Winter distribution of juvenile and sub-adult male Antarctic fur seals (Arctocephalus gazella) along the western Antarctic Peninsula
1.Knox, G. A. Biology of the Southern Ocean (CRC Press, 2006). https://doi.org/10.1201/9781420005134Book
Google Scholar
2.Thomas, D. N. et al. The Biology of Polar Regions: The Biology of Polar Regions (Oxford University Press, 2008).
Google Scholar
3.Trathan, P. N. & Hill, S. L. The Importance of Krill Predation in the Southern Ocean. In Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 321–350 (Springer, 2016). https://doi.org/10.1007/978-3-319-29279-3_9.Chapter
Google Scholar
4.Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).ADS
CAS
Google Scholar
5.Siegel, V. & Watkins, J. L. Distribution, biomass and demography of antarctic krill, Euphausia superba. In Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 21–100 (Springer, 2016). https://doi.org/10.1007/978-3-319-29279-3_2.Chapter
Google Scholar
6.Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: Implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).ADS
CAS
Google Scholar
7.Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333 (2018).ADS
CAS
PubMed
PubMed Central
Google Scholar
8.Ribic, C. A., Ainley, D. G. & Fraser, W. R. Habitat selection by marine mammals in the marginal ice zone. Antarct. Sci. 3, 181–186 (1991).ADS
Google Scholar
9.Takahashi, A. et al. Migratory movements and winter diving activity of Adélie penguins in East Antarctica. Mar. Ecol. Prog. Ser. 589, 227–239 (2018).ADS
Google Scholar
10.Hückstädt, L. A. et al. Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula. Nat. Clim. Change 10, 472–477 (2020).ADS
Google Scholar
11.Lowther, A. D., Staniland, I., Lydersen, C. & Kovacs, K. M. Male Antarctic fur seals: Neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery. Sci. Rep. 10, 18436 (2020).CAS
PubMed
PubMed Central
Google Scholar
12.Forcada, J. & Staniland, I. J. Antarctic fur seal Arctocephalus gazella. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 36–42 (Academic Press, 2009).
Google Scholar
13.Boyd, I. L., McCafferty, D. J., Reid, K., Taylor, R. & Walker, T. R. Dispersal of male and female Antarctic fur seals (Arctocephalus gazella). Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f97-314 (1998).Article
Google Scholar
14.Cherel, Y., Kernaléguen, L., Richard, P. & Guinet, C. Whisker isotopic signature depicts migration patterns and multi-year intra- and inter-individual foraging strategies in fur seals. Biol. Lett. 5, 830–832 (2009).CAS
PubMed
PubMed Central
Google Scholar
15.Kernaléguen, L. et al. Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers. PLoS ONE 7, e32916 (2012).ADS
PubMed
PubMed Central
Google Scholar
16.Kernaléguen, L., Arnould, J. P. Y., Guinet, C. & Cherel, Y. Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals. J. Anim. Ecol. 84, 1081–1091 (2015).PubMed
Google Scholar
17.Arthur, B. et al. Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella). Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 171–181 (2017).ADS
Google Scholar
18.Arthur, B. et al. Managing for change: Using vertebrate at sea habitat use to direct management efforts. Ecol. Indic. 91, 338–349 (2018).
Google Scholar
19.Reisinger, R. R. et al. Habitat modelling of tracking data from multiple marine predators identifies important areas in the Southern Indian Ocean. Divers. Distrib. 24, 535–550 (2018).MathSciNet
Google Scholar
20.Wege, M., de Bruyn, P. J. N., Hindell, M. A., Lea, M.-A. & Bester, M. N. Preferred, small-scale foraging areas of two Southern Ocean fur seal species are not determined by habitat characteristics. BMC Ecol. 19, 36 (2019).PubMed
PubMed Central
Google Scholar
21.Jones, K. A. et al. Intra-specific niche partitioning in antarctic fur seals, Arctocephalus gazella. Sci. Rep. 10, 3238 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
22.Siniff, D. B., Garrott, R. A., Rotella, J. J., Fraser, W. R. & Ainley, D. G. Opinion: Projecting the effects of environmental change on Antarctic seals. Antarct. Sci. 20, 425–435 (2008).ADS
Google Scholar
23.Raymond, B. et al. Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography 38, 121–129 (2015).
Google Scholar
24.Bestley, S., Jonsen, I. D., Hindell, M. A., Harcourt, R. G. & Gales, N. J. Taking animal tracking to new depths: Synthesizing horizontal–vertical movement relationships for four marine predators. Ecology 96, 417–427 (2015).PubMed
Google Scholar
25.Kernaléguen, L. et al. Early-life sexual segregation: Ontogeny of isotopic niche differentiation in the Antarctic fur seal. Sci. Rep. 6, 33211 (2016).ADS
PubMed
PubMed Central
Google Scholar
26.Payne, M. R. Growth in the Antarctic fur seal Arctocephalus gazella. J. Zool. 187, 1–20 (1979).
Google Scholar
27.Costa, D., Goebel, M. E. & Sterling, J. T. Foraging energetics and diving behavior of the Antarctic fur seal, Arctocephalus gazzella at Cape Shirreff, Livingston Island. In Antarctic Ecosystems: Models for Wider Ecological Understanding (eds Davision, W. et al.) 77–84 (New Zealand Natural Science Press, 2000).
Google Scholar
28.Staniland, I. J. et al. Geographical variation in the behaviour of a central place forager: Antarctic fur seals foraging in contrasting environments. Mar. Biol. 157, 2383–2396 (2010).
Google Scholar
29.Blanchet, M.-A. et al. At-sea behaviour of three krill predators breeding at Bouvetøya—Antarctic fur seals, macaroni penguins and chinstrap penguins. Mar. Ecol. Prog. Ser. 477, 285–302 (2013).ADS
Google Scholar
30.Jeanniard-du-Dot, T., Trites, A. W., Arnould, J. P. Y. & Guinet, C. Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals. PLoS ONE 12, e0174001 (2017).PubMed
PubMed Central
Google Scholar
31.Favilla, A. B. & Costa, D. P. Thermoregulatory strategies of diving air-breathing marine vertebrates: A review. Front. Ecol. Evol. 8, 292 (2020).
Google Scholar
32.Staniland, I. J. & Robinson, S. L. Segregation between the sexes: Antarctic fur seals, Arctocephalus gazella, foraging at South Georgia. Anim. Behav. 75, 1581–1590 (2008).
Google Scholar
33.Reid, K. The diet of Antarctic fur seals (Arctocephalus gazella Peters 1875) during winter at South Georgia. Antarct. Sci. 7, 241–249 (1995).ADS
Google Scholar
34.Kirkman, S. P., Wilson, W., Klages, N. T. W., Bester, M. N. & Isaksen, K. Diet and estimated food consumption of Antarctic fur seals at Bouvetøya during summer. Polar Biol. 23, 745–752 (2000).
Google Scholar
35.Casaux, R., Baroni, A., Arrighetti, F., Ramón, A. & Carlini, A. Geographical variation in the diet of the Antarctic fur seal Arctocephalus gazella. Polar Biol. 26, 753–758 (2003).
Google Scholar
36.Casaux, R., Baroni, A. & Ramón, A. Diet of Antarctic fur seals Arctocephalus gazella at the Danco Coast, Antarctic Peninsula. Polar Biol. 26, 49–54 (2003).
Google Scholar
37.Davis, D., Staniland, I. J. & Reid, K. Spatial and temporal variability in the fish diet of Antarctic fur seal (Arctocephalus gazella) in the Atlantic sector of the Southern Ocean. Can. J. Zool. https://doi.org/10.1139/z06-071 (2006).Article
Google Scholar
38.Casaux, R., Juares, M., Carlini, A. & Corbalán, A. The diet of the Antarctic fur seal Arctocephalus gazella at the South Orkney Islands in ten consecutive years. Polar Biol. 39, 1197–1206 (2016).
Google Scholar
39.Tarroux, A., Lowther, A. D., Lydersen, C. & Kovacs, K. M. Temporal shift in the isotopic niche of female Antarctic fur seals from Bouvetøya. Polar Res. 35, 31335 (2016).
Google Scholar
40.Garcia-Garin, O. et al. No evidence of microplastics in Antarctic fur seal scats from a hotspot of human activity in Western Antarctica. Sci. Total Environ. 737, 140210 (2020).ADS
CAS
PubMed
Google Scholar
41.Boyd, I. L. Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. J. Appl. Ecol. 39, 103–119 (2002).
Google Scholar
42.Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world : vol. 4 : Sea mammals. (2014).43.Melin, S. R. et al. Reversible immobilization of free-ranging adult male California sea lions (Zalophus californianus). Mar. Mammal Sci. 29, E529–E536 (2013).
Google Scholar
44.Pussini, N. & Goebel, M. E. A safer protocol for field immobilization of leopard seals (Hydrurga leptonyx). Mar. Mammal Sci. 31, 1549–1558 (2015).
Google Scholar
45.Spelman, L. H. Reversible anesthesia of captive California sea lions (Zalophus californianus) with medetomidine, midazolam, butorphanol, and isoflurane. J. Zoo Wildl. Med. Off. Publ. Am. Assoc. Zoo Vet. 35, 65–69 (2004).
Google Scholar
46.Cook, T. A. Butorphanol tartrate: An intravenous analgesic for outpatient surgery. Otolaryngol. Head Neck Surg. J. Am. Acad. Otolaryngol. Head Nexk Surg. 91, 251–254 (1983).CAS
Google Scholar
47.Ropert-Coudert, Y. et al. The retrospective analysis of Antarctic tracking data project. Sci. Data 7, 94 (2020).PubMed
PubMed Central
Google Scholar
48.Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. Mammal Sci. 24, 315–325 (2008).
Google Scholar
49.Bonadonna, F., Lea, M.-A., Dehorter, O. & Guinet, C. Foraging ground fidelity and route-choice tactics of a marine predator: The Antarctic fur seal Arctocephalus gazella. Mar. Ecol. Prog. Ser. 223, 287–297 (2001).ADS
Google Scholar
50.Lea, M.-A. & Dubroca, L. Fine-scale linkages between the diving behaviour of Antarctic fur seals and oceanographic features in the southern Indian Ocean. ICES J. Mar. Sci. 60, 990–1002 (2003).
Google Scholar
51.Jonsen, I. D. et al. Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566 (2019).CAS
PubMed
Google Scholar
52.Jonsen, I. D. et al. A continuous-time state-space model for rapid quality control of argos locations from animal-borne tags. Mov. Ecol. 8, 31 (2020).PubMed
PubMed Central
Google Scholar
53.Hazen, E. L. et al. Where did they not go? Considerations for generating pseudo-absences for telemetry-based habitat models. Mov. Ecol. 9, 5 (2021).PubMed
PubMed Central
Google Scholar
54.O’Toole, M., Queiroz, N., Humphries, N. E., Sims, D. W. & Sequeira, A. M. M. Quantifying effects of tracking data bias on species distribution models. Methods Ecol. Evol. 12, 170–181 (2021).
Google Scholar
55.Lee, J. F., Friedlaender, A. S., Oliver, M. J. & DeLiberty, T. L. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Anim. Biotelemetry 5, 23 (2017).
Google Scholar
56.Labrousse, S. et al. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica. Prog. Oceanogr. 156, 17–40 (2017).ADS
Google Scholar
57.Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, eaar3001 (2018).ADS
PubMed
PubMed Central
Google Scholar
58.Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).ADS
CAS
PubMed
Google Scholar
59.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
Google Scholar
60.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Google Scholar
61.Hijmans, R. J., Phillips, S. & Elith, J. L. dismo: Species Distribution Modeling. (2020).62.Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS
PubMed
Google Scholar
63.Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
Google Scholar
64.Scales, K. L. et al. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time. Ecol. Appl. 27, 2313–2329 (2017).PubMed
Google Scholar
65.Pya, N. & Wood, S. N. Shape constrained additive models. Stat. Comput. 25, 543–559 (2015).MathSciNet
MATH
Google Scholar
66.R Core Team. R: A Language and Environment for Statistical Computing. (2019).67.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).ADS
Google Scholar
68.Brodie, S. et al. Integrating dynamic subsurface habitat metrics into species distribution models. Front. Mar. Sci. (2018).69.Becker, E. A. et al. Moving Towards dynamic ocean management: How well do modeled ocean products predict species distributions?. Remote Sens. 8, 149 (2016).ADS
Google Scholar
70.Lellouche, J.-M. et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system. Ocean Sci. 14, 1093–1126 (2018).ADS
Google Scholar
71.Handcock, M. S. & Raphael, M. N. Modeling the annual cycle of daily Antarctic sea ice extent. Cryosphere 14, 2159–2172 (2020).ADS
Google Scholar
72.Smith, G. C. et al. Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season. Front. Mar. Sci. (2019).73.March, D., Boehme, L., Tintoré, J., Vélez-Belchi, P. J. & Godley, B. J. Towards the integration of animal-borne instruments into global ocean observing systems. Glob. Change Biol. 26, 586–596 (2020).ADS
Google Scholar
74.Santora, J. A. Dynamic intra-seasonal habitat use by Antarctic fur seals suggests migratory hotspots near the Antarctic Peninsula. Mar. Biol. 160, 1383–1393 (2013).
Google Scholar
75.Vergani, D. F. & Coria, N. R. Increase in numbers of male fur seals Arctocephalus gazella during the summer autumn period at Mossman Peninsula (Laurie Island). Polar Biol. 9, 487–488 (1989).
Google Scholar
76.Rutishauser, M. R., Costa, D. P., Goebel, M. E. & Williams, T. M. Ecological implications of body composition and thermal capabilities in young antarctic fur seals (Arctocephalus gazella). Physiol. Biochem. Zool. PBZ 77, 669–681 (2004).PubMed
Google Scholar
77.Vales, D. G., Cardona, L., García, N. A., Zenteno, L. & Crespo, E. A. Ontogenetic dietary changes in male South American fur seals Arctocephalus australis in Patagonia. Mar. Ecol. Prog. Ser. 525, 245–260 (2015).ADS
CAS
Google Scholar
78.Cardona, L., Vales, D., Aguilar, A., Crespo, E. & Zenteno, L. Temporal variability in stable isotope ratios of C and N in the vibrissa of captive and wild adult South American sea lions Otaria byronia: More than just diet shifts. Mar. Mammal Sci. 33, 975–990 (2017).CAS
Google Scholar
79.Costa, D. P., Gales, N. J. & Goebel, M. E. Aerobic dive limit: How often does it occur in nature?. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 129, 771–783 (2001).CAS
PubMed
Google Scholar
80.Biuw, M., Krafft, B. A., Hofmeyr, G. J. G., Lydersen, C. & Kovacs, K. M. Time budgets and at-sea behaviour of lactating female Antarctic fur seals Arctocephalus gazella at Bouvetøya. Mar. Ecol. Prog. Ser. 385, 271–284 (2009).ADS
Google Scholar
81.Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 951–984 (1999).ADS
Google Scholar
82.Lea, M.-A., Hindell, M., Guinet, C. & Goldsworthy, S. Variability in the diving activity of Antarctic fur seals, Arctocephalus gazella, at Iles Kerguelen. Polar Biol. 25, 269–279 (2002).
Google Scholar
83.Vaughan, D. G. et al. Recent rapid regional climate warming on the antarctic peninsula. Clim. Change 60, 243–274 (2003).
Google Scholar
84.Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pup production of antarctic fur seals. Ecology 86, 2408–2417 (2005).
Google Scholar
85.Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).ADS
CAS
PubMed
Google Scholar
86.Schwarz, L. K., Goebel, M. E., Costa, D. P. & Kilpatrick, A. M. Top-down and bottom-up influences on demographic rates of Antarctic fur seals Arctocephalus gazella. J. Anim. Ecol. 82, 903–911 (2013).PubMed
Google Scholar
87.Hoffman, J. I. & Forcada, J. Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella). Mamm. Biol. 77, 71–73 (2012).
Google Scholar
88.Hucke-Gaete, R., Osman, L. P., Moreno, C. A. & Torres, D. Examining natural population growth from near extinction: The case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biol. 27, 304–311 (2004).
Google Scholar More