More stories

  • in

    Biogeochemical feedbacks to ocean acidification in a cohesive photosynthetic sediment

    1.Revelle, R. & Suess, H. E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9, 18–27 (1957).ADS 
    CAS 

    Google Scholar 
    2.Frankignoulle, M. A complete set of buffer factors for acid/base CO2 system in seawater. J. Mar. Syst. 5, 111–118 (1994).
    Google Scholar 
    3.Egleston, E. S., Sabine, C. L. & Morel, F. M. M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 24, GB1002 (2010).ADS 

    Google Scholar 
    4.Bates, N. et al. A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27(1), 126–141 (2014).MathSciNet 

    Google Scholar 
    5.Lauvset, S., Gruber, N., Landschützer, P., Olsen, A. & Tjiputra, J. Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences 12(5), 1285–1298 (2015).ADS 

    Google Scholar 
    6.Ríos, A. F. et al. Decadal acidification in the Atlantic. Proc. Natl. Acad. Sci. 112(32), 9950–9955 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Schulz, K. G. & Riebesell, U. Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon dioxide. Mar. Biol. 160, 1889–1899 (2013).CAS 
    PubMed 

    Google Scholar 
    8.Provoost, P., van Heuven, S., Soetaert, K., Laane, R. W. P. M. & Middelburg, J. J. Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences 7, 3869–3878 (2010).ADS 
    CAS 

    Google Scholar 
    9.Hofmann, G. E. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Borges, A. V. & Gypens, N. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol. Oceanogr. 55, 346–353 (2010).ADS 
    CAS 

    Google Scholar 
    11.Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).ADS 
    CAS 

    Google Scholar 
    12.Sunda, W. G. & Cai, W.-J. Eutrophication induced CO2-acidification of subsurface coastal waters: Interactive effects of temperature, salinity, and atmospheric pCO2. Environ. Sci. Technol. 46, 10651–10659 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Jury, C. P., Thomas, F. I. M., Atkinson, M. J. & Toonen, R. J. Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change. Water 5, 1303–1325 (2013).CAS 

    Google Scholar 
    14.Hagens, M. et al. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin. Biogeosciences 12, 1561–1583 (2015).ADS 

    Google Scholar 
    15.Santschi, P., Höhener, P., Benoit, G. & Buchholtz-ten, B. M. Chemical processes at the sediment–water interface. Mar. Chem. 30, 269–315 (1990).CAS 

    Google Scholar 
    16.Pawlik, J. R. Chemical ecology of the settlement of benthic marine invertebrates. Oceangr. Mar. Biol. Annu. Rev. 30, 273–335 (1992).
    Google Scholar 
    17.Marinelli, R. L. & Woodin, S. A. Experimental evidence for linkages between infaunal recruitment, disturbance, and sediment surface chemistry. Limnol. Oceanogr. 47(1), 221–229 (2002).ADS 
    CAS 

    Google Scholar 
    18.Clements, J. C. & Hunt, H. L. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser. 536, 259–279 (2015).ADS 
    CAS 

    Google Scholar 
    19.Vopel, K., Laverock, B., Cary, C. & Pilditch, C. A. Effects of warming and CO2 enrichment on O2 consumption, porewater oxygenation and pH of subtidal silt sediment. Aquat. Sci. 83, 8 (2021).CAS 

    Google Scholar 
    20.Green, M. A., Jones, M. E., Boudreau, C. L., Moore, R. L. & Westman, B. A. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnol. Oceanogr. 49(3), 727–734 (2004).ADS 

    Google Scholar 
    21.Green, M. A., Waldbusser, G., Reilly, S., Emerson, K. & O’Donnell, S. Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr. 54(4), 1037–1047 (2009).ADS 
    CAS 

    Google Scholar 
    22.Green, M. A., Waldbusser, G. G., Hubazc, L., Cathcart, E. & Hall, J. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuaries Coasts 36, 18–27 (2013).CAS 

    Google Scholar 
    23.Clements, J. C., Woodard, K. D. & Hunt, H. L. Porewater acidification alters the burrowing behavior and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria). J. Exp. Mar. Biol. Ecol. 477, 103–111 (2016).
    Google Scholar 
    24.Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA = 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Acta 192, 318–337 (2016).ADS 
    CAS 

    Google Scholar 
    25.Nimer, N. A., Brownlee, C. & Merrett, M. J. Extracellular carbonic anhydrase facilitates carbon dioxide availability for photosynthesis in the marine dinoflagellate Prorocentrum micans. Plant Physiol. 120, 105–112 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hopkinson, B. M., Meile, C. & Shen, C. Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant Physiol. 162, 1142–1152 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Tachibana, M. et al. Localization of putative carbonic anhydrase in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth. Res. 109, 205–221 (2011).CAS 
    PubMed 

    Google Scholar 
    28.Samukawa, M., Shen, C., Hopkinson, B. M. & Matsuda, Y. Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana. Photosynth. Res. 121, 235–249 (2014).CAS 
    PubMed 

    Google Scholar 
    29.Matsuda, Y., Hopkinson, B. M., Nakajima, K., Dupont, C. L. & Tsuji, Y. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: A gateway to carbon metabolism. Philos. Trans. R. Soc. B 372, 20160403 (2017).
    Google Scholar 
    30.Milligan, A. J. & Morel, F. M. M. A proton buffering role for silica in diatoms. Science 297, 1848–1850 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    31.Subhas, A. V. et al. Catalysis and chemical mechanisms of calcite dissolution in seawater. Proc. Natl. Acad. Sci. 114, 8175–8180 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Middelburg, J. J., Soetaert, K. & Hagens, M. Ocean alkalinity, buffering and biogeochemical processes. Rev. Geophys. 58, e2019RG000681 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R. & Greenwood, J. The effect of biogeochemical processes on pH. Mar. Chem. 105, 30–51 (2007).CAS 

    Google Scholar 
    34.Zhu, Q., Aller, R. C. & Fan, Y. Two-dimensional pH distributions and dynamics in bioturbated marine sediments. Geochim. Cosmochim. Acta 70, 4933–4949 (2006).ADS 
    CAS 

    Google Scholar 
    35.Vopel, K., Del-Río, C. & Pilditch, C. A. Effects of CO2 enrichment on benthic primary production and inorganic nitrogen fluxes in two coastal sediments. Sci. Rep. 8, 1035 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167, 191–194 (1975).CAS 

    Google Scholar 
    37.Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to best practices for ocean CO2 measurements: PICES Special Publication 3. http://cdiac.ornl.gov/oceans/Handbook_2007.html (2007).38.Lewis, E. & Wallace, D. W. R. Program Developed for CO2 System Calculations. ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1998).
    Google Scholar 
    39.Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCL(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).CAS 

    Google Scholar 
    40.Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. N. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).ADS 
    CAS 

    Google Scholar 
    41.Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissolution of carbonic acid in seawater media. Deep Sea Res. 34(10), 1733–1743 (1987).ADS 
    CAS 

    Google Scholar 
    42.Berg, P. N., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).ADS 
    CAS 

    Google Scholar 
    43.Revsbech, N. P., Nielsen, L. P. & Ramsing, N. B. A novel microsensor for determination of apparent diffusivity in sediments. Limnol. Oceanogr. 43, 986–992 (1998).ADS 
    CAS 

    Google Scholar 
    44.Vopel, K., Pilditch, C. A., Wilson, P. & Ellwood, M. J. Oxidation of surface sediment: Effects of disturbance depth and seawater flow speed. Mar. Ecol. Prog. Ser. 392, 43–55 (2009).ADS 
    CAS 

    Google Scholar 
    45.Broecker, W. S. & Peng, T.-H. Gas exchange rates between air and sea. Tellus 26(1–2), 21–35 (1974).ADS 
    CAS 

    Google Scholar 
    46.Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, 2009).
    Google Scholar 
    47.Li, Y.-H. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38(5), 703–714 (1974).ADS 
    CAS 

    Google Scholar 
    48.Ullman, W. J. & Aller, R. C. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr. 27(3), 552–556 (1982).ADS 
    CAS 

    Google Scholar 
    49.Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30(1), 111–122 (1985).ADS 

    Google Scholar 
    50.Rasmussen, H. & Jørgensen, B. B. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: Role of molecular diffusion. Mar. Ecol. Prog. Ser. 81, 289–303 (1992).ADS 
    CAS 

    Google Scholar 
    51.Nordstrom, D. K., Jenne, E. A. & Ball, J. W. Redox equilibria of iron in acid mine waters. In Chemical Modeling in Aqueous Systems. American Chemical Society Symposium Series Vol. 93 (ed. Jenne, E. A.) 57–79 (American Chemical Society, 1979).
    Google Scholar 
    52.Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: Reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).
    Google Scholar  More

  • in

    Reconciling biome-wide conservation of an apex carnivore with land-use economics in the increasingly threatened Pantanal wetlands

    1.Inskip, C. & Zimmermann, A. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43(1), 18–34 (2009).
    Google Scholar 
    2.Weber, W. & Rabinowitz, A. A global perspective on large carnivore conservation. Conserv. Biol. 10(4), 1046–1054 (1996).
    Google Scholar 
    3.Treves, A. & Karanth, U. K. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17(6), 1491–1499 (2003).
    Google Scholar 
    4.Romero-Muñoz, A., Morato, R., Tortato, F. & Kuemmerle, T. Beyond fangs: beef and soybean trade drive jaguar extinction. Front. Ecol. Environ. 18(2), 67–68 (2020).
    Google Scholar 
    5.Packer, C. et al. Conserving large carnivores: dollars and fence. Ecol. Lett. 16(5), 635–641 (2013).CAS 
    PubMed 

    Google Scholar 
    6.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    PubMed 

    Google Scholar 
    7.Quigley, H., Foster, R., Petracca, L., Payan, E., Salom, R. & Harmsen, B. Panthera onca. The IUCN Red List of Threatened Species 2017, e.T15953A123791436 (2017).8.Menezes, J. F. S., Tortato, F. R., Oliveira-Santos, L. G., Roque, F. O. & Morato, R. G. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv. Sci. Pract. 3(8), e477 (2021).
    Google Scholar 
    9.Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).
    Google Scholar 
    10.Sanderson, E. W. et al. Planning to save a species: the jaguar as a model. Conserv. Biol. 16(1), 1–15 (2002).
    Google Scholar 
    11.De Paula, R. C., Desbiez, A. & Cavalcanti, S. M. C. Plano de Ação Nacional para Conservação da Onça-pintada. Série Espécies Ameaçadas (Instituto Chico Mendes de Conservação da Biodiversidade, Atibaia, 2013).
    Google Scholar 
    12.Seidl, A. F., Silva, J. S. V. & Moraes, A. S. Cattle ranching and deforestation in the Brazilian Pantanal. Ecol. Econ. 36(3), 413–425 (2001).
    Google Scholar 
    13.Tomas, W. M. et al. Sustainability agenda for the Pantanal wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30 (2019).ADS 

    Google Scholar 
    14.Tortato, F. R. & Izzo, T. J. Advances and barriers to the development of jaguar-tourism in the Brazilian Pantanal. Perspect. Ecol. Conserv. 15(1), 61–63 (2017).
    Google Scholar 
    15.Tortato, F. R., Hoogesteijn, R. & Elbroch, M. Have natural disasters created opportunities to initiate Big Cat Tourism in South America?. Biotropica 52(3), 400–403 (2020).
    Google Scholar 
    16.Quigley, H. & Crawshaw, P. G. Jr. A conservation plan for the jaguar (Panthera onca) in the Pantanal region of Brazil. Biol. Conserv. 61(3), 149–157 (1992).
    Google Scholar 
    17.Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).
    Google Scholar 
    18.Junk, W. J. et al. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aqua Sci. 69, 278–309 (2006).
    Google Scholar 
    19.Guerra, A. et al. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91, 104388 (2020).
    Google Scholar 
    20.Marengo, J. A. et al. Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Front. Water 3, 1–20 (2021).
    Google Scholar 
    21.Berlinck, C. N. et al. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Brazilian Journal of Biology 82, e244200 (2021).CAS 

    Google Scholar 
    22.Garcia, L. C. et al. Record-breaking wildfires in the world’s largest continuous tropical wetland: integrative fire management is urgently needed for both biodiversity and humans. J. Environ. Manag. 293, 112870 (2021).CAS 

    Google Scholar 
    23.Libonati, R., Sander, L. A., Peres, L. F., DaCamara, C. C. & Garcia, L. C. Rescue Brazil’s burning Pantanal wetlands. Nature 588, 217–220 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    24.Hoogesteijn, A. & Hoogesteijn, R. Cattle ranching and biodiversity conservation as allies in South America’s flooded savannas. Great Plains Res. 20, 37–50 (2010).
    Google Scholar 
    25.Ferraz, K. M. P. M. B., Ferraz, S. F. B., De Paula, R. C., Beisiegel, B. & Breitenmoser, C. Species distribution modeling for conservation purposes. Natureza Conservação 10(2), 214–220 (2012).
    Google Scholar 
    26.Zimmermann, A., Walpole, M. J. & Leader-Williams, N. Cattle ranchers’ attitudes to conflicts with jaguar Panthera onca in the Pantanal of Brazil. Oryx 39(4), 406–412 (2005).
    Google Scholar 
    27.Marchini, S. & Macdonald, D. W. Predicting rancher’s intention to kill jaguars: case studies in Amazonia and Pantanal. Biol. Conserv. 147(1), 213–221 (2012).
    Google Scholar 
    28.Abreu, U. G. P., McManus, C. & Santos, A. S. Cattle ranching, conservation and transhumance in Brazilian Pantanal. Pastoralism 1(1), 99–114 (2010).
    Google Scholar 
    29.Alho, C. J. R. & Sabino, J. A conservation agenda for the Pantanal’s biodiversity. Braz. J. Biol. 71(1), 327–335 (2011).CAS 
    PubMed 

    Google Scholar 
    30.Hoogesteijn, R. et al. Conservación de Jaguares fuera de Áreas Protegidas: Turismo de Observación de Jaguares en Propiedades Privadas en El Pantanal. In Conservación de grandes vertebrados en áreas no protegidas de Colombia, Venezuela y Brasil (eds Payan-Garrido, E. et al.) 259–274 (Panthera. Fundación Herencia Ambiental Caribe e Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Cartagena, 2015).
    Google Scholar 
    31.Tyagi, A. et al. Physiological stress responses of tigers due to anthropogenic disturbance especially tourism in two central Indian tiger reserves. Conservation Physiology 7(1), coz045 (2020).
    Google Scholar 
    32.Hayward, M. W. & Hayward, G. J. The impact of tourists on lion Panthera leo behaviour, stress and energetics. Acta Theriol. 54(3), 219–224 (2009).
    Google Scholar 
    33.Romanach, S., Lindsey, P. A. & Woodroffe, R. Determinants of attitudes towards predators in central Kenya and suggestions for increasing tolerance in livestock dominated landscapes. Oryx 41(2), 185–195 (2007).
    Google Scholar 
    34.Hemson, G. S., Maclennan, S., Mills, G., Johnson, P. & Macdonald, D. Community, lions, livestock and money: a spatial and social analysis of attitudes to wildlife and the conservation value of tourism in a human–carnivore conflict in Botswana. Biol. Conserv. 142(11), 2718–2725 (2009).
    Google Scholar 
    35.Mossaz, A., Buckley, R. C. & Castley, J. G. Ecotourism contributions to conservation of African big cats. J. Nat. Conserv. 28, 112–118 (2015).
    Google Scholar 
    36.Macdonald, C. et al. Conservation potential of apex predator tourism. Biol. Conserv. 215, 132–141 (2017).
    Google Scholar 
    37.Campos, Z., Mourão, G. & Magnusson, W. Drought drastically reduces suitable habitat for Yacare caiman. Crocodile Specialist Group Newsl. 39(4), 14–16 (2020).
    Google Scholar 
    38.Marengo, J. A., Oliveira, G. S. & Alves, L. M. Climate change scenarios in the Pantanal. In Dynamics of the Pantanal Wetland in South America (eds Bergier, I. & Assine, M. L.) 227–238 (Springer International Publishing, Heidelberg, 2016).
    Google Scholar 
    39.Thielen, D. et al. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLOS ONE 15(1), e0227437 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Bergier, I. et al. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 619, 1116–1125 (2018).ADS 
    PubMed 

    Google Scholar 
    41.Araujo, A. et al. Relationships between variability in precipitation, river levels, and beef cattle production in the Brazilian Pantanal. Wetl. Ecol. Manage. 26(5), 829–848 (2018).
    Google Scholar 
    42.Filho, W. L., Azeiteira, U. M., Salvia, A. L., Fritzen, B. & Libonati, R. Fire in Paradise: why the Pantanal is burning. Environ. Sci. Policy 123, 31–34 (2021).
    Google Scholar 
    43.Brown, J. L. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
    Google Scholar 
    44.Morato, R. G. et al. Space use and movement of a Neotropical top predator: the endangered jaguar. PLOS ONE 11(12), e0168176 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    45.Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    46.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
    Google Scholar 
    47.Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008).
    Google Scholar 
    48.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40(7), 887–893 (2017).
    Google Scholar 
    49.Pinto, M. M., Libonati, R., Trigo, R. M., Trigo, I. F. & DaCamara, C. C. A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS J. Photogramm. Remote. Sens. 160, 260–274 (2020).ADS 

    Google Scholar 
    50.LASA – Laboratório de Aplicações de Satélites Ambientais. ALARMES – LASA. https://lasa.ufrj.br/alarmes/ (2021).51.Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse (2017).52.Bray, A. et al. infer: Tidy Statistical Inference. R package version 0.5.4. https://cran.r-project.org/web/packages/infer/index.html (2021).53.Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: with Applications in R (Springer, Berlin, 2020).MATH 

    Google Scholar  More

  • in

    Pea peels as a value-added food ingredient for snack crackers and dry soup

    1.Klupsaite, D. & Gražina, J. Legume: Composition, protein extraction and functional properties. A review. Chem. Technol. 66 (2015).2.Tassoni, A., et al. State-of-the-art production chains for peas, beans and chickpeas-valorization of agro-industrial residues and applications of derived extracts. Molecules (Basel, Switzerland) 25 (2020).3.Vilariño, M. V., Franco, C. & Quarrington, C. Food loss and waste reduction as an integral part of a circular economy. Front. Environ. Sci. 5 (2017).4.Malenica, D. & Bhat, R. Review article: Current research trends in fruit and vegetables wastes and by-products management-scope and opportunities in the estonian context. Agron. Res. 18, 1760–1795 (2020).
    Google Scholar 
    5.Tharanathan, R. N. & Mahadevamma, S. Grain legumes—a boon to human nutrition. Trends Food Sci. Technol. 14, 507–518 (2003).CAS 

    Google Scholar 
    6.Nguyen, T. M., Phoukham, K. & Ngo, T. V. Formulation and quality evaluation of pearl oyster mushroom soup powder supplement with some kinds of legumes and vegetables. Acta Sci. Polonorum Technol. Aliment. 19, 435–443 (2020).CAS 

    Google Scholar 
    7.Apprich, S. et al. Wheat bran-based biorefinery 2: Valorization of products. LWT Food Sci. Technol. 56, 222–231 (2014).CAS 

    Google Scholar 
    8.Xia, N. et al. Characterization and in vitro digestibility of rice protein prepared by enzyme-assisted microfluidization: Comparison to alkaline extraction. J. Cereal Sci. 56, 482–489 (2012).CAS 

    Google Scholar 
    9.Zhu, K.-X., Zhou, H.-M. & Qian, H.-F. Proteins extracted from defatted wheat germ: Nutritional and structural properties. Cereal Chem. 83, 69–75 (2006).CAS 

    Google Scholar 
    10.Tanongkankit, Y., Chiewchan, N. & Devahastin, S. Evolution of antioxidants in dietary fiber powder produced from white cabbage outer leaves: Effects of blanching and drying methods. J. Food Sci. Technol. 52, 2280–2287 (2015).CAS 
    PubMed 

    Google Scholar 
    11.Stojceska, V., Ainsworth, P., Plunkett, A., İbanoğlu, E. & İbanoğlu, Ş. Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng. 87, 554–563 (2008).CAS 

    Google Scholar 
    12.Babbar, N., Oberoi, H. S., Uppal, D. S. & Patil, R. T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 44, 391–396 (2011).CAS 

    Google Scholar 
    13.Elbadrawy, E. & Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 9, S1010–S1018 (2016).CAS 

    Google Scholar 
    14.Wadhwa, M., Kaushal, S. & Bakshi, M. P. S. Nutritive evaluation of vegetable wastes as complete feed for goat bucks. Small Rumin. Res. 64, 279–284 (2006).
    Google Scholar 
    15.Wadhwa, M. & Bakshi, M. Vegetable wastes-a potential source of nutrients for ruminants. Indian J. Anim. Nutr. 22, 70–76 (2005).
    Google Scholar 
    16.Garg, M. Nutritional evaluation and utilization of pea pod powder for preparation of jaggery biscuits. J. Food Process. Technol. 6, 522–528 (2015).
    Google Scholar 
    17.Belghith Fendri, L. et al. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 73, 584–591 (2016).CAS 

    Google Scholar 
    18.Hanan, E., Rudra, S. G., Sharma, V., Sagar, V. R. & Sehgal, S. Pea pod powder to enhance the storage quality of buckwheat bread. Vegetos (2021).19.Hanan, E., Rudra, G. S, Sagar, V. R. & Sharma, V. Utilization of pea pod powder for formulation of instant pea soup powder. J. Food Process. Preserv. (2020).20.Upasana, V. D. Nutritional evaluation of pea peel and pea peel extracted byproducts. Int. J. Food Sci. Nutr. 3, 65–67 (2018).
    Google Scholar 
    21.Abd-Allah, I., Rabie, M., Mostfa, D. M., Sulieman, A. & El-Badawi, A. Nutritional evaluation, chemical composition and antioxidant activity of some food processing wastes. Zag. J. Agric. Res. 43, 2115–2132 (2016).
    Google Scholar 
    22.El-Gohery, S. S. Quality aspects for high nutritional value pretzel. Curr. Sci. Int. 9, 583–593 (2020).
    Google Scholar 
    23.Hassanien, M. Impact of adding chickpea (Cicer arietinum L.) flour to wheat flour on the rheological properties of toast bread. Int. Food Res. J. 19, 521–525 (2012).
    Google Scholar 
    24.Sharoba, P. A., El-Desouky, A., Mahmoud, M. & Youssef, M. K. Quality attributes of some breads made from wheat flour substituted by different levels of whole amaranth meal. J. Agric. Sci. Mansoura Univ. 34, 6601–6617 (2009).
    Google Scholar 
    25.El-Sharnouby, G. Nutritional quality of biscuit supplemented with wheat bran and date palm fruits (Phoenix dactylifera L.). Food Nutr. Sci. 03, 322–328 (2012).CAS 

    Google Scholar 
    26.Abou El-Ez, A., Rania, W. Y., Shalaby, H. S., Abu El-Maaty, S. M. & Guirguis, A. H. Utlization of fruit and vegetable waste powders for fortification of some food products. Zag. J. Agric. Res. 6, 2189–2201 (2017).
    Google Scholar 
    27.Abd El-Salam, A. M., Morsy, O. M. & Abd El Mawla, E. M. Production and evaluation crackers and instant noodles supplement with spirulina algae. Curr. Sci. Int. 6, 908–919 (2017).
    Google Scholar 
    28.DRI. Dietary Reference Intakes, Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (The National Academies Press, Washington, 2005).
    Google Scholar 
    29.FAO/WHO. World health organization, food and agriculture organization of the united nations, United Nations University, 2007. Protein and amino acid requirements in human nutrition: Report of a joint who/fao/unu expert consultation. In: Joint expert consultation on protein and amino acid requirements in human nutrition; who technical report series. WHO, Geneva, Switzerland (2007).30.Shah, A. M., Wang, Z. & Ma, J. Glutamine metabolism and its role in immunity, a comprehensive review. Anim. Open Access J. MDPI 10, 326–332 (2020).
    Google Scholar 
    31.Rowayshed, G., Salama, A., Abul-Fadl, M., Akila-Hamza, S. & Emad, A. M. Nutritional and chemical evaluation for pomegranate (Punica granatum L.) fruit peel and seeds powders by products. Middle East J. Appl. Sci. 3, 169–179 (2013).
    Google Scholar 
    32.Hussein, A. M. S., Amal, S. A., Amany, M. H., Abeer, A. A. & Gamal, H. R. Physiochemical sensory and nutritional properties of corn-fenugreek flour composite biscuits. Aust. J. Basic Appl. Sci. 5, 84–95 (2011).CAS 

    Google Scholar 
    33.Mihiranie, S., Jayasundera, M. & Perera, N. Development of snack crackers incorporated with defatted coconut flour. J. Microbiol. Biotechnol. Food Sci. 7, 153–159 (2019).
    Google Scholar 
    34.Abdel-Haleem, A. M. & Omran, A. A. Preparation of dried vegetarian soup supplemented with some legumes. J. Food Nutr. Sci. 5, 2274–2282 (2014).
    Google Scholar 
    35.Holbrook, J. T. et al. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 40, 786–793 (1984).CAS 
    PubMed 

    Google Scholar 
    36.Schwalfenberg, G. K. & Genuis, S. J. The importance of magnesium in clinical healthcare. Scientifica 2017, 4179326 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    37.Hanif, R., Iqbal, Z., Iqbal, M., Hanif, S. & Rasheed, M. Use of vegetables as nutritional food role in human health. J. Agric. Biol. Sci. 1, 18–22 (2006).
    Google Scholar 
    38.Ibidapo, O. et al. Some functional properties of flours from commonly consumed selected nigerian food crops. Int. Res. J. Agric. Food Sci. 1, 92–98 (2016).
    Google Scholar 
    39.Fellows, P. Processing Technology Principles and Practice 2nd edn. (Woodhead Publishing Limited and Crc Press LlC, Washington, 2000).
    Google Scholar 
    40.Monteiro, M. et al. Flours and instant soup from tilapia wastes as healthy alternatives to the food industry. Food Sci. Technol. Res. 20, 571–581 (2014).CAS 

    Google Scholar 
    41.Hanan, E., Rudra, S., Sagar, V. R. & Sharma, V. Utilization of pea pod powder for formulation of instant pea soup powder short running title: Formulation of instant pea soup powder. J. Food Process. Preserv. 44, e14888 (2020).CAS 

    Google Scholar 
    42.Belghith-Fendri, L. et al. Pea and broad bean pods as a natural source of dietary fiber: The impact on texture and sensory properties of cake. J. Food Sci. 81, C2360-c2366 (2016).CAS 
    PubMed 

    Google Scholar 
    43.Ravindran, G. & Matia-Merino, L. Starch–fenugreek (Trigonella foenum-graecum L.) polysaccharide interactions in pure and soup systems. Food Hydrocoll. 23, 1047–1053 (2009).CAS 

    Google Scholar 
    44.Verma, A. Process for the preparation of value added instant tomato-mushroom soup mix incorporated with psyllium husk and its quality evaluation. Int. J. Pure Appl. Biosci. 5, 1502–1507 (2017).
    Google Scholar 
    45.Bose, D. & Shams-Ud-Din, M. The effect of chickpea (cicer arietinim) husk on the properties of cracker biscuits. J. Bangladesh Agric. Univ. 8, 147–152 (2010).
    Google Scholar 
    46.Yadav, A. R., Guha, M., Tharanathan, R. N. & Ramteke, R. S. Influence of drying conditions on functional properties of potato flour. Eur. Food Res. Technol. 223, 553–560 (2006).CAS 

    Google Scholar 
    47.Knezevic, D., Djukic, N., Paunovic, A. & Madic, M. Amino acid contents in grains of different winter wheat (Triticum aestivum L.) varieties. Cereal Res. Commun. 37, 647–650 (2009).CAS 

    Google Scholar 
    48.Gaines C. Associations among quality attributes of red and white soft wheat cultivars across locations and crop years. Cereal Chem. 68 (1991).49.Chitomarat S. Effects of drying on characteristic of powdered corn milk yoghurt (in thai). B.Sc. Thesis, Chiang Mai University, Thailand. (2002).50.Krokida, M. K. & Marinos-Kouris, D. Rehydration kinetics of dehydrated products. J. Food Eng. 57 (2003).51.Malomo, O., Ogunmoyela, O. O. A., Jimoh, M. & Oluwajoba, S. O. S. Rheological and functional properties of soy-poundo yam flour. Int. J. Food Sci. Nutr. Eng. 2, 101–107 (2013).
    Google Scholar 
    52.Piga, A. et al. Texture evolution of “amaretti” cookies during storage. Eur. Food Res. Technol. 221, 387–391 (2005).CAS 

    Google Scholar 
    53.Salem E. Nutritional quality of purslane and its crackers (2016).54.Wang, R., Zhang, M., Mujumdar, A. S. & Sun, J.-C. Microwave freeze–drying characteristics and sensory quality of instant vegetable soup. Drying Technol. 27, 962–968 (2009).
    Google Scholar  More

  • in

    Author Correction: Boreal forest biomass accumulation is not increased by two decades of soil warming

    AffiliationsDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SwedenHyungwoo Lim, Torgny Näsholm, Tomas Lundmark & Harald GripNicholas School of the Environment, Duke University, Durham, NC, USARam OrenDepartment of Forest Sciences, University of Helsinki, Helsinki, FinlandRam OrenDepartment of Soil and Environment, SLU, Uppsala, SwedenMonika StrömgrenSouthern Swedish Forest Research Centre, SLU, Alnarp, SwedenSune LinderAuthorsHyungwoo LimRam OrenTorgny NäsholmMonika StrömgrenTomas LundmarkHarald GripSune LinderCorresponding authorsCorrespondence to
    Hyungwoo Lim or Ram Oren. More

  • in

    Stable isotopes and predation marks shed new light on ammonoid habitat depth preferences

    1.Landman, N. H. et al. (eds) Ammonoid Paleobiology (Plenum, 1996). https://doi.org/10.1007/978-1-4757-9153-2_16.Book 

    Google Scholar 
    2.Klug, C. et al. (eds) Ammonoid Paleobiology: From Anatomy to Ecology (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_18.Book 

    Google Scholar 
    3.Klug, C. et al. (eds) Ammonoid Paleobiology: From Macroevolution to Paleogeography (Springer, 2015). https://doi.org/10.1007/978-94-017-9633-0.Book 

    Google Scholar 
    4.Ritterbush, K. A., Hoffmann, R., Lukeneder, A. & De Baets, K. Pelagic palaeoecology: The importance of recent constraints on ammonoid palaeobiology and life history. J. Zool. 292(4), 229–241. https://doi.org/10.1111/jzo.12118 (2014).Article 

    Google Scholar 
    5.Westermann, G. E. G. Ammonoid life and habitat. In Ammonoid Paleobiology (eds Landman, N. H. et al.) 607–707 (Plenum, 1996). https://doi.org/10.1007/978-1-4757-9153-2_16.Chapter 

    Google Scholar 
    6.Lukeneder, A. Ammonoid habitats and life history. In Ammonoid Paleobiology: From Anatomy to Ecology (eds Klug, C. et al.) 689–791 (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_18.Chapter 

    Google Scholar 
    7.Hoffmann, R. et al. A novel multiproxy approach to reconstruct the paleoecology of extinct cephalopods. Gondwana Res. 67, 64–81. https://doi.org/10.1016/j.gr.2018.10.011 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Hoffmann, R. et al. Recent advances in heteromorph ammonoid palaeobiology. Biol. Rev. Cambr. Philos. Soc. 96, 576–610. https://doi.org/10.1111/brv.12669 (2021).Article 

    Google Scholar 
    9.Moriya, K., Nishi, H., Kawahata, H., Tanabe, K. & Takayanagi, Y. Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31, 167–170 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Moriya, K. Isotope signature of ammonoid shells. In Ammonoid Paleobiology: From Anatomy to Ecology (eds Klug, C. et al.) 793–836 (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_19.Chapter 

    Google Scholar 
    11.Sessa, J. A. et al. Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. PNAS 112, 15562–15567. https://doi.org/10.1073/pnas.1507554112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Stevens, K., Mutterlose, J. & Wiedenroth, K. Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites—Implications for habitat reconstructions of extinct cephalopods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 164–175. https://doi.org/10.1016/j.palaeo.2014.10.031 (2015).Article 

    Google Scholar 
    13.Surlyk, F., Dons, T., Clausen, C. K. & Higham, J. Upper Cretaceous. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (eds Copestake, P. et al.) 213–233 (Geological Society of London, 2003).
    Google Scholar 
    14.Thibault, N., Harlou, R., Schovsbo, N. H., Stemmerik, L. & Surlyk, F. Late Cretaceous (late Campanian–Maastrichtian) sea surface temperature record of the Boreal Chalk Sea. Clim. Past 12, 429–438. https://doi.org/10.5194/cp-12-429-2016 (2016).Article 

    Google Scholar 
    15.Wilmsen, M. & Niebuhr, B. High-resolution Campanian-Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal component: Palaeoceanographic and palaeoenvironmental implications for the Boreal shelf sea. Acta Geol. Pol. 67, 47–74. https://doi.org/10.1515/agp-2017-0004 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Birkelund, T. Ammonites from the Maastrichtian White Chalk of Denmark. Bull. Geol. Soc. Denmark 40, 33–81 (1993).Article 

    Google Scholar 
    17.Niebuhr, B. Late Campanian and Early Maastrichtian ammonites from the white chalk of Kronsmoor (northern Germany)—Taxonomy and stratigraphy. Acta Geol. Pol. 53, 257–281 (2003).
    Google Scholar 
    18.Kruta, I. & Landman, N. H. Injuries on Nautilus jaws: Implications for the function of ammonite aptychi. Veliger 50, 241–247 (2008).
    Google Scholar 
    19.Tanabe, K., Kruta, I. & Landman, N. H. Ammonoid buccal mass and jaw apparatus. In Ammonoid Paleobiology: From Macroevolution to Paleogeography (eds Klug, C. et al.) 439–494 (Springer, 2015).
    Google Scholar 
    20.Kruta, I., Landman, N. H. & Cochran, J. K. A new approach for the determination of ammonite and nautilid habitats. PLoS ONE 9, e87479. https://doi.org/10.1371/journal.pone.0087479 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Machalski, M. Late Maastrichtian and earliest Danian scaphitid ammonites from central Europe: Taxonomy, evolution, and extinction. Acta Palaeontol. Pol. 50(4), 653–696 (2005).
    Google Scholar 
    22.Machalski, M. Correlation of shell and aptychus growth provides insights into the palaeobiology of a scaphitid ammonite. Palaeontology 64, 225–247. https://doi.org/10.1111/pala.12519 (2021).Article 

    Google Scholar 
    23.Dubicka, Z. & Peryt, D. Integrated biostratigraphy of Upper Maastrichtian chalk at Chełm (SE Poland). Ann. Soc. Geol. Pol. 81, 185–197 (2011).
    Google Scholar 
    24.Dubicka, Z. & Peryt, D. Latest Campanian and Maastrichtian palaeoenvironmental changes: Implications from an epicontinental sea (SE Poland and western Ukraine). Cret. Res. 37, 272–284. https://doi.org/10.1016/j.cretres.2012.04.009 (2012).Article 

    Google Scholar 
    25.Machalski, M. & Malchyk, O. Durophagous predation on late Maastrichtian (Cretaceous) scaphitid ammonites from Poland. In 10th International Symposium “Cephalopods—Present and Past”, Program and Abstracts. Münstersche Forschungen zur Geologie und Paläontologie 110, 77–78 (2018).
    Google Scholar 
    26.Keupp, H. Sublethal punctures in body chambers of Mesozoic ammonites (forma Aegra fenestra n. f.), a tool to interpret synecological relationships, particularly predator–prey interactions. Paläontol. Z. 80, 112–123. https://doi.org/10.1007/BF02988971 (2006).Article 

    Google Scholar 
    27.Mironenko, A. Sublethal injuries on the shells of Jurassic ammonites from Central Russia. In Jurassic Deposits of the Southern Part of the Moscow Syneclise and Their Fauna (eds Rogov, M. A. & Zakharov, V. A.) 183–208 (Transactions of the Geological Institute, GEOS, 2017) (in Russian).
    Google Scholar 
    28.Moriya, K. Evolution of habitat depth in the Jurassic-Cretaceous ammonoids. PNAS 112, 15540–15541. https://doi.org/10.1073/pnas.1520961112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Leszczyński, K. The internal geometry and lithofacies pattern of the Upper Cretaceous-Danian sequence in the Polish Lowlands. Geol. Q. 56, 363–386. https://doi.org/10.7306/gq.1028 (2012).Article 

    Google Scholar 
    30.Jurkowska, A. & Świerczewska-Gładysz, E. New model of Si balance in the Late Cretaceous epicontinental European Basin. Global Planet. Change 186, 103108. https://doi.org/10.1016/j.gloplacha.2019.103108 (2020).Article 

    Google Scholar 
    31.Müller, R. D. et al. GPlates: Building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261. https://doi.org/10.1029/2018GC007584 (2018).ADS 
    Article 

    Google Scholar 
    32.Walaszczyk, I., Dubicka, Z., Olszewska-Nejbert, D. & Remin, Z. Integrated biostratigraphy of the Santonian through Maastrichtian (Upper Cretaceous) of extra-Carpathian Poland. Acta Geol. Pol. 66, 321–358. https://doi.org/10.1515/agp-2016-0016 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Surlyk, F. et al. Upper Campanian-Maastrichtian holostratigraphy of the eastern Danish Basin. Cret. Res. 46, 232–256. https://doi.org/10.1016/j.cretres.2013.08.006 (2013).Article 

    Google Scholar 
    34.Tagliavento, M., Lauridsen, B. W. & Stemmerik, L. Episodic dysoxia during Late Cretaceous cyclic chalk-marl deposition—Evidence from framboidal pyrite distribution in the upper Maastrichtian Rørdal Mb., Danish Basin. Cret. Res. 106, 104223. https://doi.org/10.1016/j.cretres.2019.104223 (2020).Article 

    Google Scholar 
    35.Dubicka, Z., Wierzbowski, H. & Wierny, W. Oxygen and carbon isotope records of Upper Cretaceous foraminifera from Poland: Vital and microhabitat effects. Palaeogeogr. Palaeoclimatol. Palaeoecol. 500, 33–51. https://doi.org/10.1016/j.palaeo.2018.03.029 (2018).Article 

    Google Scholar 
    36.Klompmaker, A. A., Waljaard, N. A. & Fraaije, R. H. B. Ventral bite marks in Mesozoic ammonoids. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 245–257. https://doi.org/10.1016/j.palaeo.2009.06.013 (2009).Article 

    Google Scholar 
    37.Fraaye, R. H. B. Late Cretaceous swimming crabs: Radiation, migration, competition, and extinction. Acta Geol. Pol. 46, 269–278 (1996).
    Google Scholar 
    38.Caldwell, R. L. & Dingle, H. Stomatopods. Sci. Am. 234, 80–89 (1976).ADS 
    Article 

    Google Scholar 
    39.Dunstan, A. J., Ward, P. D. & Marshall, N. J. Vertical distribution and migration patterns of Nautilus pompilius. PLoS ONE 6, e16311. https://doi.org/10.1371/journal.pone.0016311 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Ward, P., Dooley, F. & Barord, G. J. Nautilus: Biology, systematics, and paleobiology as viewed from 2015. Swiss J. Palaeontol. 135, 169–185. https://doi.org/10.1007/s13358-016-0112-7 (2016).Article 

    Google Scholar 
    41.Landman, N. H., Cobban, W. A. & Larson, N. L. Mode of life and habitat of scaphitid ammonites. Geobios 45, 87–98. https://doi.org/10.1016/j.geobios.2011.11.006 (2012).Article 

    Google Scholar 
    42.Peterman, D. J. et al. Syn vivo hydrostatic and hydrodynamic properties of scaphitid ammonoids from the U.S. Western Interior. Geobios 60, 79–98. https://doi.org/10.1016/j.geobios.2020.04.004 (2021).Article 

    Google Scholar 
    43.Tsujita, C. J. & Westermann, G. Ammonoid habitats and habits in the Western Interior Seaway: A case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 135–160. https://doi.org/10.1016/S0031-0182(98)00090-X (1998).Article 

    Google Scholar 
    44.Fraaije, R. H. B., Van Bakel, B. W. M., Jagt, J. W. M. & Viegas, P. A. The rise of a novel, plankton-based marine ecosystem during the Mesozoic: A bottom-up model to explain new higher-tier invertebrate morphotypes. Boletín de la Sociedad Geol. Mexicana 70, 187–200. https://doi.org/10.18268/bsgm2018v70n1a11 (2018).Article 

    Google Scholar 
    45.Alldredge, A. L. & King, J. M. The distance demersal zooplankton migrate above the benthos: Implications for predation. Marine Biol. 84, 253–260. https://doi.org/10.1007/BF00392494 (1985).Article 

    Google Scholar 
    46.Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Pal. Electron. 4, 1–9 (2001).
    Google Scholar 
    47.Anderson, T. F. & Arthur, M. A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleonvironmental problems. In Stable Isotopes in Sedimentary Geology, The Society of Economic Paleontologists and Mineralogists Short Course Vol. 10 (eds Arthur, M. A. et al.) 1–151 (SEPM, 1983). https://doi.org/10.2110/scn.83.01.0000.Chapter 

    Google Scholar 
    48.Coplen, T. B., Kendall, C. & Hopple, J. Comparison of stable isotope reference samples. Nature 302, 236–238. https://doi.org/10.1038/302236a0 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    49.McLennan, S. M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process. Rev. Mineral. 21, 169–200 (1989).CAS 

    Google Scholar 
    50.Webb, G. E. & Kamber, B. S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim. Cosmochim. Acta 64, 1557–1565. https://doi.org/10.1016/S0016-7037(99)00400-7 (2000).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities

    Calculating landscape, attractor, and restrictorIn this work, we considered communities with commensal, mutualistic, and exploitative interactions. Below, we describe the differential equations for each type of interaction, and how we calculate the corresponding community function landscape, species-composition attractor, and Newborn restrictor.Commensal H–M community: The model community for most simulations is the same commensal H–M community used in our previous work15. The community function landscape plots P(T) as a function of ϕM(0) and ({overline{f}}_{P}(0)). Assume that a Newborn community has 100 biomass units, that all cells have the same genotype (all M cells have the same ({f}_{P}={overline{f}}_{P}(0))), that death and birth processes are deterministic, and that there is no mutation. P(T) can then be numerically integrated from the following set of scaled differential equations for any given pair of ϕM(0) and ({overline{f}}_{P}(0))15:$$frac{dR}{dt}=-{c}_{{RM}}{g}_{M}M-{c}_{{RH}}{g}_{H}H$$
    (1)
    $$frac{dB}{dt}={g}_{H}H-{c}_{{BM}}{g}_{M}M$$
    (2)
    $$frac{dP}{dt}={f}_{P}{g}_{M}M$$
    (3)
    $$frac{dH}{dt}={g}_{H}H-{delta }_{H}H$$
    (4)
    $$frac{dM}{dt}={g}_{M}left(1-{f}_{P}right)M-{delta }_{M}M$$
    (5)
    where$${g}_{H}(R)={g}_{{Hmax}}frac{R}{R+{K}_{{HR}}}$$
    (6)
    $${g}_{M}(R, B)={g}_{{Mmax}}frac{{R}_{M}{B}_{M}}{{R}_{M}+{B}_{M}}left(frac{1}{{R}_{M}+1}+frac{1}{{B}_{M}+1}right)$$
    (7)
    and RM = R/KMR and BM = B/KMB. Unless otherwise specified, landscapes in this paper are obtained by integrating Equations (1–5) from t = 0 to t = 17.Equation (1) states that Resource R is depleted by biomass growth of M and H, where cRM and cRH represent the amount of R consumed per unit of M and H biomass, respectively. Equation (2) states that Byproduct B is released as H grows, and is decreased by biomass growth of M due to consumption (cBM amount of B per unit of M biomass). Equation (3) states that Product P is produced as fP fraction of potential M growth. Equation (4) states that H biomass increases at a rate dependent on Resource R in a Monod fashion (Equation (6)) and decreases at the death rate δH. Note that Agricultural waste is not a state variable here as it is present in excess. Equation (5) states that M biomass increases at a rate dependent on Resource R and Byproduct B according to the Mankad and Bungay model (Equation (7)51) discounted by (1 − fP) due to the fitness cost of making Product, and decreases at the death rate δM. In the Monod growth model (Equation (6)), gHmax is the maximal growth rate of H and KHR is the R at which gHmax/2 is achieved. In the Mankad and Bungay model (Equation (7)), KMR is the R at which gMmax/2 is achieved when B is in excess; KMB is the B at which gMmax/2 is achieved when R is in excess.Mutualistic H–M community: If Byproduct is harmful for H, then the community is mutualistic: H and M promote the growth of each other. Such a mutualistic community can still be described by Equations (1–5) and (7), but Equation (6) is replaced with$${g}_{H}(R)={g}_{{Hmax}}frac{R}{R+{K}_{{HR}}}exp left(-frac{B}{{B}_{0}}right)$$
    (8)
    where larger B0 indicates lower sensitivity, or higher resistance of H to its Byproduct B.Exploitative H–M community: If M releases an antagonistic byproduct A that inhibits the growth of H, then the interaction is exploitative: H promotes the growth of M, but M inhibits the growth of H. Besides Eqs (1–5) and (7), we then need to add an equation that describes the dynamics of A$$frac{dwidetilde{A}}{dt}={r}_{A}{g}_{M}left(1-{f}_{P}right)M$$where rA is the amount of A released when M’s biomass grows by 1 unit. We can then normalize (widetilde{A}) with rA$$A=widetilde{A}/{r}_{A}$$so that$$frac{dA}{dt}={g}_{M}left(1-{f}_{P}right)M.$$
    (9)
    We also need to modify the growth rates for H:$${g}_{H}={g}_{H}(R)={g}_{{Hmax}}frac{R}{R+{K}_{{HR}}}frac{{A}_{0}}{A+{A}_{0}}$$
    (10)
    where larger A0 indicates lower sensitivity, or higher resistance of H to M’s Antagonistic by product A.To calculate the community function landscape, species attractor, and Newborn restrictor, all phenotype parameters, except ({overline{f}}_{P}(0)) take the value from the Bounds column in Table 1. To construct the landscape such as in Fig. 2c, we calculated P(T) for every grid point on a 2D quadrilateral mesh of 10−2 ≤ ϕM(0) ≤ 0.99 and (1{0}^{-2} le {overline{f}}_{P}(0) le 0.99) with a mesh size of ΔϕM(0) = 10−2 and ({{Delta }}{overline{f}}_{P}(0)=1{0}^{-2}). To construct the landscapes in Fig. 5b(ii) and b(iii), P(T) was similarly calculated on a 2D grid with a finer mesh of ΔϕM(0) = 5 × 10−3 and ({{Delta }}{overline{f}}_{P}(0)=1{0}^{-4}).To calculate the species composition attractor, we integrated Equations (1–5) to obtain ϕM(T) − ϕM(0) for each grid point on the 2D mesh of ϕM(0) and ({overline{f}}_{P}(0)). The contour of ϕM(T) − ϕM(0) = 0 is then the species attractor (blue dashed curve in Fig. 2b).The attractor-induced Newborn restrictor at a given ({overline{f}}_{P}(0)) is calculated from its definition: if ϕM(0) of a parent Newborn is on the restrictor, then so is the average ϕM(0) among its offspring Newborns. Under no spiking, since the average ϕM(0) among offspring Newborn is the same as ϕM(T) of their parent Adult, the Newborn restrictor coincides with the species attractor (Fig. 3b and Fig. 5b ii). Under x% H spiking, x% of the biomass in Newborns is replaced with H cells. Thus if the parent Adult’s fraction of M biomass is ϕM(T), the average ϕM(0) among its offspring Newborns is (1 − x%)ϕM(T) under x% H spiking. The Newborn restrictor therefore is the contour of (1 − x%)ϕM(T) − ϕM(0) = 0 (teal curve in Fig. 5a ii and b iii, Fig. 2d ii). Compared with the orange restrictor under no spiking, the teal restrictor is shifted down.Parameter choicesDetails justifying our parameter choices are given in the Methods section of our previous work15. Briefly, our parameter choices are based on experimental measurements of microorganisms (e.g., S. cerevisiae and E. coli). To ensure the coexistence of H and M, M must grow faster than H for part of the maturation cycle since M has to wait for H’s Byproduct at the beginning of a cycle. Because we have assumed M and H to have similar affinities for Resource (Table 1), the maximal growth rate of M (gMmax) must exceed the maximal growth rate of H (gHmax), and M’s affinity for Byproduct (1/KMB) must be sufficiently large. Moreover, metabolite release and consumption need to be balanced to avoid extreme species ratios. We assume that H and M consume the same amount of Resource per new cell (cRH = cRM) since the biomass of various microbes shares similar elemental (e.g., carbon or nitrogen) compositions. We set consumption value so that the input Resource can support a maximum of 104 total biomass. The evolutionary bounds are set, such that evolved H and M could coexist for fp  0, the number of H cells supplemented to the Newborn community is the nearest integer to (B{M}_{{{{{{{{rm{target}}}}}}}}}{varphi }_{S}{L}_{H}^{-1}). Because integer number of cells is assigned to each Newborn, the total biomass might not be exactly BMtarget but within a small deviation of ~2 biomass units.To mimic reproducing through pipetting, each M and H cell in an Adult community is assigned a random integer between 1 and dilution factor nD (Equation (12)). All cells assigned with the same random integer are then dealt to the same Newborn, generating nD Newborn communities. If φS  > 0, the number of H cells supplemented into each Newborn is a random number drawn from a Poisson distribution of a mean of (B{M}_{{{{{{{{rm{target}}}}}}}}}{varphi }_{S}{L}_{H}^{-1}).To mimic reproducing through cell sorting, each Newborn receives a biomass of (B{M}_{{{{{{{{rm{target}}}}}}}}}left(1-{varphi }_{S}right)) from its parent Adult. Suppose that the fraction of M biomass in the parent Adult is ϕM(T), then M cells from the parent Adult are randomly assigned to the Newborn, until the total biomass of M comes closest to (B{M}_{{{{{{{{rm{target}}}}}}}}}{phi }_{M}(T)left(1-{varphi }_{S}right)) without exceeding it. H cells with a total biomass of (B{M}_{{{{{{{{rm{target}}}}}}}}}left(1-{phi }_{M}(T)right)left(1-{varphi }_{S}right)) are assigned similarly. If φS  > 0, the number of H cells supplemented to the Newborn community is the nearest integer to (B{M}_{{{{{{{{rm{target}}}}}}}}}{varphi }_{S}{L}_{H}^{-1}) where LH is the biomass of individual H cell in the parent Adult. Because each of M and H cells had a length between 1 and 2, the actual biomass of M and H assigned to a Newborn could vary from the target by up to 2 biomass units. Consequently, deviations of BM(0) from BMtarget and of ϕM(0) from parent Adult’s ϕM(T) are only a few percent.Simulating species spiking when both H and M cells evolveIn the more complex scenario, both H and M evolve. We thus need to spike with evolved H and M clones. Additionally, Newborns are spiked with H or M clones from their own lineage as demonstrated in Supplementary Fig. 11a. Below, we describe the simulation code for the experimental procedure (Supplementary Fig. 11a) we simulated.In all simulations where 6 or 7 phenotypes are modified by mutations, chosen Adults are reproduced through pipetting in a similar fashion as described above. After Newborns are reproduced from a chosen Adult in Cycle C − 1, a preset number of H or M cells are randomly picked from the remaining of this Adult to form H or M-spiking mix for Cycle C. At the end of Cycle C, we choose 10 Adults with the highest functions. Assuming that each chosen Adult is reproduced through pipetting with φS-H-spiking strategy, a Newborn receives on average a biomass of (B{M}_{{{{{{{{rm{target}}}}}}}}}left(1-{varphi }_{S}right)) from its parent Adult community and on average a biomass of BMtargetφS from H spiking mix generated at the end of Cycle C − 1. Since each chosen Adult usually gives rise to 10 Newborns, the number of cells distributed from the chosen Adult to each Newborn is drawn from a multinomial distribution. Specifically, denote the integer random numbers of cells that would be assigned to 10 Newborns to be {x1, x2,…, x10}. If the chosen Adult has a total biomass of BM(T) composed of IM M cells and IH H cells (both IM and IH are integers), the probability that {x1, x2,…, x10} cells are assigned to 10 Newborns, respectively, and x11 cells remain, is$$Pr left({{x}_{1},{x}_{2},…,{x}_{10},{x}_{11}}right)=frac{({I}_{H}+{I}_{M})!}{{x}_{1}!cdots {x}_{10}!{x}_{11}!},{p}_{0}{{,}^{{x}_{1}+cdots +{x}_{10}}},{p}_{11}^{{x}_{11}}.$$Here, ({p}_{0}=B{M}_{{{{{{{{rm{target}}}}}}}}}left(1-{varphi }_{S}right)/BM(T)) is the probability that a cell is assigned to one of 10 Newborns, p11 = 1 − 10p0 is the probability that a cell is not assigned to Newborns. Thus, ({x}_{11}={I}_{H}+{I}_{M}-mathop{sum }nolimits_{i = 1}^{10}{x}_{i}) is the number of cells remaining after reproduction, from which H and M cells are randomly picked to generate the spiking mix for Cycle C + 1.Suppose that the current spiking strategy is φS-H, then these 10 Newborns are spiked with H-spiking mix generated in Cycle C − 1. An average of BMtargetφS of H biomass is spiked into each Newborn so that the total biomass of Newborns is on average BMtarget. Suppose that five H cells from the parent Adult’s lineage are randomly picked at the end of Cycle C − 1, and that they have biomass {LH1, LH2, LH3, LH4, LH5}, respectively. The total number of H cells assigned to each Newborn, xH, is then randomly drawn from a Poisson distribution with a mean of (B{M}_{{{{{{{{rm{target}}}}}}}}}{varphi }_{S}/{overline{L}}_{H}), where ({overline{L}}_{H}=frac{1}{5}mathop{sum }nolimits_{j = 1}^{5}{L}_{Hj}) is the average biomass of the five H cells. Each spiked H cell has an equal chance of being one of the five cells.Updating spiking percentage based on heritability checksWhen the community function landscape is unknown, we can estimate heritability of community function under different spiking percentages through parent–offspring regression. In most simulations (e.g., Fig. 7), heritability evaluation is carried out about every 100 cycles (“periodic heritability check”). In the simulations demonstrated in Supplementary Fig. 17, the average improvement rate in community function is estimated from the chosen Adults over the last 50 cycles. Heritability evaluation is carried out when this average improvement rate becomes negative (“adaptive heritability check”). For both periodic and adaptive checks, heritability evaluation can be postponed until within-community selection improves cell growth sufficiently to provide sufficient biomass for heritability check.During one round of heritability evaluation, heritability of community function is estimated through parent–offspring community function regression under all candidate spiking strategies (Supplementary Fig. 11b). The current spiking strategy is updated if an alternative spiking strategy confers significantly higher community function heritability.To evaluate heritability under one spiking strategy, up to 100 Newborn communities are generated under this spiking strategy. After these mature into Adults, their functions are the parent functions. Each Adult parent then gives rise to six Newborn offspring under the same spiking strategy. When the six Newborn offspring mature into Adults, the median of their functions is the average offspring function. When offspring functions are plotted against their parent functions, the slope of the least-squares linear regression (green dashed line in Supplementary Fig. 11b) quantifies the heritability of community function. Heritability of a community function is thus similar to heritability of an individual trait, except that we use median instead of mean of offspring functions, because median is less sensitive to outliers. The 95% confidence interval of heritability is then estimated by nonparametric bootstrap58,59. More specifically, first, 100 pairs of parent–offspring community functions are resampled with replacement. Second, heritability is calculated with the resampled data. Third, 1000 heritabilities are calculated from 1000 independent resamplings, from which the 95% confidence interval is estimated from the 5th and 95th percentile.An alternative spiking strategy is considered significantly more advantageous than the current spiking strategy if heritability of the alternative spiking strategy is higher than the right endpoint of the 95% confidence interval of the heritability of the current spiking strategy. If more than one alternative spiking strategies are more advantageous, the one with the highest heritability is implemented to replace the current strategy. Similarly, an alternative spiking strategy is considered more disadvantageous if heritability of the alternative spiking strategy is lower than the left endpoint of the 95% confidence interval of the heritability of the current spiking strategy. When implementing random spiking strategy, the current spiking strategy is updated with a strategy randomly picked from candidate spiking strategies.Simulating community selection with large population sizeWhen the population size of each community is scaled up by 10 or 100 times (Supplementary Figs. 2 and 18b), the simulation codes described above become inefficient. Instead of tracking the biomass and phenotype of each cell in a large population, we divide the cells into categories and track the number of cells from different categories, where a category is defined by a unique combination of cell biomass and phenotype ranges. In our simulations, the biomass of each cell ranges between 1 and 2, fP of each M cell ranges between 0 and 1. Since H cells do not mutate, H cells are divided into 100 categories. H cells that belong to category i have a biomass between [1 + (i − 1) × ΔL, 1 + i × ΔL] where ΔL = 10−2. Since only fP of M cells are modified by mutations, M cells are divided into 100 × 105 categories. M cells that belong to category (i, j) have a biomass between [1 + (i − 1) × ΔL, 1 + i × ΔL] and fP between [(j − 1) × ΔfP, j × ΔfP] where ΔfP = 10−5. Every time fP of a M cell is modified by mutations, this cell jumps from the current category to a new category determined by its new fP value.Similar to simulations with small population sizes, each selection cycle starts with ntot = 100 Newborn communities. Maturation time T is divided into time steps of length Δτ = 0.05. Over each time step, the growth in cell biomass and the changes in metabolites are simulated in a similar fashion as described above. At the end of each time step, the number of cells to die or to mutate in each category is drawn from a bionomial distribution. If fP of a M cell is modified by mutation, the mutation effect is drawn from the same distribution as described above: (frac{1}{2}) of mutations reduce fP to 0 and the other (frac{1}{2}) is randomly drawn from the distribution in Equation (11).At the end of a maturation cycle, top 10 Adults with the highest functions are chosen. Each then reproduces 10 Newborns via pipetting for the next cycle. The fold of dilution is similarly adjusted, so that the average of Newborn total biomass is BMtarget over all selection cycles. From each category of a chosen Adult, the number of cells assigned to a Newborn community is randomly drawn from a multinomial distribution.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Contact calls in woodpeckers are individually distinctive, show significant sex differences and enable mate recognition

    1.Catchpole, C. K. Variation in the song of the great reed warbler Acrocephalus arundinaceus in relation to mate attraction and territorial defence. Anim. Behav. 31, 1217–1225 (1983).
    Google Scholar 
    2.Andersson, M. Sexual selection (University Press, 1994).
    Google Scholar 
    3.Searcy, W. A. & Yasukawa, K. Song and female choice. In Ecology and evolution of acoustic communication in birds (eds Kroodsma, D. E. & Miller, E. H.) 454–473 (Cornell University Press, 1996).
    Google Scholar 
    4.O’Loghlen, A. L. & Beecher, M. D. Mate, neighbour and stranger song: A female song sparrow perspective. Anim. Behav. 58, 13–20 (1999).
    Google Scholar 
    5.Gentner, T. Q. & Hulse, S. H. Female European starling preference and choice for variation in conspecific male song. Anim. Behav. 59, 443–458 (2000).CAS 
    PubMed 

    Google Scholar 
    6.Molles, L. E. & Vehrencamp, S. L. Neighbour recognition by resident males in the banded wren Thryothorus pleurostictus a tropical songbird with high song type sharing. Anim. Behav. 61, 119–127 (2001).PubMed 

    Google Scholar 
    7.Ballentine, B., Hyman, J. & Nowicki, S. Vocal performance influences female response to male bird song: An experimental test. Behav. Ecol. 15, 163–168 (2004).
    Google Scholar 
    8.Forstmeier, W., Kempenaers, B., Meyer, A. & Leisler, B. A novel song parameter correlates with extra-pair paternity and reflects male longevity. Proc. R. Soc. Lond. B 269, 1479–1485 (2002).
    Google Scholar 
    9.de Kort, S. R., Eldermire, E. R. B., Valderrama, S., Botero, C. A. & Vehrencamp, S. L. Trill consistency is an age-related assessment signal in banded wrens. Proc. R. Soc. Lond. B 276, 2315–2321 (2009).
    Google Scholar 
    10.Węgrzyn, E., Leniowski, K. & Osiejuk, T. Whistle duration and consistency reflect philopatry and harem size in great reed warblers. Anim. Behav. 79, 1363–1372 (2010).
    Google Scholar 
    11.Węgrzyn, E., Leniowski, K. & Osiejuk, T. Introduce yourself at the beginning – Possibile identification function of the initial part of the song in the great reed warbler Acrocephalus arundinaceus. Ornis Fennica 86, 61–70 (2009).
    Google Scholar 
    12.Węgrzyn, E. & Leniowski, K. Middle Spotted Woodpecker territory owners distinguish between stranger and familiar foaters based on their vocal characteristics. Eur. Zool. J. 87, 58–72 (2020).
    Google Scholar 
    13.Podos, J. Motor constraints on vocal development in a songbird. Anim. Behav. 51, 1061–1070 (1996).
    Google Scholar 
    14.Podos, J., Southall, J. A. & Rossi-Santos, M. R. Vocal mechanics in Darwin’s finches: Correlation of beak gape and song frequency. J. Exp. Biol. 207, 607–619 (2004).PubMed 

    Google Scholar 
    15.Nelson, B. S., Deckers, G. J. L. & Suthers, R. A. Vocal tract filtering and sound radiation in a songbird. J. Exp. Biol. 208, 297–308 (2005).PubMed 

    Google Scholar 
    16.Falls, J. B. Individual recognition by sounds in birds. In Acoustic communication in birds Vol. 2 (eds Kroodsma, D. E. & Miller, E. H.) 237–278 (Academic Press, 1982).
    Google Scholar 
    17.Wiley, R. H., Hatchwell, B. J. & Davies, N. B. Recognition of individual males songs by female dunnocks: A mechanism increasing the number of copulatory partners and reproductive success. Ethology 88, 145–153 (1991).
    Google Scholar 
    18.Lind, H., Dabelsteen, T. & McGregor, P. K. Female great tits can identify mates by song. Anim. Behav. 52, 667–671 (1996).
    Google Scholar 
    19.Aubin, T., Jouventin, P. & Hildebrand, C. Penguins use the two-voice system to recognize each other. Proc. R. Soc. Lond. B 267, 1081–1087 (2000).CAS 

    Google Scholar 
    20.Charrier, I., Jouventin, P., Mathevon, N. & Aubin, T. Individual identity coding depends on call type in the South Polar Skua Catharacta maccormicki. Polar Biol. 24, 378–382 (2001).
    Google Scholar 
    21.Stoddard, P. K., Beecher, M. D., Horning, C. L. & Willis, M. S. Strong neighbor– stranger discrimination in song sparrows. Condor 92, 1051–1056 (1990).
    Google Scholar 
    22.Stoddard, P. K., Beecher, M. D., Horning, C. L. & Campbell, S. E. Recognition of individual neighbors by song in the song sparrow, a species with song repertoires. Behav. Ecol. Sociobiol. 29, 211–215 (1991).
    Google Scholar 
    23.Godard, R. Long–term memory of individual neighbours in a migratory songbird. Nature 350, 228–229 (1991).ADS 

    Google Scholar 
    24.Stoddard, P. K. Vocal recognition of neighbors by territorial passerines. In Ecology and evolution of acoustic communication in birds (eds Kroodsma, D. E. & Miller, E. H.) 56–374 (Cornell University Press, 1996).
    Google Scholar 
    25.Hyman, J. Seasonal variation in response to neighbors and strangers by a territorial songbird. Ethology 111, 951–961 (2010).
    Google Scholar 
    26.Mackin, W. A. Neighbor–stranger discrimination in Audubon’s Shearwater Puffinus l. lherminieri explained by a “real enemy” effect. Behav. Ecol. Sociobiol. 59(2), 326–332 (2005).
    Google Scholar 
    27.Charrier, I., Mathevon, N., Jouventin, P. & Aubin, T. Acoustic communication in a Black-headed Gull colony: How do chicks identify their parents?. Ethology 107, 961–974 (2001).
    Google Scholar 
    28.Lengagne, T., Lauga, J. & Aubin, T. Intra–syllabic acoustic signatures used by the King Penguin in parent–chick recognition: An experimental approach. J. Exp. Biol. 204, 663–672 (2001).CAS 
    PubMed 

    Google Scholar 
    29.Jouventin, P. & Aubin, T. Acoustic systems are adapted to breeding ecologies: Individual recognition in nesting penguins. Anim. Behav. 64, 747–757 (2002).
    Google Scholar 
    30.Cucco, M. & Malacarne, G. Is the song of black restart males an honest signal of status?. Condor 101, 689–694 (1999).
    Google Scholar 
    31.Christie, P. J., Mennill, D. J. & Ratcliffe, L. M. Chickadee song structure is individually distinctive over long broadcast distances. Behaviour 141, 101–124 (2004).
    Google Scholar 
    32.Sherman, P. W., Reeve, H. K. & Pfennig D. W. Recognition systems. In: Krebs JR,DaviesNB, editors. Behavioural ecology: An evolutionary approach. Oxford: Blackwell Scientific. pp. 69–96 (1997).33.Kilham, L. Behavior and methods of communication of Pileated woodpeckers. Condor 61, 377–387 (1959).
    Google Scholar 
    34.Lawrence, L. & de Kort, S. R. A comparative life–history study of four species of woodpeckers. Ornithol. Monogr. 5, 1–155 (1967).
    Google Scholar 
    35.Winkler, H. & Short, L. A comparative analysis of acoustical signals in Pied woodpeckers (Aves, Picoides). Bull. Am. Mus. Nat. Hist. 160, 1–110 (1978).
    Google Scholar 
    36.Crusoe, D. A. Acoustic behavior and its role in the social relations of the red-headed wood-pecker: Picidae, Melanerpes erythrocephalus. Doctoral dissertation, University of Illinois at Chicago Circle (1980).37.Pardo, M. A. et al. Wild acorn woodpeckers recognize associations between individuals in other groups. Proc. R. Soc. B 285, 20181017 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    38.Leniowski, K. & Węgrzyn, E. The carotenoid-based red cap of the middle spotted woodpecker Dendrocopos medius reflects individual quality and territory size. Ibis 155(4), 804–813 (2013).
    Google Scholar 
    39.Podos, J., Lahti, D. C. & Moseley, D. L. Vocal performance and sensorimotor learning in songbirds. Adv. Study Behav. 40, 159–195 (2009).
    Google Scholar 
    40.Tremain, S. B., Swiston, K. A. & Mennill, D. J. Seasonal variation in acoustic signals of Pileated Woodpeckers. Wilson J. Ornithol. 120(3), 499–504 (2008).
    Google Scholar 
    41.Kilham, L. Reproductive behavior of red–bellied woodpeckers. Wilson Bull. 73, 237–254 (1961).
    Google Scholar 
    42.Catchpole, C. K. & Slater, P. J. B. Bird Song. Biological themes and variation 2nd edn. (Cambridge University Press, Cambridge, 2008).
    Google Scholar 
    43.Falls, J. B. & McNicholl, M. K. Neighbor–stranger discrimination by song in male blue grouse. Can. J. Zool. 57(2), 457–462 (1979).
    Google Scholar 
    44.Galeotti, P. & Pavan, G. Individual recognition of male tawny owls Strix aluco using spectrograms of their territorial calls. Ethol. Ecol. Evol. 3(2), 113–126 (1991).
    Google Scholar 
    45.Prum, R. O. Sexual selection and the evolution of mechanical sound production in manakins Aves: Pipridae. Anim. Behav. 55(4), 977–994 (1998).CAS 
    PubMed 

    Google Scholar 
    46.Rebbeck, M., Corrick, R., Eaglestone, B. & Stainton, C. Recognition of individual European Nightjars Caprimulgus europaeus from their song. Ibis 143, 468–475 (2001).
    Google Scholar 
    47.Dodenhoff, D. J. An analysis of acoustic communication within the social system of downy woodpeckers Picoides pubescens. Doctoral dissertation, The Ohio State University. (2002).48.Budka, M., Deoniziak, K., Tumiel, T. & Białas, J. T. Vocal individuality in drumming in great spotted woodpecker—A biological perspective and implications for conservation. PLoS ONE 13(2), e0191716 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    49.Ydenberg, R. C., Giraldeau, L. A. & Falls, J. B. Neighbours, strangers, and the asymmetric war of attrition. Anim. Behav. 36(2), 343–347 (1988).
    Google Scholar 
    50.Delport, W., Kemp, A. C. & Ferguson, W. H. Vocal identification of individual African Wood Owls Strix woodfordii: a technique to monitor long-term adult turnover and residency. Ibis 144, 30–39 (2002).
    Google Scholar 
    51.Peake, T. M. et al. Individuality in Corncrake Crex crex vocalisations. Ibis 140, 120–217 (1998).
    Google Scholar 
    52.Hoodless, A. N., Inglis, J. G., Doucet, J.-P. & Aebischer, N. J. Vocal individuality in the roding calls of Woodcock Scolopax rusticola and their use to validate a survey method. Ibis 150, 80–89 (2008).
    Google Scholar 
    53.Grava, T., Mathevon, N., Place, E. & Balluet, P. Individual acoustic monitoring of the European Eagle Owl Bubo bubo. Ibis 150, 279–287 (2008).
    Google Scholar 
    54.Odom, K. J., Slaght, J. C. & Gutierrez, R. J. Distinctiveness in the territorial calls of Great horned owls within and among years. J. Raptor Res. 47, 21–30 (2013).
    Google Scholar 
    55.Aubin, T., Mathevon, N., Staszewski, V. & Boulinier, T. Acoustic communication in the Kittiwake Rissa tridactyla: potential cues for sexual and individual signatures in ling calls. Polar Biol. 30, 1027–1033 (2007).
    Google Scholar 
    56.Bretagnolle, V. & Laquette, B. Structural variation in the call of the Cory’s Shearwater (Colonectris diodemea, Aves, Procellaridae). Ethology 85, 313–323 (1990).
    Google Scholar 
    57.de Broke, M. L. Sexual differences in the voice and individual vocal recognition in the Manx Shearwater (Puffinus Puffinus). Anim. Behav. 26, 622–629 (1978).
    Google Scholar 
    58.Dreiss, A. N., Ruppli, C. A. & Roulin, A. Individual vocal signatures in barn owl nestling: does individual recognition have an adaptive role in sibling vocal competition?. J. Evol. Biol. 27, 63–75 (2014).CAS 
    PubMed 

    Google Scholar 
    59.Volodin, I. A., Volodina, E. V., Klenova, A. V. & Filatova, O. A. Individual and sexual differences in the calls of the monomorphic White-faced Whistling Duck Dendrocygna viduata. Acta Ornithol. 40, 43–52 (2005).
    Google Scholar 
    60.Bragina, E. & Beme, J. sexual and individual features in the long range and short range calls of the White-naped crane. Condor 115, 501–507 (2013).
    Google Scholar 
    61.Terry, A. M. R., Peake, T. M. & McGregor, P. K. The role of vocal individuality in conservation. Front. Zool. 2, 10 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    62.Pasinelli, G. Oaks (Quercus sp.) and only oaks? Relations between habitat structure and home range size of the middle spotted woodpecker (Dendrocopos medius). Biol. Conserv. 93(2), 227–235 (2000).
    Google Scholar 
    63.Pasinelli, G. Dendrocopos medius middle spotted woodpecker. BWP Update 5(1), 49–99 (2003).
    Google Scholar 
    64.Michalek, K. G. & Winkler, H. Parental care and parentage in monogamous great spotted woodpeckers Picoides major and middle spotted woodpeckers Picoides medius. Behaviour 138(10), 1259–1285 (2001).
    Google Scholar 
    65.Pasinelli, G., Hegelbach, J. & Reyer, H.-U. Spacing behavior of the Middle Spotted Woodpecker in central Europe. J. Wildl. Manag. 65, 432–441 (2001).
    Google Scholar 
    66.Pasinelli, G. Breeding performance of the middle spotted woodpecker Dendrocopos medius in relation to weather and territory quality. Ardea 89, 353–361 (2001).
    Google Scholar 
    67.Kosiński, Z. & Winiecki, A. Ocena liczebności dzięcioła średniego Dendrocopos medius – Porównanie metody kartograficznej z użyciem stymulacji magnetofonowej z metodą wyszukiwania gniazd. Notatki Ornitologiczne 44, 43–55 (2003).
    Google Scholar 
    68.Specht, R. Avisoft-SASLab Pro: sound analysis and synthesis laboratory (Avisoft Bioacoustics, 2002).
    Google Scholar 
    69.Mundry, R. & Sommer, C. Discriminant function analysis with nonindependent data: consequences and an alternative. Anim. Behav. 74, 965–976 (2007).
    Google Scholar 
    70.Tabachnick, B. G. & Fidell, L. S. Using multivariate statistics 4th edn. (Allyn and Bacon, 2001).
    Google Scholar 
    71.Leniowski, K. Signaling quality in the Middle Spotted Woodpecker Dendrocopos medius: home ranges, colour ornaments and calls. (PhD thesis) Adam Mickiewicz University, Poznań, Poland (2011). More

  • in

    Quaternary landscape dynamics boosted species dispersal across Southeast Asia

    Surface processes model and forcing mechanismsLandscape evolution over the last one million years interval is performed with the open-source modelling code Badlands34. It simulates the evolution of topography induced by sediment erosion, transport, and deposition (Fig. 1a). Amongst the different capabilities available in Badlands, we applied the fluvial incision and hillslope processes, which are described by geomorphic equations and explicitly solved using a finite volume discretisation. In this study, soil properties are assumed to be spatially and temporally uniform over the region, and we do not differentiate between regolith and bedrock. It is worth noting that the role of flexural responses induced by erosion and deposition is also not accounted for. Under these assumptions, the continuity of mass is governed by vertical land motion (U, uplift or subsidence in m/yr), long-term diffusive processes and detachment-limited fluvial runoff-based stream power law:$$frac{partial z}{partial t}=U+kappa {nabla }^{2}z+epsilon {(PA)}^{m}nabla {z}^{n}$$
    (1)
    where z is the surface elevation (m), t is the time (yr), κ is the diffusion coefficient for soil creep34 with different values for terrestrial and marine environments, ϵ is a dimensional coefficient of erodibility of the channel bed, m and n are dimensionless empirically constants, that are set to 0.5 and 1, respectively, and PA is a proxy for water discharge that numerically integrates the total area (A) and precipitation (P) from upstream regions34.Both κ and ϵ depend on lithology, precipitation, and channel hydraulics and are scale dependent34. All our landscape evolution simulations are running over a triangular irregular network of ~18. e6 km2 with a resolution of ~5 km, and outputs are saved every 1000 yr.The detachment-limited fluvial runoff-based stream power law is computed with a ({{{{{{{mathcal{O}}}}}}}}(n))-efficient ordering approach54 based on a single-flow-direction approximation where water is routed down the path of the steepest descent. The flow routing algorithm and associated sediment transport from source to sink depend on surface morphology, and sediment deposition occurs under three circumstances: (1) existence of depressions or endorheic basins, (2) if local slope is less than the aggregational slope in land areas and (3) when sediments enter the marine realm34. Submerged sediments are then transported by diffusion processes defined with a constant marine diffusion coefficient34.All landscape simulations are constrained with different forcing mechanisms, and five scenarios were tested (Supplementary Table 2).First, we impose precipitation estimates from the PaleoClim database38,39,40. These estimates are products from paleoclimate simulations (coupled atmosphere-ocean general circulation model) downscaled at approximately the same resolution as our landscape model (~5 km at the equator). Annual averages of precipitation rates are then used to provide rainfall trends in our simulations based on the ten specific snapshots available (from the mid-Pliocene warm period to late Holocene and present day). Between two consecutive snapshots, we assume that precipitation remains constant for the considered time interval. For exposed regions that are considered flooded in the PaleoClim database, we define offshore precipitations using a nearest neighbour algorithm where closest precipitation estimates are averaged from PaleoClim inland regions. To evaluate the role of precipitation variability on landscape dynamics, we also run a uniform rainfall scenario (2 m/yr obtained by averaging the annual precipitation rates from the PaleoClim database).Secondly, the models are forced with sea level fluctuations known to play a major role in the flooding history of the Sunda Shelf11,13,53. Two sea level curves are tested (Supplementary Fig. 1d). To account for the inherent uncertainty in reconstructed sea level variations, we chose a first curve37 obtained from a sea level stack constructed from five to seven individual reconstructions that agrees with isostatically adjusted coral-based sea level estimates at both 125 and 400 ka. The second one is taken from the global sea level curve reconstruction36 based on benthic oxygen isotope data and has been recently used to reconstruct the subsidence history of Sundaland17,18.The last forcing considered in our study is the tectonic regime. First, we chose to explore a non-tectonic model based on the default assumption of stability for the shelf17. Secondly, we assumed a uniform subsidence rate of −0.25 mm/yr recently derived from a combination of geomorphological observations, coral reef growth numerical simulations and shallow seismic stratigraphy interpretations17. Then, to represent the regional variations in the tectonic regime, we have compiled and digitised a number of calibration points (Supplementary Fig. 1b and Table 1) that were used to produce a subsidence and uplift map by geo-referencing calibration points and available tectonic polygons, and by Gaussian-smoothing and normalising the uplift and subsidence rates between the calibrated range to avoid sharp transitions in regions without observations. The resulting map does not account for fine spatial scale tectonic features such as fault systems43,55 or orogenic and sedimentary related isostatic responses. It rather represents a regional vertical tectonic trend with an overall uplift of Wallacea and NW Borneo regions and long-wavelength subsidence of Sunda Shelf and Singapore Strait17.Landscape evolution model calibrationThe landscape models start during the Calabrian in the Pleistocene Epoch, one million years before the present. At each time interval, the landscape evolves following Eq. (1) and the surface adjusts under the action of rivers and soil creep (Fig. 1a). In addition to surface changes, we extract morphometric characteristics such as drainage basins extents, river profiles lengths (Fig. 3 and Supplementary Fig. 2), distance between main rivers outlet (Supplementary Fig. 3) and tracks the cumulative erosion and deposition over time (Fig. 1b and Supplementary Fig. 1d).For model calibration, we perform a series of steps consisting in adjusting the initial elevation and the erosion–deposition parameters (i.e., κ and ϵ in Eq. (1)) to match with different observations.The initial paleo-surface is obtained by applying the uplift and subsidence rates backwards to calculate the total change in topography for the 1 Myr interval. Then, we test the simulated paleo-river drainages against results from a combination of phylogenic studies9,13 and paleo-river channels and valleys found from seismic and well surveys41,42,44. Iteratively, we modify our paleo-elevation to ensure those main river basins (e.g., Johore, Siam, Mekong, East Sunda) encapsulate the paleo-drainage maps reconstructed using lowland freshwater taxa described in13 (Supplementary Fig. 1a and Table 4) and that the major rivers follow paleo-rivers systems derived from both 2D and 3D seismic interpretations (Fig. 1b).For surface processes parametrisation, we tested different ranges of diffusion and erodibility coefficients and compared the final sediment accumulation across the Sunda Shelf (Fig. 1b) using estimated deposit thicknesses41,42,43,44. The Sunda Shelf is predominantly experiencing deposition over the past 500 kyr and increases in deposition are positively correlated with periods of sea level rise (i.e., Pearson’s coefficients for correlation with sea level above 80%, Supplementary Fig. 1d). After exploring a range of values, we set κ values to 1. e−2 and 8. e−2 m2/yr for terrestrial and marine environments and ϵ between 2.5 and 7.5 e−8yr−1 for the different scenarios to fit with chosen surveys dataset (Supplementary Table 2 and 3).Upon uniform subsidence case (−0.25mm/yr), flooding is limited, and the shelf only undergoes two full marine transgressions ( >60% of the shelf flooded) around 125 ka and during the last 10–20 kyr (Supplementary Fig. 1c). Upon spatially variable tectonics (non-uniform subsidence), partial flooding events are more pervasive, with higher magnitudes and greater temporal durations. Due to the shallow and flat physiography of Sundaland, we also note that even small increases in sea level amplitudes ( 0) and values higher than one and two standard deviations (zsc  > 1 and 2, respectively, Supplementary Fig. 1b). The approach provides a quantitative assessment of flow maps sensitivity to the chosen resistance maps.To gain additional insights into the distribution of connectivity regions across the shelf, we also employed a local spatial autocorrelation indicator, namely the Getis-Ord Gi⋆ index57. This hotspot analysis method assesses spatial clustering of the obtained current density maps, and the resultant z-scores provide spatially and statistically significant high or low clustered areas. The approach consists in looking at each local current value relative to its neighbouring one. From this spatial analysis, we extract both statistically significant hot and cold spots for each combination of resistance surfaces (Supplementary Fig. 5c). To extract statistically significant and persistent biogeographic connectivity areas across the exposed Sunda Shelf, we then combine all hotspots together and define preferential migration pathways as regions having a positive Gi⋆ z-scores for all resistance surfaces combination.We used the function zscore in the SciPy stats package to obtain the z-scores and the ESDA library for the Gi⋆ indicator computation.Modelling assumptions and limitationsThere are a number of important caveats for interpreting our modelling results.First, we made several assumptions related to our transient landscape evolution simulations. A single-flow direction algorithm54 was used to simulate temporal changes in river pathways. Recent work58 has shown that this algorithm might lead to numerical diffusion, fast degradation of knickpoints and underestimation of river captures particularly in flat regions. One way to address this would be to use a multiple flow direction method59 which allow for a better representation of flow distribution across the landscape. In this study, we also assumed a uniform and invariant soil erodibility coefficient for the entire domain and a detachment-limited erosion law. Even though the erodibility coefficient was calibrated independently for each simulation (Supplementary Table 3), soil cover and properties vary notably between Borneo, Sumatra, Java and the Malay Peninsula and soil conditions for the exposed sea floor would have changed significantly over successive flooding events12. Badlands software34 allows for multiple erodibility coefficients representing different soil compositions to be defined, and this functionality could be used to evaluate the impact of differential erosion on physiographic changes. Similarly, several transport-limited laws are also available and could be compared against our detachment-limited simulations.A second set of simplifications lies in the climatic conditions (i.e., rainfall regimes) used to force our simulations. We relied on the PaleoClim database40 which contains nine high-resolution paleoclimate dataset38,39,40 corresponding to specific time periods (4.2–0.3 ka, 8.326–4.2 ka, 11.7–8.326 ka, 12.9–11.7 ka, 14.7–12.9 ka, 17.0–14.7 ka, ca. 130 ka, ca. 787 ka and 3.205 Ma). The climate simulations from which these time periods are extracted do not consider emerged Sunda Shelf for the oldest inter-glacial events which can result in incorrect climatic pattern60. From 0.3–17 ka, precipitation fields in PaleoClim are obtained from the TRaCE21ka transient simulations of the last 21 kyr run with the CCSM3 model40. Although Fordham et al.39 show that precipitation errors range from 10–200% in their modern experiment, the paleoclim dataset provides a statistical downscaling method that includes a bias correction (namely the Change-Factor method, in which the anomaly between the modern simulation and observations is removed from the paleoclimate experiment) allowing the use of the model for paleoclimate studies40. The very same technique is applied for 130 ka and 787 ka fields that were obtained with different GCMs (namely HadCM3 and CCSM2). Given the absence of a million-year long transient climate simulation, we oversimplified the climatic conditions by considering that precipitation distribution and intensity remain constant between two consecutive intervals, generating an artificial stepwise evolution of rainfall through time. To evaluate the sensitivity of physiographic responses on the Sunda Shelf to precipitation, we ran a model with uniform rainfall over 1 Myr (scenario 4). Despite changes in the timing and extent of basins reorganisation (Supplementary Fig. 2 and Fig. 3b), we found limited differences in terms of flooding history and erosion/deposition patterns when compared with scenario 5 (Supplementary Fig. 1c, d and Supplementary Table 2). Recent work60 suggests clear regional responses induced by the emerged Sunda Shelf with seasonal enhancement of moisture convergence and continental precipitation induced by thermal properties of the land surface. This could significantly impact our simulation results. However, and at the time of writing, more continuous high-resolution paleoclimatic simulations considering the shelf as an emerged continental platform were still unavailable. Using high-resolution multi-model outputs would allow to target the uncertainty on climatic maps4 and will surely represent a significant advance for future studies. One approach would have used the orographic rainfall capability61 available in Badlands. The method is better suited to run generic simulations but falls short when applied to real cases as it relies on imposing paleo-environmental boundary conditions (e.g., temporal changes in wind direction and speed, moisture stability frequency or depth of moist layer) difficult to obtain for Earth-like model applied over geological time scales.Finally, our species-agnostic approach assumes an equally weighted cost between the three considered geomorphic features and does not account for additional factors (temperature, vegetation cover, solar radiation to cite a few), which are all important when assessing landscape connectivity for wildlife. Most importantly, we model connectivity at very large scales (5 km resolution). Often, species are highly influenced by microclimates and small-scale topography47. From our regional-scale simulations and hotspot analysis (Fig. 6), higher resolution models focusing on highly connected regions (across the Gulf of Thailand and Siam basin) could be applied to produce more detailed representations of species migration in the region. In addition, current flow field calculations from Circuitscape35 rely on randomly selecting nodes around the region of interest. For connectivity analysis, we used 33 terrestrial points located around the perimeter of the buffered Sundaland area (white contour line in Fig. 1b). Using a selection of nodes in a buffered region allows to reduce the bias in current density estimates46. However, bias might depend on the buffer size compared to the study area as well as the number of nodes selected46,47. Because of memory limitations and the great number of computed grids used to cover the past 500 kyr, we made a trade-off between buffer size and the number of selected points for pairwise calculations. Additional experiments could possibly be tested to evaluate bias in the proposed connectivity maps potentially using a tilling approach to reduce cell number45. More