Living in mixed species groups promotes predator learning in degraded habitats
1.Turner, W. R. et al. Global conservation of biodiversity and ecosystem services. Bioscience 57, 868–873. https://doi.org/10.1641/B571009 (2007).Article
Google Scholar
2.O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. https://doi.org/10.1016/j.ecoinf.2019.101033 (2020).Article
Google Scholar
3.Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evolut. 2, 775–781. https://doi.org/10.1038/s41559-018-0504-8 (2018).Article
Google Scholar
4.Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS. Biol. 11, 11. https://doi.org/10.1371/journal.pbio.1001569 (2013).CAS
Article
Google Scholar
5.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642. https://doi.org/10.1016/j.tree.2010.07.011 (2010).Article
PubMed
Google Scholar
6.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).ADS
CAS
Article
PubMed
Google Scholar
7.Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).ADS
Article
PubMed
Google Scholar
8.Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).Article
Google Scholar
9.Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).ADS
Article
Google Scholar
10.Chivers, D. P., McCormick, M. I., Allan, B. J. & Ferrari, M. C. O. Risk assessment and predator learning in a changing world: Understanding the impacts of coral reef degradation. Sci. Rep. 6, 32542 (2016).ADS
CAS
Article
PubMed
Google Scholar
11.Downie, A. T. et al. Exposure to degraded coral habitat depresses oxygen uptake rate during exercise of a juvenile reef fish. Coral Reefs https://doi.org/10.1007/s00338-021-02113-x (2021).Article
Google Scholar
12.Ferrari, M. C. O., McCormick, M. I., Allan, B. J. & Chivers, D. P. Not equal in the face of habitat change: Closely related fishes differ in their ability to use predation-related information in degraded coral. Proc. R. Soc. B 284, 20162758 (2017).Article
PubMed
Google Scholar
13.McCormick, M. I., Barry, R. P. & Allan, B. J. M. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci. Rep. 7, 12. https://doi.org/10.1038/s41598-017-17197-1 (2017).CAS
Article
Google Scholar
14.Brown, G. E. & Chivers, D. P. in Fish cognition and behaviour (eds C. Brown, K. Laland, & J. Krause) 49–69 (Blackwell Scientific Publisher, 2006).15.Meuthen, D., Baldauf, S. A., Bakker, T. C. M. & Thunken, T. Neglected patterns of variation in phenotypic plasticity: Age- and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490. https://doi.org/10.1086/696264 (2018).Article
Google Scholar
16.Lonnstedt, O. M., McCormick, M. I., Meekan, M. G., Ferrari, M. C. O. & Chivers, D. P. Learn and live: Predator experience and feeding history determines prey behaviour and survival. Proc. R. Soc. B-Biol. Sci. 279, 2091–2098. https://doi.org/10.1098/rspb.2011.2516 (2012).Article
Google Scholar
17.Ferrari, M. C. O. et al. School is out on noisy reefs: The effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proc. R. Soc. B-Biol. Sci. 285, 8. https://doi.org/10.1098/rspb.2018.0033 (2018).Article
Google Scholar
18.Chivers, D. P., McCormick, M. I., Mitchell, M. D., Ramasamy, R. A. & Ferrari, M. C. O. Background level of risk determines how prey categorize predators and non-predators. Proc. R. Soc. B 281, 20140355 (2014).Article
PubMed
Google Scholar
19.Crane, A. L. & Ferrari, M. C. O. in Social learning theory: Phylogenetic considerations across animal, plant, and microbial taxa (ed K. B. Clark) 53–82 (Nova Science Publishers, 2013).20.Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 88, 698–724 (2010).Article
Google Scholar
21.Mirza, R. S. & Chivers, D. P. Are chemical alarm cues conserved within salmonid fishes?. J. Chem. Ecol. 27, 1641–1655 (2001).CAS
Article
Google Scholar
22.Brown, G. E., Adrian, J. C., Naderi, N. T., Harvey, M. C. & Kelly, J. M. Nitrogen oxides elicit antipredator responses in juvenile channel catfish, but not in convict cichlids or rainbow trout: Conservation of the ostariophysan alarm pheromone. J. Chem. Ecol. 29, 1781–1796 (2003).CAS
Article
Google Scholar
23.Pollock, M. S., Chivers, D. P., Mirza, R. S. & Wisenden, B. D. Fathead minnows, Pimephales promelas, learn to recognize chemical alarm cues of introduced brook stickleback, Culaea inconstans. Environ. Biol. Fishes 66, 313–319 (2003).Article
Google Scholar
24.Chivers, D. P., Brown, G. E. & Smith, R. J. F. Acquired recognition of chemical stimuli from pike, Esox lucius, by brook sticklebacks, Culaea inconstans (Osteichthyes, Gasterosteidae). Ethology 99, 234–242 (1995).Article
Google Scholar
25.Mitchell, M. D., Cowman, P. F. & McCormick, M. I. Chemical alarm cues are conserved within the coral reef fish family Pomacentridae. Plos One 7, e47428 (2012).ADS
CAS
Article
PubMed
Google Scholar
26.Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).ADS
Article
Google Scholar
27.Chivers, D. et al. Coral degradation alters predator odour signatures and influences prey learning and survival. Proc. R. Soc. B 286, 20190562 (2019).CAS
Article
PubMed
Google Scholar
28.Ferrari, M. C. O., McCormick, M. I., Meekan, M. G. & Chivers, D. P. Background level of risk and the survival of predator-naive prey: Can neophobia compensate for predator naivety in juvenile coral reef fishes?. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142197 (2015).
Google Scholar
29.Stewart, B. D. & Beukers, J. S. Baited technique improves censuses of cryptic fish in complex habitats. Mar. Ecol. Prog. Ser. 197, 259–272 (2000).ADS
Article
Google Scholar
30.Hoey, A. S. & McCormick, M. I. in Proceedings of the 10th international coral reef symposium Vol. 1. 420–424 (2006).31.McCormick, M. I., Chivers, D. P., Allan, B. J. & Ferrari, M. C. O. Habitat degradation disrupts neophobia in juvenile coral reef fish. Glob. Change Biol. 23, 719–727 (2017).ADS
Article
Google Scholar
32.McCormick, M. I., Moore, J. A. Y. & Munday, P. L. Influence of habitat degradation on fish replenishment. Coral Reefs 29, 537–546. https://doi.org/10.1007/s00338-010-0620-7 (2010).ADS
Article
Google Scholar
33.McCormick, M. I. Behaviourally mediated phenotypic selection in a disturbed coral reef environment. Plos One https://doi.org/10.1371/journal.pone.0007096 (2009).Article
PubMed Central
PubMed
Google Scholar
34.White, J. R., Meekan, M. G. & McCormick, M. I. Individual consistency in the behaviors of newly-settled reef fish. PeerJ 3, e961 (2015).Article
PubMed
Google Scholar
35.McCormick, M. I. & Weaver, C. J. It pays to be pushy: Intracohort interference competition between two reef fishes. Plos One 7, e42590 (2012).ADS
CAS
Article
PubMed
Google Scholar
36.Wolf, N. G. Odd fish abandon mixed-species groups when threatened. Behav. Ecol. Sociobiol. 17, 47–52 (1985).Article
Google Scholar
37.Usio, N., Konishi, M. & Nakano, S. Species displacement between an introduced and a ‘vulnerable’ crayfish: The role of aggressive interactions and shelter competition. Biol. Invasions 3, 179–185 (2001).Article
Google Scholar
38.Dargent, F., Torres-Dowdall, J., Scott, M. E., Ramnarine, I. & Fussmann, G. F. Can mixed-species groups reduce individual parasite load? A field test with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta). PloS One 8, e56789 (2013).ADS
CAS
Article
PubMed
Google Scholar
39.Uetz, G. W. & Hieber, C. S. Group size and predation risk in colonial web-building spiders: Analysis of attack abatement mechanisms. Behav. Ecol. 5, 326–333 (1994).Article
Google Scholar
40.McCormick, M. I., Barry, R. P. & Allan, B. J. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci. Rep. 7, 16937 (2017).ADS
Article
PubMed
Google Scholar
41.Lecchini, D., Planes, S. & Galzin, R. Experimental assessment of sensory modalities of coral-reef fish larvae in the recognition of their settlement habitat. Behav. Ecol. Sociobiol. 58, 18–26. https://doi.org/10.1007/s00265-004-0905-3 (2005).Article
Google Scholar
42.Lecchini, D., Planes, S. & Galzin, R. The influence of habitat characteristics and conspecifics on attraction and survival of coral reef fish juveniles. J. Exp. Mar. Biol. Ecol. 341, 85–90. https://doi.org/10.1016/j.jembe.2006.10.006 (2007).Article
Google Scholar
43.Lecchini, D., Waqalevu, V. P., Parmentier, E., Radford, C. A. & Banaigs, B. Fish larvae prefer coral over algal water cues: Implications of coral reef degradation. Mar. Ecol. Prog. Ser. 475, 303–307. https://doi.org/10.3354/meps10094 (2013).ADS
Article
Google Scholar
44.O’Connor, J. J. et al. Sediment pollution impacts sensory ability and performance of settling coral-reef fish. Oecologia 180, 11–21. https://doi.org/10.1007/s00442-015-3367-6 (2016).ADS
Article
Google Scholar
45.Chivers, D. P. & Smith, R. J. F. Chemical alarm signalling in aquatic predator–prey systems: A review and prospectus. Ecoscience 5, 338–352 (1998).Article
Google Scholar
46.Wisenden, B. D. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 1205–1208 (2000).CAS
Article
Google Scholar
47.Brown, G. E., Adrian, J. C., Smyth, E., Leet, H. & Brennan, S. Ostariophysan alarm pheromones: Laboratory and field tests of the functional significance of nitrogen oxides. J. Chem. Ecol. 26, 139–154 (2000).CAS
Article
Google Scholar
48.Bertucci, F. et al. Decreased retention of olfactory predator recognition in juvenile surgeon fish exposed to pesticide. Chemosphere 208, 469–475 (2018).ADS
CAS
Article
PubMed
Google Scholar
49.Mitchell, M. D., McCormick, M. I., Ferrari, M. C. O. & Chivers, D. P. Coral reef fishes rapidly learn to identify multiple unknown predators upon recruitment to the reefs. Plos One 6, e15764 (2011).ADS
CAS
Article
PubMed
Google Scholar
50.Palacios, M., Malerba, M. & McCormick, M. Multiple predator effects on juvenile prey survival. Oecologia 188, 417–427 (2018).ADS
CAS
Article
Google Scholar
51.Auster, P. J., Cortés, J., Alvarado, J. J. & Beita-Jiménez, A. Coordinated hunting behaviors of mixed-species groups of piscivores and associated species at Isla del Coco National Park (Eastern Tropical Pacific). Neotrop. Ichthyol. 17, e180165 (2019).Article
Google Scholar
52.Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).ADS
CAS
Article
Google Scholar
53.Cheng, L. et al. 2018 Continues record global ocean warming. Adv. Atmos. Sci. 36, 249–252. https://doi.org/10.1007/s00376-019-8276-x (2019).Article
Google Scholar
54.Lawton, J. H. & Brown, V. K. Redundancy in ecosystems Vol. 99 (Springer, 1993).
Google Scholar More