More stories

  • in

    Radioecological and geochemical peculiarities of cryoconite on Novaya Zemlya glaciers

    Data for all analysed radionuclides are presented in the “Supplementary Material”. Cryoconite samples were collected on Nalli Glacier (Supplementary Fig. S1) on Sept. 25, 2017 (samples 1701–1714) and on Sept. 10, 2018 (samples 1801–1814) at 28 spots (Fig. 2, Supplementary Table S1). Gamma spectrometric analysis of samples showed the presence of anthropogenic radionuclides 137Cs, 241Am, and 207Bi. All quoted radioactivity values were recalculated for the sampling date, except those for 241Am since the concentration of the parent 241Pu isotope is unknown. However, for this isotope, the correction for decay is negligible. The activity of 137Cs reached 8093 (± 69) Bq kg−1 of dry weight, that of 241Am reached 58.3 (± 2.3) Bq kg−1 and that of 207Bi reached 6.3 (± 0.6) Bq kg−1. The natural radionuclides 210Pb and 7Be were also present in all samples. The activity of 210Pb varied in the range of 1280–9750 Bq kg−1. In addition, in the investigated samples, a significant amount of short-lived cosmogenic radionuclide 7Be was found, whose specific activity reached 2418 (± 76) Bq kg−1 (Fig. 3, Supplementary Table S2). To evaluate the contribution of atmospheric components to the total 210Pb activity, 226Ra activity was determined and found to be 17–27 Bq kg−1 (Supplementary Table S2). Based on the 210Pb/226Ra ratio, we conclude that more than 98% of 210Pb was of atmospheric provenance.Figure 2Location of sampling points on Nalli Glacier. A—137Cs activity zone  95%) of corresponding rocks and numerous outcrops likely promoted entrapment of these elements into explosion clouds, and their subsequent precipitation with radionuclides. This feature of the geological structure of the area explains the extremely high enrichment of surface waters in elements such as Zn, Pb, Sr, Ni, As, Cr, Co, Se, Te, Cd, W, Cu, Sb, and Sn; for many of them, the excess reaches 10-fold with respect to the Clrake values51. This hypothesis is supported by obvious correlations between the concentrations of Bi, Ag, Sn, Sb, Pb, Cd, W, and Cu and the activity of anthropogenic radionuclides 137Cs, 241Am and 207Bi. This relationship is obviously related to the simultaneous release of elements and radionuclides from the contaminated ice layer and their entrapment in cryoconite holes. More

  • in

    ‘For a brown invertebrate’: rescuing native UK oysters

    Download PDF

    For the past five years, I’ve studied oysters — a commercially and environmentally important species in southeast England. My research is very practical: I help to solve problems by working with oyster growers (known locally as oystermen), regulators and other community members. Resulting papers are evidence of work I’ve already done.Most oysters in this area are a non-native species (Crassostrea giga). Locally, it’s well established and has been since the 1960s, but allowing it to spread to nearby estuary systems has been controversial: there are concerns that it could become an invasive species.Working with aquaculture producers, I help to guide efforts to restore the native oyster (Ostrea edulis), populations of which declined owing to overfishing, habitat destruction, pollution and disease. Crassostrea giga oysters have provided enough income for oyster growers to spend time and effort restoring the local species. We’ve done some cool things, including creating one of the largest coastal marine conservation zones in the United Kingdom — more than 284 square kilometres — and all for an unseen brown invertebrate that lacks the charisma of a dolphin.This picture is from a typical day in the field. During high tides, we go out in a boat to take sonar readings to map potential oyster habitats; at low tide, we put on waders and go out on the mud flats to look for juvenile oysters. We focus our conservation efforts on spots where juvenile oysters are already trying to get established.Amazingly, these filter feeders don’t require feeding by humans, and they clean the water as they grow. Bivalve aquaculture such as this has become a cornerstone of the ‘blue economy’ — using marine resources sustainably for economic growth while preserving ocean health. It will take more work to determine how the balance can be reached, but oysters will be part of that conversation.

    Nature 600, 182 (2021)
    doi: https://doi.org/10.1038/d41586-021-03573-5

    Related Articles

    How AI is helping the natural sciences

    Breeding the sweetest biofuels in the business

    Using sound to explore events of the Universe

    Subjects

    Conservation biology

    Agriculture

    Latest on:

    Agriculture

    Even organic pesticides spur change in the wildlife next door
    Research Highlight 17 NOV 21

    Tracking the origin of Transeurasian languages
    News & Views 10 NOV 21

    New rules will make UK gene-edited crop research easier
    News 30 SEP 21

    Jobs

    Full Professor in Microbial Biotechnology

    University of Groningen (RUG)
    Gorningen, Netherlands

    Research Faculty Position Cardiovascular Research Center Massachusetts General Hospital

    Massachusetts General Hospital
    Charlestown, MA, United States

    Higher Scientific Officer – Biophysical assay development and protein production

    Institute of Cancer Research (ICR)
    London, United Kingdom

    Group Leaders

    John Innes Centre (JIC)
    Norwich, United Kingdom More

  • in

    Camera trap placement for evaluating species richness, abundance, and activity

    1.Gese E. M. Monitoring of terrestrial carnivore populations. Carnivore Conservation. (2001).2.Oconnell, A. F. et al. (eds) Camera Traps in Animal Ecology: Methods and Analyses (Springer Science & Business Media, 2010).
    Google Scholar 
    3.Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).
    Google Scholar 
    4.MacKenzie D. I., Nichols J. D., Royle J. A., Pollock K. H., Bailey L. A., Hines J. E. Occupancy Modeling and Estimation (2017).5.Carbone, C. et al. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim. Conserv. 4(1), 75–79 (2001).
    Google Scholar 
    6.Rowcliffe, J. M., Field, J., Turvey, S. T. & Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 1, 1228–1236 (2008).
    Google Scholar 
    7.Karanth, K. U. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biol. Conserv. 71(3), 333–338 (1995).
    Google Scholar 
    8.Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38(2), 148–154 (2004).
    Google Scholar 
    9.Jhala, Y., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48(1), 14–24 (2011).
    Google Scholar 
    10.Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biol. Conserv. 144(3), 1017–1024 (2011).
    Google Scholar 
    11.Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5(11), 1170–1179 (2014).
    Google Scholar 
    12.Roy, M. et al. Demystifying the Sundarban tiger: Novel application of conventional population estimation methods in a unique ecosystem. Popul. Ecol. 58(1), 81–89 (2016).
    Google Scholar 
    13.Howe, E. J., Buckland, S. T., Després-Einspenner, M. L. & Kühl, H. S. Distance sampling with camera traps. Methods Ecol. Evol. 8(11), 1558–1565 (2017).
    Google Scholar 
    14.Bridges, A. S., Vaughan, M. R. & Klenzendorf, S. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography. Wildl. Biol. 10(1), 277–284 (2004).
    Google Scholar 
    15.Beck, H. & Terborgh, J. Groves versus isolates: How spatial aggregation of Astrocaryum murumuru palms affects seed removal. J. Trop. Ecol. 1, 275–288 (2002).
    Google Scholar 
    16.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17(1), 245–257 (2003).
    Google Scholar 
    17.MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255 (2002).
    Google Scholar 
    18.Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52(3), 675–685 (2015).
    Google Scholar 
    19.O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6(2), 131–139 (2003).
    Google Scholar 
    20.Datta, A., Anand, M. O. & Naniwadekar, R. Empty forests: Large carnivore and prey abundance in Namdapha National Park, north-east India. Biol. Cons. 141(5), 1429–1435 (2008).
    Google Scholar 
    21.Weckel, M., Giuliano, W. & Silver, S. Jaguar (Panthera onca) feeding ecology: Distribution of predator and prey through time and space. J. Zool. 270(1), 25–30 (2006).
    Google Scholar 
    22.Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J. Zool. 287(4), 269–275 (2012).
    Google Scholar 
    23.Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budgets of mammals in the Western Ghats of India. J. Trop. Ecol. 32, 315–323 (2015).
    Google Scholar 
    24.Edwards, S. et al. Making the most of by-catch data: Assessing the feasibility of utilising non-target camera trap data for occupancy modelling of a large felid. Afr. J. Ecol. 56(4), 885–894 (2018).
    Google Scholar 
    25.Harmsen, B. J., Foster, R. J., Silver, S., Ostro, L. & Doncaster, C. P. Differential use of trails by forest mammals and the implications for camera-trap studies: A case study from Belize. Biotropica 42(1), 126–133 (2010).
    Google Scholar 
    26.Di Bitetti M. S., Paviolo A. J. & de Angelo C. D. Camera Trap Photographic Rates on Roads vs. Off Roads: Location Does Matter, Vol. 21, 37–46 (2014).27.Blake, J. G. & Mosquera, D. Camera trapping on and off trails in lowland forest of eastern Ecuador: Does location matter?. Mastozool. Neotrop. 21(1), 17–26 (2014).
    Google Scholar 
    28.Cusack, J. J. et al. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10(5), e0126373 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    29.Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12(10), e0186679 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    30.Srbek-Araujo, A. C. & Chiarello, A. G. Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota. Neotrop. 13(2), 51–62 (2013).
    Google Scholar 
    31.Wearn, O. R., Rowcliffe, J. M., Carbone, C., Bernard, H. & Ewers, R. M. Assessing the status of wild felids in a highly-disturbed commercial forest reserve in Borneo and the implications for camera trap survey design. PLoS ONE 8(11), e77598 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Sadhu, A. et al. Demography of a small, isolated tiger population in a semi-arid region of western India. BMC Zool. 2(1), 1–13 (2017).
    Google Scholar 
    33.Sunquist, M. What is a tiger? Ecology and behavior. In Tigers of the World 19–33 (William Andrew Publishing, 2010).
    Google Scholar 
    34.Gotelli, N. J. & Colwell, R. K. Estimating species richness. Biol. Divers. Front. Meas. Assess. 12, 39–54 (2011).
    Google Scholar 
    35.Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10), 2717–2727 (2004).
    Google Scholar 
    36.Rovero, F. & Marshall, A. R. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46(5), 1011–1017 (2009).
    Google Scholar 
    37.Jhala, Y. V., Qureshi, Q., Nayak, A. K. Status of tigers, copredators and prey in India, 2018. ISBN No. 81-85496-50-1 https://wii.gov.in/tiger_reports (National Tiger Conservation Authority, Government of India and Wildlife Institute of India, 2020).38.Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45(5), 1321–1329 (2008).
    Google Scholar 
    39.Hines J. E. PRESENCE 3.1 Software to estimate patch occupancy and related parameters. http://www.mbr-pwrc.usgs.gov/software/presence.html. (2006).40.Meredith, M., & Ridout, M. Overview of the overlap package. R. Project. 1–9 (2014).41.Rowcliffe M, Rowcliffe M. M. Package ‘activity’. Animal activity statistics R Package Version. 1 (2016).42.Soberón, M. J. & Llorente, B. J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 7(3), 480–488 (1993).
    Google Scholar 
    43.Broadley, K., Burton, A. C., Avgar, T. & Boutin, S. Density-dependent space use affects interpretation of camera trap detection rates. Ecol. Evol. 9(24), 14031–14041 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    44.Bunnell, F. L. & Gillingham, M. P. Foraging behavior: Dynamics of dining out. Bioenerget. Wild herbiv. 1, 53–79 (1985).
    Google Scholar 
    45.Mishra H. R. The ecology and behaviour of chital (Axis axis) in the Royal Chitwan National Park, Nepal: with comparative studies of hog deer (Axis porcinus), sambar (Cervus unicolor) and barking deer (Muntiacus muntjak) (Doctoral dissertation, University of Edinburgh). 1982.46.Raman, T. S. Factors influencing seasonal and monthly changes in the group size of chital or axis deer in southern India. J. Biosci. 22(2), 203–218 (1997).
    Google Scholar 
    47.Karanth, K. U. & Sunquist, M. E. Behavioral correlates of predation by tiger, leopard and dhole in Nagarhole National Park. India. J Zool. 250(2), 255–265 (2000).
    Google Scholar 
    48.Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. & Doncaster, C. P. Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a neotropical forest. J. Mammal. 90(3), 612–620 (2009).
    Google Scholar 
    49.Nichols, J. D., Karanth, K. U. & O’Connell, A. F. Science, conservation, and camera traps. In Camera Traps in Animal Ecology 45–56 (Springer, 2011).
    Google Scholar  More

  • in

    Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii

    1.Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 

    Google Scholar 
    2.Jankowski, T., Collins, A. G. & Campbell, R. Global diversity of inland water cnidarians. In Freshwater Animal Diversity Assessment 35–40 (Springer, 2008).
    Google Scholar 
    3.Pelosse, J. Étude biologique sur la méduse d’eau douce, Limnocodium Sowerbyi Ray Lankester, du Parc de la Tête-d’Or de Lyon. Publ. Société Linn. Lyon 65, 53–62 (1919).
    Google Scholar 
    4.Lüskow, F., López-González, P. J. & Pakhomov, E. A. Freshwater jellyfish in northern temperate lakes: Craspedacusta sowerbii in British Columbia, Canada. Aquat. Biol. 30, 69–84 (2021).
    Google Scholar 
    5.McClary, A. The effect of temperature on growth and reproduction in Craspedacusta sowerbii. Ecology 40, 158–162 (1959).
    Google Scholar 
    6.McClary, A. Experimental studies of bud development in Craspedacusta sowerbii. Trans. Am. Microsc. Soc. 80, 343–353 (1961).
    Google Scholar 
    7.McClary, A. Histological changes during regeneration of Craspedacusta sowerbii. Trans. Am. Microsc. Soc. 83, 349–357 (1964).
    Google Scholar 
    8.Acker, T. S. & Muscat, A. M. The ecology of Craspedacusta sowerbii Lankester, a freshwater hydrozoan. Am. Midl. Nat. 95, 323–336 (1976).
    Google Scholar 
    9.Boothroyd, I. K., Etheredge, M. K. & Green, J. D. Spatial distribution, size structure, and prey of Craspedacusta sowerbyi Lankester in a shallow New Zealand lake. Hydrobiologia 468, 23–32 (2002).
    Google Scholar 
    10.Turquin, M. J. Progrès dans la connaissance de la métagenèse chez Craspedacusta sowerbii (= sowerbyi) (Limnoméduse, Olindiidae). Bourgogne-Nat. 9, 162–174 (2010).
    Google Scholar 
    11.Marchessaux, G. & Bejean, M. From frustules to medusae: A new culture system for the study of the invasive hydrozoan Craspedacusta sowerbii in the laboratory. Invertebr. Biol. 139, e12308 (2020).
    Google Scholar 
    12.Bouillon, J. & Boero, F. The hydrozoa: A new classification in the ligth of old knowledge. Thalass. Salentina 24, 3–45 (2000).
    Google Scholar 
    13.Dumont, H. J. The distribution and ecology of the fresh-and brackish-water medusae of the world. In Studies on the Ecology of Tropical Zooplankton 1–12 (Springer, 1994).
    Google Scholar 
    14.Duggan, I. C. The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biol. Invasions 12, 3757–3770 (2010).
    Google Scholar 
    15.Marchessaux, G., Gadreaud, J. & Belloni, B. The freshwater jellyfish Craspedacusta sowerbii lankester, 1880: An overview of its distribution in France. Vie Milieu 69, 201–213 (2019).
    Google Scholar 
    16.Pennak, R. W. The fresh-water jellyfish Craspedacusta in Colorado with some remarks on its ecology and morphological degeneration. Trans. Am. Microsc. Soc. 75, 324–331 (1956).
    Google Scholar 
    17.Matthews, D. C. A Comparative study of Craspedacusta sowerbyi and Calpasoma dactyloptera life cycles (1966).18.Lundberg, S. & Svensson, J. E. Medusae invasions in Swedish lakes. Fauna Flora 98, 18–28 (2003).
    Google Scholar 
    19.Jakovčev-Todorović, D., Đikanović, V., Skorić, S. & Cakić, P. Freshwater jellyfish Craspedacusta sowerbyi Lankester, 1880 (Hydrozoa, Olindiidae): 50 years’ observations in Serbia. Arch. Biol. Sci. 62, 123–127 (2010).
    Google Scholar 
    20.Bosso, L., De Conno, C. & Russo, D. Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environ. Manag. 60, 304–313 (2017).ADS 

    Google Scholar 
    21.Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Hosmer, D. W., Jovanovic, B. & Lemeshow, S. Best subsets logistic regression. Biometrics 45, 1265–1270 (1989).MATH 

    Google Scholar 
    23.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    24.Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    25.Walther, G. Inference and modeling with log-concave distributions. Stat. Sci. 24, 319–327 (2009).MathSciNet 
    MATH 

    Google Scholar 
    26.Mangano, M. C. et al. Moving toward a strategy for addressing climate displacement of marine resources: A proof-of-concept. Front. Mar. Sci. 7, 408 (2020).ADS 

    Google Scholar 
    27.Perkins-Taylor, I. & Frey, J. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101, 1035–1048 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    28.Di Pasquale, G. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).
    Google Scholar 
    29.Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    30.Fernández, M. & Hamilton, H. Ecological niche transferability using invasive species as a case study. PLoS ONE 10, e0119891 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    31.Sarà, G., Palmeri, V., Rinaldi, A., Montalto, V. & Helmuth, B. Predicting biological invasions in marine habitats through eco-physiological mechanistic models: A case study with the bivalve B rachidontes pharaonis. Divers. Distrib. 19, 1235–1247 (2013).
    Google Scholar 
    32.Sarà, G., Porporato, E. M., Mangano, M. C. & Mieszkowska, N. Multiple stressors facilitate the spread of a non-indigenous bivalve in the Mediterranean Sea. J. Biogeogr. 45, 1090–1103 (2018).
    Google Scholar 
    33.Markovic, D., Freyhof, J. & Wolter, C. Where are all the fish: Potential of biogeographical maps to project current and future distribution patterns of freshwater species. PLoS ONE 7, e40530 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Hamner, W. M., Gilmer, R. W. & Hamner, P. P. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau 1. Limnol. Oceanogr. 27, 896–909 (1982).CAS 
    ADS 

    Google Scholar 
    35.Hamner, W. M. & Hauri, I. R. Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias) 1. Limnol. Oceanogr. 26, 414–423 (1981).ADS 

    Google Scholar 
    36.Duggan, I. C. & Eastwood, K. R. Detection and distribution of Craspedacusta sowerbii: Observations of medusae are not enough. (2012).37.Galarce, L. C., Riquelme, K. V., Osman, D. Y. & Fuentes, R. A. A new record of the non indigenous freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Cnidaria) in Northern Patagonia (40 S, Chile). Bioinvasions Rec. 2, 263–270 (2013).
    Google Scholar 
    38.Stanković, I. & Ternjej, I. New ecological insight on two invasive species: Craspedacusta sowerbii (Coelenterata: Limnomedusae) and Dreissenia polymorpha (Bivalvia: Dreissenidae). J. Nat. Hist. 44, 2707–2713 (2010).
    Google Scholar 
    39.Stefani, F., Leoni, B., Marieni, A. & Garibaldi, L. A new record of Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Limnomedusae) in northern Italy. J. Limnol. 69, 189 (2010).
    Google Scholar 
    40.Jankowski, T., Strauss, T. & Ratte, H. T. Trophic interactions of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 27, 811–823 (2005).CAS 

    Google Scholar 
    41.Adams, I. B. The effect of light and prey availability on the activity of the freshwater jellyfish, Craspedacusta sowerbii (Hydrozoan) (Mém. B Sc Univ James Madison À Harrisonburg Virginie, 2009).
    Google Scholar 
    42.Marchessaux, G. & Bejean, M. Growth and ingestion rates of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 42, 783–786 (2020).CAS 

    Google Scholar 
    43.Himchik, V., Marenkov, O. & Shmyhol, N. Biology of reproduction of aquatic organisms: The course of oogenesis of freshwater jellyfish Craspedacusta sowerbii Lancester, 1880 in the Dnieper reservoir. World Sci. News 160, 1–15 (2021).
    Google Scholar 
    44.Caputo, L., Huovinen, P., Sommaruga, R. & Gómez, I. Water transparency affects the survival of the medusa stage of the invasive freshwater jellyfish Craspedacusta sowerbii. Hydrobiologia 817, 179–191 (2018).CAS 

    Google Scholar 
    45.Bozman, A., Titelman, J., Kaartvedt, S., Eiane, K. & Aksnes, D. L. Jellyfish distribute vertically according to irradiance. J. Plankton Res. 39, 280–289 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Salonen, K. et al. Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): A semiautonomous microcosm in the food web of Lake Tanganyika. In Jellyfish Blooms IV 97–112 (Springer, 2012).
    Google Scholar 
    47.Dodson, S. I. & Cooper, S. D. Trophic relationships of the freshwater jellyfish Craspedacusta sowerbyi Lankester 1880. Limnol. Oceanogr. 28, 345–351 (1983).ADS 

    Google Scholar 
    48.Smith, A. S. & Alexander, J. E. Jr. Potential effects of the freshwater jellyfish Craspedacusta sowerbii on zooplankton community abundance. J. Plankton Res. 30, 1323–1327 (2008).
    Google Scholar 
    49.Spadinger, R. & Maier, G. Prey selection and diel feeding of the freshwater jellyfish, Craspedacusta sowerbyi. Freshw. Biol. 41, 567–573 (1999).
    Google Scholar 
    50.Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 

    Google Scholar 
    51.Uchida, T. A new sporozoan-like reproduction in the hydromedusa. Gonionemus vertens. Proc. Jpn. Acad. 52, 387–388 (1976).
    Google Scholar 
    52.Williams, A. B. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida (1984).53.Parent, G. H. La découverte lorraine de Craspedacusta sowerbyi Lank. dans son contexte chorologique et écologique européen. Bull. Soc. D’Histoire Nat. Moselle 43, 317–337 (1982).
    Google Scholar 
    54.Amemiya, I. Freshwater medusa found in the tank of my laboratory. Jpn. J. Zool. Trans. Abstr. 3, Abstract (1930).55.Joshi, M. V. & Tonapi, G. T. A new record of freshwater medusa from India. Curr. Sci. 34, 665–666 (1965).
    Google Scholar 
    56.El Moussaoui, N. & Beisner, B. L. La méduse d’eau douce Craspedacusta sowerbii: espèce exotique répandue dans les lacs du Québec. Nat. Can. 141, 40–46 (2017).
    Google Scholar 
    57.Fish, G. R. Craspedacusta sowerbyi Lankester (Coelenterata: Limnomedusae) in New Zealand lakes. N. Z. J. Mar. Freshw. Res. 5, 66–69 (1971).
    Google Scholar 
    58.Rayner, N. A. First record of Craspedacusta sowerbyi Lankester (Cnidaria: Limnomedusae) from Africa. Hydrobiologia 162, 73–77 (1988).
    Google Scholar 
    59.Somveille, M., Manica, A., Butchart, S. H. & Rodrigues, A. S. Mapping global diversity patterns for migratory birds. PLoS ONE 8, e70907 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    60.Newton, I. & Dale, L. C. Bird migration at different latitudes in eastern North America. Auk 113, 626–635 (1996).
    Google Scholar 
    61.Zhang, J. et al. Determination of original infection source of H7N9 avian influenza by dynamical model. Sci. Rep. 4, 1–16 (2014).
    Google Scholar 
    62.Fuentes, R., Cárdenas, L., Abarzua, A. & Caputo, L. Southward invasion of Craspedacusta sowerbii across mesotrophic lakes in Chile: Geographical distribution and genetic diversity of the medusa phase. Freshw. Sci. 38, 193–202 (2019).
    Google Scholar 
    63.Harrell, F. E. Hmisc: Harrell Miscellaneous (Version 4.5-0) (2021).64.Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. Mapping the global distribution of the freshwater hydrozoan Craspedacusta sowerbii. Pangaea https://doi.org/10.1594/PANGAEA.936074 (2021).65.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    66.McGarvey, D. J. et al. On the use of climate covariates in aquatic species distribution models: Are we at risk of throwing out the baby with the bath water?. Ecography 41, 695–712 (2018).
    Google Scholar 
    67.Zeng, Y. & Yeo, D. C. Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: A Southeast Asian case study. Biol. Conserv. 223, 58–67 (2018).
    Google Scholar 
    68.Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    69.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).70.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 

    Google Scholar 
    71.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 
    72.Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    73.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).
    Google Scholar 
    74.Bradie, J. & Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
    Google Scholar 
    75.Zhang, K., Yao, L., Meng, J. & Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634, 1326–1334 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    76.Silva, C., Leiva, F. & Lastra, J. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central-northern Chile. Fish. Oceanogr. 28, 171–182 (2019).
    Google Scholar 
    77.Nenzén, H. K. & Araújo, M. B. Choice of threshold alters projections of species range shifts under climate change. Ecol. Model. 222, 3346–3354 (2011).
    Google Scholar 
    78.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
    Google Scholar 
    79.DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 837–845 (1988). More

  • in

    Winter diet of Japanese macaques from Chubu Sangaku National Park, Japan incorporates freshwater biota

    1.Agetsuma, N. Foraging strategies of Yakushima Macaques (Macaca-fuscata Yakui). Int. J. Primatol. 16, 595–609. https://doi.org/10.1007/bf02735283 (1995).Article 

    Google Scholar 
    2.Hill, D. A. Seasonal variation in the feeding behavior and diet of Japanese macaques (Macaca fuscata yakui) in lowland forest of Yakushima. Am. J. Primatol. 43, 305–322 (1997).CAS 
    Article 

    Google Scholar 
    3.Otani, Y. et al. Factors influencing riverine utilization patterns in two sympatric macaques. Sci. Rep. https://doi.org/10.1038/s41598-020-79259-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Maruhashi, T. Feeding behavior and diet of the Japanese monkey Macaca-fuscata-yakui on Yakushima Island, Japan. Primates 21, 141–160. https://doi.org/10.1007/bf02374030 (1980).Article 

    Google Scholar 
    5.Rothman, J. M., Raubenheimer, D., Bryer, M. A. H., Takahashi, M. & Gilbert, C. C. Nutritional contributions of insects to primate diets: Implications for primate evolution. J. Hum. Evol. 71, 59–69. https://doi.org/10.1016/j.jhevol.2014.02.016 (2014).Article 
    PubMed 

    Google Scholar 
    6.Hanya, G. et al. Not only annual food abundance but also fallback food quality determines the Japanese macaque density: evidence from seasonal variations in home range size. Primates 47, 275–278. https://doi.org/10.1007/s10329-005-1076-2 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    7.Nakagawa, N. Determinants of the dramatic seasonal changes in the intake of energy and protein by Japanese monkeys in a cool temperate forest. Am. J. Primatol. 41, 267–288. https://doi.org/10.1002/(sici)1098-2345(1997)41:4%3c267::aid-ajp1%3e3.0.co;2-v (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Tsuji, Y., Ito, T. Y., Wada, K. & Watanabe, K. Spatial patterns in the diet of the Japanese macaque Macaca fuscata and their environmental determinants. Mammal Rev. 45, 227–238. https://doi.org/10.1111/mam.12045 (2015).Article 

    Google Scholar 
    9.Wada, K. & Tokida, E. Habitat utlization by wintering Japanese monkeys Macaca fuscata-fuscata in Shiga Heights Japan. Primates 22, 330–348. https://doi.org/10.1007/bf02381574 (1981).Article 

    Google Scholar 
    10.Suzuki, A. An ecological study of wild Japanese monkeys in snowy area focused on their food habits. Primates 6, 31–71 (1965).Article 

    Google Scholar 
    11.Izawa, K. & Nishida, T. Monkeys living in the northern limits of their distribution. Primates 4, 67–88 (1963).Article 

    Google Scholar 
    12.Enari, H. & Sakamaki-Enari, H. Influence of heavy snow on the feeding behavior of Japanese Macaques (Macaca Fuscata) in Northern Japan. Am. J. Primatol. 75, 534–544. https://doi.org/10.1002/ajp.22128 (2013).Article 
    PubMed 

    Google Scholar 
    13.Agetsuma, N. Dietary selection by Yakushima macaques (Macaca-fustcata Yakui): the influence of food availability and temperature. Int. J. Primatol. 16, 611–627. https://doi.org/10.1007/bf02735284 (1995).Article 

    Google Scholar 
    14.Agetsuma, N. & Nakagawa, N. Effects of habitat differences on feeding behaviors of Japanese monkeys: comparison between Yakushima and Kinkazan. Primates 39, 275–289. https://doi.org/10.1007/bf02573077 (1998).Article 

    Google Scholar 
    15.Izumiyama, S. In: High Altitude Primates, Developments in Primatology: Progress and Prospects Vol. 44 (ed N.B. Grow et al.) 153–181 (Springer, New York, 2014).16.Go, M. Seasonal changes in food resource distribution and feeding sites selected by Japanese macaques on Koshima Islet, Japan. Primates 51, 149–158. https://doi.org/10.1007/s10329-009-0179-5 (2010).Article 
    PubMed 

    Google Scholar 
    17.Hanya, G. Diet of a Japanese macaque troop in the coniferous forest of Yakushima. Int. J. Primatol. 25, 55–71. https://doi.org/10.1023/b:ijop.0000014645.78610.32 (2004).Article 

    Google Scholar 
    18.Sakamaki, H., Enari, H., Aoi, T. & Kunisaki, T. Winter food abundance for Japanese monkeys in differently aged Japanese cedar plantations in snowy regions. Mammal Study 36, 1–10. https://doi.org/10.3106/041.036.0101 (2011).Article 

    Google Scholar 
    19.Enari, H. In: High Altitude Primates. Developments in Primatology, Progress and Prospects (eds N Grow, S Gursky-Doyen, & Krzton A) (Springer, New York, 2014).20.Tsuji, Y. & Nakagawa, N. Monkeys of Japan: A Mammalogical Studies of Japanese Macaques (University of Tokyo Press, 2017).
    Google Scholar 
    21.Suzuki, S., Hill, D. A., Maruhashi, T. & Tsukuhara, T. Frog and Lizard-eating behaviour of wild Japanese Macaques in Yakushima, Japan. Primates 31, 421–426 (1990).Article 

    Google Scholar 
    22.Watanabe, K. Fish: a new addition to the diet of Japanese macaques on Koshima Island. Folia Primatol. 52, 124–131. https://doi.org/10.1159/000156391 (1989).CAS 
    Article 

    Google Scholar 
    23.Leca, J. B., Gunst, N., Watanabe, K. & Huffman, M. A. A new case of fish-eating in Japanese macaques: Implications for social constraints on the diffusion of feeding innovation. Am. J. Primatol. 69, 821–828. https://doi.org/10.1002/ajp.20401 (2007).Article 
    PubMed 

    Google Scholar 
    24.Stewart, A. M. E., Gordon, C. H., Wich, S. A., Schroor, P. & Meijaard, E. Fishing in Macaca fascicularis: a rarely observed innovative behavior. Int. J. Primatol. 29, 543–548. https://doi.org/10.1007/s10764-007-9176-y (2008).Article 

    Google Scholar 
    25.Hamilton, W. J. & Tilson, R. L. Fishing Baboons at desert waterholes. Am. J. Primatol. 8, 255–257. https://doi.org/10.1002/ajp.1350080308 (1985).Article 
    PubMed 

    Google Scholar 
    26.Tamura, M. Extractive foraging on hard-shelled walnuts and variation of feeding techniques in wild Japanese macaques (Macada fuscata). Am. J. Primatol. 82, e23130 (2020).Article 

    Google Scholar 
    27.Iwamoto, T. A bioeconomic study on a provisioned troop at a Japanese monkeys Macada fuscata-fuscata at Koshima Islet Miyazaki. Primates 15, 241–262. https://doi.org/10.1007/bf01742286 (1974).Article 

    Google Scholar 
    28.Tsuji, Y. & Takatsuki, S. Effects of a typhoon on foraging behavior and foraging success of Macaca fuscata on Kinkazan Island, Northern Japan. Int. J. Primatol. 29, 1203–1217. https://doi.org/10.1007/s10764-008-9293-2 (2008).Article 

    Google Scholar 
    29.Gumert, M. D. & Malaivijitnond, S. Marine prey processed with stone tools by burmese long-tailed macaques (Macaca fascicularis aurea) in intertidal habitats. Am. J. Phys. Anthropol. 149, 447–457. https://doi.org/10.1002/ajpa.22143 (2012).Article 
    PubMed 

    Google Scholar 
    30.Tan, A., Tan, S. H., Vyas, D., Malaivijitnond, S. & Gumert, M. D. There is more than one way to crack an oyster: identifying variation in burmese long-tailed Macaque (Macaca fascicularis aurea) stone-tool use. PLoS ONE https://doi.org/10.1371/journal.pone.0124733 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Urabe, M. The present distribution and issues regarding the control of the exotic snail Potamopyrgus antipodarum in Japan. Jpn. J. Limnol. 68, 491–496 (2007).Article 

    Google Scholar 
    32.Hamada, K. T. Y. & Urabe, M. Survey of mitochondrial DNA haplotypes of Potamopyrgus antipodarum (Caenogastropoda: Hydrobiidae) introduced into Japan. Limnology 14, 223–228 (2013).Article 

    Google Scholar 
    33.Izumiyama, S., Mochizuki, T. & Shiraishi, T. Troop size, home range area and seasonal range use of the Japanese macaque in the Northern Japan Alps. Ecol. Res. 18, 465–474. https://doi.org/10.1046/j.1440-1703.2003.00570.x (2003).Article 

    Google Scholar 
    34.Milner, A. M., Docherty, C., Windsor, F. M. & Tojo, K. Macroinvertebrate communities in streams with contrasting water sources in the Japanese Alps. Ecol. Evol. 10, 7812–7825. https://doi.org/10.1002/ece3.6507 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples: a case study on prey DNA in Antarctic krill stomachs. Front. Zool. https://doi.org/10.1186/1742-9994-5-12 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. https://doi.org/10.1186/1742-9994-10-34 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 17, 3. doi:https://doi.org/10.14806/ej.17.1.200 (2011).38.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Ratnasingham, S. & Hebert, P. D. N. BOLD: the barcode of life data system (www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364. doi:https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).40.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/aem.00062-07 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Wickham, H. ggplot2: elegant graphics for data analysis 2nd edn. (Springer, 2016).Book 

    Google Scholar  More

  • in

    Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida

    1.World Health Organization. Vector-borne diseases. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (2020).2.Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—an obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).PubMed 

    Google Scholar 
    3.Wilke, A. B. B. et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci. Rep. 10, 12925 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Gubler, D. J. Dengue, urbanization and globalization: The unholy trinity of the 21st Century. Trop. Med. Health 39, S3–S11 (2011).
    Google Scholar 
    6.Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).
    Google Scholar 
    7.Zohdy, S., Schwartz, T. S. & Oaks, J. R. The coevolution effect as a driver of spillover. Trends Parasitol. 35, 399–408 (2019).PubMed 

    Google Scholar 
    8.Rochlin, I., Faraji, A., Ninivaggi, D. V., Barker, C. M. & Kilpatrick, A. M. Anthropogenic impacts on mosquito populations in North America over the past century. Nat. Commun. 7, 13604 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).PubMed 

    Google Scholar 
    11.Rochlin, I., Harding, K., Ginsberg, H. S. & Campbell, S. R. Comparative analysis of distribution and abundance of West Nile and eastern equine encephalomyelitis virus vectors in Suffolk County, New York, using human population density and land use/cover data. J. Med. Entomol. 45, 563–571 (2008).CAS 
    PubMed 

    Google Scholar 
    12.Monaghan, A. J. et al. Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Comput. Biol. 15, 1–19 (2019).
    Google Scholar 
    13.Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, e0007864 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    14.Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    15.Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    19.Turner, W. R., Oppenheimer, M. & Wilcove, D. S. A force to fight global warming. Nature 462, 278–279 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    20.United Nations. World population prospects 2019. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).21.Multini, L. C., de Souza, A. L. & da S., Marrelli, M. T. & Wilke, A. B. B.,. The influence of anthropogenic habitat fragmentation on the genetic structure and diversity of the malaria vector Anopheles cruzii (Diptera: Culicidae). Sci. Rep. 10, 18018 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Pernat, N., Kampen, H., Jeschke, J. M. & Werner, D. Buzzing homes: Using citizen science data to explore the effects of urbanization on indoor mosquito communities. Insects 12, 1–13 (2021).
    Google Scholar 
    24.Blosser, E. M. & Burkett-cadena, N. D. Acta Tropica Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 167, 59–63 (2017).PubMed 

    Google Scholar 
    25.Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Sun, K. et al. Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015–2016 ZIKV epidemic. BMC Med. 16, 195 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570-3579.e6 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Wilke, A. B. B. et al. Mosquito adaptation to the extreme habitats of urban construction sites. Trends Parasitol. 35, 607–614 (2019).PubMed 

    Google Scholar 
    29.Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    30.Mutebi, J.-P. et al. Zika virus MB16-23 in mosquitoes, Miami-Dade County, Florida, USA, 2016. Emerg. Infect. Dis. 24, 808–810 (2018).PubMed Central 

    Google Scholar 
    31.Little, E. et al. Socio-ecological mechanisms supporting high densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J. Med. Entomol. 54, 1183–1192 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Burkett-Cadena, N. D., McClure, C. J. W., Estep, L. K. & Eubanks, M. D. What drives the spatial distribution of mosquitoes?. Ecosphere 4, 1–16 (2013).
    Google Scholar 
    33.LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    34.Dowling, Z. et al. Linking mosquito infestation to resident socioeconomic status, knowledge, and source reduction practices in Suburban Washington, DC. EcoHealth 10, 36–47 (2013).PubMed 

    Google Scholar 
    35.Scavo, N. A., Barrera, R., Reyes-Torres, L. J. & Yee, D. A. Lower socioeconomic status neighborhoods in Puerto Rico have more diverse mosquito communities and higher Aedes aegypti abundance. J. Urban Ecol. 7, 1–11 (2021).
    Google Scholar 
    36.Trewin, B. J. et al. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy. PLoS Negl. Trop. Dis. 11, e0005848 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    37.Multini, L. C., de Souza, A. L. & da S., Marrelli, M. T. & Wilke, A. B. B.,. Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale. PLoS ONE 14, e0220773 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 67, 25–35 (2018).PubMed 

    Google Scholar 
    39.Benelli, G., Wilke, A. B. B. & Beier, J. C. Aedes albopictus (Asian Tiger Mosquito). Trends Parasitol. 36, 942–943 (2020).PubMed 

    Google Scholar 
    40.Benelli, G. & Mehlhorn, H. Declining malaria, rising of dengue and Zika virus: Insights for mosquito vector control. Parasitol. Res. 115, 1747–1754 (2016).PubMed 

    Google Scholar 
    41.Danauskas, J. X., Ehrenkranz, N. J., Davies, J. E. & Pond, W. L. Arboviruses and human disease in South Florida. Am. J. Trop. Med. Hyg. 15, 205–210 (1966).PubMed 

    Google Scholar 
    42.Gill, J., Stark, L. M. & Clark, G. G. Dengue surveillance in Florida, 1997–98. Emerg. Infect. Dis. 6, 30–35 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Rey, J. Dengue in Florida (USA). Insects 5, 991–1000 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    44.Vitek, C. J., Richards, S. L., Mores, C. N., Day, J. F. & Lord, C. C. Arbovirus transmission by Culex nigripalpus in Florida, 2005. J. Med. Entomol. 45, 483–493 (2008).CAS 
    PubMed 

    Google Scholar 
    45.Messenger, A. M. et al. Serological evidence of ongoing transmission of dengue virus in permanent residents of Key West, Florida. Vector Borne Zoonotic Dis. 14, 783–787 (2014).PubMed 

    Google Scholar 
    46.Patterson, K. D. Yellow fever epidemics and mortality in the United States, 1693–1905. Soc. Sci. Med. 34, 855–865 (1992).CAS 
    PubMed 

    Google Scholar 
    47.Grubaugh, N. D. et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546, 401–405 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Likos, A. et al. Local mosquito-borne transmission of zika virus—Miami-Dade and Broward Counties, Florida, June–August 2016. Morb. Mortal. Wkly. Rep. 65, 1032–1038 (2016).
    Google Scholar 
    49.Florida Department of Health. Available at: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/week52arbovirusreport-12-31-16.pdf (2016).50.Florida Department of Health. Available at: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/alert-dade-wnv-human-10-19-20.pdf (2020)51.Wilke, A. B. B. et al. Local conditions favor dengue transmission in the contiguous United States. Entomol. Gen. 41, 523–529 (2021).
    Google Scholar 
    52.Alto, B. W., Connelly, C. R., O’Meara, G. F., Hickman, D. & Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 14, 606–614 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    53.Honório, N. A., Wiggins, K., Câmara, D. C. P., Eastmond, B. & Alto, B. W. Chikungunya virus vector competency of Brazilian and Florida mosquito vectors. PLoS Negl. Trop. Dis. 12, 1–16 (2018).
    Google Scholar 
    54.Richards, S. L., Anderson, S. L. & Lord, C. C. Vector competence of Culex pipiens quinquefasciatus (Diptera: Culicidae) for West Nile virus isolates from Florida. Trop. Med. Int. Heal. 19, 610–617 (2014).
    Google Scholar 
    55.Hribar, L. J., Smith, J. M., Vlach, J. J. & Verna, T. N. Survey of container-breeding mosquitoes from the Florida Keys, Monroe County, Florida. J. Am. Mosq. Control Assoc. 17, 245–248 (2001).CAS 
    PubMed 

    Google Scholar 
    56.United States Environmental Protection Agency. Growing for a sustainable future: Miami-Dade County urban development boundary assessment. Available at: http://www.epa.gov/smartgrowth/pdf/Miami-Dade_Final_Report_12-12-12.pdf (2012).57.Miami-Dade County Building Permits. Available at, http://www.miamidade.gov/permits/.58.Wilke, A. B. B., Carvajal, A., Vasquez, C., Petrie, W. D. & Beier, J. C. Urban farms in Miami-Dade County, Florida have favorable environments for vector mosquitoes. PLoS ONE 15, e0230825 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Reba, M., Reitsma, F. & Seto, K. C. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000. Sci. Data 3, 1–16 (2016).
    Google Scholar 
    60.Ceretti-Júnior, W. et al. Mosquito faunal survey in a central park of the city of São Paulo, Brazil. J. Am. Mosq. Control Assoc. 31, 172–176 (2015).PubMed 

    Google Scholar 
    61.Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Zahouli, J. B. Z. et al. Effect of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes arbovirus vectors in oil palm-dominated landscapes, southeastern Côte d’Ivoire. PLoS ONE 12, e0189082 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    63.Westby, K. M., Adalsteinsson, S. A., Biro, E. G., Beckermann, A. J. & Medley, K. A. Aedes albopictus populations and larval habitat characteristics across the landscape: Significant differences exist between urban and rural land use types. Insects 12, 196 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    64.Estallo, E. L. et al. Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Med. Vet. Entomol. 32, 451–461 (2018).CAS 
    PubMed 

    Google Scholar 
    65.Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    66.Cunha, M. S. et al. Epizootics due to yellow fever virus in São Paulo State, Brazil: viral dissemination to new areas (2016–2017). Sci. Rep. 9, 5474 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    68.Poletti, P. et al. Transmission potential of chikungunya virus and control measures: The case of Italy. PLoS ONE 6, e18860 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Wilk-da-Silva, R. & de Souza Leal Diniz, M. M. C., Marrelli, M. T. & Wilke, A. B. B.,. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    70.Wilke, A. B. B. et al. Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS ONE 15, e0230748 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: Mechanisms and potential strategies for prevention. Trends Microbiol. 21, 360–363 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Wilke, A. B. B., Vasquez, C., Petrie, W. & Beier, J. C. Tire shops in Miami-Dade County, Florida are important producers of vector mosquitoes. PLoS ONE 14, 2 (2019).
    Google Scholar 
    73.Kothera, L., Godsey, M., Mutebi, J. P. & Savage, H. M. A comparison of aboveground and belowground populations of Culex pipiens (Diptera: Culicidae) mosquitoes in Chicago, Illinois, and New York City, New York, using microsatellites. J. Med. Entomol. 47, 805–813 (2010).PubMed 

    Google Scholar 
    74.World Health Organization. Handbook for Integrated Vector Management (World Health Organization, 2012).
    Google Scholar 
    75.Lizzi, K. M., Qualls, W. A., Brown, S. C. & Beier, J. C. Expanding Integrated Vector Management to promote healthy environments. Trends Parasitol. 30, 394–400 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    76.Souza, R. L. et al. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil. Parasit. Vectors 10, 1–6 (2017).
    Google Scholar 
    77.Wilke, A. B. B., Beier, J. C. & Benelli, G. Transgenic mosquitoes—Fact or fiction?. Trends Parasitol. 34, 456–465 (2018).PubMed 

    Google Scholar 
    78.Beier, J. C., Wilke, A. B. B. & Benelli, G. Newer approaches for malaria vector control and challenges of outdoor transmission. Towards Malaria Elimination – A Leap Forward https://doi.org/10.5772/intechopen.75513 (2018).Article 

    Google Scholar 
    79.World Health Organization. Tenth Meeting of the WHO Vector Control Advisory Group. (2019).80.Wilke, A. B. B. et al. Effectiveness of adulticide and larvicide in controlling high densities of Aedes aegypti in urban environments. PLoS ONE 16, e0246046 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    82.Rifat, S. A. & Al & Liu, W.,. Quantifying spatiotemporal patterns and major explanatory factors of urban expansion in Miami metropolitan area during 1992–2016. Remote Sens. 11, 2493 (2019).ADS 

    Google Scholar 
    83.Fuller, D. O. & Wang, Y. Recent trends in satellite vegetation index observations indicate decreasing vegetation biomass in the southeastern saline Everglades wetlands. Wetlands 34, 67–77 (2014).
    Google Scholar 
    84.Wilke, A. B. B. et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County. Florida. PLoS One 14, e0212688 (2019).CAS 
    PubMed 

    Google Scholar 
    85.Darsie, R. F. Jr. & Morris, C. D. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae). 1st ed. Vol. 1. Tech Bull Florida Mosq Cont Assoc (2000).86.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. 1–15 (2017) DOI:https://doi.org/10.1002/9781118445112.stat07841.87.Alencar, J. et al. Culicidae community composition and temporal dynamics in Guapiaçu ecological reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil. PLoS ONE 10, 1–16 (2015).
    Google Scholar 
    88.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).
    Google Scholar 
    89.Hammer, Ø., Harper, D. A. T. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    90.Ryan, P. A., Lyons, S. A., Alsemgeest, D., Thomas, P. & Kay, B. H. Spatial statistical analysis of adult mosquito (Diptera: Culicidae) counts: An example using light trap data, in Redland Shire, southeastern Queensland, Australia. J. Med. Entomol. 41, 1143–1156 (2004).PubMed 

    Google Scholar 
    91.O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
    Google Scholar 
    92.Wilke, A. B. B., Medeiros-Sousa, A. R., Ceretti-Junior, W. & Marrelli, M. T. Mosquito populations dynamics associated with climate variations. Acta Trop. 166, 343–350 (2016).PubMed 

    Google Scholar 
    93.Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 33, 107–112 (1973).
    Google Scholar  More

  • in

    Trajectory of body mass index and height changes from childhood to adolescence: a nationwide birth cohort in Japan

    ParticipantsThe Ministry of Health, Labour, and Welfare of Japan has been conducting The Longitudinal Survey of Newborns in the 21st Century since 2001 to establish strategies to counter the declining birthrate in Japan. The survey targeted all babies born in Japan between January 10 and 17 or between July 10 and 17 of 2001. Baseline questionnaires were sent to a total of 53,575 families when eligible babies reached the age of 6 months and 47,015 families initially completed the baseline questionnaire (88% response rate). These respondents were mailed follow-up questionnaires to investigate medical conditions and behaviors when children reached the ages of 1.5, 2.5, 3.5, 4.5, 5.5, 7, 8, 9, 10, 11, 12, 13, 14, and 15 years20,21,22,23. Birth record data from Vital Statistics of Japan are also linked for each child participating in the study. The current study included data for children/families who responded both to the baseline questionnaire and the fifteenth questionnaire at age 15 years.The baseline survey at age 6 months included questions regarding children’s perinatal status as well as household and socioeconomic factors such as parental academic attainment, parental smoking status, and daycare attendance. The subsequent annual surveys starting at age 1.5 years included questions regarding each child’s height, weight and health status. We excluded 2382 children born before 37 weeks of pregnancy and one child with responses only for the baseline survey and the survey at age 15 years. A total of 26,778 children (315,581 data points) were included in the final analysis. A total of 11,141 children (41.61%) had responses to all 15 questionnaires between the ages of 6 months and 15 years, and responses to more than 12 questionnaires were available for the majority (91.94%) of children (Fig. 1, Table S1).Figure 1Flowchart of study participants.Full size imageMeasuresWe calculated BMI based on each participant’s reported annual height and weight. Each participant’s annual BMI was converted to a BMI Z-score using smoothed L, M, and S values for BMI standards from a representative population of Japanese children24. Briefly, the LMS (lambda–mu–sigma) method is a method proposed by Cole et al. to monitor changes in the skewness of the distribution during childhood as a way of constructing normalized growth standards25. Participants were then classified into four BMI categories based on the World Health Organization (WHO) criteria26: underweight (BMI standard deviation [SD] score of − 5 or more but less than − 2), normal weight (BMI SD score of − 2 or more but less than 1), overweight (BMI SD score of 1 or more but less than 2), and obese (BMI SD score of 2 or more but less than 5). The definitions of overweight and obesity were different for children under 5 years of age: a BMI Z-score of 2 SD or more was categorized as overweight and a BMI Z-score of 3 SD or more was categorized as obese. BMI category at age 15 years was the main outcome of interest in the current study.We also calculated annual height growth for each participant by subtracting the height reported at the previous survey from that reported in the current survey. For annual height growth between 5.5 and 7 years of age, this value was multiplied by 2/3 because of the 1.5-year interval between surveys.Statistical analysesWe first compared baseline characteristics among the four BMI categories (underweight, normal weight, overweight and obese) at age 15 years. To evaluate potential selection bias resulting from losses to follow-up, we also compared the baseline characteristics of children included in the analysis and those of children lost to follow-up through to the fifteenth survey (at age 15 years).We retrospectively examined annual aggregate categorical changes in individuals of the four BMI categories (groups) at age 15 years. For each group, the proportion of each BMI category at each survey between the ages of 1.5 and 14 years was calculated. In addition, we prospectively calculated the proportion of children in each BMI category at each survey between the ages of 1.5 and 14 years who eventually became underweight, normal weight, overweight, or obese at age 15 years. Note that these analyses were based on aggregate data and do not describe individual BMI changes and were performed using only the data obtained without imputation of missing values.Under the assumption that missing data were missing at random, mixed effect models with natural cubic regression splines were applied to calculate the trajectories of BMI Z-scores and annual BMI Z-score changes through age 15 years for participants of each BMI category at age 15 years. Knots at seven locations were placed in percentiles of age to yield a sufficient number of measurements between each consecutive knot (age 1.5, 3.5, 5.5, 8.5, 11, 13 and 15 years), as recommended by Harrell27. The mixed effect model is useful for describing population average growth trajectories and individual growth trajectories even when data are not available for all children at all ages28,29,30,31. Briefly, the population average growth trajectory was modeled with fixed effects, while the individual variability is represented as random effects.After fitting individual BMI trajectories using a mixed-effects model with natural cubic spline function, we estimated individual adiposity rebound timing as the age where the first derivative of the trajectory reached its minimum and the second derivative was positive32. Children were then classified into five categories (1.5–2.5 years, 3.5–4.5 years, 5.5–7 years, 8–10 years, and 11 years or older) for analysis of adiposity rebound timing33,34. The distribution of adiposity rebound timing was calculated for individuals of each BMI status at age 15 years overall and by gender.Finally, we modelled annual height change and its associations with BMI status at age 15 years separately for each gender using mixed-effects models with natural cubic regression splines.All statistical analyses were performed using Stata version 16 (StataCorp LLC, College Station, TX, USA). This study was approved by the Institutional Review Board at Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences (No.1506-073) and was conducted in accordance with the 1964 Helsinki Declaration and Ethical Guidelines for Medical and Health Research Involving Human Subjects. Informed consent was obtained by the opt-out method on the university’s website. More

  • in

    Environmental optima for an ecosystem engineer: a multidisciplinary trait-based approach

    1.Rivadeneira, M. M. et al. Testing the abundant-centre hypothesis using intertidal porcelain crabs along the Chilean coast: Linking abundance and life-history variation. J. Biogeogr. 37, 486–498 (2010).
    Google Scholar 
    2.Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).
    Google Scholar 
    3.Lewis, J. R. Latitudinal trends in reproduction, recruitment and population characteristics of some rocky littoral molluscs and cirripedes. Hydrobiologia 142, 1–13 (1986).
    Google Scholar 
    4.Bernardo, J. The particular maternal effect of propagule size, especially egg size: Patterns, models, quality of evidence and interpretations. Am. Zool. 36, 216–236 (1996).
    Google Scholar 
    5.Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).CAS 
    PubMed 

    Google Scholar 
    6.Marshall, D. J., Pettersen, A. K. & Cameron, H. A global synthesis of offspring size variation, its eco-evolutionary causes and consequences. Funct. Ecol. 32, 1436–1446 (2018).
    Google Scholar 
    7.Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).PubMed 

    Google Scholar 
    8.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).
    Google Scholar 
    9.Sides, C. B. et al. Revisiting Darwin’s hypothesis: Does greater intraspecific variability increase species’ ecological breadth?. Am. J. Bot. 101, 56–62 (2014).PubMed 

    Google Scholar 
    10.Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).ADS 

    Google Scholar 
    11.Violle, C. et al. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 

    Google Scholar 
    12.Stark, J., Lehman, R., Crawford, L., Enquist, B. J. & Blonder, B. Does environmental heterogeneity drive functional trait variation? A test in montane and alpine meadows. Oikos 126, 1650–1659 (2017).
    Google Scholar 
    13.Stearns, S. C. The Evolution of Life Histories. xii, 249p. No. 575 S81 (Oxford, Oxford University, 1992).14.Vance, R. R. On reproductive strategies in marine benthic invertebrates. Am. Nat. 107, 339–352 (1973).
    Google Scholar 
    15.Levitan, D. R. Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins. Evolution 62, 1305–1316 (2008).PubMed 

    Google Scholar 
    16.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    17.Pineda, M. C. et al. Tough adults, frail babies: An analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS ONE 7, e46672 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    PubMed 

    Google Scholar 
    19.Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).PubMed 

    Google Scholar 
    20.Foo, S. A. & Byrne, M. Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg. Mar. Environ. Res. 128, 12–24 (2017).CAS 
    PubMed 

    Google Scholar 
    21.Dahlhoff, E. P. Biochemical indicators of stress and metabolism: Applications for marine ecological studies. Annu. Rev. Physiol. 66, 183–207 (2004).CAS 
    PubMed 

    Google Scholar 
    22.Soudant, P. et al. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 123, 209–222 (1999).
    Google Scholar 
    23.Lester, S. E., Gaines, S. D. & Kinlan, B. P. Reproduction on the edge: Large-scale patterns of individual performance in a marine invertebrate. Ecology 88, 2229–2239 (2007).PubMed 

    Google Scholar 
    24.Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evol. Syst. 37, 373–404 (2006).
    Google Scholar 
    25.Sagarin, R. D., Barry, J. P., Gilman, S. E. & Baxter, C. H. Climate-related change in an intertidal community over short and long time scales. Ecol. Monogr. 69, 465–490 (1999).
    Google Scholar 
    26.Dubois, S., Retière, C. & Olivier, F. Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: Effects of human disturbances. J. Mar. Biol. Assoc. UK 82, 817–826 (2002).
    Google Scholar 
    27.Jones, A. G., Dubois, S. F., Desroy, N. & Fournier, J. Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta). Estuar. Coast. Shelf Sci. 200, 1–18 (2018).ADS 

    Google Scholar 
    28.Bonifazi, A. et al. Macrofaunal biodiversity associated with different developmental phases of a threatened Mediterranean Sabellaria alveolata (Linnaeus, 1767) reef. Mar. Environ. Res. 145, 97–111 (2019).CAS 
    PubMed 

    Google Scholar 
    29.Holt, T. J., Biogenic Reefs. An Overview of Dynamic and Sensitivity Characteristics for Conservation Management of Marine SACs. UK Marine SACs Project (1998).30.Crisp, D. The effects of the severe winter of 1962–1963 on marine life in Britain. J. Anim. Ecol. 33, 165–210 (1964).
    Google Scholar 
    31.Firth, L. B. et al. Historical comparisons reveal multiple drivers of decadal change of an ecosystem engineer at the range edge. Ecol. Evol. 5, 3210–3222 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    32.Firth, L. B. et al. Specific niche requirements underpin multidecadal range edge stability, but may introduce barriers for climate change adaptation. Divers. Distrib. 27, 668–683 (2021).
    Google Scholar 
    33.Wethey, D. S. et al. Response of intertidal populations to climate: Effects of extreme events versus long term change. J. Exp. Mar. Biol. Ecol. 400, 132–144 (2011).
    Google Scholar 
    34.Sagarin, R. D. & Gaines, S. D. Geographical abundance distributions of coastal invertebrates: Using one-dimensional ranges to test biogeographic hypotheses. J. Biogeogr. 29, 985–997 (2002).
    Google Scholar 
    35.Rahman, M. A., Henderson, S., Miller-Ezzy, P., Li, X. X. & Qin, J. G. Immune response to temperature stress in three bivalve species: Pacific oyster Crassostrea gigas, Mediterranean mussel Mytilus galloprovincialis and mud cockle Katelysia rhytiphora. Fish Shellfish Immunol. 86, 868–874 (2019).CAS 
    PubMed 

    Google Scholar 
    36.Osada, M., Nishikawa, M. & Nomura, T. Involvement of prostaglandins in the spawning of the scallop, Patinopecten yessoensis. Comp. Biochem. Physiol. C 94, 595–601 (1989).
    Google Scholar 
    37.Stanley, D. W. & Howard, R. W. The biology of prostaglandins and related eicosanoids in invertebrates: Cellular, organismal and ecological actions. Am. Zool. 38, 369–381 (1998).CAS 

    Google Scholar 
    38.Pernet, F., Tremblay, R., Comeau, L. & Guderley, H. Temperature adaptation in two bivalve species from different thermal habitats: Energetics and remodelling of membrane lipids. J. Exp. Biol. 210, 2999–3014 (2007).PubMed 

    Google Scholar 
    39.Muir, A. P., Nunes, F. L. D., Dubois, S. F. & Pernet, F. Lipid remodelling in the reef-building honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to temperature. Sci. Rep. 6, 35669 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Hulbert, A. & Else, P. L. Membranes as possible pacemakers of metabolism. J. Theor. Biol. 199, 257–274 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    41.Brokordt, K. B., Himmelman, J. H., Nusetti, O. A. & Guderley, H. E. Reproductive investment reduces recuperation from exhaustive escape activity in the tropical scallop Euvola zizac. Mar. Biol. 137, 857–865 (2000).CAS 

    Google Scholar 
    42.Levitan, D. R. & Roitberg, B. D. Optimal egg size in marine invertebrates: Theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. Am. Nat. 156, 175–192 (2000).PubMed 

    Google Scholar 
    43.Moran, A. L. & McAlister, J. S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull. 216, 226–242 (2009).PubMed 

    Google Scholar 
    44.Marshall, D. J. & Burgess, S. C. Deconstructing environmental predictability: Seasonality, environmental colour and the biogeography of marine life histories. Ecol. Lett. 18, 174–181 (2015).PubMed 

    Google Scholar 
    45.Racault, M.-F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S. & Platt, T. Phytoplankton phenology in the global ocean. Ecol. Indic. 14, 152–163 (2012).
    Google Scholar 
    46.Henson, S., Cole, H., Beaulieu, C. & Yool, A. The impact of global warming on seasonality of ocean primary production. Biogeosciences 10, 4357–4369 (2013).ADS 

    Google Scholar 
    47.Morim, J. et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Change 9, 711–718 (2019).ADS 

    Google Scholar 
    48.Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    PubMed 

    Google Scholar 
    49.McCarthy, D., Young, C. & Emson, R. Influence of wave-induced disturbance on seasonal spawning patterns in the sabellariid polychaete Phragmatopoma lapidosa. Mar. Ecol. Prog. Ser. 256, 123–133 (2003).ADS 

    Google Scholar 
    50.Aviz, D., Pinto, A. J. A., Ferreira, M. A. P., Rocha, R. M. & Rosa Filho, J. S. Reproductive biology of Sabellaria wilsoni (Sabellariidae: Polychaeta), an important ecosystem engineer on the Amazon coast. J. Mar. Biol. Assoc. UK https://doi.org/10.1017/S0025315416001776 (2016).Article 

    Google Scholar 
    51.Bowman, R. S. & Lewis, J. Annual fluctuations in the recruitment of Patella vulgata L. J. Mar. Biol. Assoc. U. K. 57, 793–815 (1977).
    Google Scholar 
    52.Sagarin, R. D. & Somero, G. N. Complex patterns of expression of heat-shock protein 70 across the southern biogeographical ranges of the intertidal mussel Mytilus californianus and snail Nucella ostrina. J. Biogeogr. 33, 622–630 (2006).
    Google Scholar 
    53.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).ADS 

    Google Scholar 
    54.Firth, L. B., Knights, A. M. & Bell, S. S. Air temperature and winter mortality: Implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States. J. Exp. Mar. Biol. Ecol. 400, 250–256 (2011).
    Google Scholar 
    55.Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: Microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).
    Google Scholar 
    56.Meneghesso, C. et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 237, 111588 (2020).ADS 

    Google Scholar 
    57.Marshall, D. J. & Keough, M. J. The evolutionary ecology of offspring size in marine invertebrates. in Advances in Marine Biology, 1–60. https://doi.org/10.1016/S0065-2881(07)53001-4 (Elsevier, 2007).58.Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits: Intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).
    Google Scholar 
    59.Olofsson, H., Ripa, J. & Jonzén, N. Bet-hedging as an evolutionary game: The trade-off between egg size and number. Proc. R. Soc. B Biol. Sci. 276, 2963–2969 (2009).
    Google Scholar 
    60.Osovitz, C. J. & Hofmann, G. E. Marine macrophysiology: Studying physiological variation across large spatial scales in marine systems. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147, 821–827 (2007).PubMed 

    Google Scholar 
    61.Clarke, A. Reproduction in the cold: Thorson revisited. Invertebr. Reprod. Dev. 22, 175–183 (1992).
    Google Scholar 
    62.Hawkins, S. J. et al. Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution. Mar. Pollut. Bull. 124, 573–586 (2017).CAS 
    PubMed 

    Google Scholar 
    63.Dahlhoff, E. P., Stillman, J. H. & Menge, B. A. Physiological community ecology: Variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients. Integr. Comp. Biol. 42, 862–871 (2002).PubMed 

    Google Scholar 
    64.Nunes, F. L. D., Rigal, F., Dubois, S. F. & Viard, F. Looking for diversity in all the right places? Genetic diversity is highest in peripheral populations of the reef-building polychaete Sabellaria alveolata. Mar. Biol. 168, 63 (2021).
    Google Scholar 
    65.Bush, L. E. Stability and Variability of the Ecosystem Engineer Sabellaria alveolata on Differing Temporal and Spatial Scales (Bangor University, 2016).
    Google Scholar 
    66.Lourenço, C. R., Nicastro, K. R., McQuaid, C. D., Krug, L. A. & Zardi, G. I. Strong upwelling conditions drive differences in species abundance and community composition along the Atlantic coasts of Morocco and Western Sahara. Mar. Biodivers. 50, 15 (2020).
    Google Scholar 
    67.Ritchie, H. & Marshall, D. J. Fertilisation is not a new beginning: Sperm environment affects offspring developmental success. J. Exp. Biol. 216, 3104–3109 (2013).PubMed 

    Google Scholar 
    68.Dubois, S., Comtet, T., Retière, C. & Thiébaut, E. Distribution and retention of Sabellaria alveolata larvae (Polychaeta: Sabellariidae) in the Bay of Mont-Saint-Michel, France. Mar. Ecol. Prog. Ser. 346, 243–254 (2007).ADS 
    CAS 

    Google Scholar 
    69.Costello, D. P., Henley, C., & Marine Biological Laboratory (Woods Hole, Mass.). Methods for obtaining and handling marine eggs and embryos [by] Donald P. Costello and Catherine Henley. ([s.n.], 1971). https://doi.org/10.5962/bhl.title.1020.70.Gruet, Y. Aspects morphologiques et dynamiques de constructions de l’Annélide polychete Sabellaria alveolata (Linne). Rev. Trav. Inst. Pêch. Marit. 36, 131–161 (1972).
    Google Scholar 
    71.Saulquin, B., Gohin, F. & Garrello, R. Regional objective analysis for merging high-resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll-a data from 1998 to 2008 on the European Atlantic Shelf. IEEE Trans. Geosci. Remote Sens. 49, 143–154 (2011).ADS 

    Google Scholar 
    72.Gohin, F. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters. Ocean Sci. 7, 705–732 (2011).ADS 
    CAS 

    Google Scholar 
    73.Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Understanding complex biogeographic responses to climate change. Sci. Rep. 5, 12930 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Filbee-Dexter, K. & Oliver, E. C. J. Marine cold-spells. Progress Oceanogr. 198, 102684 (2021).
    Google Scholar 
    75.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 

    Google Scholar 
    76.Schlegel, R. W., Oliver, E. C., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).
    Google Scholar 
    77.Egbert, G. D., Erofeeva, S. Y. & Ray, R. D. Assimilation of altimetry data for nonlinear shallow-water tides: Quarter-diurnal tides of the Northwest European Shelf. Cont. Shelf Res. 30, 668–679 (2010).ADS 

    Google Scholar 
    78.Burrows, M., Harvey, R. & Robb, L. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Mar. Ecol. Prog. Ser. 353, 1–12 (2008).ADS 

    Google Scholar 
    79.Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).
    Google Scholar 
    80.Seers, B. fetchR: Calculate Wind Fetch. R Package Version 2-1 (2017).81.Guillaume, A. S., Monro, K. & Marshall, D. J. Transgenerational plasticity and environmental stress: Do paternal effects act as a conduit or a buffer?. Funct. Ecol. 30, 1175–1184 (2016).
    Google Scholar 
    82.Curd, A. et al. Connecting organic to mineral: How the physiological state of an ecosystem-engineer is linked to its habitat structure. Ecol. Indic. 98, 49–60 (2019).CAS 

    Google Scholar 
    83.Gruet, Y. & Lassus, P. Contribution a l’etude de la biologie reproductive d’une population naturelle de l’Annelide Polychete, Sabellaria alveolata (Linnaeus). Ann. Inst. Oceanogr. Monaco 59, 127–140 (1983).
    Google Scholar 
    84.Hazel, J. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29, 167–227 (1990).CAS 
    PubMed 

    Google Scholar 
    85.Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).
    Google Scholar 
    86.Abele, D. & Puntarulo, S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 138, 405–415 (2004).PubMed 

    Google Scholar 
    87.Folch, J., Lees, M. & Stanley, G. H. S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509. http://www.jbc.org/content/226/1/497 (1957).CAS 
    PubMed 

    Google Scholar 
    88.Sieracki, C., Sieracki, M. & Yentsch, C. An imaging-in-flow system for automated analysis of marine microplankton. Mar. Ecol. Prog. Ser. 168, 285–296 (1998).ADS 

    Google Scholar 
    89.Pasteels, J. J. Etude au microscope électronique de la réaction corticale. II. La réaction corticale de l’oeuf vierge de Sabellaria alveolata. J. Embryol. Exp. Morphol. 13, 327–339 (1965).CAS 
    PubMed 

    Google Scholar 
    90.Doledec, S. & Chessel, D. Co-inertia analysis: An alternative method for studying species-environment relationships. Freshw. Biol. 31, 277–294 (1994).
    Google Scholar 
    91.Robert, P. & Escoufier, Y. A unifying tool for linear multivariate statistical methods: The RV-coefficient. J. R. Stat. Soc. Ser. C Appl. Stat. 25, 257–265 (1976).MathSciNet 

    Google Scholar 
    92.Legendre, P. & Legendre, L. Ecological resemblance. in Developments in Environmental Modelling Chapter 7, Vol. 24, 265–335 (Elsevier, 2012).93.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).
    Google Scholar 
    94.Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 

    Google Scholar 
    95.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    96.Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology: How do traits vary across ecological scales?. Ecol. Lett. 13, 838–848 (2010).PubMed 

    Google Scholar 
    97.Rao, C. R. The use and interpretation of principal component analysis in applied research. Sankhyā Indian J. Stat. Ser. A (1961-2002) 26, 329–358 (1964).98.R Core Team: A language and environment for statistical computing. Available from: https://www.R-project.org/ (2018).99.Oksanen, J. et al. Package ‘vegan’. Commun. Ecol. Package Version 2, 1–295 (2013).
    Google Scholar  More