More stories

  • in

    Winter distribution of juvenile and sub-adult male Antarctic fur seals (Arctocephalus gazella) along the western Antarctic Peninsula

    1.Knox, G. A. Biology of the Southern Ocean (CRC Press, 2006). https://doi.org/10.1201/9781420005134Book 

    Google Scholar 
    2.Thomas, D. N. et al. The Biology of Polar Regions: The Biology of Polar Regions (Oxford University Press, 2008).
    Google Scholar 
    3.Trathan, P. N. & Hill, S. L. The Importance of Krill Predation in the Southern Ocean. In Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 321–350 (Springer, 2016). https://doi.org/10.1007/978-3-319-29279-3_9.Chapter 

    Google Scholar 
    4.Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).ADS 
    CAS 

    Google Scholar 
    5.Siegel, V. & Watkins, J. L. Distribution, biomass and demography of antarctic krill, Euphausia superba. In Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 21–100 (Springer, 2016). https://doi.org/10.1007/978-3-319-29279-3_2.Chapter 

    Google Scholar 
    6.Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: Implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).ADS 
    CAS 

    Google Scholar 
    7.Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Ribic, C. A., Ainley, D. G. & Fraser, W. R. Habitat selection by marine mammals in the marginal ice zone. Antarct. Sci. 3, 181–186 (1991).ADS 

    Google Scholar 
    9.Takahashi, A. et al. Migratory movements and winter diving activity of Adélie penguins in East Antarctica. Mar. Ecol. Prog. Ser. 589, 227–239 (2018).ADS 

    Google Scholar 
    10.Hückstädt, L. A. et al. Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula. Nat. Clim. Change 10, 472–477 (2020).ADS 

    Google Scholar 
    11.Lowther, A. D., Staniland, I., Lydersen, C. & Kovacs, K. M. Male Antarctic fur seals: Neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery. Sci. Rep. 10, 18436 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Forcada, J. & Staniland, I. J. Antarctic fur seal Arctocephalus gazella. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 36–42 (Academic Press, 2009).
    Google Scholar 
    13.Boyd, I. L., McCafferty, D. J., Reid, K., Taylor, R. & Walker, T. R. Dispersal of male and female Antarctic fur seals (Arctocephalus gazella). Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f97-314 (1998).Article 

    Google Scholar 
    14.Cherel, Y., Kernaléguen, L., Richard, P. & Guinet, C. Whisker isotopic signature depicts migration patterns and multi-year intra- and inter-individual foraging strategies in fur seals. Biol. Lett. 5, 830–832 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Kernaléguen, L. et al. Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers. PLoS ONE 7, e32916 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Kernaléguen, L., Arnould, J. P. Y., Guinet, C. & Cherel, Y. Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals. J. Anim. Ecol. 84, 1081–1091 (2015).PubMed 

    Google Scholar 
    17.Arthur, B. et al. Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella). Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 171–181 (2017).ADS 

    Google Scholar 
    18.Arthur, B. et al. Managing for change: Using vertebrate at sea habitat use to direct management efforts. Ecol. Indic. 91, 338–349 (2018).
    Google Scholar 
    19.Reisinger, R. R. et al. Habitat modelling of tracking data from multiple marine predators identifies important areas in the Southern Indian Ocean. Divers. Distrib. 24, 535–550 (2018).MathSciNet 

    Google Scholar 
    20.Wege, M., de Bruyn, P. J. N., Hindell, M. A., Lea, M.-A. & Bester, M. N. Preferred, small-scale foraging areas of two Southern Ocean fur seal species are not determined by habitat characteristics. BMC Ecol. 19, 36 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    21.Jones, K. A. et al. Intra-specific niche partitioning in antarctic fur seals, Arctocephalus gazella. Sci. Rep. 10, 3238 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Siniff, D. B., Garrott, R. A., Rotella, J. J., Fraser, W. R. & Ainley, D. G. Opinion: Projecting the effects of environmental change on Antarctic seals. Antarct. Sci. 20, 425–435 (2008).ADS 

    Google Scholar 
    23.Raymond, B. et al. Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography 38, 121–129 (2015).
    Google Scholar 
    24.Bestley, S., Jonsen, I. D., Hindell, M. A., Harcourt, R. G. & Gales, N. J. Taking animal tracking to new depths: Synthesizing horizontal–vertical movement relationships for four marine predators. Ecology 96, 417–427 (2015).PubMed 

    Google Scholar 
    25.Kernaléguen, L. et al. Early-life sexual segregation: Ontogeny of isotopic niche differentiation in the Antarctic fur seal. Sci. Rep. 6, 33211 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Payne, M. R. Growth in the Antarctic fur seal Arctocephalus gazella. J. Zool. 187, 1–20 (1979).
    Google Scholar 
    27.Costa, D., Goebel, M. E. & Sterling, J. T. Foraging energetics and diving behavior of the Antarctic fur seal, Arctocephalus gazzella at Cape Shirreff, Livingston Island. In Antarctic Ecosystems: Models for Wider Ecological Understanding (eds Davision, W. et al.) 77–84 (New Zealand Natural Science Press, 2000).
    Google Scholar 
    28.Staniland, I. J. et al. Geographical variation in the behaviour of a central place forager: Antarctic fur seals foraging in contrasting environments. Mar. Biol. 157, 2383–2396 (2010).
    Google Scholar 
    29.Blanchet, M.-A. et al. At-sea behaviour of three krill predators breeding at Bouvetøya—Antarctic fur seals, macaroni penguins and chinstrap penguins. Mar. Ecol. Prog. Ser. 477, 285–302 (2013).ADS 

    Google Scholar 
    30.Jeanniard-du-Dot, T., Trites, A. W., Arnould, J. P. Y. & Guinet, C. Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals. PLoS ONE 12, e0174001 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    31.Favilla, A. B. & Costa, D. P. Thermoregulatory strategies of diving air-breathing marine vertebrates: A review. Front. Ecol. Evol. 8, 292 (2020).
    Google Scholar 
    32.Staniland, I. J. & Robinson, S. L. Segregation between the sexes: Antarctic fur seals, Arctocephalus gazella, foraging at South Georgia. Anim. Behav. 75, 1581–1590 (2008).
    Google Scholar 
    33.Reid, K. The diet of Antarctic fur seals (Arctocephalus gazella Peters 1875) during winter at South Georgia. Antarct. Sci. 7, 241–249 (1995).ADS 

    Google Scholar 
    34.Kirkman, S. P., Wilson, W., Klages, N. T. W., Bester, M. N. & Isaksen, K. Diet and estimated food consumption of Antarctic fur seals at Bouvetøya during summer. Polar Biol. 23, 745–752 (2000).
    Google Scholar 
    35.Casaux, R., Baroni, A., Arrighetti, F., Ramón, A. & Carlini, A. Geographical variation in the diet of the Antarctic fur seal Arctocephalus gazella. Polar Biol. 26, 753–758 (2003).
    Google Scholar 
    36.Casaux, R., Baroni, A. & Ramón, A. Diet of Antarctic fur seals Arctocephalus gazella at the Danco Coast, Antarctic Peninsula. Polar Biol. 26, 49–54 (2003).
    Google Scholar 
    37.Davis, D., Staniland, I. J. & Reid, K. Spatial and temporal variability in the fish diet of Antarctic fur seal (Arctocephalus gazella) in the Atlantic sector of the Southern Ocean. Can. J. Zool. https://doi.org/10.1139/z06-071 (2006).Article 

    Google Scholar 
    38.Casaux, R., Juares, M., Carlini, A. & Corbalán, A. The diet of the Antarctic fur seal Arctocephalus gazella at the South Orkney Islands in ten consecutive years. Polar Biol. 39, 1197–1206 (2016).
    Google Scholar 
    39.Tarroux, A., Lowther, A. D., Lydersen, C. & Kovacs, K. M. Temporal shift in the isotopic niche of female Antarctic fur seals from Bouvetøya. Polar Res. 35, 31335 (2016).
    Google Scholar 
    40.Garcia-Garin, O. et al. No evidence of microplastics in Antarctic fur seal scats from a hotspot of human activity in Western Antarctica. Sci. Total Environ. 737, 140210 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    41.Boyd, I. L. Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. J. Appl. Ecol. 39, 103–119 (2002).
    Google Scholar 
    42.Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world : vol. 4 : Sea mammals. (2014).43.Melin, S. R. et al. Reversible immobilization of free-ranging adult male California sea lions (Zalophus californianus). Mar. Mammal Sci. 29, E529–E536 (2013).
    Google Scholar 
    44.Pussini, N. & Goebel, M. E. A safer protocol for field immobilization of leopard seals (Hydrurga leptonyx). Mar. Mammal Sci. 31, 1549–1558 (2015).
    Google Scholar 
    45.Spelman, L. H. Reversible anesthesia of captive California sea lions (Zalophus californianus) with medetomidine, midazolam, butorphanol, and isoflurane. J. Zoo Wildl. Med. Off. Publ. Am. Assoc. Zoo Vet. 35, 65–69 (2004).
    Google Scholar 
    46.Cook, T. A. Butorphanol tartrate: An intravenous analgesic for outpatient surgery. Otolaryngol. Head Neck Surg. J. Am. Acad. Otolaryngol. Head Nexk Surg. 91, 251–254 (1983).CAS 

    Google Scholar 
    47.Ropert-Coudert, Y. et al. The retrospective analysis of Antarctic tracking data project. Sci. Data 7, 94 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    48.Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. Mammal Sci. 24, 315–325 (2008).
    Google Scholar 
    49.Bonadonna, F., Lea, M.-A., Dehorter, O. & Guinet, C. Foraging ground fidelity and route-choice tactics of a marine predator: The Antarctic fur seal Arctocephalus gazella. Mar. Ecol. Prog. Ser. 223, 287–297 (2001).ADS 

    Google Scholar 
    50.Lea, M.-A. & Dubroca, L. Fine-scale linkages between the diving behaviour of Antarctic fur seals and oceanographic features in the southern Indian Ocean. ICES J. Mar. Sci. 60, 990–1002 (2003).
    Google Scholar 
    51.Jonsen, I. D. et al. Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566 (2019).CAS 
    PubMed 

    Google Scholar 
    52.Jonsen, I. D. et al. A continuous-time state-space model for rapid quality control of argos locations from animal-borne tags. Mov. Ecol. 8, 31 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    53.Hazen, E. L. et al. Where did they not go? Considerations for generating pseudo-absences for telemetry-based habitat models. Mov. Ecol. 9, 5 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    54.O’Toole, M., Queiroz, N., Humphries, N. E., Sims, D. W. & Sequeira, A. M. M. Quantifying effects of tracking data bias on species distribution models. Methods Ecol. Evol. 12, 170–181 (2021).
    Google Scholar 
    55.Lee, J. F., Friedlaender, A. S., Oliver, M. J. & DeLiberty, T. L. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Anim. Biotelemetry 5, 23 (2017).
    Google Scholar 
    56.Labrousse, S. et al. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica. Prog. Oceanogr. 156, 17–40 (2017).ADS 

    Google Scholar 
    57.Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, eaar3001 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    59.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
    Google Scholar 
    60.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    61.Hijmans, R. J., Phillips, S. & Elith, J. L. dismo: Species Distribution Modeling. (2020).62.Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 

    Google Scholar 
    63.Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
    Google Scholar 
    64.Scales, K. L. et al. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time. Ecol. Appl. 27, 2313–2329 (2017).PubMed 

    Google Scholar 
    65.Pya, N. & Wood, S. N. Shape constrained additive models. Stat. Comput. 25, 543–559 (2015).MathSciNet 
    MATH 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing. (2019).67.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).ADS 

    Google Scholar 
    68.Brodie, S. et al. Integrating dynamic subsurface habitat metrics into species distribution models. Front. Mar. Sci. (2018).69.Becker, E. A. et al. Moving Towards dynamic ocean management: How well do modeled ocean products predict species distributions?. Remote Sens. 8, 149 (2016).ADS 

    Google Scholar 
    70.Lellouche, J.-M. et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system. Ocean Sci. 14, 1093–1126 (2018).ADS 

    Google Scholar 
    71.Handcock, M. S. & Raphael, M. N. Modeling the annual cycle of daily Antarctic sea ice extent. Cryosphere 14, 2159–2172 (2020).ADS 

    Google Scholar 
    72.Smith, G. C. et al. Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season. Front. Mar. Sci. (2019).73.March, D., Boehme, L., Tintoré, J., Vélez-Belchi, P. J. & Godley, B. J. Towards the integration of animal-borne instruments into global ocean observing systems. Glob. Change Biol. 26, 586–596 (2020).ADS 

    Google Scholar 
    74.Santora, J. A. Dynamic intra-seasonal habitat use by Antarctic fur seals suggests migratory hotspots near the Antarctic Peninsula. Mar. Biol. 160, 1383–1393 (2013).
    Google Scholar 
    75.Vergani, D. F. & Coria, N. R. Increase in numbers of male fur seals Arctocephalus gazella during the summer autumn period at Mossman Peninsula (Laurie Island). Polar Biol. 9, 487–488 (1989).
    Google Scholar 
    76.Rutishauser, M. R., Costa, D. P., Goebel, M. E. & Williams, T. M. Ecological implications of body composition and thermal capabilities in young antarctic fur seals (Arctocephalus gazella). Physiol. Biochem. Zool. PBZ 77, 669–681 (2004).PubMed 

    Google Scholar 
    77.Vales, D. G., Cardona, L., García, N. A., Zenteno, L. & Crespo, E. A. Ontogenetic dietary changes in male South American fur seals Arctocephalus australis in Patagonia. Mar. Ecol. Prog. Ser. 525, 245–260 (2015).ADS 
    CAS 

    Google Scholar 
    78.Cardona, L., Vales, D., Aguilar, A., Crespo, E. & Zenteno, L. Temporal variability in stable isotope ratios of C and N in the vibrissa of captive and wild adult South American sea lions Otaria byronia: More than just diet shifts. Mar. Mammal Sci. 33, 975–990 (2017).CAS 

    Google Scholar 
    79.Costa, D. P., Gales, N. J. & Goebel, M. E. Aerobic dive limit: How often does it occur in nature?. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 129, 771–783 (2001).CAS 
    PubMed 

    Google Scholar 
    80.Biuw, M., Krafft, B. A., Hofmeyr, G. J. G., Lydersen, C. & Kovacs, K. M. Time budgets and at-sea behaviour of lactating female Antarctic fur seals Arctocephalus gazella at Bouvetøya. Mar. Ecol. Prog. Ser. 385, 271–284 (2009).ADS 

    Google Scholar 
    81.Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 951–984 (1999).ADS 

    Google Scholar 
    82.Lea, M.-A., Hindell, M., Guinet, C. & Goldsworthy, S. Variability in the diving activity of Antarctic fur seals, Arctocephalus gazella, at Iles Kerguelen. Polar Biol. 25, 269–279 (2002).
    Google Scholar 
    83.Vaughan, D. G. et al. Recent rapid regional climate warming on the antarctic peninsula. Clim. Change 60, 243–274 (2003).
    Google Scholar 
    84.Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pup production of antarctic fur seals. Ecology 86, 2408–2417 (2005).
    Google Scholar 
    85.Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    86.Schwarz, L. K., Goebel, M. E., Costa, D. P. & Kilpatrick, A. M. Top-down and bottom-up influences on demographic rates of Antarctic fur seals Arctocephalus gazella. J. Anim. Ecol. 82, 903–911 (2013).PubMed 

    Google Scholar 
    87.Hoffman, J. I. & Forcada, J. Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella). Mamm. Biol. 77, 71–73 (2012).
    Google Scholar 
    88.Hucke-Gaete, R., Osman, L. P., Moreno, C. A. & Torres, D. Examining natural population growth from near extinction: The case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biol. 27, 304–311 (2004).
    Google Scholar  More

  • in

    Lion and spotted hyena distributions within a buffer area of the Serengeti-Mara ecosystem

    1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 

    Google Scholar 
    2.Riggio, J. et al. The size of savannah Africa: A lion’s (Panthera leo) view. Biodivers. Conserv. 22, 17–35 (2013).
    Google Scholar 
    3.Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508 (1999).CAS 
    PubMed 

    Google Scholar 
    6.Tanner, E. et al. Wolves contribute to disease control in a multi-host system. Sci. Rep. 9, 1–12 (2019).ADS 

    Google Scholar 
    7.O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. Evol. 2, 229–236 (2018).PubMed 

    Google Scholar 
    8.Prugh, L. R. & Sivy, K. J. Enemies with benefits: integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 23, 902–918 (2020).PubMed 

    Google Scholar 
    9.Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    10.Wilfred, P. Towards sustainable wildlife management areas in Tanzania. Trop. Conserv. Sci. 3, 103–116 (2010).
    Google Scholar 
    11.Sinclair, A. R., Metzger, K. L., Mduma, S. A. & Fryxell, J. M. Serengeti IV: Sustaining Biodiversity in a Coupled Human-Natural System (University of Chicago Press, 2015).
    Google Scholar 
    12.Crooks, K. R. & Sanjayan, M. Connectivity Conservation Vol. 14 (Cambridge University Press, 2006).
    Google Scholar 
    13.Balme, G. A., Slotow, R. & Hunter, L. T. Edge effects and the impact of non-protected areas in carnivore conservation: Leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).
    Google Scholar 
    14.Lindsey, P. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).
    Google Scholar 
    15.Elliot, N. B. & Gopalaswamy, A. M. Toward accurate and precise estimates of lion density. Conserv. Biol. 31, 934–943 (2017).PubMed 

    Google Scholar 
    16.Masenga, E. et al. Strychnine poisoning in African wild dogs (Lycaon pictus) in the Loliondo game controlled area, Tanzania. Int. J. Biodivers. Conserv. 5, 367–370 (2013).
    Google Scholar 
    17.Metzger, K., Sinclair, A., Hilborn, R., Hopcraft, J. G. C. & Mduma, S. A. Evaluating the protection of wildlife in parks: The case of African buffalo in Serengeti. Biodivers. Conserv. 19, 3431–3444 (2010).
    Google Scholar 
    18.Mogensen, N. L., Ogutu, J. O. & Dabelsteen, T. The effects of pastoralism and protection on lion behaviour, demography and space use in the Mara Region of Kenya. Afr. Zool. 46, 78–87 (2011).
    Google Scholar 
    19.Kiffner, C., Meyer, B., Mühlenberg, M. & Waltert, M. Plenty of prey, few predators: what limits lions Panthera leo in Katavi National Park, western Tanzania?. Oryx 43, 52–59 (2009).
    Google Scholar 
    20.Kiffner, C., Stoner, C. & Caro, T. Edge effects and large mammal distributions in a national park. Anim. Conserv. 16, 97–107 (2013).
    Google Scholar 
    21.Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).
    Google Scholar 
    22.Hofer, H. & East, M. Population dynamics, population size, and the commuting system of Serengeti spotted hyenas. Serengeti II Dyn. Manag. Conserv. Ecosyst. 2, 332 (1995).
    Google Scholar 
    23.Holekamp, K. E. & Dloniak, S. M. Intraspecific variation in the behavioral ecology of a tropical carnivore, the spotted hyena. Adv. Study Behav. 42, 189–229 (2010).
    Google Scholar 
    24.Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. biol. 16, 488–502 (2002).
    Google Scholar 
    25.Martin, J. et al. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach. Methods Ecol. Evol. 2, 595–601 (2011).ADS 

    Google Scholar 
    26.Prins, H. H., Grootenhuis, J. G. & Dolan, T. T. Wildlife Conservation by Sustainable Use Vol. 12 (Springer Science & Business Media, 2012).
    Google Scholar 
    27.Knapp, E. J. Why poaching pays: a summary of risks and benefits illegal hunters face in Western Serengeti, Tanzania. Trop. Conserv. Sci. 5, 434–445 (2012).ADS 

    Google Scholar 
    28.Revilla, E., Palomares, F. & Delibes, M. Edge-core effects and the effectiveness of traditional reserves in conservation: Eurasian badgers in Doñana National Park. Conserv. Biol. 15, 148–158 (2001).
    Google Scholar 
    29.Lindsey, P. A. et al. The bushmeat trade in African savannas: Impacts, drivers, and possible solutions. Biol. Conserv. 160, 80–96 (2013).
    Google Scholar 
    30.Ikanda, D. & Packer, C. Ritual vs. retaliatory killing of African lions in the Ngorongoro Conservation Area, Tanzania. Endanger. Species Res. 6, 67–74 (2008).
    Google Scholar 
    31.Belant, J. L. et al. Estimating lion abundance using N-mixture models for social species. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    32.Hofer, H. & East, M. L. The commuting system of Serengeti spotted hyaenas: how a predator copes with migratory prey I. Social organization. Anim. Behav. 46, 547–557 (1993).
    Google Scholar 
    33.Durant, S. M. et al. Long-term trends in carnivore abundance using distance sampling in Serengeti National Park, Tanzania. J. Appl. Ecol. 48, 1490–1500 (2011).
    Google Scholar 
    34.Swanson, A. B. Living with Lions: Spatiotemporal Aspects of Coexistence in Savanna Carnivores (University of Minnesota, 2014).
    Google Scholar 
    35.Masenga, E. H., Lyamuya, R. D., Mjingo, E. E., Fyumagwa, R. D. & Røskaft, E. Communal knowledge and perceptions of African wild dog (Lycaon pictus) reintroduction in the western part of Serengeti National Park, Tanzania. Int. J. Biodivers. Conserv. 9, 122–129 (2017).
    Google Scholar 
    36.Hopcraft, J. G. C., Sinclair, A. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).
    Google Scholar 
    37.Packer, C. & Pusey, A. E. Adaptations of female lions to infanticide by incoming males. Am. Nat. 121, 716–728 (1983).
    Google Scholar 
    38.Kruuk, H. & Turner, M. Comparative notes on predation by lion, leopard, cheetah and wild dog in the Serengeti area, East Africa. Mammalia 31, 1–27 (1967).
    Google Scholar 
    39.Green, D. S., Johnson-Ulrich, L., Couraud, H. E. & Holekamp, K. E. Anthropogenic disturbance induces opposing population trends in spotted hyenas and African lions. Biodiver. Conserv. 27, 871–889. https://doi.org/10.1007/s10531-017-1469-7 (2018).Article 

    Google Scholar 
    40.Kolowski, J. M., Katan, D., Theis, K. R. & Holekamp, K. E. Daily patterns of activity in the spotted hyena. J. Mamm. 88, 1017–1028 (2007).
    Google Scholar 
    41.Šálek, M., Kreisinger, J., Sedláček, F. & Albrecht, T. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape?. Landsc. Urban Plan. 98, 86–91 (2010).
    Google Scholar 
    42.Mosser, A., Fryxell, J. M., Eberly, L. & Packer, C. Serengeti real estate: density vs. fitness-based indicators of lion habitat quality. Ecol. Lett. 12, 1050–1060 (2009).PubMed 

    Google Scholar 
    43.Schmitt, J. A. Improving Conservation Efforts in the Serengeti Ecosystem, Tanzania: An Examination of Knowledge, Benefits, Costs, and Attitudes (University of Minnesota, 2010).
    Google Scholar 
    44.Makacha, S., Msingwa, M. J. & Frame, G. W. Threats to the Serengeti herds. Oryx 16, 437–444 (1982).
    Google Scholar 
    45.Crosmary, W.-G. et al. Lion densities in selous game reserve, Tanzania. Afr. J. Wildl. Res. 48, 1–6 (2018).
    Google Scholar 
    46.Belant, J. L. et al. Track surveys do not provide accurate or precise lion density estimates in serengeti. Glob. Ecol. 19, e00651 (2019).
    Google Scholar 
    47.Midlane, N., O’Riain, M. J., Balme, G. A. & Hunter, L. T. B. To track or to call: comparing methods for estimating population abundance of African lions Panthera leo in Kafue National Park. Biodiver. Conserv. 24, 1311–1327. https://doi.org/10.1007/s10531-015-0858-z (2015).Article 

    Google Scholar 
    48.Ogutu, J. O. & Dublin, H. T. The response of lions and spotted hyaenas to sound playbacks as a technique for estimating population size. Afr. J. Ecol. 36, 83–95. https://doi.org/10.1046/j.1365-2028.1998.113-89113.x (1998).Article 

    Google Scholar 
    49.Belant, J. L. et al. Temporal and spatial variation of broadcasted vocalizations does not reduce lion Panthera leo habituation. Wildl. Biol. wlb. 00287 (2017).50.Cozzi, G., Broekhuis, F., McNutt, J. & Schmid, B. Density and habitat use of lions and spotted hyenas in northern Botswana and the influence of survey and ecological variables on call-in survey estimation. Biodiver. Conserv. 22, 2937–2956 (2013).
    Google Scholar 
    51.M’soka, J., Creel, S., Becker, M. S. & Droge, E. Spotted hyaena survival and density in a lion depleted ecosystem: The effects of prey availability, humans and competition between large carnivores in African savannahs. Biol. Conserv. 201, 348–355 (2016).
    Google Scholar 
    52.Croes, B. et al. The impact of trophy hunting on lions (Panthera leo) and other large carnivores in the Bénoué Complex, northern Cameroon. Biol. Conserv. 144, 3064–3072 (2011).
    Google Scholar 
    53.Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.National Bureau of Statistics. Tanzania in Figures 2012 (The United Republic of Tanzania, 2013).55.McNaughton, S. Serengeti grassland ecology: The role of composite environmental factors and contingency in community organization. Ecol. Monograph. 53, 291–320 (1983).
    Google Scholar 
    56.Reed, D., Anderson, T., Dempewolf, J., Metzger, K. & Serneels, S. The spatial distribution of vegetation types in the Serengeti ecosystem: the influence of rainfall and topographic relief on vegetation patch characteristics. J. Biogeogr. 36, 770–782 (2009).
    Google Scholar 
    57.Sollmann, R., Gardner, B., Belant, J. L., Wilton, C. M. & Beringer, J. Habitat associations in a recolonizing, low‐density black bear population. Ecosphere 7 (2016).58.Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities (Elsevier, 2008).
    Google Scholar 
    59.Chandler, R. B., Royle, J. A. & King, D. I. Inference about density and temporary emigration in unmarked populations. Ecology 92, 1429–1435 (2011).PubMed 

    Google Scholar 
    60.Royle, J. A. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115 (2004).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    61.Kellner, K. & Meredith, M. Package ‘jagsUI’. (2021).62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).63.Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).MathSciNet 
    MATH 

    Google Scholar 
    64.Kuo, L. & Mallick, B. Variable selection for regression models. Indian J. Stat. 65–81 (1998).65.Congdon, P. Bayesian Models for Categorical Data (John Wiley and Sons, 2005).MATH 

    Google Scholar  More

  • in

    Investing wisely in land restoration

    1.Mirzabaev, A., Sacande, M., Motlagh, F., Shyrokaya, A. & Martucci, A. Nat. Sustain. https://doi.org/10.1038/s41893-021-00801-8 (2021).2.Barbier, E. B. & Hochard, J. P. Nat. Sustain. 1, 623–631 (2018).Article 

    Google Scholar 
    3.Deininger, K. & Jin, S. Eur. Econ. Rev. 50, 1245–1277 (2006).Article 

    Google Scholar 
    4.Barbier, E. B. Environ. Dev. Econ. 15, 635–660 (2010).Article 

    Google Scholar 
    5.Nkonya, E., Mirzabaev, A. & von Braun, J. in Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development (eds. Nkonya, E., Mirzabaev, A. & von Braun, J.) 1–14 (Springer, Cham, 2016).6.Barbier, E. B. & Hochard, J. P. Rev. Environ. Econ. Policy 12, 26–47 (2018).Article 

    Google Scholar  More

  • in

    Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    1.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat Biotechnol 2019;37:29–37.PubMed 

    Google Scholar 
    2.Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.PubMed 

    Google Scholar 
    3.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23.PubMed 
    PubMed Central 

    Google Scholar 
    4.Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome. 2019;7:1–15.
    Google Scholar 
    5.Schulz F, Alteio L, Goudeau D, Ryan EM, Yu FB, Malmstrom RR, et al. Hidden diversity of soil giant viruses. Nat Commun 2018;9:1–9.
    Google Scholar 
    6.Trubl G, Jang H Bin, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 2018;3:e00076–18.PubMed 
    PubMed Central 

    Google Scholar 
    7.Guerin E, Shkoporov A, Stockdale SR, Clooney AG, Ryan FJ, Sutton TDS, et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe. 2018;24:653–664.e6.PubMed 

    Google Scholar 
    8.Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Peña MJ, Martínez JM, et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun 2017;8:1–13.
    Google Scholar 
    9.Aguirre de Cárcer D, Angly FE, Alcamí A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes. BMC Genomics. 2014;15:1–12.
    Google Scholar 
    10.Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ. 2017;5:e3817.PubMed 
    PubMed Central 

    Google Scholar 
    11.Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature. 2011;474:604–8.PubMed 

    Google Scholar 
    12.Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, et al. Explaining microbial population genomics through phage predation. Nat Rev Microbiol 2009;7:828–36.PubMed 

    Google Scholar 
    13.Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA 2012;109:4544–9.PubMed 
    PubMed Central 

    Google Scholar 
    14.Enav H, Kirzner S, Lindell D, Mandel-Gutfreund Y, Béjà O. Adapt sub-Optim hosts is a Driv viral Diversif ocean Nat Comm 2018;9:1–11.
    Google Scholar 
    15.Boon M, Holtappels D, Lood C, van Noort V, Lavigne R. Host range expansion of pseudomonas virus LUZ7 is driven by a conserved tail fiber mutation. PHAGE. 2020;1:87–90.
    Google Scholar 
    16.Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2020;18:113–9.PubMed 

    Google Scholar 
    17.Sørensen MA, Kurland CG, Pedersen S. Codon usage determines translation rate in Escherichia coli. J Mol Biol 1989;207:365–77.PubMed 

    Google Scholar 
    18.Varenne S, Buc J, Lloubes R, Lazdunski C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 1984;180:549–76.PubMed 

    Google Scholar 
    19.Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell. 2015;59:744–54.PubMed 
    PubMed Central 

    Google Scholar 
    20.Plotkin JB, Kudla G. Synonymous but not the same: The causes and consequences of codon bias. Nat Rev Genet 2011;12:32–42.PubMed 

    Google Scholar 
    21.Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 2019;19:359.PubMed 
    PubMed Central 

    Google Scholar 
    22.Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–5.PubMed 

    Google Scholar 
    23.Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K, Dinsdale EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol 2019;4:1727–36.PubMed 
    PubMed Central 

    Google Scholar 
    24.Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 2019;5:1–7.25.Coutinho FH, Rosselli R, Rodríguez-Valera F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems. 2019;4:1–17.
    Google Scholar 
    26.Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.PubMed 
    PubMed Central 

    Google Scholar 
    27.Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 2019;13:232–6.PubMed 

    Google Scholar 
    28.McMullen A, Martinez‐Hernandez F, Martinez‐Garcia M. Absolute quantification of infecting viral particles by chip‐based digital polymerase chain reaction. Environ Microbiol Rep. 2019;11:855–60.PubMed 

    Google Scholar 
    29.Marston MF, Amrich CG. Recombination and microdiversity in coastal marine cyanophages. Environ Microbiol. 2009;11:2893–903.PubMed 

    Google Scholar 
    30.Marston MF, Martiny JBH. Genomic diversification of marine cyanophages into stable ecotypes. Environ Microbiol 2016;18:4240–53.PubMed 

    Google Scholar 
    31.Cordero OX. Endemic cyanophages and the puzzle of phage-bacteria coevolution. Environ Microbiol 2017;19:420–2.PubMed 

    Google Scholar 
    32.Shannon CE. The mathematical theory of communication. 1963. MD Comput. 1997;14:306–17.PubMed 

    Google Scholar 
    33.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.PubMed 

    Google Scholar 
    34.Bobay L-M, Ochman H. Biological species in the viral world. Proc Natl Acad Sci USA 2018;115:6040–5.PubMed 
    PubMed Central 

    Google Scholar 
    35.Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018;12:1846–60.PubMed 
    PubMed Central 

    Google Scholar 
    36.Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–D686.PubMed 

    Google Scholar 
    37.Brum JR, Ignacio-Espinoza JC, Kim E-H, Trubl G, Jones RM, Roux S, et al. Illuminating structural proteins in viral ‘dark matter’ with metaproteomics. Proc Natl Acad Sci USA 2016;113:2436–41.PubMed 
    PubMed Central 

    Google Scholar 
    38.Sakowski EG, Arora-Williams K, Tian F, Zayed AA, Zablocki O, Sullivan MB, et al. Interaction dynamics and virus–host range for estuarine actinophages captured by epicPCR. Nat. Microbiol. 2021;6:1–13.39.Alonso-Sáez L, Morán XAG, Clokie MR. Low activity of lytic pelagiphages in coastal marine waters. ISME J. 2018;12:2100–2.PubMed 
    PubMed Central 

    Google Scholar 
    40.Martinez‐Hernandez F, Luo E, Tominaga K, Ogata H, Yoshida T, DeLong EF, et al. Diel cycling of the cosmopolitan abundant Pelagibacter virus 37‐F6: one of the most abundant viruses in Earth. Environ Microbiol Rep. 2020;12:214–21941.Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.PubMed 

    Google Scholar 
    42.de Avila e Silva S, Echeverrigaray S, Gerhardt GJL. BacPP: bacterial promoter prediction-A tool for accurate sigma-factor specific assignment in enterobacteria. J Theor Biol 2011;287:92–99.PubMed 

    Google Scholar 
    43.Sampaio M, Rocha M, Oliveira H, Dias O. Predicting promoters in phage genomes using PhagePromoter. Bioinformatics. 2019;35:5301–2.PubMed 

    Google Scholar 
    44.Allert M, Cox JC, Hellinga HW. Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol. 2010;402:905–18.PubMed 
    PubMed Central 

    Google Scholar 
    45.Dressaire C, Picard F, Redon E, Loubière P, Queinnec I, Girbal L, et al. Role of mRNA stability during bacterial adaptation. PLoS ONE 2013;8:e59059.PubMed 
    PubMed Central 

    Google Scholar 
    46.Deana A, Belasco JG. Lost in translation: The influence of ribosomes on bacterial mRNA decay. Genes Dev. 2005;19:2526–33.PubMed 

    Google Scholar 
    47.Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60.PubMed 

    Google Scholar 
    48.Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, et al. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2020;1462-2920:15272.
    Google Scholar 
    49.Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2018;21:1989–2001.50.Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host–virus interactions in SAR11 marine bacteria. Nat Microbiol 2020;5:1011–5.PubMed 
    PubMed Central 

    Google Scholar 
    51.Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond, B, Biol Sci 2006;361:1929–40.
    Google Scholar 
    52.Rosselló-Mora R. Updating prokaryotic taxonomy. J Bacteriol. 2005;187:6255–7.PubMed 
    PubMed Central 

    Google Scholar 
    53.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017;2:1533–42.PubMed 

    Google Scholar 
    54.Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009;106:19126–31.PubMed 
    PubMed Central 

    Google Scholar 
    55.Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 2015;4:e06416.PubMed 
    PubMed Central 

    Google Scholar 
    56.Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC genomics. 2016;17:930.PubMed 
    PubMed Central 

    Google Scholar 
    57.Martinez-Hernandez F, Garcia-Heredia I, Lluesma Gomez M, Maestre-Carballa L, Martínez Martínez J, Martinez-Garcia M. Droplet digital PCR for estimating absolute abundances of widespread Pelagibacter viruses. Front Microbiol 2019;10:1226.PubMed 
    PubMed Central 

    Google Scholar 
    58.Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.PubMed 
    PubMed Central 

    Google Scholar 
    59.Beaulaurier J, Luo E, Eppley JM, Uyl P Den, Dai X, Burger A, et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 2020;30:437–46.PubMed 
    PubMed Central 

    Google Scholar 
    60.Murigneux V, Rai SK, Furtado A, Bruxner TJC, Tian W, Harliwong I, et al. Comparison of long-read methods for sequencing and assembly of a plant genome. GigaScience 2020;9:giaa146.61.Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 2019;37:1155–62.PubMed 
    PubMed Central 

    Google Scholar 
    62.Martínez Martínez J, Martinez-Hernandez F, Martinez-Garcia M. Single-virus genomics and beyond. Nat Rev Microbiol. 2020;18:705–16.PubMed 

    Google Scholar 
    63.Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed 
    PubMed Central 

    Google Scholar 
    64.Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genet. 2013;9:e1003987.PubMed 
    PubMed Central 

    Google Scholar 
    65.Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valera F. Genomes of abundant and widespread viruses from the deep ocean. mBio. 2016;7:e00805–16.PubMed 
    PubMed Central 

    Google Scholar 
    66.Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 2012;13:134.
    Google Scholar 
    67.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.PubMed 
    PubMed Central 

    Google Scholar 
    68.Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.PubMed 

    Google Scholar 
    69.Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr Biol. 2017;27:1362–8.PubMed 
    PubMed Central 

    Google Scholar 
    70.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    71.Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019;37:632–9.
    Google Scholar 
    72.Bobay L-M, Ellis BS-H, Ochman H. ConSpeciFix: classifying prokaryotic species based on gene flow. Bioinformatics. 2018;34:3738–40.PubMed 
    PubMed Central 

    Google Scholar 
    73.Bobay L-M, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol. 2017;9:491–501.PubMed Central 

    Google Scholar 
    74.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
    Google Scholar 
    75.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.PubMed 
    PubMed Central 

    Google Scholar 
    76.Harris CD, Torrance EL, Raymann K, Bobay L-M. CoreCruncher: Fast and robust construction of core genomes in large prokaryotic data sets. Mol. Biol. Evol. 2020;38:727–734.77.Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.PubMed 
    PubMed Central 

    Google Scholar 
    78.Rice P, Longden L, Bleasby A EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000. Elsevier Ltd., 16: 276–779.Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol 2019;4:2192–203.PubMed 

    Google Scholar 
    80.Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    81.Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    82.Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a california hypersaline lake, the Salton Sea. Appl Environ Microbiol 2010;76:757–68.PubMed 

    Google Scholar 
    83.Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol 2018;3:62–72.PubMed 

    Google Scholar  More

  • in

    High species richness of tachinid parasitoids (Diptera: Calyptratae) sampled with a Malaise trap in Baihua Mountain Reserve, Beijing, China

    1.Wilson, E. O. The little things that run the world (The importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
    Google Scholar 
    2.Stork, N. E. How many species are there?. Biodivers. Conserv. 2, 215–232 (1993).
    Google Scholar 
    3.Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopts. Bull. 36, 74–75 (1982).
    Google Scholar 
    4.Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).CAS 
    PubMed 

    Google Scholar 
    6.Linnaeus, C. Amoenitates Academicae, seu Dissertationes Variae Physicae, Medicae, Botanicae, Volume 2. (Laurentium Salvium, 1749).7.Linnaeus, C. Systema Naturae per Regna tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis. (Laurentium Salvium, 1758).8.Metcalf, Z. P. How many insects are there in the world?. Entomol. News 51, 219–222 (1940).
    Google Scholar 
    9.Ødegaard, F. The relative importance of trees versus lianas as hosts for phytophagous beetles (Coleoptera) in tropical forests. J. Biogeogr. 27, 283–296 (2000).
    Google Scholar 
    10.Geiger, M. F. et al. The global Malaise trap program–how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).11.D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460 (2018).PubMed 

    Google Scholar 
    12.Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. Bmc. Biol. 17, 96 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Wu, Y. et al. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310–2323 (2013).
    Google Scholar 
    14.Morelli, F. et al. Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban For. Urban Green. 23, 84–92 (2017).
    Google Scholar 
    15.White, E. P. Spatiotemporal scaling of species richness: Patterns, processes and implications. In Scaling biodiversity (eds Storch, D. et al.) 325–346 (Cambridge University Press, 2007).
    Google Scholar 
    16.Schwartz, M. D. Phenology: An Integrative Environmental Science. (Springer, 2013).17.Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
    Google Scholar 
    18.Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).
    Google Scholar 
    19.Le, C. M., Wilson, S. W. & Soulier-Perkins, A. Elevational gradient of Hemiptera (Heteroptera, Auchenorrhyncha) on a tropical mountain in Papua New Guinea. PeerJ 3, e978 (2015).
    Google Scholar 
    20.McCravy, K. W. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 9, 170 (2018).PubMed Central 

    Google Scholar 
    21.Karlsson, D. et al. The Swedish Malaise trap project: A 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8, e47255 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    22.Borkent, A. et al. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science. Zootaxa 4402, 53–90 (2018).PubMed 

    Google Scholar 
    23.Fraser, S. E. M., Dytham, C. & Mayhew, P. J. The effectiveness and optimal use of Malaise traps for monitoring parasitoid wasps. Insect Conserv. Divers. 1, 22–31 (2008).
    Google Scholar 
    24.Gaston, K. J., Gauld, I. D. & Hanson, P. The size and composition of the hymenopteran fauna of Costa Rica. J. Biogeogr. 23, 105–113 (1996).
    Google Scholar 
    25.Townes, H. K. Design of a Malaise trap. Proc. Entomol. Soc. Wash. 64, 253–262 (1962).
    Google Scholar 
    26.O’Hara, J. E. History of tachinid classification (Diptera, Tachinidae). ZooKeys 316, 1–34 (2013).
    Google Scholar 
    27.O’Hara, J. E., Henderson, S. J. & Wood, D. M. Preliminary Checklist of the Tachinidae of the World. Version 2.1. http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Worldchecklist.html (2020).28.Stireman, J. O., O’Hara, J. E. & Wood, D. M. Tachinidae: Evolution, behavior, and ecology. Annu. Rev. Entomol. 51, 525–555 (2006).CAS 
    PubMed 

    Google Scholar 
    29.Cerretti, P. et al. Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Syst. Entomol. 39, 335–353 (2014).
    Google Scholar 
    30.Stireman, J. O., Dyer, L. A. & Greeney, H. F. Specialised generalists? Food web structure of a tropical tachinid-caterpillar community. Insect Conserv. Diver. 10, 367–384 (2017).
    Google Scholar 
    31.Belshaw, R. Tachinid (Diptera) assemblages in habitats of a secondary succession in southern Britain. Entomology 111, 151–161 (1992).
    Google Scholar 
    32.Inclán, D. J. & Stireman, J. O. Tachinid (Diptera: Tachinidae) Parasitoid diversity and temporal abundance at a single site in the northeastern United States. Ann. Entomol. Soc. Am. 104, 287–296 (2011).
    Google Scholar 
    33.Cerretti, P., Whitmore, D., Mason, F. & Taglianti, A. V. Survey on the spatio-temporal distribution of tachinid flies: Using Malaise traps (Diptera, Tachinidae). In Invertebrati diuna foresta della Pianura Padana, Bosco della Fontana, Secondo contributo (eds Cerretti, P. et al.) 229–256 (Springer, 2004).34.Stireman, J. O. Alpha and beta diversity of a tachinid parasitoid community. Ann. Entomol. Soc. Am. 101, 362–370 (2008).
    Google Scholar 
    35.Pei, W. Y. et al. Species diversity of Tachinidae in Baihuashan National Nature Reserve of Beijing, China. J. Environ. Entomol. 41, 1218–1225 (2019).
    Google Scholar 
    36.Zhao, Y. et al. Fauna resource investigation of Tachinidae (Diptera) from Mt. Huangyi, Eastern Liaoning, China. J. Environ. Entomol. 41, 1208–1217 (2019).
    Google Scholar 
    37.Zhang, Y. Z. et al. Fauna resource investigation of Tachinidae (Diptera) from the grasslands, Inner Mongolia of China. J. Environ. Entomol. 40, 1353–1363 (2018).
    Google Scholar 
    38.Zhang, C. T. et al. Preliminary investigation on Tachinidae (Diptera) of Hanma National Nature Reserve, Inner Mongolia, China. J. Environ. Entomol. 35, 257–264 (2017).CAS 

    Google Scholar 
    39.Liang, H. C. et al. Fauna resource of Tachinidae in Liaoning Hun River Source Nature Reserve of China. J. Environ. Entomol. 38, 1214–1223 (2016).
    Google Scholar 
    40.Zhang, C. T. et al. Faunistic investigation of Tachinidae in Liaoning Bailang Mountain National Nature Reserve of China. J. Environ. Entomol. 37, 726–734 (2015).
    Google Scholar 
    41.Zhang, D. et al. Study on Tachinidae fauna in Songshan National Nature Reserve of Beijing, China. Chin. J. Vector Biol. Control 22, 459–465 (2011).
    Google Scholar 
    42.Herting, B. & Dely-Draskovits, A. Family Tachinidae. In Catalogue of Palaearctic Diptera. Volume 13. Anthomyiidae–Tachinidae. (eds Soós, A. & Papp, L.) 118–458 (Hungarian Natural History Museum, 1993).43.O’Hara, J. E. & Henderson, S. J. World Genera of the Tachinidae (Diptera) and Their Regional Occurrence. Version 11.0. http://www.nadsdiptera.org/Tach/WorldTachs/Genera/Worldgenera.html (2020).44.Tschorsnig, H. P. & Richter, V. A. Family Tachinidae. In Contributions to a Manual of Palaearctic Diptera (with special reference to flies of economic importance) (eds Papp, L. & Darvas, B) 691–827 (Higher Brachycera Science Herald Press, 1998).45.Cerretti, P., Tschorsnig, H. P., Lopresti, M. & Giovanni, F. D. MOSCHweb: A matrix-based interactive key to the genera of the Palaearctic Tachinidae (Insecta, Diptera). ZooKeys 205, 5–18 (2012).
    Google Scholar 
    46.Andersen, S. Revision of European species of Phytomyptera Rondani (Diptera: Tachinidae). Insect Syst. Evol. 19, 43–80 (1988).
    Google Scholar 
    47.Andersen, S. The Siphonini (Diptera: Tachinidae) of Europe. Fauna Entomol. Scand. 33, 1–146 (1996).
    Google Scholar 
    48.Chao, C. M. et al. Tachinidae. In Flies of China Vol. 2 (eds Xue, W. Q. & Chao, C. M.) (Liaoning Science and Technology Press, 1998).
    Google Scholar 
    49.Chao, C. M. et al. Fauna Sinica. Insecta. Vol. 23. Diptera. Tachinidae (1) (Science Press, 2001).
    Google Scholar 
    50.O’Hara, J. E., Shima, H. & Zhang, C. T. Annotated catalogue of the Tachinidae (Insecta: Diptera) of China. Zootaxa 2190, 1–236 (2009).
    Google Scholar 
    51.Tachi, T. & Shima, H. Systematic study of the genus Peribaea Robineau-Desvoidy of East Asia (Diptera: Tachinidae). Tijdschr. voor Entomol. 145, 115–144 (2002).
    Google Scholar 
    52.Tschorsnig, H. P. Preliminary Host Catalogue of Palaearctic Tachinidae (Diptera). http://www.nadsdiptera.org/Tach/WorldTachs/CatPalHosts/Home.html (2017).53.Zhang, C. T., Shima, H. & Chen, X. L. A review of the genus Dexia Meigen in the Palearctic and Oriental Regions (Diptera: Tachinidae). Zootaxa 2705, 1–81 (2010).
    Google Scholar 
    54.Colwell, R. K. Estimates: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.1.0. http://viceroy.eeb.uconn.edu/estimates/ (2019).55.Oksanen, J. F. et al. Vegan: Community Ecology Package. R Package Version 2.4-3. https://CRAN.R-project.org/package=vegan. Accessed 20 May 2018 (2017).56.Mielke, P. W. 34 Meteorological applications of permutation techniques based on distance functions. Handb. Stat. 4, 813–830 (1984).
    Google Scholar 
    57.Ge, Y. et al. Exotic spartina alterniflora invasion changes temporal dynamics and composition of spider community in a salt marsh of Yangtze Estuary, China. Estuar. Coast. Shelf. Sci. 239, 106755 (2020).
    Google Scholar 
    58.Haq, F. et al. Multivariate approach to the classification and ordination of the forest ecosystem of Nandiar valley western Himalayas. Ecol. Indic. 80, 232–241 (2017).
    Google Scholar 
    59.Oara, J. E., Zhang, C. T. & Shima, H. Catalogue of the Tachinidae (Insecta: Diptera) of China. In Catalogue of Life China: 2021 Annual Checklist, Volume 2 Animals, Insect (VI), Diptera (3) (eds Yang, D. et al.) 845–1170 (The Biodiversity Committee of Chinese Academy of Sciences, 2021).60.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (eds Wiley, J. & Ltd, S.) 1–10 (Wiley, 2010).
    Google Scholar 
    61.Zhang, J. T., Xu, B. & Li, M. Vegetation patterns and species diversity along elevational and disturbance gradients in the Baihua Mountain Reserve, Beijing, China. Mt. Res. Dev. 33, 170–178 (2013).ADS 

    Google Scholar 
    62.Huang, Y. et al. The effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For. Urban Green. 14, 1027–1039 (2015).
    Google Scholar 
    63.Eldegard, K., Totland, Ø. & Moe, S. R. Edge effects on plant communities along power line clearings. J. Appl. Ecol. 52, 871–880 (2015).
    Google Scholar 
    64.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 
    65.Harper, K. A. et al. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782 (2005).
    Google Scholar 
    66.Laurance, W. F. et al. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2, e1017 (2007).67.Stireman, J. O. III., Cerretti, P., Whitmore, D., Hardersen, S. & Gianelle, D. Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest. Insect Conserv. Divers. 5, 346–357 (2012).
    Google Scholar 
    68.Burington, Z. L. et al. Latitudinal patterns in tachinid parasitoid diversity (Diptera: Tachinidae): A review of the evidence. Insect Conserv. Divers. 13, 419–431 (2020).
    Google Scholar 
    69.Campbell, J. W., Hanula, J. L. & Waldrop, T. A. Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina. Biol. Conserv. 134, 393–404 (2007).
    Google Scholar 
    70.Alfred, D. J. et al. A study on five sampling methods of parasitic hymenopterans in rice ecosystem. Biol. Control. 32, 187–192 (2018).
    Google Scholar 
    71.Wells, W. & Decker, T. A comparison of three types of insect traps for collecting non-Formicidae Hymenoptera on the Island of Dominica. Southwest. Entomol. 31, 59–68 (2006).
    Google Scholar  More

  • in

    Past, present, and future climate space of the only endemic vertebrate genus of the Italian peninsula

    1.Hewitt, G. H. The genetic legacy of Quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Hewitt, G. H. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).CAS 
    PubMed 

    Google Scholar 
    3.Hauswaldt, J. S. et al. From species divergence to population structure: A multimarker approach on the most basal lineage of Salamandridae, the spectacled salamanders (genus Salamandrina) from Italy. Mol. Phylogenetics Evol. 70, 1–12 (2014).
    Google Scholar 
    4.Gomez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).
    Google Scholar 
    5.Hewitt, G. H. Mediterranean peninsulas: The evolution of hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority (eds Zachos, F. E. & Habel, J. C.) 123–148 (Springer, 2011).
    Google Scholar 
    6.Lanza, B. & Corti, C. Evolution of knowledge on the Italian herpetofauna during the 20th century. Boll. Mus. Civ. St. Nat. Verona 20, 373–436 (1996).
    Google Scholar 
    7.Sindaco, R., Eremčenko, V. K. & Venchi, A. Mediterranean reptiles: State of knowledge, hot spots, areas of endemism, conservation. In Abstracts of the VI Congress of the Societas Herpetologica Italica (eds Bologna, M.A., Capula, M., Carpaneto, G.M., Luiselli, L., Marangoni, C. & Venchi, A.), (Roma, September 27–October 1 2006), Stilgrafica, Roma, pp. 101–102 (2006).8.Borkin, L. J. Distribution of amphibians in North Africa, Europe, Western Asia and Former Soviet Union. In Patterns of Distribution of Amphibians. A Global Perspective (ed. Duellman, W. E.) 329–420 (Johns Hopkins University Press, 1999).
    Google Scholar 
    9.Speybroeck, J. et al. Species list of the European herpetofauna–2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia 41, 139–189 (2020).
    Google Scholar 
    10.Venczel, M. & Sanchíz, B. A fossil plethodontids salamander from the Middle Miocene of Slovakia (Caudata, Plethodontidae). Amphibia-Reptilia 26, 408–411 (2005).
    Google Scholar 
    11.Venczel, M. & Hír, J. Amphibians and squamates from the Miocene of Felsötárkány Basin, N-Hungary. Palaeontogr. Abt. A 300, 117–158 (2013).
    Google Scholar 
    12.Georgalis, G. L., Villa, A., Ivanov, M., Vasilyan, D. & Delfino, M. Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary. Palaeontol. Electron. 22, 1–99 (2019).
    Google Scholar 
    13.Macaluso, L. et al. A progressive extirpation: An overview of the fossil record of Salamandrina (Salamandridae, Urodela). Hist. Biol., 1–18 (2021).14.Delfino, M., Bailon, S. & Pitruzzella, G. The late pliocene amphibians and reptiles from “Capo Mannu D1 Local Fauna” (Mandriola, Sardinia, Italy). Geodiversitas 33(2), 357–382 (2011).
    Google Scholar 
    15.Lanza, B. Salamandrina terdigitata (Lacépède, 1788): Emblem of the Unione Zoologica Italiana. Boll. Zool. 55, 1–4 (1988).
    Google Scholar 
    16.Agustí, J. et al. A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth-Sci. Rev. 52, 247–260 (2001).ADS 

    Google Scholar 
    17.Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. P. Roy. Soc. B-Biol. Sci. 277, 661–671 (2010).
    Google Scholar 
    18.Baselga, A., Lobo, J. M., Svenning, J. C. & Araujo, M. B. Global patterns in the shape of species geographical ranges reveal range determinants. J. Biogeogr. 39, 760–771 (2012).
    Google Scholar 
    19.Iannella, M., D’Alessandro, P. & Biondi, M. Evidences for a shared history for spectacled salamanders, haplotypes and climate. Sci. Rep. 8(1), 1–11 (2018).CAS 

    Google Scholar 
    20.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Modell. 190(3–4), 231–259 (2006).
    Google Scholar 
    21.Ficetola, G. F. et al. Knowing the past to predict the future: Land-use change and the distribution of invasive bullfrogs. Glob. Change Biol. 16(2), 528–537 (2010).ADS 

    Google Scholar 
    22.Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330–342 (2010).
    Google Scholar 
    23.Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10(1), 1–14 (2019).CAS 

    Google Scholar 
    24.Jones, L. A. et al. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 6, 182111 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Moss, R. et al. Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Intergovernmental Panel on Climate Change Secretariat (IPCC), pp. 132 (2008).26.Wayne, G. P. The beginner’s guide to representative Concentration pathways. Skeptical science Version 1.0 (2013).27.GBIF.org (2021) GBIF Occurrence Download https://doi.org/10.15468/dl.as6sk2.28.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Nat. Sci. Data 5, 180254 (2018).
    Google Scholar 
    29.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/.30.Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H, & Zimmermann, N. E. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss., 1–27 (2021).31.Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768), 1751–1753 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    32.Hill, D. J. The non-analogue nature of Pliocene temperature gradients. EPSL 425, 232–241 (2015).ADS 
    CAS 

    Google Scholar 
    33.Dolan, A. M. et al. Modelling the enigmatic late Pliocene glacial event—Marine Isotope Stage M2. Glob. Planet. Change 128, 47–60 (2015).ADS 

    Google Scholar 
    34.Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35(2), 213–226 (2021).
    Google Scholar 
    35.Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modelling. R package version 3.1–64 (2014). http://CRAN.R-project.org/package=biomod2.36.McCullagh, P. & Nelder, J. A. Generalized Linear Models 511 (Chapman and Hall, 1989).MATH 

    Google Scholar 
    37.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    38.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An opensource release of Maxent. Ecography 40, 887–893 (2017).
    Google Scholar 
    39.QGIS Development Team (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.40.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).
    Google Scholar 
    41.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    42.Weiss, S. & Ferrand, N. Phylogeography of Southern European Refugia Evolutionary Perspectives on the Origins and Conservation of European Biodiversity 377 (Springer, 2007).
    Google Scholar 
    43.Martinetto, E. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobot. 41(2), 299–319 (2001).
    Google Scholar 
    44.Martinetto, E. et al. Late persistence and deterministic extinction of “humid thermophilous plant taxa of East Asian affinity”(HUTEA) in southern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 467, 211–231 (2017).
    Google Scholar 
    45.Villa, A. & Delfino, M. Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: An overview. Swiss J. Palaeontol. 138, 177–211 (2019).
    Google Scholar 
    46.Montuire, S., Maridet, O. & Legendre, S. Late Miocene–early Pliocene temperature estimates in Europe using rodents. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238(1–4), 247–262 (2006).
    Google Scholar 
    47.Velitzelos, D., Bouchal, J. M. & Denk, T. Review of the Cenozoic floras and vegetation of Greece. Rev. Palaeobot. Palyno. 204, 56–117 (2014).
    Google Scholar 
    48.Martinetto, E. & Vieira, M. New Pliocene records of plant fossil-taxa from NW Portugal and their relevance for the assessment of diversity loss patterns in the late Cenozoic of Europe. Rev. Palaeobot. Palyno. 104286 (2020).49.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    50.Jylhä, K. et al. Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Clim. Soc. 2(2), 148–167 (2010).
    Google Scholar 
    51.Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109(1–2), 213 (2011).ADS 
    CAS 

    Google Scholar 
    52.Rutledge, D. Estimating long-term world coal production with logit and probit transforms. Int. J. Coal Geol. 85(1), 23–33 (2011).CAS 

    Google Scholar 
    53.Hausfather, Z. & Peters, G. Emissions: The “business as usual” story is misleading. Nature 577(7792), 618–620 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Delfino, M. Letters to the Editor: The past and future of extant amphibians. Science 308, 49–50 (2005).CAS 
    PubMed 

    Google Scholar 
    55.Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Fauna d’Italia, Vol. XLII, Amphibia. Calderini, Bologna, XI + 537 pp (2007).56.Martínez-Monzón, A., Cuenca-Bescós, G., Bisbal-Chinesta, J.-F. & Blain, H.-A. One million years of diversity shifts in amphibians and reptiles in a Mediterranean landscape: Resilience rules the Quaternary. Palaeontology https://doi.org/10.1111/pala.12547 (2021).Article 

    Google Scholar 
    57.Basile, M. et al. Seasonality and microhabitat selection in a forest-dwelling salamander. Sci. Nat. 104(9–10), 80 (2017).
    Google Scholar 
    58.Macaluso, L. et al. Osteology of the Italian endemic spectacled salamanders, Salamandrina spp. (Amphibia, Urodela, Salamandridae): Selected skeletal elements for palaeontological investigations. J. Morph. 281(11), 1391–1410 (2020).PubMed 

    Google Scholar 
    59.Sanchiz, B. On the presence of zogosphene-zigantrum vertebral articulations in salamandrids. Acta Zool. Cracov. 31(6), 493–504 (1988).
    Google Scholar 
    60.Utzeri, C., Antonelli, D. & Angelini, C. Note on the behavior of the Spectacled Salamander Salamandrina terdigitata (Lacépede, 1788). Herpetozoa 18, 182–185 (2005).
    Google Scholar 
    61.Weitzman, M. L. The Noah’s Ark Problem. Econometrica 66, 1279–1298 (1998).MathSciNet 
    MATH 

    Google Scholar 
    62.Erwin, D. H. Extinction as the loss of evolutionary history. PNAS 105(1), 11520–11527 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    PubMed 

    Google Scholar 
    64.Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. PNAS 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Connectivity dynamics in Irish mudflats between microorganisms including Vibrio spp., common cockles Cerastoderma edule, and shorebirds

    1.Thieltges, D. W., Mouritsen, K. N. & Poulin, R. in Mudflat Ecology (ed Beninger, P.) (Springer International Publishing, 2018).2.Tyler-Walters, H. Cerastoderma edule Common cockle. Marine Life Information Network: Biology and Sensitivity Key Information Reviews (2007).3.Malham, S. K., Hutchinson, T. H. & Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. U. K. 92, 1563–1577 (2012).4.Magalhaes, L., Freitas, R., Dairain, A. & De Montaudouin, X. Can host density attenuate parasitism?. J. Mar. Biol. Assoc. U. K. 97, 497–505 (2017).
    Google Scholar 
    5.Carss, D. N. et al. Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Mar. Environ. Res. 158, 104931 (2020).CAS 
    PubMed 

    Google Scholar 
    6.Lassalle, G., de Montaudouin, X., Soudant, P. & Paillard, C. Parasite co-infection of two sympatric bivalves, the Manila clam (Ruditapes philippinarum) and the cockle (Cerastoderma edule) along a latitudinal gradient. Aquat. Living Resour. 20, 33–42 (2007).
    Google Scholar 
    7.Hoberg, E. P. Faunal diversity among avian parasite assemblages: the interaction of history, ecology and biogeography in marine systems. Bull. Scand. Soc. Parasitol. 6, 65–89 (1996).
    Google Scholar 
    8.Muzaffar, S. B. & Jones, I. L. Parasites and diseases of auks (Alcidae) of the world and their ecology-A review. Mar. Ornithol. 32, 121–146 (2004).
    Google Scholar 
    9.Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. U. S. A. 103, 11211–11216 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    11.Johnson, P. T. J. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).PubMed 

    Google Scholar 
    12.Zannella, C. et al. Microbial diseases of bivalve mollusks: Infections, immunology and antimicrobial defense. Mar. Drugs 15, 182 (2017).PubMed Central 

    Google Scholar 
    13.Fermer, J., Culloty, S. C., Kelly, T. C. & O’riordan, R. M. Parasitological survey of the edible cockle Cerastoderma edule (Bivalvia) on the south coast of Ireland. J. Mar. Biol. Assoc. U. K. 91, 923–928 (2011).
    Google Scholar 
    14.Longshaw, M. & Malham, S. K. A review of the infectious agents, parasites, pathogens and commensals of European cockles (Cerastoderma edule and C. glaucum) (vol 93, pg 227, 2013). J. Mar. Biol. Assoc. U. K. 93, 1141 (2013).15.Newman, S. H. et al. Aquatic bird disease and mortality as an indicator of changing ecosystem health. Mar. Ecol. Prog. Ser. 352, 299–309 (2007).ADS 

    Google Scholar 
    16.Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. U. S. A. 113, E5062–E5071 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, e00333-e418 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Romalde, J. L., Dieguez, A. L., Lasa, A. & Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 4, 413 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    19.Allam, B., Paillard, C. & Ford, S. Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams. Dis. Aquat. Org. 48, 221–231 (2002).
    Google Scholar 
    20.Waechter, M., Le Roux, F., Nicolas, J., Marissal, E. & Berthe, F. Characterisation of Crassostrea gigas spat pathogenic bacteria. C.R. Biol. 325, 231–238 (2002).CAS 
    PubMed 

    Google Scholar 
    21.Gay, M., Renault, T., Pons, A. & Le Roux, F. Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: Taxonomy and host alterations. Dis. Aquat. Org. 62, 65–74 (2004).
    Google Scholar 
    22.Paillard, C., Le Roux, F. & Borrego, J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 17, 477–498 (2004).
    Google Scholar 
    23.Prado, S., Romalde, J., Montes, J. & Barja, J. Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. Dis. Aquat. Org. 67, 209–215 (2005).CAS 

    Google Scholar 
    24.Garnier, M., Labreuche, Y. & Nicolas, J. Molecular and phenotypic characterization of Vibrio aestuarianus subsp francensis subsp nov., a pathogen of the oyster Crassostrea gigas. Syst. Appl. Microbiol. 31, 358–365 (2008).CAS 
    PubMed 

    Google Scholar 
    25.Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    26.Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).PubMed 

    Google Scholar 
    27.Vezzulli, L. et al. Aquatic ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus. Environ. Microbiol. 17, 1065–1080 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Azandegbe, A. et al. Occurrence and seasonality of Vibrio aestuarianus in sediment and Crassostrea gigas haemolymph at two oyster farms in France. Dis. Aquat. Org. 91, 213–221 (2010).
    Google Scholar 
    29.Burreson, E. & Ford, S. A review of recent information on the Haplosporidia, with special reference to Haplosporidium nelsoni (MSX disease). Aquat. Living Resour. 17, 499–517 (2004).
    Google Scholar 
    30.Engelsma, M. Y. et al. Digenean trematodes and haplosporidian protozoans associated with summer mortality of cockles Cerastoderma edule in the Oosterschelde, The Netherlands. (European Association of Fish Pathologists Conference, Split, Croatia., 2011).31.Arzul, I. & Carnegie, R. B. New perspective on the haplosporidian parasites of molluscs. J. Invertebr. Pathol. 131, 32–42 (2015).PubMed 

    Google Scholar 
    32.Carnegie, R. B., Arzul, I. & Bushek, D. Managing marine mollusc diseases in the context of regional and international commerce: Policy issues and emerging concerns. Philos. Trans. R. Soc. B-Biol. Sci. 371, 20150215 (2016).
    Google Scholar 
    33.Ramilo, A., Abollo, E., Villalba, A. & Carballal, M. J. A Minchinia mercenariae-like parasite infects cockles Cerastoderma edule in Galicia (NW Spain). J. Fish Dis. 41, 41–48 (2018).CAS 
    PubMed 

    Google Scholar 
    34.Lynch, S. A. et al. Detection of haplosporidian protistan parasites supports an increase to their known diversity, geographic range and bivalve host specificity. Parasitology 147, 584–592 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Albuixech-Marti, S., Lynch, S. A. & Culloty, S. C. Biotic and abiotic factors influencing haplosporidian species distribution in the cockle Cerastoderma edule in Ireland. J. Invertebr. Pathol. 174, 107425 (2020).CAS 
    PubMed 

    Google Scholar 
    36.Azevedo, C., Conchas, R. & Montes, J. Description of Haplosporidium edule n. sp (Phylum Haplosporidia), a parasite of Cerastoderma edule (Mollusca, Bivalvia) with complex spore ornamentation. Eur. J. Protistol. 39, 161–167 (2003).
    Google Scholar 
    37.Carballal, M., Diaz, S. & Villalba, A. Urosporidium sp hyperparasite of the turbellarian Paravortex cardii in the cockle Cerastoderma edule. J. Invertebr. Pathol. 90, 104–107 (2005).PubMed 

    Google Scholar 
    38.Daoust, P., Conboy, G., McBurney, S. & Burgess, N. Interactive mortality factors in common loons from Maritime Canada. J. Wildl. Dis. 34, 524–531 (1998).CAS 
    PubMed 

    Google Scholar 
    39.Converse, K. & Kidd, G. Duck plague epizootics in the United States, 1967–1995. J. Wildl. Dis. 37, 347–357 (2001).CAS 
    PubMed 

    Google Scholar 
    40.Friend, M., McLean, R. & Dein, F. Disease emergence in birds: Challenges for the twenty-first century. Auk 118, 290–303 (2001).
    Google Scholar 
    41.Hubalek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40, 639–659 (2004).PubMed 

    Google Scholar 
    42.Quesada, R. J. et al. Detection and phylogenetic characterization of a novel herpesvirus from the trachea of two stranded common loons (Gavia immer). J. Wildl. Dis. 47, 233–239 (2011).PubMed 

    Google Scholar 
    43.Niemeyer, C. et al. Genetically diverse herpesviruses in South American Atlantic coast seabirds. PLoS ONE 12, e0178811 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Bookelaar, B., Lynch, S. A. & Culloty, S. C. Host plasticity supports spread of an aquaculture introduced virus to an ecosystem engineer. Parasit. Vectors 13, 498 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Honjo, M. N., Minamoto, T. & Kawabata, Z. Reservoirs of Cyprinid herpesvirus 3 (CyHV-3) DNA in sediments of natural lakes and ponds. Vet. Microbiol. 155, 183–190 (2012).CAS 
    PubMed 

    Google Scholar 
    46.Evans, O., Paul-Pont, I. & Whittington, R. J. Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. Dis. Aquat. Org. 122, 247–255 (2017).CAS 

    Google Scholar 
    47.Slodkowicz-Kowalska, A. et al. Microsporidian species known to infect humans are present in aquatic birds: Implications for transmission via water?. Appl. Environ. Microbiol. 72, 4540–4544 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Malcekova, B., Valencakova, A., Molnar, L. & Kocisova, A. First detection and genotyping of human-associated microsporidia in wild waterfowl of Slovakia. Acta Parasitol. 58, 13–17 (2013).CAS 
    PubMed 

    Google Scholar 
    49.Fermer, J., Culloty, S. C., Kelly, T. C. & O’Riordan, R. M. Intrapopulational distribution of Meiogymnophallus minutus (Digenea, Gymnophallidae) infections in its first and second intermediate host. Parasitol. Res. 105, 1231–1238 (2009).PubMed 

    Google Scholar 
    50.Yun, Y. et al. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in South Korea and migratory bird routes between China, South Korea, and Japan. Am. J. Trop. Med. Hyg. 93, 468–474 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Xu, Y., Gong, P., Wielstra, B. & Si, Y. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci. Rep. 6, 30262 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963 (2008).CAS 
    PubMed 

    Google Scholar 
    53.Harper, G. et al. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol. Ecol. 14, 819–827 (2005).CAS 
    PubMed 

    Google Scholar 
    54.Martin, D. L., Ross, R. M., Quetin, L. B. & Murray, A. E. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 319, 155–165 (2006).ADS 
    CAS 

    Google Scholar 
    55.Read, D. S., Sheppard, S. K., Bruford, M. W., Glen, D. M. & Symondson, W. O. C. Molecular detection of predation by soil micro-arthropods on nematodes. Mol. Ecol. 15, 1963–1972 (2006).CAS 
    PubMed 

    Google Scholar 
    56.Harwood, J. D. et al. Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: A molecular approach. Mol. Ecol. 16, 4390–4400 (2007).CAS 
    PubMed 

    Google Scholar 
    57.Albuixech-Martí, S., Culloty, S. C. & Lynch, S. A. Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast. Parasitology, 1–15 (2021).58.Lewis, L. J. & Tierney, T. D. Low tide waterbird surveys: Survey methods and guidance notes. Irish Wildlife Manuals 80 (2014).59.Garcia, C. et al. Vibrio aestuarianus subsp. cardii subsp. nov., pathogenic to the edible cockles Cerastoderma edule in France, and establishment of Vibrio aestuarianus subsp. aestuarianus subsp. nov. and Vibrio aestuarianus subsp. francensis subsp. nov. Int. J. Syst. Evol. Microbiol. 71, 004654 (2021).60.Lacoste, A. et al. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Org. 46, 139–145 (2001).CAS 

    Google Scholar 
    61.Le Roux, F. et al. Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat. Living Resour. 15, 251–258 (2002).
    Google Scholar 
    62.Garnier, M., Labreuche, Y., Garcia, C., Robert, A. & Nicolas, J. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 53, 187–196 (2007).CAS 
    PubMed 

    Google Scholar 
    63.McCleary, S. & Henshilwood, K. Novel quantitative TaqMan (R) MGB real-time PCR for sensitive detection of Vibrio aestuarianus in Crassostrea gigas. Dis. Aquat. Org. 114, 239–248 (2015).CAS 

    Google Scholar 
    64.Halpern, M., Senderovich, Y. & Izhaki, I. Waterfowl-The missing link in epidemic and pandemic cholera dissemination?. PLoS Pathog. 4, e1000173 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    65.Rodríguez, J., López, P., Muñoz, J. & Rodríguez, N. Detection of Vibrio cholerae no toxigenico in migratory and resident birds (Charadriiformes) in a coastal lagoon from northeastern Venezuela. Saber 22, 122–126 (2010).
    Google Scholar 
    66.Fernandez-Delgado, M. et al. Prevalence and distribution of Vibrio spp. in wild aquatic birds of the Southern Caribbean Sea, Venezuela, 2011–12. J. Wildl. Dis. 52, 621–626 (2016).67.Laviad-Shitrit, S., Izhaki, I. & Halpern, M. Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae. PLoS Pathog. 15, e1007814 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Buck, J. D. Isolation of Candida-albicans and halophilic Vibrio spp. from aquatic birds in Connecticut and Florida. Appl. Environ. Microbiol. 56, 826–828 (1990).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Miyasaka, J. et al. Isolation of Vibrio parahaemolyticus and Vibrio vulnificus from wild aquatic birds in Japan. Epidemiol. Infect. 134, 780–785 (2006).CAS 
    PubMed 

    Google Scholar 
    70.Fu, S. et al. Long-distance transmission of pathogenic Vibrio species by migratory waterbirds: A potential threat to the public health. Sci. Rep. 9, 16303 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Senderovich, Y., Izhaki, I. & Halpern, M. Fish as reservoirs and vectors of Vibrio cholerae. PLoS ONE 5, e8607 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Laviad-Shitrit, S. et al. Great cormorants (Phalacrocorax carbo) as potential vectors for the dispersal of Vibrio cholerae. Sci. Rep. 7, 7973 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Hossain, Z. Z., Farhana, I., Tulsiani’, S. M., Beguml, A. & Jensen, P. K. M. Transmission and toxigenic potential of Vibrio cholerae in hilsha fish (Tenualosa ilisha) for human consumption in Bangladesh. Front. Microbiol. 9, 222 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    74.Bryant, D. M. Effects of prey density and site character on estuary usage by overwintering waders (Charadrii). Estuar. Coast. Mar. Sci. 9, 369–384 (1979).ADS 

    Google Scholar 
    75.Hicklin, P. W. & Smith, P. C. Selection of foraging sites and invertebrate prey by migrant semipalmated sandpipers, Calidris-pusilla (Pallas), in Minas Basin, Bay of Fundy. Can. J. Zool. 62, 2201–2210 (1984).
    Google Scholar 
    76.Colwell, M. A. & Landrum, S. L. Nonrandom shorebird distribution and fine-scale variation in prey abundance. Condor 95, 94–103 (1993).
    Google Scholar 
    77.Ben-Horin, T., Bidegain, G., Huey, L., Narvaez, D. A. & Bushek, D. Parasite transmission through suspension feeding. J. Invertebr. Pathol. 131, 155–176 (2015).PubMed 

    Google Scholar 
    78.Pruzzo, C., Vezzulli, L. & Colwell, R. R. Global impact of Vibrio cholerae interactions with chitin. Environ. Microbiol. 10, 1400–1410 (2008).CAS 
    PubMed 

    Google Scholar 
    79.Vezzulli, L., Pruzzo, C., Huq, A. & Colwell, R. R. Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ. Microbiol. Rep. 2, 27–33 (2010).PubMed 

    Google Scholar 
    80.Freitas, C., Glatter, T. & Ringgaard, S. The release of a distinct cell type from swarm colonies facilitates dissemination of Vibrio parahaemolyticus in the environment. ISME J. 14, 230–244 (2020).PubMed 

    Google Scholar 
    81.Vezzulli, L. et al. Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb. Ecol. 58, 808–818 (2009).CAS 
    PubMed 

    Google Scholar 
    82.Piersma, T., Degoeij, P. & Tulp, I. An evaluation of intertidal feeding habitats from a shorebird perspective – Towards relevant comparisons between temperate and tropical mudflats. Neth. J. Sea Res. 31, 503–512 (1993).
    Google Scholar 
    83.Hervas, A., Tully, O., Hickey, J., O’Keefe, E. & Kelly, K. Assessment, monitoring and management of the Dundalk Bay and Waterford Cockle (Cerastoderma edule) Fisheries in 2007. BIM Fisheries Resource Series 7 (2008).84.Martins, R. C., Catry, T., Santos, C. D., Palmeirim, J. M. & Granadeiro, J. P. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a South European Estuary: Improved feeding conditions for northward migrants. PLoS ONE 8, e81174 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).CAS 
    PubMed 

    Google Scholar 
    86.Lynch, S. A., Mulcahy, M. F. & Culloty, S. C. Efficiency of diagnostic techniques for the parasite, Bonamia ostreae, in the flat oyster, Ostrea edulis. Aquaculture 281, 17–21 (2008).
    Google Scholar 
    87.Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).CAS 
    PubMed 

    Google Scholar 
    88.Freire, R., Arias, A., Mendez, J. & Insua, A. Identification of European commercial cockles (Cerastoderma edule and C. glaucum) by species-specific PCR amplification of the ribosomal DNA ITS region. Eur. Food Res. Technol. 232, 83–86 (2011).89.Thompson, J. et al. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70, 4103–4110 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Vezzulli, L. et al. Long-term effects of ocean warming on the prokaryotic community: Evidence from the vibrios. ISME J. 6, 21–30 (2012).PubMed 

    Google Scholar 
    91.Renault, T. et al. Haplosporidiosis in the pacific oyster Crassostrea gigas from the French Atlantic coast. Dis. Aquat. Org. 42, 207–214 (2000).CAS 

    Google Scholar 
    92.Molloy, D. P., Giamberini, L., Stokes, N. A., Burreson, E. M. & Ovcharenko, M. A. Haplosporidium raabei n. sp (Haplosporidia): A parasite of zebra mussels, Dreissena polymorpha (Pallas, 1771). Parasitology 139, 463–477 (2012).93.Lynch, S. A., Dillane, E., Carlsson, J. & Culloty, S. C. Development and assessment of a sensitive and cost-effective polymerase chain reaction to detect ostreid herpesvirus 1 and variants. J. Shellfish Res. 32, 657–664 (2013).
    Google Scholar  More

  • in

    Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855)

    1.Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report (Intergovernmental Panel on Climate Change, Geneva) p 52 (2014). https://www.ipcc.ch/report/ar5/wg2/2.Easterling, D. R., Meehl, G. A., Parmesan, C., Karl, T. R. & Mearns, L. O. Climate extremes: Observations, modelling and impacts. Science 5487, 2068–2074 (2000).ADS 

    Google Scholar 
    3.Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report (Intergovernmental Panel on Climate Change, Geneva) p 52 (2007). https://www.ipcc.ch/report/ar5/syr/4.Ju, R. T., Zhu, H. Y., Gao, L., Zhu, X. H. & Li, B. Increase in both temperature means, and extremes likely facilitates invasive herbivore outbreaks. Sci. Rep. 5, 15715. https://doi.org/10.1038/srep15715 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    5.World Meteorological Organisation (WMO). State of the Climate in Africa. WMO-No. 1253. 2020. Available at: https://library.wmo.int/doc_num.php?explnum_id=10421. Accessed 12 September 2021.6.Dube, O. P. Impact of climate change vulnerability and adaptation options: Exploring the case for Botswana through Southern Africa: A review. Botswana Notes Rec. 35, 147–168 (2003).
    Google Scholar 
    7.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. 105, 6668–6672 (2008).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    8.Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357. https://doi.org/10.1038/s41467-020-16970-7(2020).9.National Oceanic and Atmospheric Administration (NOAA). Astounding heat obliterates all-time records across the Pacific Northwest and Western Canada in June 2021. Climate. Gov. Science and Information for Climate smart Nation. Available at: https://www.climate.gov/news-features/event-tracker/astounding-heat-obliterates-all-time-records-across-pacific-northwest. Accessed 03 July, 2021.10.UK Met Office. Record breaking Heat wave, July 2019. (2020). Available at: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2019/2019_007_july_heatwave.pdf. Accessed 10 June, 2021.11.Kendon, M. et al. State of the UK Climate 2019. Int. J. Climatol. 40, 1–69 (2020).
    Google Scholar 
    12.Head, L., Adams, M., McGregor, H. V. & Toole, S. Climate change and Australia. Wiley Interdiscipl. Rev. WIREs Clim. Change 5, 175–197 (2014).
    Google Scholar 
    13.Nangombe, S. et al. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C Global warming scenarios. Nat. Clim. Change 8, 375–380 (2018).14.Gergis, J., Ashcroft, L. & Whetton, P. A. historical perspective on Australian temperature extremes. Clim. Dyn. 55, 843–868 (2020).
    Google Scholar 
    15.Carpaneto, G. M., Mazziotta, A. & Valerio, L. Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae). Divers. Distrib. 13, 903–919 (2007).
    Google Scholar 
    16.Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    17.Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns (Oxford University Press, 2004).
    Google Scholar 
    18.Huey, R. B. & Kearney, M. R. Dynamics of death by heat. Science 369, 1163. https://doi.org/10.1126/science.abe0320 (2020).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    19.Jørgensen, L. B. et al. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840. https://doi.org/10.1038/s41598-021-92004-6 (2021)20.Buyantuyev, A. & Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 25, 17–33 (2010).
    Google Scholar 
    21.Aalto, J., Riihimäki, H., Meineri, E., Hylander, K. & Luoto, M. Revealing topoclimatic heterogeneity using meteorological station data. Int. J. Climatol. 37, 544–556 (2017).
    Google Scholar 
    22.Holley, J. M. & Andrew, N. R. Experimental warming alters the relative survival and emigration of two dung beetle species from an Australian dung pat community. Austral. Ecol. 44, 800–811 (2019).
    Google Scholar 
    23.Giannini, T. C. et al. Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecol. Model. 244, 127–131 (2012).
    Google Scholar 
    24.Wu, X. W. & Sun, S. C. Artificial warming advances egg laying and decreases larval size in the dung beetle, Aphodius erractus (Coleoptera: Scarabaeidae) in a Tibetan alpine meadow. Ann. Zool. Fennici. 49, 174–181 (2012).
    Google Scholar 
    25.Mamantov, M. A. & Sheldon, K. S. Behavioural responses to warming differentially impact survival in introduced and native dung beetles. J. Anim. Ecol. 90, 273–281 (2021).PubMed 

    Google Scholar 
    26.Clusella-Trullas, S., Blackburn, T. N. & Chown, S. L. Climate predictors of temperature performance curves parameters in ectotherms. Am. Nat. 177, 738–751 (2011).PubMed 

    Google Scholar 
    27.Ma, G., Rudolf, V. H. & Ma, C. S. Extreme temperature events alter demographic rates, relative fitness and community structure. Glob. Change Biol. 21, 1794–1808 (2014).ADS 

    Google Scholar 
    28.Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401. https://doi.org/10.1098/rspb.2015.0401 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.van Heerwaarden, B., Kellermann, V. & Sgrò, C. M. Limited scope for plasticity to increase upper thermal limits. Funct. Ecol. 30, 1947–1956 (2016).
    Google Scholar 
    30.Nyamukondiwa, C., Terblamche, J. S., Marshall, K. E. & Sinclair, B. K. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24, 1927–1938 (2011).CAS 
    PubMed 

    Google Scholar 
    31.Blackburn, S., van Heerwaarden, B., Kellermann, V. & Sgró, C. M. Evolutionary capacity of upper thermal limits: Beyond single trait assessments. J. Exp. Biol. 217, 1918–1924 (2014).PubMed 

    Google Scholar 
    32.Bowler, K. & Terblanche, J. S. Insect thermal tolerance: What is the role of ontogeny, ageing and senescence?. Biol. Rev. Camb. Philos. Soc. 83, 339–355 (2008).PubMed 

    Google Scholar 
    33.Barley, J. M., Cheng, B. S., Sasaki, M., Gignoux-Wolfsohn, S., Hays, C. G., Putnam, A. B., Sheth, S., Villeneuve, A. R. & Kelly, M. Limited plasticity in thermally tolerant ectotherm populations: Evidence for a trade-off. Proc. R. Soc. B (2021). https://doi.org/10.1098/rspb.2021.0765.34.Sgrò, C. M., Terblanche, J. S. & Hoffmann, A. A. What can plasticity contribute to insect responses to climate change?. Annu. Rev. Entomol. 61, 433–451 (2016).PubMed 

    Google Scholar 
    35.Pincebourde, S. & Woods, H. A. There is plenty of room at the bottom: Microclimates drive insect vulnerability to climate change. Curr. Opin. Insect Sci. 41, 63–70 (2020).PubMed 

    Google Scholar 
    36.Woods, A., Pincebourde, S., Dillon, M. E. & Terblanche, J. S. Extended phenotypes: Buffers or amplifiers of climate change?. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.05.010 (2021).Article 
    PubMed 

    Google Scholar 
    37.Gunderson, A. R., Dillon, M. E. & Stillman, J. H. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529–1539 (2017).
    Google Scholar 
    38.Esperk, T., Kjaersgaard, A., Walters, R. J., Berger, D. & Blanckenhorn, W. U. Plastic and evolutionary responses to heat stress in a temperate dung fly: Negative correlation between basal and induced heat tolerance?. J. Evol. Biol. 29, 900–915 (2016).CAS 
    PubMed 

    Google Scholar 
    39.Calosi, P., Bilton, D. T. & Spicer, J. I. Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol. Lett. 4, 99–102 (2008).PubMed 

    Google Scholar 
    40.van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35, 874–885 (2020).PubMed 

    Google Scholar 
    41.Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B. & Knowlton, N. Climate change and ecosystems: threats, opportunities and solutions. Philos. Trans. R. Soc. B 375, 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).42.Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    PubMed 

    Google Scholar 
    43.Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Ecology—Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    PubMed 

    Google Scholar 
    44.Kelley, A. M. The role thermal physiology plays in species invasion. Conserv. Physiol. 10, 2. https://doi.org/10.1093/conphys/cou045 (2014).CAS 
    Article 

    Google Scholar 
    45.Mitchell, K. A., Sgró, C. M. & Hoffmann, A. A. Phenotypic plasticity in upper thermal limits is weakly related to Drosophila species distributions. Funct. Ecol. 25, 661–670 (2011).
    Google Scholar 
    46.Allen, J. L., Chown, S. L., Janion-Scheepers, C. & Clusella-Trullas, S. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. Conserv. Physiol. 4, 1–14 (2020).
    Google Scholar 
    47.Edwards, P. B. & Aschenborn, H. H. Patterns of nesting and dung burial in onitis dung beetles: Implications for pasture productivity and fly control. J. Appl. Ecol. 24, 837–851 (1987).
    Google Scholar 
    48.Bertone, M. A., Green, J. T., Washburn, S. P., Poore, M. H. & Watson, D. W. The contribution of tunneling dung beetles to pasture soil nutrition. Forage Grazinglands https://doi.org/10.1094/FG-2006-0711-02-RS (2006).Article 

    Google Scholar 
    49.Yamada, D., Imura, O., Shi, K. & Shibuya, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassl. Sci. 53, 121–129 (2007).
    Google Scholar 
    50.Slade, E. M. & Roslin, T. Dung beetle species interactions and multifunctionality are affected by an experimentally warmed climate. Oikos 125, 1607–1616 (2016).
    Google Scholar 
    51.Yoshihara, Y. & Sato, S. The relationship between dung beetle species richness and ecosystem functioning. Appl. Soil Ecol. 88, 21–25 (2015).
    Google Scholar 
    52.Manning, P., Slade, E. M., Beynon, S. A. & Lewis, O. T. Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agric. Ecosyst. Environ. 218, 87–94 (2016).
    Google Scholar 
    53.Milotić, T. et al. Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. J. Biogeogr. 46, 70–82 (2019).
    Google Scholar 
    54.Slade, E. M., Riutta, T., Roslin, T. & Tuomisto, H. L. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Sci. Rep. 6, 18140. https://doi.org/10.1038/srep1814 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    55.Penttilä, A. et al. Quantifying beetle-mediated effects on gas fluxes from dung pats. PLoS ONE 8, e71454. https://doi.org/10.1371/journal.pone.0071454 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.Spector, S. Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): An invertebrate focal taxon for biodiversity research and conservation. Coleopt. Bull. 5, 71–83 (2006).
    Google Scholar 
    57.Osberg, D. C., Hanrahan, S. A. & Doube, B.M. The spatial distribution of Allogymnopleurus thalassinus Klug and A. consocius (Pringuey) (Coleoptera: Scarabaeidae) in an area of mixed soil types in South Africa. J. Entomol. Soc. S. Afr. 55, 85–92 (1992).58.Global Biodiversity Information Facility (GBIF). Allogymnopleurus thalassinus (Klug. 1855) (2020) Available at: https://www.gbif.org/species/1093939. Online Database. Accessed 29 December, 2020.59.Doube, B. M. Dung beetles of Southern Africa. (In: Hanski, I & Cambefort, Y. eds, Chapter 8). In Dung beetle ecology 133–155 (Princeton University Press, Princeton, 2014).60.Janssens, A. Monographie des Gymnopleurides. Verhandelingen Koninklijk Natuurhistorisch Museum Belgie. Brussel, 2, 1–74 (1940).61.Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Low-temperature tolerance in coprophagic beetle species (Coleoptera: Scarabaeidae): Implications for ecological services. Ecol. Entomol. https://doi.org/10.1111/een.13054 (2021).62.Gittings, T., Giller, P. S. & Stakelum, G. Dung decomposition in contrasting temperate pastures in relation to dung beetle and earthworm activity. Pedobiologia, 38, 455–474 (1994).63.Rosenlew, H. & Roslin, T. Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos 117, 1659–1666 (2008).
    Google Scholar 
    64.Mitchell, K. A. & Hoffmann, A. A. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol. 24, 694–700 (2010).
    Google Scholar 
    65.Terblanche, J. S., Nyamukondiwa, C. & Kleynhans, E. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol. Exp. Appl. 137, 304–315 (2010).
    Google Scholar 
    66.Janzen, D. H. Why mountain passes are higher in tropics. Am. Nat. 101, 233–249 (1967).
    Google Scholar 
    67.Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    68.Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: Does phenotypic plasticity increase with latitude?. Am. Nat. 178, S80–S96 (2011).PubMed 

    Google Scholar 
    69.Terblanche, J. S. et al. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 214, 3713–3725 (2011).PubMed 

    Google Scholar 
    70.Giménez Gómez, V.C., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 13364. https://doi.org/10.1038/s41598-020-70284-8 (2020).71.Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Sci. https://doi.org/10.1111/1744-7917.12844 (2020).Article 
    PubMed 

    Google Scholar 
    72.Nyamukondiwa, C., Chidawanyika, F., Machekano, H., Mutamiswa, R., Sands, B., Mdigiswa, N. & Wall, R. Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species. PLOS One 13(6), e0198610. https://doi.org/10.1371/journal.pone.0198610 (2018).73.Jumbam, K., Jackson, S., Terblanche, J. S., McGeoch, M. A. & Chown, S. Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. J. Insect Physiol. 54, 1008–1014 (2008).CAS 
    PubMed 

    Google Scholar 
    74.Dallas, H. F. & Rivers-Moore, N. A. Critical thermal maxima of aquatic macroinvertebrates: Towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012).
    Google Scholar 
    75.Gallego, B., Verdú, J. R. & Lobo, J. M. Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae). J. Thermal Biol. 74, 84–91 (2018).
    Google Scholar 
    76.Qari, S. A. Thermal tolerance of the marine crab, Portunus pelagicus (Brachyura, Portunidae). Crustaceana 87, 827–833 (2014).
    Google Scholar 
    77.Azra, M. N., Mohamad, A., Hidir, A., Taufik, M., Abol-Munafi, A. B. & Ikhwanuddin, M. Critical thermal maxima of two species of intertidal crabs, Scylla olivacea and Thalamita crenata at different acclimation temperatures. Aquacul. Rep. 17, 100301. https://doi.org/10.1016/j.aqrep.2020.100301 (2020)78.Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: History and critique. Can. J. Zool. 75, 1561–1574 (1997).
    Google Scholar 
    79.Käfer, H. et al. Insects 11, 197. https://doi.org/10.3390/insects11030197 (2020).Article 
    PubMed Central 

    Google Scholar 
    80.Gehring, W. J. & Wehner, R. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc Natl. Acad. Sci. 92, 2994–2998 (1995).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    81.Bishop, T. R., Robertson, M. P., Van Rensburg, B. & Parr, C. L. Coping with the cold: Minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecol. Entomol. 42, 105–114 (2017).
    Google Scholar 
    82.Smolka, J. et al. Dung beetles use their dung ball as a mobile thermal refuge. Curr. Biol. 20, R863–R864. https://doi.org/10.1016/j.cub.2012.08.057 (2012).CAS 
    Article 

    Google Scholar 
    83.Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. B: Biol. Sci. 274, 2935–2943 (2007).
    Google Scholar 
    84.Chown, S. L., Jumbam, K. R., Sørensen, J. G. & Terblanche, J. S. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23, 133–140 (2009).
    Google Scholar 
    85.Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Thermal Biol. 28, 175–216 (2003).
    Google Scholar 
    86.Pelster, B. & Burggren, W. W. Responses to environmental stressors in developing animals: Costs and benefits of phenotypic plasticity. In Development and environment (eds Burggren, W. & Dubansky, B.) (Springer, Cham, 2018).
    Google Scholar 
    87.Kristensen, T. N., Kjeldal, H., Schou, M. F. & Nielsen, J. L. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation. J. Exp. Biol. 219, 969–976 (2016).PubMed 

    Google Scholar 
    88.Chanthy, P., Martin, R. J., Gunning, R. V., & Andrew, N. R. The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Front. Physiol. 3, 465 https://doi.org/10.3389/fphys.2012.00465 (2012).89.Anthony, S. E., Buddle, C. M., Høye, T. T., Hein, N. & Sinclair, B. J. Thermal acclimation has limited effect on thermal tolerance of summer collected Arctic and sub-Arctic wolf spiders. Comp. Biochem. Physiol. Part A, Mol. Integr. Physiol. 257, 110974 (2021).90.Hofmann, G. & Somero, G. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol. 198, 1509–1518 (1995).CAS 
    PubMed 

    Google Scholar 
    91.Munang, R., Thiaw, I., Alverson, K., Liu, J. & Han, Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 5, 47–52 (2013).
    Google Scholar 
    92.Department of Wildlife and National Parks (DWNP). Aerial census of animals in Botswana 2012 dry season. Gaborone, Republic of Botswana (2012).93.Braga, R. F., Korasaki, V., Andresen, E. & Louzada, J. Dung beetle community and functions along a habitat-disturbance gradient in the amazon: A rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8, e57786. https://doi.org/10.1371/journal.pone.0057786 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    94.Niino, M. et al. Diel flight activity and habitat preference of dung beetles (Coleoptera: Scarabaeidae) in Peninsular Malaysia. Raffles Bull. Zool. 62, 795–804 (2014).
    Google Scholar 
    95.Beetles of Africa. The Website for the Beetle Collector. Online database available at: http://www.beetlesofafrica.com (2021). Accessed 22 April, 2020.96.Mathur, V. & Schmidt, P. S. Adaptive patterns of phenotypic plasticity in laboratory and field environments in Drosophila melanogaster. Evol. 71, 465–474 (2017).
    Google Scholar 
    97.Chidawanyika, F., Nyamukondiwa, C., Strathie, L., Fischer, K. Effects of thermal regimes, starvation and age on heat tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE 12(1), e0169371. https://doi.org/10.1371/journal.pone.0169371 (2017).98.Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).
    Google Scholar 
    99.El-Saadi, M. I., Ritchie, M. W., Davis, H. E. & MacMillan, H. A. Warm periods in repeated cold stresses protect Drosophila against iono-regulatory collapse, chilling injury, and reproductive deficits. J. Insect Physiol. 123, 104055. https://doi.org/10.1016/j.jinsphys.2020.104055 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    100.Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).
    Google Scholar 
    101.Nyamukondiwa, C. & Terblanche, J. S. Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: Thermal history affects short-term responses to temperature. Physiol. Entomol. 35, 255–264 (2010).
    Google Scholar 
    102.Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Thermal Biol. 36, 479–485 (2011).
    Google Scholar 
    103.Sullivan, J. T., Ozman-Sullivan, S. K., Lumaret, J. P., Zalucki, M. P. & Baxter, G. Does one size suit all? Dung pad size and ball production by Scarabaeus sacer (Coleoptera: Scarabaeidae: Scarabaeinae). Eur. J. Entomol. 113, 70–75 (2016).
    Google Scholar 
    104.Nervo, B., Tocco, C., Caprio, C., Palestrini, C. & Rolando, A. Effects of body mass on dung removal efficiency in dung beetles. PLoS ONE 9, e107699. https://doi.org/10.1371/journal.pone.0107699 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    105.Slade, E. M., Mann, D. J., Villanueva, J. M. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).PubMed 

    Google Scholar 
    106.R Core Team. R: A Language and environment for Statistical computing. R Foundation for Statistical computing, Vienna, Austria. 2021. Available at: https://www.R-project.org/.107.Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures, in Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’11). Vancouver, British Columbia (May 7–12, 2011) 143–146 (ACM Press, New York, 2011).108.Elkin, L. A., Kay, M., Higgins, J. & Wobbrock, J. O. An aligned rank transform procedure for multifactor contrast tests, in Proceedings of the ACM Symposium on User Interface Software and Technology (UIST ’21). Virtual Event (October 10–13, 2021) (ACM Press, New York, NY, 2021). More