More stories

  • in

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya

    1.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, 6332 (2017).Article 
    CAS 

    Google Scholar 
    3.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Wiens, J. J., Litvinenko, Y., Harris, L. & Jezkova, T. Rapid niche shifts in introduced species can be a million times faster than changes among native species and ten times faster than climate change. J. Biogeogr. 46, 2115–2125 (2019).Article 

    Google Scholar 
    5.Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Global Chang. Biol. 23, 4094–4105 (2017).ADS 
    Article 

    Google Scholar 
    7.Winkler, E. & Fischer, M. The role of vegetative spread and seed dispersal for optimal life histories of clonal plants: A simulation study. In Ecology and Evolutionary Biology of Clonal Plants 59–79 (Springer, 2002).8.Neiman, M., Meirmans, S. & Meirmans, P. What can asexual lineage age tell us about the maintenance of sex?. Ann. N. Y. Acad. Sci. 1168, 185–200 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Steffen, W. et al. Trajectories of the earth system in the anthropocene. PNAS 115, 8252–8259 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: Biodiversity conservation in a changing climate. Science 332, 53–58 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar 
    14.Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal) adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    15.Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lai, Y. T. et al. Standing genetic variation as the predominant source for adaptation of a songbird. PNAS 116, 2152–2157 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Honnay, O. & Jacquemyn, H. A meta-analysis of the relation between mating system, growth form and genotypic diversity in clonal plant species. Evol. Ecol. 22, 299–312 (2008).Article 

    Google Scholar 
    19.Arnaud-Haond, S. et al. Assessing genetic diversity in clonal organisms: Low diversity or low resolution? Combining power and cost efficiency in selecting markers. J. Hered. 96, 434–440 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Wolfe, A. D. & Liston, A. Contributions of PCR-based methods to plant systematics and evolutionary biology. In Molecular systematics of plants II 43–86 (Springer, 1998).21.Nicolè, S. et al. Biodiversity studies in Phaseolus species by DNA barcoding. Genome 54, 529–545 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Baldwin, B. G. et al. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Mo. Bot. Gard. 1, 247–277 (1995).Article 

    Google Scholar 
    23.Álvarez, I. J. F. W. & Wendel, J. F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434 (2003).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Choudhary, N. et al. Insight into the origin of common bean (Phaseolus vulgaris L.) grown in the state of Jammu and Kashmir of North-Western Himalayas. Genet. Resour. Crop Evol. 65, 963–977 (2018).Article 

    Google Scholar 
    25.Doh, E. J., Kim, J. H., Oh, S. E. & Lee, G. Identification and monitoring of Korean medicines derived from Cinnamomum spp. by using ITS and DNA marker. Genes Genom. 39, 101–109 (2017).CAS 
    Article 

    Google Scholar 
    26.Singh, S. K., Meghwal, P. R., Pathak, R., Bhatt, R. K. & Gautam, R. Assessment of genetic diversity among Indian jujube varieties based on nuclear ribosomal DNA and RAPD polymorphism. Agric. Res. 3, 218–228 (2014).CAS 
    Article 

    Google Scholar 
    27.Urbatsch, L. E., Baldwin, B. G. & Donoghue, M. J. Phylogeny of the coneflowers and relatives (Heliantheae: Asteraceae) based on nuclear rDNA internal transcribed spacer (ITS) sequences and chlorplast DNA restriction site data. Syst. Bot. 1, 539–565 (2000).Article 

    Google Scholar 
    28.Eriksson, T. & Donoghue, M. J. Phylogenetic relationships of Sambucus and Adoxa (Adoxoideae, Adoxaceae) based on nuclear ribosomal ITS sequences and preliminary morphological data. Syst. Bot. 1, 555–573 (1997).Article 

    Google Scholar 
    29.Ferrero, V. et al. Global patterns of reproductive and cytotype diversity in an invasive clonal plant. Biol. Invasions 3, 1–13 (2020).
    Google Scholar 
    30.Hamrick, J. L. & Godt, M. J. Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources 44–64 (Sinauer Associates Inc, 1989).31.Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).Article 

    Google Scholar 
    32.Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Ecoscience 12, 316–329 (2005).Article 

    Google Scholar 
    33.Peakall, R. & Beattie, A. J. The genetic consequences of worker ant pollination in a self-compatible, clonal orchid. Evolution 45, 1837–1848 (1991).PubMed 

    Google Scholar 
    34.Sydes, M. A. & Peakall, R. O. D. Extensive clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae) revealed by allozymes and RAPDs. Mol. Ecol. 7, 87–93 (1998).Article 

    Google Scholar 
    35.Brzosko, E., Wróblewska, A., Tałałaj, I. & Wasilewska, E. Genetic diversity of Cypripedium calceolus in Poland. Plant Syst. Evol. 295, 83–96 (2011).Article 

    Google Scholar 
    36.Guerra-García, A., Golubov, J. & Mandujano, M. C. Invasion of Kalanchoe by clonal spread. Biol. Invasions 17, 1615–1622 (2015).Article 

    Google Scholar 
    37.Ellstrand, N. C. & Roose, M. L. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123–131 (1987).Article 

    Google Scholar 
    38.Chung, M. G. & Epperson, B. K. Spatial genetic structure of clonal and sexual reproduction in populations of Adenophora grandiflora (Campanulaceae). Evolution 53, 1068–1078 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Stehlik, I. & Holderegger, R. Spatial genetic structure and clonal diversity of Anemone nemorosa in late successional deciduous woodlands of Central Europe. J. Ecol. 88, 424–435 (2000).Article 

    Google Scholar 
    40.Kudoh, H., Shibaike, H., Takasu, H., Whigham, D. F. & Kawano, S. Genet structure and determinants of clonal structure in a temperate deciduous woodland herb, Uvularia perfoliata. J. Ecol. 87, 244–257 (1999).Article 

    Google Scholar 
    41.Pornon, A., Escaravage, N., Thomas, P. & Taberlet, P. Dynamics of genotypic structure in clonal Rhododendron ferrugineum (Ericaceae) populations. Mol. Ecol. 9, 1099–1111 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Brzosko, E., Wróblewska, A. & Ratkiewicz, M. Spatial genetic structure and clonal diversity of island populations of lady’s slipper (Cypripedium calceolus) from the Biebrza National Park (northeast Poland). Mol. Ecol. 11, 2499–2509 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Smith, A. L. et al. Global gene flow releases invasive plants from environmental constraints on genetic diversity. PNAS 117, 4218–4227 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Dong, M. E. I., Lu, B. R., Zhang, H. B., Chen, J. K. & Li, B. O. Role of sexual reproduction in the spread of an invasive clonal plant Solidago canadensis revealed using intersimple sequence repeat markers. Plant Species Biol. 21, 13–18 (2006).Article 

    Google Scholar 
    45.You, W., Fan, S., Yu, D., Xie, D. & Liu, C. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments. PLoS ONE 9, e97246 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Silvertown, J. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 169, 157–168 (2008).Article 

    Google Scholar 
    47.Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Evol. Syst. 41, 193–213 (2010).Article 

    Google Scholar 
    48.Uesugi, A., Baker, D. J., de Silva, N., Nurkowski, K. & Hodgins, K. A. A lack of genetically compatible mates constrains the spread of an invasive weed. New Phytol. 226, 1864–1872 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 1, 24–30 (2003).Article 

    Google Scholar 
    50.Pluess, A. R. & Stöcklin, J. Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am. J. Bot. 91, 2013–2021 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Bialozyt, R., Ziegenhagen, B. & Petit, R. J. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12–20 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: A null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).Article 

    Google Scholar 
    53.Roman, J. & Darling, J. A. Paradox lost: Genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22, 454–464 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Shirk, R. Y., Hamrick, J. L., Zhang, C. & Qiang, S. Patterns of genetic diversity reveal multiple introductions and recurrent founder effects during range expansion in invasive populations of Geranium carolinianum (Geraniaceae). Heredity 112, 497–507 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Nobarinezhad, M. H., Challagundla, L. & Wallace, L. E. Small-scale population connectivity and genetic structure in Canada thistle (Cirsium arvense). Int. J. Plant Sci. 181, 473–484 (2020).Article 

    Google Scholar 
    57.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    58.Maron, J. L., Vilà, M., Bommarco, R., Elmendorf, S. & Beardsley, P. Rapid evolution of an invasive plant. Ecol. Monogr. 74, 261–280 (2004).Article 

    Google Scholar 
    59.Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Montague, J. L., Barrett, S. C. H. & Eckert, C. G. Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). J. Evol. Biol. 21, 234–245 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Prentis, P. J., Wilson, J. R., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Colautti, R. I., Maron, J. L. & Barrett, S. C. Common garden comparisons of native and introduced plant populations: Latitudinal clines can obscure evolutionary inferences. Evol. Appl. 2, 187–199 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Colautti, R. I., Eckert, C. G. & Barrett, S. C. Evolutionary constraints on adaptive evolution during range expansion in an invasive plant. Proc. Roy. Soc. B 277, 1799–1806 (2010).Article 

    Google Scholar 
    64.Barrett, S. C., Colautti, R. I. & Eckert, C. G. Plant reproductive systems and evolution during biological invasion. Mol. Ecol. 17, 373–383 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Pappert, R. A., Hamrick, J. L. & Donovan, L. A. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. Am. J. Bot. 87, 1240–1245 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Duchoslav, M. & Staňková, H. Population genetic structure and clonal diversity of Allium oleraceum (Amaryllidaceae), a polyploid geophyte with common asexual but variable sexual reproduction. Folia Geobot. 50, 123–136 (2015).Article 

    Google Scholar 
    67.Nevo, E. Genetic variation in natural populations: Patterns and theory. Theor. Popul. Biol. 13, 121–177 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Gargiulo, R., Ilves, A., Kaart, T., Fay, M. F. & Kull, T. High genetic diversity in a threatened clonal species, Cypripedium calceolus (Orchidaceae), enables long-term stability of the species in different biogeographical regions in Estonia. Bot. J. Linn. Soc. 186, 560–571 (2018).Article 

    Google Scholar 
    69.Xia, L., Geng, Q. & An, S. Rapid genetic divergence of an invasive species, Spartina alterniflora, in China. Front. Genet. 11, 284 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Rosenthal, D. M., Ramakrishnan, A. P. & Cruzan, M. B. Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv, North America. Mol. Ecol. 17, 4657–4669 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Lembicz, M. et al. Microsatellite identification of ramet genotypes in a clonal plant with phalanx growth: The case of Cirsium rivulare (Asteraceae). Flora 206, 792–798 (2011).Article 

    Google Scholar 
    72.Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Lucardi, R. D., Wallace, L. E. & Ervin, G. N. Patterns of genetic diversity in highly invasive species: Cogongrass (Imperata cylindrica) expansion in the invaded range of the southern United States (US). Plants 9, 423 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    74.Barbosa, C., Trevisan, R., Estevinho, T. F., Castellani, T. T. & Silva-Pereira, V. Multiple introductions and efficient propagule dispersion can lead to high genetic variability in an invasive clonal species. Biol. Invasions 21, 3427–3438 (2019).Article 

    Google Scholar 
    75.Hutchinson, J. Notes on the Indian species of Sambucus. Bull. Misc. Inf. 1909, 191–193 (1909).
    Google Scholar 
    76.Acharya, J. & Mukherjee, A. An account of Sambucus L. in the Himalayan regions of India. Indian J. Life Sci. 4, 77–84 (2014).
    Google Scholar 
    77.Rodgers, W. A. & Panwar, S. H. Biogeographical Classification of India (New Forest, 1988).
    Google Scholar 
    78.Shafiq, M. U., Rasool, R., Ahmed, P. & Dimri, A. P. Temperature and precipitation trends in Kashmir Valley, North Western Himalayas. Theor. Appl. Climatol. 135, 293–304 (2019).ADS 
    Article 

    Google Scholar 
    79.Clarke, J. B. & Tobutt, K. R. Development of microsatellite primers and two multiplex polymerase chain reactions for the common elder (Sambucus nigra). Mol. Ecol. Notes 6, 453–455 (2006).CAS 
    Article 

    Google Scholar 
    80.DARwin software v. 6.0. http://darwin.cirad.fr/darwin (2006).81.Gascuel, O. Concerning the NJ algorithm and its unweighted version, UNJ. Math. Hierarchies Biol. 37, 149–171 (1997).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    82.Peakall, R. O. D. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    83.Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).Article 

    Google Scholar 
    84.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D. & Sorrells, M. E. Optimizing parental selection for genetic linkage maps. Genome 36, 181–186 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Pritchard, J. K., Wen, X. & Falush, D. Documentation for STRUCTURE Software, Version 2.3 (University of Chicago, 2010).
    Google Scholar 
    87.Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    88.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Sneath, P. H. & Sokal, R. R. Numerical Taxonomy. The Principles and Practice of Numerical Classification (W.H. Freeman and Company, 1973).MATH 

    Google Scholar 
    94.Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS 

    Google Scholar 
    95.Tamura, K., Nei, M. & Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101, 11030–11035 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series 95–98 (Information Retrieval Ltd., c1979–c2000 1999).98.Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).
    Google Scholar  More

  • in

    Aphids harbouring different endosymbionts exhibit differences in cuticular hydrocarbon profiles that can be recognized by ant mutualists

    1.Gibbs, A. G. & Rajpurohit, S. Cuticular lipids and water balance. in Insect hydrocarbons: biology, biochemistry, and chemical ecology 100–120 (Cambridge University Press Cambridge, UK, 2010). https://doi.org/10.1017/CBO9780511711909.0072.Pedrini, N., Ortiz-Urquiza, A., Zhang, S. & Keyhani, N. O. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 4, 24 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Lang, C. & Menzel, F. Lasius niger ants discriminate aphids based on their cuticular hydrocarbons. Anim. Behav. 82, 1245–1254 (2011).Article 

    Google Scholar 
    5.Sakata, I., Hayashi, M. & Nakamuta, K. Tetramorium tsushimae ants use methyl branched hydrocarbons of aphids for partner recognition. J. Chem. Ecol. 43, 966–970 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Salazar, A. et al. Aggressive mimicry coexists with mutualism in an aphid. Proc. Natl. Acad. Sci. 112, 1101–1106 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Endo, S. & Itino, T. The aphid-tending ant Lasius fuji exhibits reduced aggression toward aphids marked with ant cuticular hydrocarbons. Popul. Ecol. 54, 405–410 (2012).Article 

    Google Scholar 
    8.Endo, S. & Itino, T. Myrmecophilous aphids produce cuticular hydrocarbons that resemble those of their tending ants. Popul. Ecol. 55, 27–34 (2013).Article 

    Google Scholar 
    9.Stadler, B. & Dixon, A. F. G. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36, 345–372 (2005).Article 

    Google Scholar 
    10.Schillewaert, S. et al. The influence of facultative endosymbionts on honeydew carbohydrate and amino acid composition of the black bean aphid Aphis fabae. Physiol. Entomol. 42, 125–133 (2017).CAS 
    Article 

    Google Scholar 
    11.Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Douglas, A. E. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).Article 

    Google Scholar 
    14.Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B Biol. Sci. 273, 603–610 (2005).Article 

    Google Scholar 
    15.Wagner, S. M. et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct. Ecol. 29, 1402–1410 (2015).Article 

    Google Scholar 
    16.Scarborough, C. L., Ferrari, J. & Godfray, H. C. J. Aphid protected from pathogen by endosymbiont. Science 310, 1781 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Łukasik, P., van Asch, M., Guo, H., Ferrari, J. & Godfray, H. C. J. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol. Lett. 16, 214–218 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. 100, 1803–1807 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Vorburger, C., Gehrer, L. & Rodriguez, P. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol. Lett. 6, 109–111 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Vorburger, C. & Gouskov, A. Only helpful when required: a longevity cost of harbouring defensive symbionts. J. Evol. Biol. 24, 1611–1617 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Vorburger, C., Ganesanandamoorthy, P. & Kwiatkowski, M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol. Evol. 3, 706–713 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Gwynn, D. M., Callaghan, A., Gorham, J., Walters, K. F. A. & Fellowes, M. D. E. Resistance is costly: trade-offs between immunity, fecundity and survival in the pea aphid. Proc. R. Soc. B Biol. Sci. 272, 1803–1808 (2005).CAS 
    Article 

    Google Scholar 
    23.Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B Biol. Sci. 275, 293–299 (2008).Article 

    Google Scholar 
    24.Wernegreen, J. J. Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 3, 850–861 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Degnan, P. H., Yu, Y., Sisneros, N., Wing, R. A. & Moran, N. A. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc. Natl. Acad. Sci. 106, 9063–9068 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Ankrah, N. Y. D., Luan, J. & Douglas, A. E. Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling. J. Bacteriol. 199, e00872-e916 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Herren, J. K. et al. Insect endosymbiont proliferation is limited by lipid availability. Elife 3, e02964 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Hamilton, R. J. Waxes: Chemistry, Molecular Biology and Functions (Insect Waxes. Oily Press, 1995).
    Google Scholar 
    29.Blailock, T. T., Blomquist, G. J. & Jackson, L. L. Biosynthesis of 2-methylalkanes in the crickets: Nemobiusfasciatus and Grylluspennsylvanicus. Biochem. Biophys. Res. Commun. 68, 841–849 (1976).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Engl, T. et al. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol. 18, 145 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Engl, T. et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27, 2095–2108 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Schneider, D. I. et al. Symbiont-driven male mating success in the Neotropical Drosophila paulistorum superspecies. Behav. Genet. 49, 83–98 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.de Souza, D. J., Devers, S. & Lenoir, A. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization. C. R. Biol. 334, 737–741 (2011).Article 
    CAS 

    Google Scholar 
    34.Richard, F.-J. Symbiotic bacteria influence the odor and mating preference of their hosts. Front. Ecol. Evol. 5, 143 (2017).Article 

    Google Scholar 
    35.Fischer, M. K. & Shingleton, A. W. Host plant and ants influence the honeydew sugar composition of aphids. Funct. Ecol. 15, 544–550 (2001).Article 

    Google Scholar 
    36.Yao, I. & Akimoto, S. Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128, 36–43 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Yao, I. & Akimoto, S. Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol. Entomol. 27, 745–752 (2002).Article 

    Google Scholar 
    38.Offenberg, J. Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behav. Ecol. Sociobiol. 49, 304–310 (2001).Article 

    Google Scholar 
    39.Stadler, B. & Dixon, A. F. G. Ant attendance in aphids: why different degrees of myrmecophily?. Ecol. Entomol. 24, 363–369 (1999).Article 

    Google Scholar 
    40.Vantaux, A., Van den Ende, W., Billen, J. & Wenseleers, T. Large interclone differences in melezitose secretion in the facultatively ant-tended black bean aphid Aphis fabae. J. Insect. Physiol. 57, 1614–1621 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Moran, N. A., Russell, J. A., Koga, R. & Fukatsu, T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl. Environ. Microbiol. 71, 3302–3310 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Molloy, J. C., Sommer, U., Viant, M. R. & Sinkins, S. P. Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells. Appl. Environ. Microbiol. 82, 3109–3120 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Paredes, J. C., Herren, J. K., Schüpfer, F. & Lemaitre, B. The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila. MBio 7, e01006-e1016 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Chung, H. & Carroll, S. B. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37, 822–830 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Bos, N. et al. Learning and perceptual similarity among cuticular hydrocarbons in ants. J. Insect Physiol. 58, 138–146 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.van Wilgenburg, E. et al. Learning and discrimination of cuticular hydrocarbons in a social insect. Biol. Lett. 8, 17–20 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Oberhauser, F. B., Koch, A. & Czaczkes, T. J. Small differences in learning speed for different food qualities can drive efficient collective foraging in ant colonies. Behav. Ecol. Sociobiol. 72, 164 (2018).Article 

    Google Scholar 
    48.Erickson, D. M., Wood, E. A., Oliver, K. M., Billick, I. & Abbot, P. The effect of ants on the population dynamics of a protective symbiont of aphids, Hamiltonella defensa. Ann. Entomol. Soc. Am. 105, 447–453 (2012).Article 

    Google Scholar 
    49.Schmidt, M. H. et al. Relative importance of predators and parasitoids for cereal aphid control. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 270, 1905–1909 (2003).Article 

    Google Scholar 
    50.Łukasik, P., Dawid, M. A., Ferrari, J. & Godfray, H. C. J. The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia 173, 985–996 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Oliver, K. M. et al. Parasitic wasp responses to symbiont-based defense in aphids. BMC Biol. 10, 11 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Dennis, A. B., Patel, V., Oliver, K. M. & Vorburger, C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 71, 2599–2617 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Guo, J. et al. Nine facultative endosymbionts in aphids, a review. J. Asia. Pac. Entomol. 20, 794–801 (2017).Article 

    Google Scholar 
    54.Vorburger, C., Sandrock, C., Gouskov, A., Castañeda, L. E. & Ferrari, J. Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host–parasitoid interaction. Evol. Int. J. Org. Evol. 63, 1439–1450 (2009).Article 

    Google Scholar 
    55.Carlson, D. A., Bernier, U. R. & Sutton, B. D. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24, 1845–1865 (1998).CAS 
    Article 

    Google Scholar 
    56.Katritzky, A. R., Chen, K., Maran, U. & Carlson, D. A. QSPR correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects. Anal. Chem. 72, 101–109 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing. (2019).58.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley Statsref. Stat. Ref. https://doi.org/10.1002/9781118445112.stat07841 (2014).Article 

    Google Scholar 
    61.Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).Article 

    Google Scholar 
    62.Arbizu, P. M. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis (2017).63.Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Ecological opportunity and adaptive radiations reveal eco-evolutionary perspectives on community structure in competitive communities

    1.Urban, M. C. & Skelly, D. K. Evolving metacommunities: Toward an evolutionary perspective on metacommunities. Ecology 87, 1616–1626 (2006).Article 

    Google Scholar 
    2.Cortez, M. H. & Ellner, S. P. Understanding rapid evolution in predator-prey interactions using the theory of fast-slow dynamical systems. Am. Nat. 176, E109–E127. https://doi.org/10.1086/656485 (2010).Article 
    PubMed 

    Google Scholar 
    3.Ellner, S. P., Geber, M. A. & Hairston, N. G. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol. Lett. 14, 603–614. https://doi.org/10.1111/j.1461-0248.2011.01616.x (2011).Article 
    PubMed 

    Google Scholar 
    4.Yoder, J. B. et al. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581–1596. https://doi.org/10.1111/j.1420-9101.2010.02029.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639. https://doi.org/10.1086/652433 (2010).Article 
    PubMed 

    Google Scholar 
    6.Meyer, J. R. & Kassen, R. The effects of competition and predation on diversification in a model adaptive radiation. Nature 446, 432–435. https://doi.org/10.1038/nature05599 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47(47), 507–532. https://doi.org/10.1146/annurev-ecolsys-121415-032254 (2016).Article 

    Google Scholar 
    8.Keller, I. & Seehausen, O. Thermal adaptation and ecological speciation. Mol. Ecol. 21, 782–799. https://doi.org/10.1111/j.1365-294X.2011.05397.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Schluter, D., Price, T. D. & Grant, P. R. ecological character displacement in Darwin Finches. Science 227, 1056–1059. https://doi.org/10.1126/science.227.4690.1056 (1985).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Munkemuller, T. & Gallien, L. VirtualCom: A simulation model for eco-evolutionary community assembly and invasion. Methods Ecol. Evol. 6, 735–743. https://doi.org/10.1111/2041-210x.12364 (2015).Article 

    Google Scholar 
    11.Munoz, F. et al. ecolottery: Simulating and assessing community assembly with environmental filtering and neutral dynamics in R. Methods Ecol. Evol. 9, 693–703. https://doi.org/10.1111/2041-210x.12918 (2018).Article 

    Google Scholar 
    12.Ruffley, M., Peterson, K., Week, B., Tank, D. C. & Harmon, L. J. Identifying models of trait-mediated community assembly using random forests and approximate Bayesian computation. Ecol. Evol. 9, 13218–13230. https://doi.org/10.1002/ece3.5773 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.van der Plas, F. et al. A new modeling approach estimates the relative importance of different community assembly processes. Ecology 96, 1502–1515. https://doi.org/10.1890/14-0454.1 (2015).Article 

    Google Scholar 
    14.Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079. https://doi.org/10.1038/ismej.2013.93 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Geritz, S. A. H., Kisdi, E., Meszena, G. & Metz, J. A. J. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998).Article 

    Google Scholar 
    17.Vellend, M. Conceptual synthesis in community ecology. Q. R. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    18.Urban, M. C. et al. The evolutionary ecology of metacommunities. Trends Ecol. Evol. 23, 311–317 (2008).Article 

    Google Scholar 
    19.Pausas, J. G. & Verdu, M. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60, 614–625. https://doi.org/10.1525/bio.2010.60.8.7 (2010).Article 

    Google Scholar 
    20.Mouquet, N. et al. Ecophylogenetics: Advances and perspectives. Biol. Rev. 87, 769–785. https://doi.org/10.1111/j.1469-185X.2012.00224.x (2012).Article 
    PubMed 

    Google Scholar 
    21.Kraft, N. J. B., Cornwell, W. K., Webb, C. O. & Ackerly, D. D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271–283. https://doi.org/10.1086/519400 (2007).Article 
    PubMed 

    Google Scholar 
    22.Wilson, J. B., Weiher, E. & Keddy, P. Assembly Rules in Plant Communities (Cambridge University Press, 1999).Book 

    Google Scholar 
    23.MacArthur, R. H. & Levins, R. Limiting similarity convergence and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).Article 

    Google Scholar 
    24.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505. https://doi.org/10.1146/annurev.ecolysis.33.010802.150448 (2002).Article 

    Google Scholar 
    25.Pontarp, M., Brännström, A. & Petchey, O. L. Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC). Methods Ecol. Evol. 10, 450–460. https://doi.org/10.1111/2041-210x.13129 (2019).Article 

    Google Scholar 
    26.Mittelbach, G. G. & Schemske, D. W. Ecological and evolutionary perspectives on community assembly. Trends Ecol. Evol. 30, 241–247. https://doi.org/10.1016/j.tree.2015.02.008 (2015).Article 
    PubMed 

    Google Scholar 
    27.Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x (2009).Article 
    PubMed 

    Google Scholar 
    28.Pontarp, M. & Petchey, O. L. Ecological opportunity and predator–prey interactions: Linking eco-evolutionary processes and diversification in adaptive radiations. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2550 (2018).Article 

    Google Scholar 
    29.Seehausen, O. African cichlid fish: A model system in adaptive radiation research. Proc. R. Soc. B Biol. Sci. 273, 1987–1998. https://doi.org/10.1098/rspb.2006.3539 (2006).Article 

    Google Scholar 
    30.Schluter, D. The Ecology of Adaptive Radiation (Columbia University Press, 2000).
    Google Scholar 
    31.Nosil, P. Ecological Speciation (Oxford University Press, 2012).Book 

    Google Scholar 
    32.Christiansen, F. B. & Loeschcke, V. Evolution and intraspecific exploitative competition I. One-locus theory for small additive gene effects. Theor. Popul. Biol. 18, 297–313 (1980).MathSciNet 
    Article 

    Google Scholar 
    33.Brown, J. S. & Vincent, T. L. A theory for the evolutionary game. Theor. Popul. Biol. 31, 140–166 (1987).MathSciNet 
    Article 

    Google Scholar 
    34.Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264. https://doi.org/10.1038/Nature01274 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236. https://doi.org/10.1111/j.1461-0248.2006.00978.x (2006).Article 
    PubMed 

    Google Scholar 
    36.Leyequien, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741. https://doi.org/10.1007/s11284-006-0311-6 (2007).Article 

    Google Scholar 
    37.Yvon-Durocher, G. et al. Across ecosystem comparisons of size structure: Methods, approaches and prospects. Oikos 120, 550–563. https://doi.org/10.1111/j.1600-0706.2010.18863.x (2011).Article 

    Google Scholar 
    38.Rudolf, V. H. W. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems. J. Anim. Ecol. 81, 524–532. https://doi.org/10.1111/j.1365-2656.2011.01935.x (2012).Article 
    PubMed 

    Google Scholar 
    39.DeLong, J. P. & Vasseur, D. A. A dynamic explanation of size-density scaling in carnivores. Ecology 93, 470–476 (2012).Article 

    Google Scholar 
    40.DeLong, J. P. & Vasseur, D. A. Size-density scaling in protists and the links between consumer-resource interaction parameters. J. Anim. Ecol. 81, 1193–1201. https://doi.org/10.1111/j.1365-2656.2012.02013.x (2012).Article 
    PubMed 

    Google Scholar 
    41.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x (2007).Article 

    Google Scholar 
    42.Pontarp, M., Ripa, J. & Lundberg, P. On the origin of phylogenetic structure in competitive metacommunities. Evol. Ecol. Res. 14, 269–284 (2012).
    Google Scholar 
    43.Pontarp, M., Ripa, J. & Lundberg, P. The biogeography of adaptive radiations and the geographic overlap of sister species. Am. Nat. 186, 565–581 (2015).Article 

    Google Scholar 
    44.Barabás, G., Pigolotti, S., Gyllenberg, M., Dieckmann, U. & Meszéna, G. Continuous coexistence or discrete species? A new review of an old question. (2012).45.Brännström, A. et al. Modelling the ecology and evolution of communities: A review of past achievements, current efforts, and future promises. Evol. Ecol. Res. 14, 601–625 (2012).
    Google Scholar 
    46.Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).Article 

    Google Scholar 
    47.Vamosi, S. M., Heard, S. B., Vamosi, J. C. & Webb, C. O. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18, 572–592. https://doi.org/10.1111/j.1365-294X.2008.04001.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Sjödin, H., Ripa, J. & Lundberg, P. Principles of niche expansion. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2603 (2018).Article 

    Google Scholar 
    49.Ackermann, M. & Doebeli, M. Evolution of niche width and adaptive diversification. Evolution 58, 2599–2612 (2004).Article 

    Google Scholar 
    50.Urban, M. C. & De Meester, L. Community monopolization: Local adaptation enhances priority effects in an evolving metacommunity. Proc. R. Soc. B. Biol. Sci. 276, 4129–4138 (2009).Article 

    Google Scholar 
    51.Urban, M. C., De Meester, L., Vellend, M., Stoks, R. & Vanoverbeke, J. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol. Appl. 5, 154–167. https://doi.org/10.1111/j.1752-4571.2011.00208.x (2012).Article 
    PubMed 

    Google Scholar 
    52.Pontarp, M. & Wiens, J. J. The origin of species richness patterns along environmental gradients: Uniting explanations based on time, diversification rate and carrying capacity. J. Biogeogr. 44, 722–735. https://doi.org/10.1111/jbi.12896 (2017).Article 

    Google Scholar 
    53.Pontarp, M. & Petchey, O. L. Community trait overdispersion due to trophic interactions: Concerns for assembly process inference. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.1602 (2016).Article 

    Google Scholar 
    54.Pontarp, M. et al. The latitudinal diversity gradient: Novel understanding through mechanistic eco-evolutionary. Trends Ecol. Evol. 34, 211–223. https://doi.org/10.1016/j.tree.2018.11.009 (2019).Article 
    PubMed 

    Google Scholar 
    55.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford University Press, Inc, 2000).
    Google Scholar 
    56.Barabas, G., Michalska-Smith, M. J. & Allesina, S. The effect of intra- and interspecific competition on coexistence in multispecies communities. Am. Nat. 188, E1–E12. https://doi.org/10.1086/686901 (2016).Article 
    PubMed 

    Google Scholar 
    57.Heinz, S. K., Mazzucco, R. & Dieckmann, U. Speciation and the evolution of dispersal along environmental gradients. Evol. Ecol. 23, 53–70. https://doi.org/10.1007/s10682-008-9251-7 (2009).Article 

    Google Scholar 
    58.Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. How should we define fitness for general ecolgical scenarios. Trends Ecol. Evol. 7, 198–202. https://doi.org/10.1016/0169-5347(92)90073-k (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Doebeli, M. & Dieckmann, U. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156, S77–S101. https://doi.org/10.1086/303417 (2000).Article 
    PubMed 

    Google Scholar 
    60.Ito, H. C. & Dieckmann, U. A new mechanism for recurrent adaptive Radiations. Am. Nat. 170, E96–E111. https://doi.org/10.1086/521229 (2007).Article 
    PubMed 

    Google Scholar 
    61.Cressman, R. et al. Unlimited niche packing in a Lotka-Volterra competition game. Theor. Popul. Biol. 116, 1–17 (2017).Article 

    Google Scholar 
    62.Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100. https://doi.org/10.1093/bioinformatics/btn358 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Harmon-Threatt, A. N. & Ackerly, D. D. Filtering across spatial scales: Phylogeny, biogeography and community structure in bumble bees. PLoS ONE https://doi.org/10.1371/journal.pone.0060446 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Pybus, O. G. & Harvey, P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc. R. Soc. B Biol. Sci. 267, 2267–2272. https://doi.org/10.1098/rspb.2000.1278 (2000).CAS 
    Article 

    Google Scholar  More

  • in

    The Simrad EK60 echosounder dataset from the Malaspina circumnavigation

    Figure 1 presents the track of the eight-month cruise, and Table 1 provides the detail of the legs and dates. On a routine basis R/V Hesperides sailed at an average speed of 11 knots from around 3 pm to 4 am (local time). The vessel arrived on station at around 4 am daily to carry out sampling operations at a fixed point for about 11 hours.Fig. 1Cruise track and integrated backscatter at different stations (NASC, daytime 200 to 1000 m).Full size imageTable 1 Dates and starting points of the 7 legs of the Malaspina cruise.Full size tableAcoustic measurements were carried out continuously using a Simrad EK60 echosounder), operating at 38 and 120 kHz (7° beamwidth transducers) with a ping rate of 0.5 Hz. Unfortunately, the 120 kHz failed during the first leg of the cruise and only 38 kHz data were collected. Echosounder observations were recorded down to 1000 m depth. The echosounder files are in the proprietary Simrad raw format and can be read by various softwares (e.g., LSSS, Echoview, Sonar5, MATECHO, ESP3, echopype, pyEcholab). GPS locations and calibration constants are imbedded in each file.Additionally, daytime data integrated over 2 m vertical bins from 200 to 1000 m depth are provided as Nautical Area Scattering Coefficient (NASC). Each “voxel” is the average of all cleaned and validated data recorded over that depth range, in a time period starting 8 hours before the start of the station (defined as start of the CTD cast) and ending 8 hours after the start of the station, with only data recorded in the period between 1 hour after local sunrise and 1 hour prior to local sunset accepted (i.e., during local daytime hours, but removing crepuscular periods when vertical migration of biota is strong). The relatively long interval over which data were accepted around each station was chosen since the station sampling resulted in noisy acoustic data,, a long interval was therefore chosen to ensure valid data on all stations.Finally, summaries of per station daytime and nighttime acoustic data (omitting data recorded within 1 hour of sunrise and sunset) are provided. The data fields in this file are station date, latitude and longitude, and per day and night average NASC 200–1000 m, average NASC 0–1000, weighted mean depth (WMD) of NASC 200–1000 m, migration amplitude, NASC day-to-night ratio and migration ratio. More

  • in

    Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria

    We analyse weekly reported counts of suspected and confirmed human cases and deaths attributed to LF (as defined in Supplementary Table 1), between 1 January 2012 and 30 December 2019, from across the entire of Nigeria. The weekly counts were reported from 774 LGAs in 36 Federal states and the Federal Capital Territory, under Integrated Disease Surveillance and Response (IDSR) protocols, and collated by the NCDC. All suspected cases, confirmed cases and deaths from notifiable infectious diseases (including viral haemorrhagic fevers; VHFs) are reported weekly to the LGA Disease Surveillance and Notification Officer (DSNO) and State Epidemiologist (SE). IDSR routine data on priority diseases are collected from inpatient and outpatient registers in health facilities, and forwarded to each LGA’s DSNO using SMS or paper form. Subsequently, individual LGA DSNOs collate and forward the data to their respective SE, also by SMS and paper form, for weekly and monthly reporting respectively to NCDC. From mid-2017 onwards, data entry in 18 states has been conducted using a mobile phone-based electronic reporting system called mSERS, with the data entered using a customised Excel spreadsheet that is used to manually key into NCDC-compatible spreadsheets. Data from this surveillance regime (WERs) were collated by epidemiologists at NCDC throughout the period 2012 to March 2018 (Supplementary Fig. 1).Throughout the study period, within-country LF surveillance and response has been strengthened under NCDC coordination2,20,33. LGAs are now required to notify immediately any suspected case to the state-level, which in turn reports to NCDC within 24 h, and also sends a cumulative weekly report of all reported cases. A dedicated, multi-sectoral NCDC LF TWG was set up in 2016 with the responsibility of coordinating all LF preparedness and response activities across states. Further capacity building occurred in 2017 to 2019, with the opening of three additional LF diagnostic laboratories in Abuja (Federal Capital Territory), Abakaliki (Ebonyi state) and Owo (Ondo state) (to a total of five; Fig. 2) and the rollout of intensive country-wide training on surveillance, clinical case management and diagnosis. We note that, due to the rapid expansion in a test capacity, the definition of a suspected case in our data has subtly changed over the surveillance period: from 2012 to 2016, suspected cases include probable cases that were not lab-tested, whereas from 2017 to 2019, all suspected cases were tested and confirmed to be negative.In addition to the WERs data, since 2017 LF case reporting data has also been collated by the LF TWG and used to inform the weekly NCDC LF Situation Reports (SitRep data; https://ncdc.gov.ng/diseases/sitreps). This regime includes post hoc follow-ups to ensure more accurate case counts, so our analyses use WER-derived case data from 2012 to 2016, and SitRep-derived case data from 2017 to 2019 (see Fig. 1 for full time series). A visual comparison of the data from each separate time series, including the overlap period (2017 to March 2018) is provided in Supplementary Fig. 1, and all statistical models considered random intercepts for the different surveillance regimes. Where other studies of recent Nigeria LF incidence have been more spatially and temporally restricted34,35, the extended monitoring period and fine spatial granularity of these data provide the opportunity for a detailed empirical perspective on the local drivers of LF at a country-wide scale and their relationship to changes in reporting effort.Recent trends in LF surveillance in NigeriaWe visualised temporal and seasonal trends in suspected and confirmed LF cases within and between years, for both surveillance datasets. Weekly case counts were aggregated to country-level and visualised as both annual case accumulation curves, and aggregated weekly case totals (Fig. 1 and Supplementary Fig. 1). We also mapped annual counts of suspected and confirmed cases across Nigeria at the LGA-level to examine spatial changes in reporting over the surveillance period (Fig. 2). State and LGA shapefiles used for modelling and mapping were obtained from Humanitarian Data Exchange under a CC-BY-IGO license (https://data.humdata.org/dataset/nga-administrative-boundaries).Analyses of aggregated district data are sensitive to differences in scale and shape of aggregation (the modifiable areal unit problem; MAUP36), and LGA geographical areas in Nigeria are highly skewed and vary over >3 orders of magnitude (median 713 km2, mean 1175 km2, range 4–11,255 km2). We therefore also aggregated all LGAs across Nigeria into 130 composite districts with a more even distribution of geographical areas, using distance-based hierarchical clustering on LGA centroids (implemented using hclust in R), with the constraint that each new cluster must contain only LGAs from within the same state (to preserve potentially important state-level differences in surveillance regime). Weekly and annual suspected and confirmed LF case totals were then calculated for each aggregated district. We used these spatially aggregated districts to test for the effects of scale on spatial drivers of LF occurrence and incidence.Statistical analysisWe analysed the full case time series (Fig. 1) to characterise the spatiotemporal incidence and drivers of LF in Nigeria, while controlling for year-on-year increases and expansions of surveillance effort. We firstly modelled annual LF occurrence and incidence at a country-wide scale, to identify the spatial, climatic and socio-ecological correlates of disease risk across Nigeria. Secondly, we modelled seasonal and temporal trends in weekly LF incidence within hyperendemic areas in the north and south of Nigeria, to identify the seasonal climatic conditions associated with LF risk dynamics and evaluate the scope for forecasting. All data processing and modelling was conducted in R v.3.4.1 with the packages R-INLA v.20.03.1737, raster v.3.4.1338 and velox v0.2.039. Statistical modelling was conducted using hierarchical regression in a Bayesian inference framework (integrated nested Laplace approximation (INLA)), which provides fast, stable and accurate posterior approximation for complex, spatially and temporally-structured regression models37,40, and has been shown to outperform alternative methods for modelling environmental phenomena with evidence of spatially biased reporting41.Processing climatic and socio-ecological covariatesWe collated geospatial data on socio-ecological and climatic factors that are hypothesised to influence either M. natalensis distribution and population ecology (rainfall, temperature and vegetation patterns), frequency and mode of human–rodent contact (poverty and improved housing prevalence), both of the above (agricultural and urban land cover) or likelihood of LF reporting (travel time to nearest laboratory with LF diagnostic capacity and travel time to nearest hospital). For each LGA we extracted the mean value for each covariate across the LGA polygon. The full suite of covariates tested across all analyses, data sources and associated hypotheses are described in Supplementary Table 5.We collated climate data spanning the full monitoring period and up until the date of analysis (July 2011 to January 2021). We obtained daily precipitation rasters for Africa42 from the Climate Hazards Infrared Precipitation with Stations (CHIRPS) project; this dataset is based on combining sparse weather station data with satellite observations and interpolation techniques, and is designed to support hydrologic forecasts in areas with poor weather station coverage (such as tropical West Africa)42. A recent study ground-truthing against weather station data showed that CHIRPS provides greater overall accuracy than other gridded precipitation products in Nigeria43. Air temperature daily minimum and maximum rasters were obtained from NOAA and were also averaged to calculate daily mean temperature. EVI, a measure of vegetation quality, was obtained from processing 16-day composite layers from NASA (National Aeronautics and Space Administration) (excluding all grid cells with unreliable observations due to cloud cover and linearly interpolating between observations to give daily values; Supplementary Table 5).We derived several spatial bioclimatic variables to capture conditions across the full monitoring period (Jan 2012 to Dec 2019): mean precipitation of the driest annual month, mean precipitation of the wettest annual month, precipitation seasonality (coefficient of variation), annual mean air temperature, air temperature seasonality, annual mean EVI and EVI seasonality. We also calculated monthly total precipitation, 3-month SPI44, average daily mean (Tmean), minimum (Tmin) and maximum (Tmax) temperature and EVI variables at sequential time lags prior to reporting week for seasonal modelling (described below in Temporal drivers). SPI is a standardised measure of drought or wetness conditions relative to the historical average conditions for a given period of the year. SPI was calculated within a rolling 3-month window across the full 40-year historical CHIRPS rainfall time series (1981–2020) using the R package SPEI v.1.744.We accessed annual human population rasters at 100 m resolution from WorldPop. We accessed the proportion of the population living in poverty in 2010 ( More

  • in

    Exacerbated drought impacts on global ecosystems due to structural overshoot

    1.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
    Google Scholar 
    2.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).CAS 

    Google Scholar 
    3.Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).CAS 

    Google Scholar 
    4.Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    5.Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).CAS 

    Google Scholar 
    6.Schwalm, C. R. et al. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci. 5, 551–556 (2012).CAS 

    Google Scholar 
    7.Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    Google Scholar 
    10.Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).CAS 

    Google Scholar 
    11.Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS 

    Google Scholar 
    12.West, M. & Harrison, J. Bayesian Forecasting and Dynamic Models (Springer, 1997).13.Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).
    Google Scholar 
    14.Nemani, R. R. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Zhang, X., Friedl, M. A., Schaaf, C. B. & Strahler, A. H. Climate controls on vegetation phenological patterns in northern mid and high latitudes inferred from MODIS data. Glob. Change Biol. 10, 1133–1145 (2004).
    Google Scholar 
    16.Zeng, Z. et al. Impact of earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).
    Google Scholar 
    17.Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).CAS 

    Google Scholar 
    19.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    PubMed 

    Google Scholar 
    20.Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).
    Google Scholar 
    21.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
    Google Scholar 
    22.Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).
    Google Scholar 
    23.Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    24.Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
    Google Scholar 
    25.Sungmin, O. & Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 8, 170 (2021).
    Google Scholar 
    26.Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).
    Google Scholar 
    27.Otkin, J. A. et al. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc. 99, 911–919 (2018).
    Google Scholar 
    28.Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    29.Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).CAS 

    Google Scholar 
    30.Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).
    Google Scholar 
    31.Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).
    Google Scholar 
    33.Douville, H., Ribes, A., Decharme, B., Alkama, R. & Sheffield, J. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nat. Clim. Change 3, 59–62 (2013).
    Google Scholar 
    34.Asrar, G., Fuchs, M., Kanemasu, E. T. & Hatfield, J. L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J. 76, 300–306 (1984).
    Google Scholar 
    35.Chen, J. M. & Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 55, 153–162 (1996).
    Google Scholar 
    36.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
    Google Scholar 
    37.Becker, A. et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013).
    Google Scholar 
    38.Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).
    Google Scholar 
    39.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    40.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
    Google Scholar 
    41.Harrison, P. J. & Stevens, C. F. Bayesian forecasting. J. R. Stat. Soc. B 38, 205–247 (1976).
    Google Scholar 
    42.Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).
    Google Scholar 
    43.Humphrey, V., Gudmundsson, L. & Seneviratne, S. I. Assessing global water storage variability from grace: trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys. 37, 357–395 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    44.Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).CAS 

    Google Scholar  More

  • in

    Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions

    1.Leach JE, Tringe SG. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A Rev Biol Fertil Soils. 2015;51:403–21.CAS 
    Article 

    Google Scholar 
    3.Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;871:1473–89.Article 

    Google Scholar 
    4.Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Leach JE, Triplett LR, Argueso CT, Trivedi P. Communication in the phytobiome. Cell. 2017;169:587–96.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. PTRBAE. 2020;375:20190250.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D, Ventura M. Glycan utilization and cross-feeding activities by Bifidobacteria. Trends Microbiol. 2018;26:339–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol. 2020;28:732–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. The classification and evolution of bacterial cross-feeding. Front Ecol Evol. 2019;7:153.Article 

    Google Scholar 
    12.Santoyo G, del Orozco-Mosqueda MC, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol. 2012;22:855–72.Article 

    Google Scholar 
    13.Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Bacteria in agrobiology: plant growth responses. Springer: Berlin; 2011. 41–76.14.Xiong W, Guo S, Jousset A, Zhao Q, Wu H, Li R, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem. 2017;114:238–47.CAS 
    Article 

    Google Scholar 
    15.Qin Y, Shang Q, Zhang Y, Li P, Chai Y. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front Microbiol. 2017;8:2620.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res. 2019;19:29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, et al. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils. 2011;47:495–506.CAS 
    Article 

    Google Scholar 
    18.Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol. 2013;79:808–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, et al. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol plant. 2016;158:34–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Blake C, Nordgaard Christensen M, Kovács ÁT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant Microbe Interact. 2020;34:15–25.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Pollut Res. 2018;25:29910–20.CAS 
    Article 

    Google Scholar 
    22.Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cel Rep. 2019;29:1192–202.CAS 
    Article 

    Google Scholar 
    23.Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.CAS 
    Article 

    Google Scholar 
    24.Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Zhou C, Shi L, Ye B, Feng H, Zhang J, Zhang R, et al. pheS *, an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens. Appl Microbiol Biotechnol. 2017;101:217–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21:402–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lambertsen L, Sternberg C, Molin S. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol. 2004;6:726–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 2018;46:7542–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, et al. MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol. 2020;38:272–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015;8:1–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 
    CAS 

    Google Scholar 
    38.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ C(T) method. Methods. 2001;25:402–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Ling N, Raza W, Ma J, Huang Q, Shen Q. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol. 2011;47:374–9.CAS 
    Article 

    Google Scholar 
    41.Gordillo F, Chávez FP, Jerez CA. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol. 2007;60:322–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Dragoš A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28:1903–.e5.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 2008;163:173–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Lynne AM, Haarmann D, Louden BC. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. 2011;12:51–53.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170:265–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Ansari FA, Ahmad I. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep. 2019;9:1–12.
    Google Scholar 
    47.Santhanam R, Menezes RC, Grabe V, Li D, Baldwin IT, Groten K. A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease. Mol Ecol. 2019;28:1154–69.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA. 2015;112:E5013–E5120.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ren D, Madsen JS, Sørensen SJ, Burmølle M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 2015;9:81–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, et al. Biofilm formation as a response to ecological competition. PLoS Biol. 2015;13:1–23.
    Google Scholar 
    52.Gallegos-Monterrosa R, Mhatre E, Kovács ÁT. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. Microbiology. 2016;162:1922–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Shao J, Xu Z, Zhang N, Shen Q, Zhang R. Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils. 2015;51:321–30.CAS 
    Article 

    Google Scholar 
    54.Stopnisek N, Shade A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 2021;15:2708–22.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res. 2014;9:1265–77.
    Google Scholar 
    56.Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, et al. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil. 2010;328:483–93.CAS 
    Article 

    Google Scholar 
    57.Gómez Expósito R, Postma J, Raaijmakers JM, de Bruijn I. Diversity and activity of Lysobacter species from disease suppressive soils. Front Microbiol. 2015;6:1243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14:1915–28.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Peterson SB, Dunn AK, Klimowicz AK, Handelsman J. Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl Environ Microbiol. 2006;72:5421–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome. 2020;8:137.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Kumar A, Singh J. Biofilms forming microbes: diversity and potential application in plant-microbe interaction and plant growth. Springer: Cham; 2020. 173−97.62.Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, et al. Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol. 2017;121:102–17.Article 

    Google Scholar 
    63.Madsen JS, Røder HL, Russel J, Sørensen H, Burmølle M, Sørensen SJ. Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environ Microbiol. 2016;18:2565–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72:3916–23.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014;8:894–907.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Yannarell SM, Grandchamp GM, Chen SY, Daniels KE, Shank EA. A dual-species biofilm with emergent mechanical and protective properties. J Bacteriol. 2019;201:e00670–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biol. 2020;30:1–11.Article 
    CAS 

    Google Scholar 
    68.Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation, and competition in biofilms. Nat Rev Microbiol. 2016;14:589–600.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Estrela S, Sanchez-Gorostiaga A, Vila JCC, Sanchez A. Nutrient dominance governs the assembly of microbial communities in mixed nutrient environments. eLife. 2021;10:e65948.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun. 2019;10:1919.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Yan Q, Lopes LD, Shaffer BT, Kidarsa TA, Vining O, Philmus B, et al. Secondary metabolism and interspecific competition affect accumulation of spontaneous mutants in the GacS-GacA regulatory system in Pseudomonas protegens. mBio. 2018;9:e01845–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Mee MT, Collins JJ, Church GM, Wang HH. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA. 2014;111:E2149–E2156.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Evans R, Beckerman AP, Wright RCT, McQueen-Mason S, Bruce NC, Brockhurst MA. Eco-evolutionary dynamics set the tempo and trajectory of metabolic evolution in multispecies communities. Curr Biol. 2020;30:1–5.Article 
    CAS 

    Google Scholar 
    77.Gamez RM, Ramirez S, Montes M, Cardinale M. Complementary dynamics of banana root colonization by the plant growth-promoting rhizobacteria Bacillus amyloliquefaciens Bs006 and Pseudomonas palleroniana Ps006 at spatial and temporal scales. Micro Ecol. 2020;80:656–68.CAS 
    Article 

    Google Scholar 
    78.Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21:402–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant Microbe interact. 2018;31:995–1005.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Xu Z, Xie J, Zhang H, Wang D, Shen Q, Zhang R. Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into Bacillus velezensis strain SQR9XYQ. Phytopathology. 2019;109:36–43.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Spatial frameworks for robust estimation of yield gaps

    Yield definitionsYield potential (Yp; megagrams per harvested hectare) is defined as the yield of a cultivar in an environment to which it is adapted, when grown with sufficient water and nutrients in the absence of abiotic and biotic stress40. In irrigated fields, Yp is determined by solar radiation, temperature, atmospheric CO2 concentration and management practices that influence crop cycle duration and light interception, such as sowing date, cultivar maturity and plant density. In rainfed systems where water supply from stored soil water at sowing and in-season precipitation is not enough to meet crop water requirements, water-limited Yp (Yw) is determined by water supply amount and its distribution during the growing season, as well as by soil properties influencing the crop–water balance, such as the rootable soil depth, texture and terrain slope. Actual yield is defined as the average grain yield (megagrams per harvested hectare) obtained by farmers for a given crop with a given water regime. The difference between Yp (or Yw) and farmer actual yield is known as the yield gap11. In the case of irrigated crops, Yp is the proper benchmark to estimate yield gaps, while Yw is the meaningful benchmark for rainfed crops. With good, cost-effective crop management, reaching 70–80% of Yp (or Yw) is a reasonable target for farmers with good access to markets, inputs and extension services, which is usually referred to as ‘attainable yield’41,42. Beyond this yield level, the small return to extra input requirement and labour does not justify the associated financial and environmental costs and level of sophistication in crop and soil management practices.Sources of Yp data derived from top-down and bottom-up approachesWe retrieved data generated from two initiatives following a top-down approach: (1) the GAEZ (http://www.fao.org/nr/gaez/en/; refs. 18,19) and (2) the AgMIP (https://agmip.org/data-and-tools-updated/; refs. 20,21). As the bottom-up approach, we used results from the GYGA (www.yieldgap.org; refs. 11,31,43). The main features of these databases are summarized elsewhere (Supplementary Table 1 and Supplementary Section 1). In the process of selecting the specific dataset, we explicitly attempted to reduce biases in the comparisons to the extent this was possible. For example, in all cases, we used simulations that meet the yield definitions provided in the previous section. We also tried to be consistent in terms of the time period for which Yp (or Yw) was simulated; however, this was not always possible, because while GAEZ and AgMIP use weather datasets that cover the time period between 1961 and 1990 and between 1980 and 2010, respectively, GYGA uses more recent weather data (Supplementary Table 1). Similarly, comparisons between databases were limited to those regions for which there were estimates of Yp (or Yw) for each of the top-down and bottom-up approaches. More detailed information about the three approaches can be found in Supplementary Section 1. We acknowledge that, when assessing different approaches, it is conceivable that there would be an inherent bias depending on who performs it and his/her preference. Although the authors of this current study have all contributed to the development of GYGA, we have maintained neutrality when conducting the analysis and made inferences solely based on the results shown here, avoiding any inherent bias. Additionally, methods and data sources are fully documented and publicly accessible for other researchers who may be interested in replicating our comparison.Comparison of bottom-up and top-down approaches at different spatial levelsComparison of the three databases needs to account for the different spatial resolution at which the data are reported (grid in GAEZ and AgMIP versus buffer in GYGA). In the present study, we compared Yp (or Yw) among the three databases at three spatial levels: local (also referred to as buffer), climate zone (CZ) and country (or subcontinent). An example of the three spatial levels evaluated in this study as well as the Yw estimated by each of the three databases for rainfed maize is shown in Extended Data Fig. 4. We note that buffer is the lowest spatial level at which Yp and Yw are reported in GYGA. For a country such as the United States, where maize production is concentrated on flat geographic areas, the average size of buffers and CZs selected by GYGA is 17,000 and 60,000 km2, respectively; the size is smaller for countries with greater terrain and climate heterogeneity, such as Ethiopia, where the average size of buffers and CZs selected for maize by GYGA is a respective 4,000 and 21,000 km2, or for smaller countries, such as in Europe.The GYGA already provides estimates of Yp (or Yw) and yield gaps at those three spatial levels. Following a bottom-up approach, GYGA estimates the Yp (or Yw) at the buffer level based on the Yp (or Yw) simulated for each crop cycle and soil type (within a given buffer) and their associated harvested area (within that same buffer) using a weighted average. Subsequently, Yp (or Yw) at buffer levels are upscaled to CZ, national or subcontinental levels using a weighted average based on harvested area retrieved from the Spatial Production Allocation Model (SPAM) 201044. Details on the GYGA upscaling method can be found in van Bussel et al.13 In the case of top-down approaches, for comparison purposes, it was necessary to aggregate Yp (or Yw) reported for each individual grid into buffers, CZs and countries in order to make them comparable to those reported by GYGA. To do so, Yp (or Yw) from GAEZ and AgMIP was scaled up to buffer, climate zone and country (or subnational levels) considering the crop-specific area within each pixel, as reported by SPAM 201044. For example, for a given buffer, the average Yp (or Yw) was estimated using a weighted average, in which the value of Yp (or Yw) reported for each of the GAEZ or AgMIP grids located within the GYGA buffer was ‘weighted’ according to the SPAM crop-specific area within that grid. The same approach was used to estimate average Yp (or Yw) at the CZ and country (or subcontinental) levels for GAEZ and AgMIP.For a given buffer, CZ or country (or subcontinent), the yield gap was calculated as the difference between Yp (or Yw) and the average farmer yield (actual yield, Ya). The Yp and Yw were taken as the appropriate benchmarks to estimate yield gaps for irrigated and rainfed crops, respectively. To avoid biases due to the source of average actual yield in the estimation of yield gap, we used the average actual yield dataset from GYGA, because it provides estimates of average actual yield disaggregated by water regime for the most recent time period. Actual yield data from GYGA were retrieved from official statistics available at subnational administrative units such as municipalities, counties, departments and subdistrict. The exact number of years of data to calculate average yield is determined by GYGA on a case-by-case basis, following the principle of including as many recent years of data as possible to account for weather variability while avoiding the bias due to a technological time trend and long-term climate change31. Using the GYGA database on average actual yield for estimation of yield gaps does not bias the results from our study, as GYGA favours the use of official sources of average yields at the finer available spatial resolution, which is the same source of actual yield data used by other databases such as FAO and SPAM22,44. In this study, we opted not to use actual yield data from GAEZ, because they derived from FAOSTAT statistics of the years 2000 and 2005, and thus, they could lead to an overestimation of the yield gap in those regions where actual yields have increased over the past two decades19. Finally, extra production potential was calculated based on the yield gap estimated by each approach and the SPAM crop-specific harvested area reported for each buffer, CZ and country (or subcontinent). The top-down and bottom-up approaches were compared in a total of 67 countries, which together account for 74%, 67% and 43% of global maize, rice and wheat harvested areas, respectively (Extended Data Fig. 2). Overall, our comparison included a total of 1,362 buffers located within 870 CZs, with 422 buffers (within 249 CZs) for rainfed maize, 160 buffers (116 CZs) for irrigated maize, 93 buffers (66 CZs) for rainfed rice, 209 buffers (114 CZs) for irrigated rice, 400 buffers (274 CZs) for rainfed wheat and 78 buffers (49 CZs) for irrigated wheat. In all cases, Yp (or Yw), yield gaps and extra production potential were expressed at standard commercial moisture content (that is, 15.5% for maize, 14% for rice and 13.5% for wheat).We assessed the agreement in Yp (or Yw), yield gap, and extra production potential between GYGA and the two databases that follow a top-down approach (GAEZ and AgMIP) separately for each of the spatial levels (buffer, CZ, country or subcontinent) by calculating root-mean-square error (RMSE) and absolute mean error (ME):$${mathrm{RMSE}} = sqrt {frac{{{sum} {(Y_{{mathrm{TD}}} – Y_{{mathrm{BU}}})^2} }}{n}}$$
    (1)
    $${mathrm{ME}} = frac{{{sum} {left( {Y_{{mathrm{TD}}} – Y_{{mathrm{BU}}}} right)} }}{n}$$
    (2)
    where YTD and YBU are the estimated Yp (or Yw), yield gap, or extra production potential for database i following a top-down approach and for GYGA, respectively, and n is the number of paired YTD versus YBU comparisons at a given spatial scale for a given crop in a given country. Separate comparisons were performed for irrigated and rainfed crops.Impact of Yp estimates on food self-sufficiency analysisWe assessed the impact of discrepancies in Yp (or Yw) between top-down and bottom-up approaches on the SSR, which is an important indicator for food security. To do so, we focused on cereal crops in sub-Saharan Africa, and we calculated the SSR for the five main cereal crops in this region (that is, maize, millet, rice, sorghum and wheat) following van Ittersum et al.23. Millet and sorghum were included in the analysis of SSR in sub-Saharan Africa, because together they account for ca. 25% of the total cereal production and ca. 40% of the total cereal harvested area in this region (average over the 2015–2019 period)22. Briefly, we computed current national demand (assumed equal to the 2015 consumption) and the 2015 production of the five cereals to estimate the baseline SSR (that is, in 2015) in ten countries for which Yw (or Yp) data were available in GYGA. Current total cereal demand per country were calculated as the product of current population size derived from United Nations population prospects and cereal demand per capita based on the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)35,45. The annual per-capita demand for the five cereals was expressed in maize yield equivalents by using the crop-specific grain caloric contents, with caloric contents based on FAO food balances46. Current domestic grain production per cereal crop per country (approximately 2015) was calculated as mean actual crop yield (2003–2012) as estimated in GYGA times the 2015 harvested area per crop by FAO22. Total future annual cereal demand per capita (2050), for each of the five cereals and each country, was retrieved from IMPACT modelling results35 using the shared socioeconomic pathway (SSP2, no climate change) from the Intergovernmental Panel on Climate Change fifth assessment47. Total cereal demand per country in 2050 was calculated based on projected 2050 population (medium-fertility variant of United Nations population prospects; https://population.un.org/wpp/) multiplied by the per-capita cereal demand in 2050 from the SSP2 scenario. In our study, we assumed an attainable yield of 80% of Yw for rainfed crops, which is consistent with the original approach followed by van Ittersum et al.23, but, in our study, we also used 80% of Yp for irrigated crops as an estimate of the attainable yield, instead of 85% as in van Ittersum et al.23, to be slightly more conservative. Because the goal was to understand the level of SSR on existing cropland, we assumed no expansion of rainfed or irrigated cropland and no change in net planted area for each of the cereal crops. Our calculations for sub-Saharan Africa may be too pessimistic if genetic progress to increase Yp is achieved. Historically, genetic progress in Yp has contributed to progress in farm yields, although the magnitude of Yp increase is debatable. Progress in elevating Yp of the major cereals would imply, however, that even larger yield gaps need to be overcome than the already large gaps reported herein. Hence, we did not account for changes in genetic Yp in our calculation of SSR by 2050, also because climate change is likely to have a negative effect on Yp and Yw in sub-Saharan Africa.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More