that activate antibiotic production by actinomycetes. J. Ind. Microbiol Biotechnol. 41, 371–386 (2014).CAS 
    PubMed 

    Google Scholar 
    7.Arakawa, K. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie Van. Leeuwenhoek 111, 743–751 (2018).CAS 
    PubMed 

    Google Scholar 
    8.Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol 11, 285–293 (2013).CAS 
    PubMed 

    Google Scholar 
    9.Westhoff, S., Kloosterman, A. M., van Hoesel, S. F. A., van Wezel, G. P. & Rozen, D. E. Competition sensing changes antibiotic production in streptomyces. mBio. 12, https://doi.org/10.1128/mBio.02729-20 (2021).10.Hou, Q. et al. Weaponizing volatiles to inhibit competitor biofilms from a distance. NPJ Biofilms Microbiomes 7, 2 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Shank, E. A. Considering the lives of microbes in microbial communities. mSystems 3, https://doi.org/10.1128/mSystems.00155-17 (2018).12.Shank, E. A. et al. Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc. Natl Acad. Sci. USA 108, E1236–E1243 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Lyons, N. A., Kraigher, B., Stefanic, P., Mandic-Mulec, I. & Kolter, R. A combinatorial kin discrimination system in Bacillus subtilis. Curr. Biol. 26, 733–742 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Stefanic, P., Kraigher, B., Lyons, N. A., Kolter, R. & Mandic-Mulec, I. Kin discrimination between sympatric Bacillus subtilis isolates. Proc. Natl Acad. Sci. USA 112, 14042–14047 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Kalamara, M., Spacapan, M., Mandic-Mulec, I. & Stanley-Wall, N. R. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol. Microbiol. 110, 863–878 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Harris, K. D. & Kolodkin-Gal, I. Applying the handicap principle to biofilms: condition-dependent signalling in Bacillus subtilis microbial communities. Environ. Microbiol., https://doi.org/10.1111/1462-2920.14497 (2018).17.Dorrestein, P. C. & Kelleher, N. L. Dissecting non-ribosomal and polyketide biosynthetic machineries using electrospray ionization Fourier-Transform mass spectrometry. Nat. Prod. Rep. 23, 893–918 (2006).CAS 
    PubMed 

    Google Scholar 
    18.Bloudoff, K. & Schmeing, T. M. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim Biophys. Acta Proteins Proteom. 1865, 1587–1604 (2017).CAS 
    PubMed 

    Google Scholar 
    19.Butcher, R. A. et al. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 1506–1509 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Tsuge, K., Ano, T. & Shoda, M. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Arch. Microbiol. 165, 243–251 (1996).CAS 
    PubMed 

    Google Scholar 
    21.Coutte, F. et al. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl Microbiol. 109, 480–491 (2010).CAS 
    PubMed 

    Google Scholar 
    22.Hilton, M. D., Alaeddinoglu, N. G. & Demain, A. L. Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino acid pathway. J. Bacteriol. 170, 482–484 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Zheng, G., Hehn, R. & Zuber, P. Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J. Bacteriol. 182, 3266–3273 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.De Gonzalo, C. V. G., Zhu, L. Y., Oman, T. J. & van der Donk, W. A. NMR structure of the S-linked glycopeptide sublancin 168. Acs Chem. Biol. 9, 796–801 (2014).
    Google Scholar 
    25.Ongena, M. & Jacques, P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16, 115–125 (2008).CAS 
    PubMed 

    Google Scholar 
    26.Magnuson, R., Solomon, J. & Grossman, A. D. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77, 207–216 (1994).CAS 
    PubMed 

    Google Scholar 
    27.Nakano, M. M. et al. Srfa is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus-Subtilis. J. Bacteriol. 173, 1770–1778 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Danevcic, T. et al. Surfactin facilitates horizontal gene transfer in Bacillus subtilis. Front. Microbiol. 12, doi:ARTN 657407 https://doi.org/10.3389/fmicb.2021.657407 (2021).29.Kluge, B., Vater, J., Salnikow, J. & Eckart, K. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus-Subtilis Atcc-21332. Febs Lett. 231, 107–110 (1988).CAS 
    PubMed 

    Google Scholar 
    30.Gonzalez, D. J. et al. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 157, 2485–2492 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rosenberg, G. et al. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. NPJ Biofilms Microbiomes 2, 15027 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    32.Falardeau, J., Wise, C., Novitsky, L. & Avis, T. J. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 39, 869–878 (2013).CAS 
    PubMed 

    Google Scholar 
    33.Hoe, B. C., Gorzelnik, K. V., Yang, J. Y., Hendricks, N. & Dorrestein, P. C. Enzymatic resistance to the lipopeptide surfactin as identi fi ed through imaging mass spectrometry of bacterial competition. https://doi.org/10.1073/pnas.1205586109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1205586109 (2012).34.Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl Acad. Sci. USA 109, E1743–E1752 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Hu, F. X., Liu, Y. Y. & Li, S. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microbial Cell Factor. 18, https://doi.org/10.1186/s12934-019-1089-x (2019).36.Grau, A., Go, J. C. & Ortiz, A. A study on the interactions of surfactin with phospholipid vesicles. Biochim. Biophys. Acta. 1418, 307–319 (1999).37.Straight, P. D., Fischbach, M. A., Walsh, C. T., Rudner, D. Z. & Kolter, R. A singular enzymatic megacomplex from Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 305–310 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    38.Vargas-Bautista, C., Rahlwes, K. & Straight, P. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis. J. Bacteriol. 196, 717–728 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    39.Rajavel, M., Mitra, A. & Gopal, B. Role of Bacillus subtilis BacB in the synthesis of bacilysin. J. Biol. Chem. 284, 31882–31892 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Chen, X. H. et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140, 38–44 (2009).CAS 
    PubMed 

    Google Scholar 
    41.Wu, L. M. et al. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci. Rep. 5, https://doi.org/10.1038/srep12975 (2015).42.Inaoka, T., Takahashi, K., Ohnishi-Kameyama, M., Yoshida, M. & Ochi, K. Guanine nucleotides guanosine 5’-diphosphate 3’-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem. 278, 2169–2176 (2003).CAS 
    PubMed 

    Google Scholar 
    43.Rapp, C., Jung, G., Katzer, W. & Loeffler, W. Chlorotetain from Bacillus-Subtilis, an antifungal dipeptide with an unusual chlorine-containing amino-acid. Angew. Chem. Int Ed. 27, 1733–1734 (1988).
    Google Scholar 
    44.Phister, T. G., O’Sullivan, D. J. & McKay, L. L. Identification of bacilysin, chlorotetaine, and iturin a produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Appl Environ. Microbiol 70, 631–634 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Tsuge, K., Ano, T., Hirai, M., Nakamura, Y. & Shoda, M. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43, 2183–2192 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Msadek, T., Kunst, F., Klier, A. & Rapoport, G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173, 2366–2377 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Verhamme, D. T., Kiley, T. B. & Stanley-Wall, N. R. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol. Microbiol. 65, 554–568 (2007).CAS 
    PubMed 

    Google Scholar 
    48.Comella, N. & Grossman, A. D. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol. Microbiol. 57, 1159–1174 (2005).CAS 
    PubMed 

    Google Scholar 
    49.Wolf, D. et al. The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs. Nucleic Acids Res. 44, 2160–2172 (2016).CAS 
    PubMed 

    Google Scholar 
    50.Koroglu, T. E., Ogulur, I., Mutlu, S., Yazgan-Karatas, A. & Ozcengiz, G. Global regulatory systems operating in Bacilysin biosynthesis in Bacillus subtilis. J. Mol. Microbiol Biotechnol. 20, 144–155 (2011).CAS 
    PubMed 

    Google Scholar 
    51.Ceyhan, D. I., Celekli, A. & Can, C. Relationship between soil composition, diversity and antifungal properties of Bacillus spp. isolated from southeastern Anatolia. Biotechnol. Biotec. Eq. 33, 170–177 (2019).CAS 

    Google Scholar 
    52.Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N. & Bagyaraj, D. J. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128, 1583–1594 (2020).CAS 
    PubMed 

    Google Scholar 
    53.Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. & Kovacs, A. T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol., https://doi.org/10.1038/s41579-021-00540-9 (2021).54.Dergham, Y. et al. Comparison of the genetic features involved in Bacillus subtilis biofilm formation using multi-culturing approaches. Microorganisms 9, https://doi.org/10.3390/microorganisms9030633 (2021).55.Oppenheimer-Shaanan, Y. et al. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms Microbiomes 2, 15031 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    56.Barabesi, C. et al. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189, 228–235 (2007).CAS 
    PubMed 

    Google Scholar 
    57.Marvasi, M., Visscher, P. T., Perito, B., Mastromei, G. & Casillas-Martinez, L. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol. 71, 341–350 (2010).CAS 
    PubMed 

    Google Scholar 
    58.Richter, M. & Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. P Natl Acad. Sci. USA 106, 19126–19131 (2009).ADS 
    CAS 

    Google Scholar 
    59.Goldoni, M. & Johansson, C. A mathematical approach to study combined effects of toxicants in vitro: Evaluation of the Bliss independence criterion and the Loewe additivity model. Toxicol. Vitr. 21, 759–769 (2007).60.Fan, F. & Wood, K. V. Bioluminescent assays for high-throughput screening. Assay. Drug Dev. Technol. 5, 127–136 (2007).CAS 
    PubMed 

    Google Scholar 
    61.McLoon, A. L., Kolodkin-Gal, I., Rubinstein, S. M., Kolter, R. & Losick, R. Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J. Bacteriol. 193, 679–685 (2011).CAS 
    PubMed 

    Google Scholar 
    62.Irazoki, O., Hernandez, S. B. & Cava, F. Peptidoglycan muropeptides: release, perception, and functions as signaling molecules. Front. Microbiol. 10, https://doi.org/10.3389/fmicb.2019.00500 (2019).63.Virmani, R. et al. The Ser/Thr protein kinase PrkC imprints phenotypic memory in Bacillus anthracis spores by phosphorylating the glycolytic enzyme enolase. J. Biol. Chem. 294, 8930–8941 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    64.Lopez, D., Vlamakis, H. & Kolter, R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev. 33, 152–163 (2009).CAS 
    PubMed 

    Google Scholar 
    65.Libby, E. A., Goss, L. A. & Dworkin, J. The eukaryotic-like Ser/Thr kinase PrkC regulates the essential WalRK two-component system in Bacillus subtilis. PLoS Genet. 11, e1005275 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Rismondo, J., Percy, M. G. & Grundling, A. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. J. Biol. Chem. 293, 3293–3306 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Audisio, M. C. Gram-positive bacteria with probiotic potential for the Apis mellifera L. Honey Bee: the experience in the Northwest of Argentina. Probiotics Antimicrob. Proteins 9, 22–31 (2017).CAS 
    PubMed 

    Google Scholar 
    68.Emmert, E. A. & Handelsman, J. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol. Lett. 171, 1–9 (1999).CAS 
    PubMed 

    Google Scholar 
    69.Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Raaijmakers, J. M., De Bruijn, I., Nybroe, O. & Ongena, M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34, 1037–1062 (2010).CAS 
    PubMed 

    Google Scholar 
    71.Gibbs, K. A., Urbanowski, M. L. & Greenberg, E. P. Genetic determinants of self identity and social recognition in bacteria. Science 321, 256–259 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Wenren, L. M., Sullivan, N. L., Cardarelli, L., Septer, A. N. & Gibbs, K. A. Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio. 4, https://doi.org/10.1128/mBio.00374-13 (2013).73.Hou, Q. & Kolodkin-Gal, I. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS Microbiol. Ecol. 96, https://doi.org/10.1093/femsec/fiaa142 (2020).74.Shivers, R. P. & Sonenshein, A. L. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol. Microbiol. 53, 599–611 (2004).CAS 
    PubMed 

    Google Scholar 
    75.Zhang, Z. R. et al. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci. Adv. 6, https://doi.org/10.1126/sciadv.aay5781 (2020).76.Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 32, 149–167 (2008).CAS 
    PubMed 

    Google Scholar 
    77.Bhavsar, A. P. & Brown, E. D. Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol. Microbiol. 60, 1077–1090 (2006).CAS 
    PubMed 

    Google Scholar 
    78.Korgaonkar, A., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl Acad. Sci. USA 110, 1059–1064 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    79.Korgaonkar, A. K. & Whiteley, M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J. Bacteriol. 193, 909–917 (2011).CAS 
    PubMed 

    Google Scholar 
    80.Sicard, J. F. et al. N-Acetyl-glucosamine influences the biofilm formation of Escherichia coli. Gut Pathog. 10, 26 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    81.Aliashkevich, A., Alvarez, L. & Cava, F. New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front. Microbiol. 9, 683 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    82.Rigali, S. et al. Feast or famine: The global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 9, 670–675 (2008).83.Vollmer, W. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev. 32, 287–306 (2008).CAS 
    PubMed 

    Google Scholar 
    84.Kim, S. J., Chang, J. & Singh, M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys. Acta 1848, 350–362 (2015).CAS 
    PubMed 

    Google Scholar 
    85.Vetsigian, K., Jajoo, R. & Kishony, R. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol. 9, e1001184 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Cuthbertson, L. & Nodwell, J. R. The TetR family of regulators. Microbiol Mol. Biol. Rev. 77, 440–475 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Cava, F., de Pedro, M. A., Lam, H., Davis, B. M. & Waldor, M. K. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 30, 3442–3453 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.van der Es, D., Hogendorf, W. F., Overkleeft, H. S., van der Marel, G. A. & Codee, J. D. Teichoic acids: synthesis and applications. Chem. Soc. Rev. 46, 1464–1482 (2017).PubMed 

    Google Scholar 
    89.Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).CAS 
    PubMed 

    Google Scholar 
    90.Dubnau, D. Genetic competence in Bacillus subtilis. Microbiol Rev. 55, 395–424 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Stefanic, P. et al. Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis. Nat. Commun. 12, 3457 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Salvadori, G., Junges, R., Morrison, D. A. & Petersen, F. C. Competence in Streptococcus pneumoniae and close commensal relatives: mechanisms and implications. Front. Cell Infect. Microbiol. 9, 94 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Jowett, G. H. Statistical-methods for research workers – Fisher, Ra. R. Stat. Soc. C.-Appl. 5, 68–70 (1956).
    Google Scholar 
    94.Farzand, A. et al. Marker assisted detection and LC-MS analysis of antimicrobial compounds in different Bacillus strains and their antifungal effect on Sclerotinia sclerotiorum. Biol. Control 133, 91–102 (2019).CAS 

    Google Scholar 
    95.Paksanont, S. et al. Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Sci. Rep. 8, 9167 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Andreevskaya, M. et al. Food spoilage-associated Leuconostoc, Lactococcus, and Lactobacillus species display different survival strategies in response to competition. Appl. Environ. Microbiol. 84, https://doi.org/10.1128/AEM.00554-18 (2018).97.Ju, S. Y. et al. Isolation and optimal fermentation condition of the Bacillus subtilis Subsp. natto strain WTC016 for nattokinase production. Fermentation-Basel 5, https://doi.org/10.3390/fermentation5040092 (2019).98.Mouloud, G., Daoud, H., Bassem, J., Atef, I. & Hani, B. New bacteriocin from Bacillus clausii strainGM17: purification, characterization, and biological activity. Appl. Biochem. Biotech. 171, 2186–2200 (2013).CAS 

    Google Scholar  More