More stories

  • in

    Analysis of body condition indices reveals different ecotypes of the Antillean manatee

    1.Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern resident killer whales (Orcinus orca). PLoS ONE 12, e0179824. https://doi.org/10.1371/journal.pone.0179824 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Hoare, J. et al. Conservation implications of a long-term decline in body condition of the Brothers Island tuatara (Sphenodon guntheri). Anim. Conserv. 9, 456–462 (2006).Article 

    Google Scholar 
    3.Castrillon, J. & Bengtson Nash, S. Evaluating cetacean body condition; a review of traditional approaches and new developments. Ecol. Evol. (2020).4.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).Article 

    Google Scholar 
    5.Labrada-Martagón, V., Méndez-Rodríguez, L. C., Gardner, S. C., Cruz-Escalona, V. H. & Zenteno-Savín, T. Health indices of the green turtle (Chelonia mydas) along the Pacific coast of Baja California Sur, Mexico. II. Body condition index. Chelonian Conserv. Biol. 9, 173–183 (2010).6.Weber, L., Higgins, P., Carlson, R. & Janz, D. Development and validation of methods for measuring multiple biochemical indices of condition in juvenile fishes. J. Fish Biol. 63, 637–658 (2003).CAS 
    Article 

    Google Scholar 
    7.Fokidis, H. B., Hurley, L., Rogowski, C., Sweazea, K. & Deviche, P. Effects of captivity and body condition on plasma corticosterone, locomotor behavior, and plasma metabolites in curve-billed thrashers. Physiol. Biochem. Zool. 84, 595–606 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Labocha, M. K. & Hayes, J. P. Morphometric indices of body condition in birds: a review. J. Ornithol. 153, 1–22. https://doi.org/10.1007/s10336-011-0706-1 (2012).Article 

    Google Scholar 
    9.Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2014).Article 

    Google Scholar 
    10.Bonnet, X. & Naulleau, G. Estimation of body reserves in living snakes using a Body Condition Index (BCI). Scientia Herpetologica 3, 237 (1995).
    Google Scholar 
    11.Lubbe, A., Underhill, L., Waller, L. & Veen, J. A condition index for African penguin Spheniscus demersus chicks. Afr. J. Mar. Sci. 36, 143–154 (2014).Article 

    Google Scholar 
    12.Santoro, M. et al. Parasitic infection by larval helminths in Antarctic fishes: pathological changes and impact on the host body condition index. Dis. Aquat. Org. 105, 139–148 (2013).CAS 
    Article 

    Google Scholar 
    13.Rossi, S. et al. Monitoring green sea turtles in Brazilian feeding areas: relating body condition index to fibropapillomatosis prevalence. J. Mar. Biol. Assoc. U.K. 99, 1879–1887 (2019).14.Mubiana, V. K., Vercauteren, K. & Blust, R. The influence of body size, condition index and tidal exposure on the variability in metal bioaccumulation in Mytilus edulis. Environ. Pollut. 144, 272–279 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Lippold, A. et al. Temporal trends of persistent organic pollutants in Barents Sea Polar bears (Ursus maritimus) in relation to changes in feeding habits and body condition. Environ. Sci. Technol. 53, 984–995 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    16.Delciellos, A. C. et al. Habitat fragmentation affects individual condition: evidence from small mammals of the Brazilian Atlantic Forest. J. Mammal. 99, 936–945 (2018).Article 

    Google Scholar 
    17.Burgess, E. A., Brown, J. L. & Lanyon, J. M. Sex, scarring, and stress: understanding seasonal costs in a cryptic marine mammal. Conserv. Physiol. 1, https://doi.org/10.1093/conphys/cot014 (2013).18.McKinney, M. A. et al. Validation of adipose lipid content as a body condition index for polar bears. Ecol. Evol. 4, 516–527 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Noren, S. R. et al. Identifying a reliable blubber measurement site to assess body condition in a marine mammal with topographically variable blubber, the Pacific walrus. Mar. Mamm. Sci. 31, 658–676 (2015).Article 

    Google Scholar 
    20.Arnould, J. P. Indices of body condition and body composition in female Antarctic fur seals (Arctocephalus gazella). Mar. Mamm. Sci. 11, 301–313 (1995).Article 

    Google Scholar 
    21.Pitcher, K., Calkins, D. & Pendleton, G. Steller sea lion body condition indices. Mar. Mamm. Sci. 16, 427–436 (2000).Article 

    Google Scholar 
    22.Harshaw, L. T., Larkin, I. V., Bonde, R. K., Deutsch, C. J. & Hill, R. C. Morphometric body condition indices of wild Florida manatees (Trichechus manatus latirostris). Aquat. Mamm. 42, 428 (2016).Article 

    Google Scholar 
    23.Castelblanco-Martínez, D. N., Nourisson, C., Quintana-Rizzo, E., Padilla-Saldivar, J. A. & Schmitter-Soto, J. J. Potential effects of human pressure and habitat fragmentation on population viability of the Antillean manatee Trichechus manatus manatus: a predictive model. Endanger. Spec. Res. 18, 129–145. https://doi.org/10.3354/esr00439 (2012).Article 

    Google Scholar 
    24.IUCN. The IUCN Red List of Threatened Species. Version 2020–2. https://www.iucnredlist.org. Downloaded on 09 Dec 2020. (2020).25.Quintana-Rizzo, E. & Reynolds III, J. E. Regional management plan for the West Indian manatee. 178 (United Nations Environment Programme. United Nations Environment Programme. CEP Technical Report, Kingston, Jamaica, 2008).26.Morrison, M. L. The habitat sampling and analysis paradigm has limited value in animal conservation: a prequel. J. Wildl. Manag. 76, 438–450 (2012).Article 

    Google Scholar 
    27.Wong, A. W. et al. Monitoring oral temperature, heart rate, and respiration rate of West Indian manatees (Trichechus manatus) during capture and handling in the field. Aquat. Mamm. 38, 1–16. https://doi.org/10.1578/AM.38.1.2012.1 (2012).Article 

    Google Scholar 
    28.Castelblanco-Martínez, D. N., Morales-Vela, B. & Padilla-Saldívar, J. A. Using craniometrical predictors to infer body size of Antillean manatees. Mammalia 78, 109–115 (2014).Article 

    Google Scholar 
    29.QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. (2021).30.Bonde, R. K. et al. Biomedical health assessments of the Florida manatee in Crystal River – providing opportunities for training during the capture, handling, and processing of this endangered aquatic mammal. J. Mar. Anim. Ecol. 5 (2012).31.Mignucci-Giannoni, A. A. et al. Manatee mortality in Puerto Rico. Environ. Manage. 25, 189–198 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Susanti, Y., Pratiwi, H., Sulistijowati H., S., & Liana, T. M estimation, S estimation, and MM estimation in robust regression. Int. J. Pure Appl. Math. 91, 349–360 (2014).33.R Core Team. R: A language and environment for statistical computing: version 3.6.0. URL: https://www.R-project.org (2019).34.Maechler, M. et al. robustbase: Basic robust statistics. R package version 0.4–3, http://CRAN.R-project.org/package=robustbase (2021).35.Koller, M. & Stahel, W. A. Nonsingular subsampling for regression S estimators with categorical predictors. Comput. Stat. 32, 631–646 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    36.Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer International Publishing. Cham, 2016).MATH 

    Google Scholar 
    37.Converse, L. J., Fernandes, P. J., Macwilliams, P. S. & Bossart, G. D. Hematology, serum chemistry, and morphometric reference values for Antillean Manatees (Trichechus manatus manatus). J. Zoo Wildl. Med. 25, 423–431 (1994).
    Google Scholar 
    38.O’Shea, T. J. & Reep, R. L. Encephalization quotients and life-history traits in the Sirenia. J. Mammal. 71, 534–543 (1990).Article 

    Google Scholar 
    39.Chirachevin, P. The relationship between cold stress syndrome mortality and body shape in Florida manatees.  Undergraduate thesis, Andrews University (2017). 
    Google Scholar 
    40.Johnson, J. Is natural selection shaping Florida manatees? An investigation into the body shapes between the subspecies of the West Indian manatee. Undergraduate thesis, Andrews University, (2019).41.Torres-Romero, E. J., Morales-Castilla, I. & Olalla-Tárraga, M. Á. Bergmann’s rule in the oceans? Temperature strongly correlates with global interspecific patterns of body size in marine mammals. Global Ecol. Biogeogr. 25, 1206–1215 (2016).Article 

    Google Scholar 
    42.Alvarez-Alemán, A., Beck, C. A. & Powell, J. A. First report of a Florida manatee (Trichechus manatus latirostris) in Cuba. Aquat. Mamm. 36, 148–153. https://doi.org/10.1578/AM.36.2.2010.148 (2010).Article 

    Google Scholar 
    43.Alvarez-Alemán, A., Austin, J. D., Jacoby, C. A. & Frazer, T. K. Cuban connection: regional role for Florida’s manatees. Front. Mar. Sci. 5, 294 (2018).Article 

    Google Scholar 
    44.Rood, K., Teague, A., Barton, S., Alvarez-Alemán, A. & Hieb, E. First documentation of return movement from Cuba to the continental United States by a Florida manatee. Sirenews 71, 24–25 (2020).
    Google Scholar 
    45.Konishi, K. Characteristics of blubber distribution and body condition indicators for Antarctic minke whales (Balaenoptera bonaerensis). Mamm. Study 31, 15–22 (2006).Article 

    Google Scholar 
    46.Viblanc, V. A. et al. Body girth as an alternative to body mass for establishing condition indexes in field studies: a validation in the king penguin. Physiol. Biochem. Zool. 85, 533–542 (2012).PubMed 
    Article 

    Google Scholar 
    47.Ramos, E. A., Landeo-Yauri, S., Castelblanco-Martinez, N., Quade, A. & Rieucau, G. Drone-based photogrammetry assessments of body size and body condition of Antillean manatees. Mamm. Biol. (In prep. ).48.Lanyon, J. M., Sneath, H. L., Long, T. & Bonde, R. K. Physiological response of wild dugongs (Dugong dugon) to out-of-water sampling for health assessment. Aquat. Mamm. 36, 46–58 (2010).Article 

    Google Scholar 
    49.Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size in mammals. Proc. Natl. Acad. Sci. 112, 5093–5098 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Noren, S. R. & Williams, T. M. Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 126, 181–191, https://doi.org/10.1016/S1095-6433(00)00182-3 (2000).51.Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl. Acad. Sci. 104, 17707–17712 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Cassini, M. H. A mixed model of the evolution of polygyny and sexual size dimorphism in mammals. Mammal Rev. 50, 112–120 (2020).Article 

    Google Scholar 
    53.Fokidis, H. B., Risch, T. S. & Glenn, T. C. Reproductive and resource benefits to large female body size in a mammal with female-biased sexual size dimorphism. Anim. Behav. 73, 479–488 (2007).Article 

    Google Scholar 
    54.Deutsch, C. J. et al. Seasonal movements, migratory behavior and site fidelity of West Indian manatees along the Atlantic Coast of the United States. Wildl. Monogr. 151, 1–77 (2003).
    Google Scholar 
    55.Flamm, R. O., Weigle, B. L., Wright, I. E., Ross, M. & Aglietti, S. Estimation of manatee (Trichechus manatus latirostris) places and movement corridors using telemetry data. Ecol. Appl. 15, 1415–1426 (2005).Article 

    Google Scholar 
    56.Puc-Carrasco, G., Morales-Vela, B., Olivera-Gomez, L. D. & González-Solís, D. First field-based estimate of Antillean manatee abundance in the San Pedro River system suggests large errors in current estimates for Mexico. Cienc. Mar. 43, 285–299 (2017).Article 

    Google Scholar 
    57.Puc-Carrasco, G., Olivera-Gómez, L. D., Arriaga-Hernández, S. & Jiménez-Domínguez, D. Relative abundance of Antillean manatees in the Pantanos de Centla Biosphere Reserve in the coastal plain of Tabasco Mexico. Cienc. Mar. 42, 261–270 (2016).Article 

    Google Scholar 
    58.Castelblanco-Martínez, D. N., Kendall, S., Orozco, D. L. & Arévalo-González, K. La conservación de los manatíes (Trichechus inunguis y Trichechus manatus) en áreas no protegidas de Colombia in Conservación de grandes vertebrados en áreas no protegidas de Colombia, (eds Payán, E. et al.) 81–98 (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2015).59.Castelblanco-Martínez, D. N. et al. Movement patterns of Antillean manatees in Chetumal Bay (Mexico) and coastal Belize: A challenge for regional conservation. Mar. Mamm. Sci. 29, 166–182. https://doi.org/10.1111/j.1748-7692.2012.00602.x (2013).Article 

    Google Scholar 
    60.Corona-Figueroa, M. et al. Searching for manatees in the dark waters of a transboundary river between Mexico and Belize: a predictive distribution model. Aquat. Ecol., 1–16 (2020).61.Alvarez-Alemán, A., Angulo-Valdés, J. A., Alfonso, E. G., Powell, J. A. & Taylor, C. R. Occurrence of the Endangered Antillean manatee Trichechus manatus manatus in a marine protected area, Isla de la Juventud, Cuba. Oryx 51, 324–331 (2017).Article 

    Google Scholar 
    62.Castelblanco-Martínez, D. N., dos Reis, V. & de Thoisy, B. How to detect an elusive aquatic mammal in complex environments? A study of the Endangered Antillean manatee Trichechus manatus manatus in French Guiana. Oryx 52, 382–392. https://doi.org/10.1017/S0030605316000922 (2017).Article 

    Google Scholar 
    63.Castelblanco-Martínez, D. N., Holguín, V. E. & Zapata, M. Conservación y manejo del manatí en la Ciénaga de Paredes (Santander). In Programa Nacional de manejo y conservación de manatíes en Colombia, (eds Caicedo, D. et al.) 105–113 (Ministerio de Ambiente, Vivienda y Desarrollo Territorial – Fundación Omacha, 2005).64.Gonzalez-Socoloske, D. & Olivera-Gomez, L. Food choice by a free-ranging Antillean manatee (Trichechus manatus manatus) in Tabasco, Mexico. J. Mar. Anim. Ecol. 11, 19–32 (2019).
    Google Scholar 
    65.Jimenez-Dominguez & Olivera Gómez, L. D. Características del hábitat del manatí antillano (Trichechus manatus manatus) en sistemas fluvio-lagunares del sur del Golfo de México. Therya 5, 601–6014 (2014).66.Best, R. C. Apparent dry-season fasting in Amazonian manatees (Mammalia, Sirenia). Biotropica 15, 61–64 (1983).Article 

    Google Scholar 
    67.Florant, G. L. & Healy, J. E. The regulation of food intake in mammalian hibernators: a review. J. Comp. Physiol., B 182, 451–467 (2012).68.Tighe, R. L., Bonde, R. K. & Avery, J. P. Seasonal response of ghrelin, growth hormone, and insulin-like growth factor I in the free-ranging Florida manatee (Trichechus manatus latirostris). Mamm. Biol. 81, 247–254. https://doi.org/10.1016/j.mambio.2016.02.006 (2016).Article 

    Google Scholar 
    69.Castelblanco-Martínez, D. N., Morales-Vela, B., Hernández-Arana, H. A. & Padilla-Saldívar, J. Diet of the manatees Trichechus manatus manatus in Chetumal Bay, Mexico. Latin Am. J. Aquat. Mammals 7, 39–46 (2009).
    Google Scholar 
    70.Allen, A. C., Beck, C. A., Bonde, R. K., Powell, J. A. & Gomez, N. A. Diet of the Antillean manatee (Trichechus manatus manatus) in Belize, Central America. J. Mar. Biol. Assoc. U.K., 1–10 (2017).71.Garcés-Cuartas, N. Ecología trófica del manatí del Caribe: una herramienta de conservación para ecosistemas estratégicos en el Caribe mexicano Ph.D. thesis, Universidad de Quintana Roo, (2020).72.Rodrigues, F. M. et al. Nutritional composition of food items consumed by Antillean manatees (Trichechus manatus manatus) along the coast of Paraíba Northeastern Brazil. Aquat. Bot. 168, 103324. https://doi.org/10.1016/j.aquabot.2020.103324 (2021).Article 

    Google Scholar 
    73.Navarro-Martínez, Z., Alvarez-Alemán, A. & Castelblanco-Martínez, D. N. Diet components in three manatees in Cuba. Rev. Invest. Mar. 34, 1–11 (2014).
    Google Scholar 
    74.Ponce-García, G., Olivera-Gómez, L. D. & Solano, E. Analysis of the plant composition of manatee (Trichechus manatus manatus) faeces in a lake in south-eastern Mexico. Aquat. Conserv.: Mar. Freshwat. Ecosyst. (2017).75.Pablo-Rodríguez, N., Olivera-Gómez, L. D., Aurioles-Gamboa, D. & Vega-Cendejas, M. E. Seasonal differences in the feeding habits of the Antillean manatee population (Trichechus manatus manatus) in the fluvial-lagoon systems of Tabasco Mexico. Mar. Mamm. Sci. 32, 363–375 (2016).Article 

    Google Scholar 
    76.Siegal-Willott, J. L. et al. Proximate nutrient analyses of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa var. longifolia). J. Zoo Wildl. Med. 41, 594–602, https://doi.org/10.1638/2009-0118.1 (2010).77.Lomolino, M. V. & Ewel, K. C. Digestive efficiencies of the West Indian manatee (Trichechus manatus). Fla. Sci. 47, 176–179 (1984).
    Google Scholar 
    78.Larkin, I. L. V., Fowler, V. F. & Reep, R. L. Digesta passage rates in the Florida manatee Trichechus manatus latirostris. Zoo Biol. 26, 503–515 (2007).PubMed 
    Article 

    Google Scholar 
    79.Reynolds, J. E. III. & Rommel, S. A. Structure and function of the gastrointestinal tract of the Florida manatee Trichechus manatus latirostris. Anat. Rec. 245, 539–558 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Arévalo-González, K. Aspectos de la ecología y fisiología alimentaria del manatí antillano. M.Sc. thesis, Universidad Veracruzana (2020).81.Harshaw, L. T., Larkin, I. V., Staples, C. R., Scott, K. C. & Hill, R. C. In vivo apparent digestibility of fiber in Florida manatees (Trichechus manatus latirostris) under human care. Aquat. Mamm. 45, 513–524 (2019).Article 

    Google Scholar 
    82.Alves-Stanley, C. D. & Worthy, G. A. J. Carbon and nitrogen stable isotope turnover rates and diet-tissue discrimination in Florida manatees (Trichechus manatus latirostris). J. Exp. Biol. 212, 2349–2355 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Alves-Stanley, C. D., Worthy, G. A. J. & Bonde, R. K. Feeding preferences of the West Indian manatee in Florida, Belize, and Puerto Rico as indicated by stable isotope analysis. Mar. Ecol. Prog. Ser. 402, 255–267 (2010).ADS 
    Article 

    Google Scholar 
    84.West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    85.Stamper, M. A. & Bonde, R. Health assessment of captive and wild-caught West Indian manatees. In Sirenian conservation: Issues and strategies in developing countries, (eds Hines, E. et al.) (University Press of Florida, 2012).86.Wilder, S. M., Raubenheimer, D. & Simpson, S. J. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct. Ecol. 30, 108–115 (2016).Article 

    Google Scholar 
    87.Santos, N. et al. Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores. Sci. Rep. 10, 15755. https://doi.org/10.1038/s41598-020-72761-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Mumby, H. S. et al. Stress and body condition are associated with climate and demography in Asian elephants. Conserv. Physiol. 3, cov030 (2015).89.Abujanra, F., Agostinho, A. & Hahn, N. Effects of the flood regime on the body condition of fish of different trophic guilds in the Upper Paraná River floodplain Brazil. Braz. J. Biol. 69, 459–468 (2009).Article 

    Google Scholar  More

  • in

    Excess plant growth worsens droughts

    1.Stephenson, N. L. Am. Nat. 135, 649–670 (1990).Article 

    Google Scholar 
    2.Mencuccini, M. et al. New Phytol. 222, 1207–1222 (2019).Article 

    Google Scholar 
    3.Ellison, D. et al. Glob. Change Biol. 18, 806–820 (2012).Article 

    Google Scholar 
    4.Jump, A. S. et al. Glob Change Biol. 23, 3742–3757 (2017).Article 

    Google Scholar 
    5.Zhang, Y., Keenan, T. F. & Zhou, S. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01551-8 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Sankaran, M. J. Ecol. 107, 1531–1549 (2019).Article 

    Google Scholar 
    7.Foster, D. et al. Biosciences 53, 77–88 (2003).Article 

    Google Scholar 
    8.Tilman, D. & Wedin, D. Nature 353, 653–655 (1991).Article 

    Google Scholar 
    9.Pfeiffer, M. et al. Biogeosciences 17, 5829–5847 (2020).CAS 
    Article 

    Google Scholar 
    10.Brodribb, T. J. et al. Science 368, 261–266 (2020).CAS 
    Article 

    Google Scholar 
    11.Slette, I. J. et al. Glob. Change Biol. 25, 3193–3200 (2019).Article 

    Google Scholar 
    12.Bernardino, P. N. et al. Remote Sens. 12, 2332 (2020).Article 

    Google Scholar  More

  • in

    A question of the sexes

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    UAV reveals substantial but heterogeneous effects of herbivores on Arctic vegetation

    1.Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Schmitz, O. J. Herbivory from individuals to ecosystems. Annu. Rev. Ecol. Evol. Syst. 39, 133–152 (2008).Article 

    Google Scholar 
    5.Adler, P., Raff, D. & Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128, 465–479 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Weeber, J., Hempson, G. P. & February, E. C. Large herbivore conservation in a changing world: Surface water provision and adaptability allow wildebeest to persist after collapse of long-range movements. Glob. Change Biol. 26, 2841–2853 (2020).ADS 
    Article 

    Google Scholar 
    8.Senft, R. L., Rittenhouse, L. R. & Woodmansee, R. G. Factors influencing patterns of cattle grazing behavior on shortgrass steepe. Rangel. Ecol. Manag. Range Manag. Arch. 38, 82–87 (1985).
    Google Scholar 
    9.McNaughton, S. J., Banyikwa, F. F. & McNaughton, M. M. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278, 1798–1800 (1997).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Olofsson, J., De Mazancourt, C. & Crawley, M. J. Spatial heterogeneity and plant species richness at different spatial scales under rabbit grazing. Oecologia 156, 825–834 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).Article 

    Google Scholar 
    13.Oksanen, T. et al. The impact of thermal seasonality on terrestrial endotherm food web dynamics: A revision of the Exploitation Ecosystem Hypothesis. Ecography 43, 1859–1877 (2020).Article 

    Google Scholar 
    14.Fine, P. V. et al. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    16.Oliver, T., Roy, D. B., Hill, J. K., Brereton, T. & Thomas, C. D. Heterogeneous landscapes promote population stability. Ecol. Lett. 13, 473–484 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 15, 094030 (2020).ADS 
    Article 

    Google Scholar 
    18.Siewert, M. B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences 15, 1663–1682 (2018).ADS 
    Article 

    Google Scholar 
    19.Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Newton, E. J., Pond, B. A., Brown, G. S., Abraham, K. F. & Schaefer, J. A. Remote sensing reveals long-term effects of caribou on tundra vegetation. Polar Biol. 37, 715–725 (2014).Article 

    Google Scholar 
    21.Eklundh, L., Johansson, T. & Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113, 1566–1573 (2009).ADS 
    Article 

    Google Scholar 
    22.Ehrich, D. et al. Documenting lemming population change in the Arctic: Can we detect trends?. Ambio https://doi.org/10.1007/s13280-019-01198-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Olofsson, J., Tømmervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).ADS 
    Article 

    Google Scholar 
    24.Hambäck, P. A., Schneider, M. & Oksanen, T. Winter herbivory by voles during a population peak: The relative importance of local factors and landscape pattern. J. Anim. Ecol. 67, 544–553 (1998).Article 

    Google Scholar 
    25.Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution: Ecosystem carbon in taiga and tundra. J. Geophys. Res. Biogeosciences 120, 1973–1994 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27(Part A), 4–12 (2014).ADS 
    Article 

    Google Scholar 
    27.Siewert, M. B., Lantuit, H., Richter, A. & Hugelius, G. Permafrost causes unique fine-scale spatial variability across tundra soils. Glob. Biogeochem. Cycles 35, e2020GB006659 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Koh, L. P. & Wich, S. A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 5, 121–132 (2012).Article 

    Google Scholar 
    29.Assmann, J. J., Kerby, J. T., Cunliffe, A. M. & Myers-Smith, I. H. Vegetation monitoring using multispectral sensors—best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 7, 54–75 (2018).Article 

    Google Scholar 
    30.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).Article 

    Google Scholar 
    31.Barrio, I. C. et al. Herbivory network: An international, collaborative effort to study herbivory in Arctic and alpine ecosystems. Polar Sci. 10, 297–302 (2016).ADS 
    Article 

    Google Scholar 
    32.Siewert, M. B., Hugelius, G., Heim, B. & Faucherre, S. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta. CATENA 147, 725–741 (2016).CAS 
    Article 

    Google Scholar 
    33.Olofsson, J. et al. Long-term experiments reveal strong interactions between lemmings and plants in the fennoscandian highland tundra. Ecosystems 17, 606–615 (2014).Article 

    Google Scholar 
    34.Virtanen, R., Parviainen, J. & Henttonen, H. Winter grazing by the Norwegian lemming (Lemmus lemmus) at Kilpisjärvi (NW Finnish Lapland) during a moderate population peak. Ann. Zool. Fenn. 39, 335–341 (2002).
    Google Scholar 
    35.Johnson, D. R. et al. Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: resampling of a 50 $mathplus$ year herbivore exclosure experiment near Barrow, Alaska. Environ. Res. Lett. 6, 045507 (2011).Article 

    Google Scholar 
    36.Petit Bon, M. et al. Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities. Oikos 129, 1229–1242 (2020).CAS 
    Article 

    Google Scholar 
    37.Virtanen, R., Henttonen, H. & Laine, K. Lemming grazing and structure of a snowbed plant community: A long-term experiment at Kilpisjärvi, Finnish Lapland. Oikos 79, 155–166 (1997).Article 

    Google Scholar 
    38.Domine, F. et al. Snow physical properties may be a significant determinant of lemming population dynamics in the high Arctic. Arct. Sci. 4, 813–826 (2018).Article 

    Google Scholar 
    39.Aunapuu, M. et al. Spatial patterns and dynamic responses of arctic food webs corroborate the exploitation ecosystems hypothesis (EEH). Am. Nat. 171, 249–262 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Hoset, K. S., Kyrö, K., Oksanen, T., Oksanen, L. & Olofsson, J. Spatial variation in vegetation damage relative to primary productivity, small rodent abundance and predation. Ecography 37, 894–901 (2014).Article 

    Google Scholar 
    41.Hoset, K. S. et al. Changes in the spatial configuration and strength of trophic control across a productivity gradient during a massive rodent outbreak. Ecosystems 20, 1421–1435 (2017).Article 

    Google Scholar 
    42.Lindén, E., Gough, L. & Olofsson, J. Large and small herbivores have strong effects on tundra vegetation in Scandinavia and Alaska. Ecol. Evol. 11, 12141–12152 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a Modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).Article 

    Google Scholar 
    44.Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278 (2010).CAS 
    Article 

    Google Scholar 
    45.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).ADS 
    Article 

    Google Scholar 
    46.Street, L. E., Shaver, G. R., Williams, M. & Van Wijk, M. T. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems?. J. Ecol. 95, 139–150 (2007).Article 

    Google Scholar 
    47.Morris, D. W., Dupuch, A. & Halliday, W. D. Climate-induced habitat selection predicts future evolutionary strategies of lemmings. Evol. Ecol. Res. 14, 689–705 (2012).
    Google Scholar 
    48.Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cunliffe, A. M., Assmann, J. J., Daskalova, G., Kerby, J. T. & Myers-Smith, I. H. Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aba470 (2020).Article 

    Google Scholar 
    50.Myllymäki, A., Paasikallio, A., Pankakoski, E. & Kanervo, V. Removal experiments on small quadrats as a means of rapid assessment of the abundance of small mammals. Ann. Zool. Fenn. 8, 177–185 (1971).
    Google Scholar 
    51.Inglada, J. & Christophe, E. The Orfeo Toolbox remote sensing image processing software. In 2009 IEEE International Geoscience and Remote Sensing Symposium vol. 4 IV–733 (IEEE, 2009).52.Leutner, B., Horning, N., Schwalb-Willmann, J. & Hijmans, R. J. RStoolbox: Tools for remote sensing data analysis. R Package Version 026 7, 1991–2007 (2019).
    Google Scholar 
    53.Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).ADS 
    Article 

    Google Scholar 
    54.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    55.Hussain, M., Chen, D., Cheng, A., Wei, H. & Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 80, 91–106 (2013).ADS 
    Article 

    Google Scholar 
    56.Tewkesbury, A. P., Comber, A. J., Tate, N. J., Lamb, A. & Fisher, P. F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 160, 1–14 (2015).ADS 
    Article 

    Google Scholar 
    57.Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. (2020).58.Pebesma, E. & Graeler, B. gstat: Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation. (2020).59.Fortin, M.-J. & Dale, M. R. T. Spatial Autocorrelation. In The SAGE Handbook of Spatial Analysis 88–103 (SAGE Publications, Ltd, 2009). https://doi.org/10.4135/9780857020130.n6.60.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).61.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2020). http://qgis.osgeo.org. Accessed 12 Sept 2020 More

  • in

    Tracking forest loss and fragmentation between 1930 and 2020 in Asian elephant (Elephas maximus) range in Nepal

    1.Lambin, E. F. et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 11, 261–269 (2001).Article 

    Google Scholar 
    2.Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 111, 7492–7497 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Bongaarts, J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. Population and Development Review vol. 45 (2019).4.Pardini, R. OBSOLETE: Fragmentation and habitat loss. Ref. Modul. Earth Syst. Environ. Sci. 2, 10–11. https://doi.org/10.1016/b978-0-12-409548-9.09824-9 (2018).Article 

    Google Scholar 
    5.Anthony, B. & Wasambo, J. Human-wildlife conflict study report. Human Wildl. Confl. Stud. Rep. 2, 55 (2009).
    Google Scholar 
    6.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    7.Collinge, S. K. Ecological consequences of habitat fragmentation: Implications for landscape architecture and planning. Landsc. Urban Plan. 36, 59–77 (1996).Article 

    Google Scholar 
    8.Pierri-Daunt, A. B. & Tanaka, M. O. Assessing habitat fragmentation on marine epifaunal macroinvertebrate communities: An experimental approach. Landsc. Ecol. 29, 17–28 (2014).Article 

    Google Scholar 
    9.Fahrig, L. et al. Is habitat fragmentation bad for biodiversity?. Biol. Conserv. 230, 179–186 (2019).Article 

    Google Scholar 
    10.Bustamante, R. O., Serey, I. A. & Pickett, S. T. A. Forest fragmentation, plant regeneration and invasion processes across edges in Central Chile. In How Landscapes Change Ecological Studies (Analysis and Synthesis), 162 (eds Bradshaw, G. A. & Marquet, P. A.) 145–160 (Springer, 2003).
    Google Scholar 
    11.Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 1–6 (2015).Article 
    CAS 

    Google Scholar 
    12.Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 20 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    14.Singh, S. et al. Modeling the spatial dynamics of deforestation and fragmentation using multi-layer perceptron neural network and landscape fragmentation tool. Ecol. Eng. 99, 543–551 (2017).Article 

    Google Scholar 
    15.Bustamante, R. O. & Simonetti, J. A. Is Pinus radiata invading the native vegetation in Central Chile? Demographic responses in a fragmented forest. Biol. Invas. 7, 243–249 (2005).Article 

    Google Scholar 
    16.Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl. Acad. Sci. USA 114, 10678–10683 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cardillo, M. et al. Evolution: Multiple causes of high extinction risk in large mammal species. Science (80–) 309, 1239–1241 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Woodroffe, R., Thirgood, S. & Rabinowitz, A. People and Wildlife: Conflict or Coexistence (Cambridge University Press, 2005).Book 

    Google Scholar 
    19.Goswami, V. R. et al. Community-managed forests and wildlife-friendly agriculture play a subsidiary but not substitutive role to protected areas for the endangered Asian elephant. Biol. Conserv. 177, 74–81 (2014).Article 

    Google Scholar 
    20.Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science (80–) 321, 123–126 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Shaffer, L. J., Khadka, K. K., Van Den Hoek, J. & Naithani, K. J. Human-elephant conflict: A review of current management strategies and future directions. Front. Ecol. Evol. 6, 58 (2019).Article 

    Google Scholar 
    22.Desai, A. A. & Riddle, H. S. Human–Elephant Conflict in Asia. (2015).23.Thouless, C. R. et al. African elephant status report 2016: An update from the African elephant database. Occasional paper series of the IUCN Species Survival Commission. IUCN Species Survical Commun. 4, 309 (2016).
    Google Scholar 
    24.Leimgruber, P. et al. Fragmentation of Asia’s remaining wildlands: Implications for Asian elephant conservation. Anim. Conserv. 6, 347–359 (2003).Article 

    Google Scholar 
    25.Koirala, R. K., Raubenheimer, D., Aryal, A., Pathak, M. L. & Ji, W. Feeding preferences of the Asian elephant (Elephas maximus) in Nepal. BMC Ecol. 16, 1–9 (2016).Article 

    Google Scholar 
    26.Sukumar, R. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. Int. Zoo Yearb. 40, 1–8 (2006).Article 

    Google Scholar 
    27.Baskaran, N. Ranging and Resource Use by Asian elephant in Nilgiri Biosphere Reserve Southern India. (1998).28.Branco, P. S. et al. Determinants of elephant foraging behaviour in a coupled human-natural system: Is brown the new green?. J. Anim. Ecol. 88, 780–792 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Fernando, P. et al. Ranging behavior of the Asian elephant in Sri Lanka. Mamm. Biol. 73, 2–13 (2008).Article 

    Google Scholar 
    30.Naha, D. et al. Landscape predictors of human–leopard conflicts within multi-use areas of the Himalayan region. Sci. Rep. 10, 20 (2020).Article 
    CAS 

    Google Scholar 
    31.DNPWC. The Elephant Conservation Action Plan for Nepal. (2009).32.Ram, A. K. Status distribution and habitat use by Asian elephants in Nepal. (2020).33.ten Velde, P. A Status Report of Nepal’s Wild Elephant Population. (1997).34.Ram, A. K. et al. Patterns and determinants of Elephant attacks on humans in Nepal. Ecol. Evol. 11, 11639–11650. https://doi.org/10.1002/ece3.7796 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Wikramanayake, E. et al. Designing a conservation landscape for tigers in human-dominated environments. Conserv. Biol. 18, 839–844 (2004).Article 

    Google Scholar 
    36.Smith, J. L. D. & Mishra, H. R. Status and distribution of Asian elephants in Central Nepal. Oryx 26, 10–14 (1992).Article 

    Google Scholar 
    37.Shrestha, M. N., Shrestha, K. . & Dhakal, T. R. Hatti byabasthapan yojana tarujma pratibedan (Report on Planning for Elephant Management). Kathmandu: Janchbujh kendra bibhag raj durbar (Department Investigation Center, Nepali Royal Palace (in Nepali version). (HMGN palace investigation centre, Principal Secretariat of His Majesty King, Royal Palace, Kathmandu, Nepal (in Nepali version), 1985).38.Kharel, F. R. The challenge of managing domesticated Asian elephants in Nepal. in Giants on our Hands (Proceedings of the international workshop on the domesticated Asian elehant) 103–103 (FAO Regional Office for Asia and the Pacific of United Nations, Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand, 2002).39.Gee, E. P. Report on a Survey of Rhinoceros Area of Nepal, prepared for the survival service commission of the International Union for the Conservation of Nature and Natural resources. (1959).40.MoFSC. Strategy and Action Plan 2015–2025 for Terai Arc landscape, Nepal. (2015).41.Subedi, N. et al. Progress Report on Faunal Biodiversity Assessment in Chure Range of Nepal. (President Chure-Terai Madhesh Conservation Development Board and National Trust for Nature Conservation, Khumaltar, Lalitpur, 2021).42.DFRS. State of Nepal’s Forests. Forest Resource Assessment (FRA) Nepal, Department of Forest Research and Survey (DFRS). Kathmandu, Nepal. (Ministry of Forest and Soil Conservation, Nepal, 2015). 978-9937-8896-3-6.43.Reddy, C. S. et al. Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s. Glob. Planet. Change 161, 132–148 (2018).ADS 
    Article 

    Google Scholar 
    44.Reddy, S. C. et al. Quantifying nationwide land cover and historical changes in forests of Nepal (1930–2014): Implications on forest fragmentation. Biodivers. Conserv. 27, 91–107 (2018).Article 

    Google Scholar 
    45.Aulestia, M. J. S. Understanding land use and land cover dynamics in the Chure region of Nepal: Integrating physiographic, socio-economic and policy drivers. (2019).46.Laurie, A. The Ecology and Behaviour of the Greater One-Horned Rhinoceros, a dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy. Behaviour (1978).47.Rimal, S., Adhikari, H. & Tripathi, S. Habitat suitability and threat analysis of Greater One-horned Rhinoceros Rhinoceros unicornis Linnaeus, 1758 (Mammalia: Perissodactyla: Rhinocerotidae) in Rautahat District, Nepal. J. Threat. Taxa 10, 11999–12007 (2018).Article 

    Google Scholar 
    48.Peh, K. S. H. Invasive species in Southeast Asia: The knowledge so far. Biodivers. Conserv. 19, 1083–1099 (2010).Article 

    Google Scholar 
    49.Lamichhane, B. R. et al. Using interviews and biological sign surveys to infer seasonal use of forested and agricultural portions of a human-dominated landscape by Asian elephants in Nepal. Ethol. Ecol. Evol. 30, 331–347 (2018).Article 

    Google Scholar 
    50.Acharya, K. P., Paudel, P. K., Neupane, P. R. & Köhl, M. Human-wildlife conflicts in Nepal: Patterns of human fatalities and injuries caused by large mammals. PLoS One 11, 1–18 (2016).
    Google Scholar 
    51.Carter, N. H., Shrestha, B. K., Karki, J. B., Pradhan, N. M. B. & Liu, J. Coexistence between wildlife and humans at fine spatial scales. Proc. Natl. Acad. Sci. USA 109, 15360–15365 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Choudhury, A. Human-Elephant conflicts in northeast India. Hum. Dimens. Wildl. 9, 261–270 (2004).Article 

    Google Scholar 
    53.Reddy, C. S., Sreelekshmi, S., Jha, C. S. & Dadhwal, V. K. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecol. Eng. 60, 453–464 (2013).Article 

    Google Scholar 
    54.Puyravaud, J. P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 177, 593–596 (2003).Article 

    Google Scholar 
    55.Puyravaud, J. P., Gubbi, S., Poornesha, H. C. & Davidar, P. Deforestation increases frequency of incidents with elephants (Elephas maximus). Trop. Conserv. Sci. 12, 20 (2019).Article 

    Google Scholar 
    56.Puyravaud, J. P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Conserv. Lett. 3, 390–394 (2010).Article 

    Google Scholar 
    57.Sampson, C. et al. Effects of illegal grazing and invasive Lantana camara on Asian elephant habitat use. Biol. Conserv. 220, 50–59 (2018).Article 

    Google Scholar 
    58.Roever, C. L., van Aarde, R. J. & Leggett, K. Functional responses in the habitat selection of a generalist mega-herbivore, the African savannah elephant. Ecography (Cop.) 35, 972–982 (2012).Article 

    Google Scholar 
    59.Liu, P., Wen, H., Lin, L., Liu, J. & Zhang, L. Habitat evaluation for Asian elephants (Elephas maximus) in Lincang: Conservation planning for an extremely small population of elephants in China. Biol. Conserv. 198, 113–121 (2016).Article 

    Google Scholar 
    60.Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, 2 (2015).Article 

    Google Scholar 
    61.Sukumar, R. The Asian Elephant: Ecology and Management Vol 8 254 (Cambridge University Press, 1989).
    Google Scholar 
    62.Desai, A. A. & Baskaran, N. Impact of human activities on the ranging behaviour of elephants in the Nilgiri biosphere Reserve, South India. Bombay Nat. Hist. Soc. 93, 25 (1996).
    Google Scholar 
    63.Smit, I. P. J., Grant, C. C. & Devereux, B. J. Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol. Conserv. 136, 85–99 (2007).Article 

    Google Scholar 
    64.Smit, I. P. J., Grant, C. C. & Whyte, I. J. Landscape-scale sexual segregation in the dry season distribution and resource utilization of elephants in Kruger National Park, South Africa: Biodiversity research. Divers. Distrib. 13, 225–236 (2007).Article 

    Google Scholar 
    65.Birkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M. & Slotow, R. Animal perception of seasonal thresholds: Changes in elephant movement in relation to rainfall patterns. PLoS One 7, 25 (2012).
    Google Scholar 
    66.Wilson, S., Davies, T. E., Hazarika, N. & Zimmermann, A. Understanding spatial and temporal patterns of human-elephant conflict in Assam, India. Oryx https://doi.org/10.1017/S0030605313000513 (2015).Article 

    Google Scholar 
    67.Neupane, D., Kunwar, S., Bohara, A. K., Risch, T. S. & Johnson, R. L. Willingness to pay for mitigating human-elephant conflict by residents of Nepal. J. Nat. Conserv. 36, 65–76 (2017).Article 

    Google Scholar 
    68.Neupane, D., Kwon, Y., Risch, T. S., Williams, A. C. & Johnson, R. L. Habitat use by Asian elephants: Context matters. Glob. Ecol. Conserv. 17, e00570 (2019).Article 

    Google Scholar 
    69.Goswami, V. R., Medhi, K., Nichols, J. D. & Oli, M. K. Mechanistic understanding of human-wildlife conflict through a novel application of dynamic occupancy models. Conserv. Biol. 29, 1100–1110 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Reddy, C. S. et al. Conservation priorities of forest ecosystems: Evaluation of deforestation and degradation hotspots using geospatial techniques. Ecol. Eng. 91, 2 (2016).Article 

    Google Scholar 
    71.Nandy, S., Kushwaha, S. P. S. & Dadhwal, V. K. Forest degradation assessment in the upper catchment of the river Tons using remote sensing and GIS. Ecol. Indic. 11, 509–513 (2011).Article 

    Google Scholar 
    72.Suba, R. B. et al. Rapid expansion of oil palm is leading to human–elephant conflicts in north Kalimantan province of Indonesia. Trop. Conserv. Sci. 10, 25 (2017).Article 

    Google Scholar 
    73.Naha, D., Sathyakumar, S., Dash, S., Chettri, A. & Rawat, G. S. Assessment and prediction of spatial patterns of human-elephant conflicts in changing land cover scenarios of a human-dominated landscape in North Bengal. PLoS One 14, 25 (2019).
    Google Scholar 
    74.Laudari, H. K., Aryal, K. & Maraseni, T. A postmortem of forest policy dynamics of Nepal. Land Use Policy 91, 25 (2020).Article 

    Google Scholar 
    75.Gee, E. P. Report on a brief survey of the wild life resources of Nepal, including the rhinoceros. Oryx 7, 67–76 (1963).Article 

    Google Scholar 
    76.Kanel, K. R. & Acharya, D. P. Re-Inventing Forestry Agencies: Institutional Innovation to Support Community Forestry in Nepal. Re-Inventing Forestry Agencies: Experiences of Institutional Restructuring in Asia and the Pacific vol. 4 (FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REGIONAL OFFICE FOR ASIA AND THE PACIFIC Bangkok, 2008, 2008).77.Dahal, G. R., Pokharel, B. K., Khanal, D. R. & Pokhrel, P. R. A framework for classifying subsistence production types of Nepal. J. For. Livelih. 15, 15–26 (2017).Article 

    Google Scholar 
    78.Ranjit, Y. History of forest management in Nepal: An analysis of political and economic perspective. Econ. J. Nepal 42, 12–28 (2019).Article 

    Google Scholar 
    79.Adhikari, J. & Dhungana, H. The state and forest resources: An historical analysis of policies affecting forest management in the Nepalese Tarai. Himal. J. Assoc. Nepal Himal. Stud. 29, 43–56 (2010).
    Google Scholar 
    80.Ram, A.K. & Acharya, H. Status distribution and habitat use by Asian elephants in Nepal. In A Compendium of Conservation Bulletien. 155–160 (Department of National Parks and Wildlife Conservation, Nepal, 2020).81.GoN/PCTMCDB. President Chure-Tarai Madhesh Conservation and Management Master Plan. (2017).82.Chaudhary, B. et al. Detailed Final Report Report with Major Findings (Part-I). 1–19 (2018).83.CBS. National Population Census. Central Bureau of Statistics Vol. 08, 2014 (Central Bureau of Statistics Ramshah Path, 2011).
    Google Scholar 
    84.Hamilton, A. C. & Radford, E. A. Identification and Conservation of Impeortant Plant Areas for Medicinal Plants in the Himalaya. Project and Workshop Report (Plantlife International, Salisbury, UK) and Ethnobotanical Society of Nepal (Kathmandu, Nepal, 2007).85.Chaudhary, R. P., Uprety, Y. & Rimal, S. K. Deforestation in Nepal: Causes, consequences, and responses. Biol. Environ. Hazards Risks Disast. 20, 20. https://doi.org/10.1016/B978-0-12-394847-2.00020-6 (2016).Article 

    Google Scholar 
    86.Neupane, D., Johnson, R. L. & Risch, T. S. How do land-use practices affect human–elephant conflict in Nepal?. Wildl. Biol. 17, wlb.00313 (2017).Article 

    Google Scholar 
    87.Acharya, K. P., Paudel, P. K., Jnawali, S. R., Neupane, P. R. & Köhl, M. Can forest fragmentation and configuration work as indicators of human–wildlife conflict? Evidences from human death and injury by wildlife attacks in Nepal. Ecol. Indic. 80, 74–83 (2017).Article 

    Google Scholar 
    88.DNPWC. Elephant Conservation Action Plan of Nepal (2010–2019). 1–30 (2010).89.Wilcove, D. S., McLellan, C. H. & Dobson, A. P. Habitat fragmentation in the temperate zone. In Conservation Biology 237–256 (The Science of Scarcity and Diversity, 1986).
    Google Scholar 
    90.FAO. State of the World’s Forests. Food and Agriculture Organization of The United Nations, Rome (2014).91.Padalia, H. et al. Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environ. Monit. Assess. 191, 25 (2019).Article 

    Google Scholar 
    92.Sudhakar Reddy, C. et al. Quantification and monitoring of deforestation in India over eight decades (1930–2013). Biodivers. Conserv. 25, 93–116 (2016).Article 

    Google Scholar 
    93.Kaim, D. et al. Broad scale forest cover reconstruction from historical topographic maps. Appl. Geogr. 67, 39–48 (2016).Article 

    Google Scholar 
    94.Kaim, D. et al. Uncertainty in historical land-use reconstructions with topographic maps. Quaest. Geogr. 33, 55–63 (2014).Article 

    Google Scholar 
    95.Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    96.Wang, Y. et al. Mapping tropical disturbed forests using multi-decadal 30 m optical satellite imagery. Remote Sens. Environ. 221, 474–488 (2019).ADS 
    Article 

    Google Scholar 
    97.Huang, H. et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 202, 166–176 (2017).ADS 
    Article 

    Google Scholar 
    98.Midekisa, A. et al. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS One 12, 1–15 (2017).
    Google Scholar 
    99.Zurqani, H. A., Post, C. J., Mikhailova, E. A., Schlautman, M. A. & Sharp, J. L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 69, 175–185 (2018).ADS 
    Article 

    Google Scholar 
    100.Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012).ADS 
    Article 

    Google Scholar 
    101.ESRI. ArcGIS Desktop105 (ESRI, 2016).
    Google Scholar 
    102.Elkie, P., Rempel, R. & Carr, A. Patch Analyst User’s Manual. Ont. Min. Natur. Resour. Northwest Sci. & Technol. Thunder Bay, Ont. TM-002, 16. (1999).103.Vogt, P. et al. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 22, 171–177 (2007).Article 

    Google Scholar 
    104.Dutta, K., Sudhakar Reddy, C., Sharma, S. & Jha, C. S. Quantification and monitoring of forest cover changes in Agasthyamalai Biosphere Reserve, Western Ghats, India (1920–2012). Curr. Sci. 110, 508–520 (2016).Article 

    Google Scholar 
    105.Shapiro, A. C., Aguilar-Amuchastegui, N., Hostert, P. & Bastin, J. F. Using fragmentation to assess degradation of forest edges in Democratic Republic of Congo. Carbon Balance Manag. 11, 25 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    A state-space approach to understand responses of organisms, populations and communities to multiple environmental drivers

    1.Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).Article 

    Google Scholar 
    2.Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2011).Article 

    Google Scholar 
    3.González-Ortegón, E., Blasco, J., Vay, L. L. & Giménez, L. A multiple stressor approach to study the toxicity and sub-lethal effects of pharmaceutical compounds on the larval development of a marine invertebrate. J. Hazard. Mater. 263, 233–238 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Keeling, R. F., Kärtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).Article 

    Google Scholar 
    6.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    7.Griffen, B., Belgrad, B. A., Cannizzo, Z. J., Knotts, E. R. & Hancock, E. R. Rethinking our approach to multiple stressor studies in marine environments. Mar. Ecol. Prog. Ser. 543, 273–281 (2016).Article 

    Google Scholar 
    8.Gunderson, A., Armstrong, E. & Stillman, J. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).Article 

    Google Scholar 
    9.Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B. 287, 20200421 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Glob. Change Biol. 21, 1887–1906 (2015).Article 

    Google Scholar 
    11.Tekin, E. et al. Using a newly introduced framework to measure ecological stressor interactions. Ecol. Lett. 23, 1391–1403 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B: Biol. Sci. 283, 20152592 (2016).Article 

    Google Scholar 
    13.Breitburg, D. L. et al. In Successes, Limitations, and Frontiers in Ecosystem Science (eds. Pace, M. L. & Groffman, P. M.) Ch. 17 (Springer, 1998).14.Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Vinebrooke, D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).Article 

    Google Scholar 
    16.Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Glob. Change Biol. 24, 2239–2261 (2018).Article 

    Google Scholar 
    17.De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).Article 

    Google Scholar 
    18.Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Meth. Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    19.Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).Article 

    Google Scholar 
    20.Dunham, A. E. & Beaupre, S. J. In Experimental Ecology: Issues and Perspectives (eds Resetarits, W. & Bernardo, J.) Ch. 2 (Oxford Univ. Press, 1998).21.Morin, P. J. In Experimental Ecology: Issues and Perspectives (eds Resetarits, W. & Bernardo, J.) Ch. 3 (Oxford Univ. Press, 1998).22.Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).Article 

    Google Scholar 
    23.Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Carter, H. A., Ceballos-Osuna, L., Miller, N. A. & Stillman, J. H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1412–1422 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Appelbaum, S. L., Pan, T. C. F., Hedgecock, D. & Manahan, D. T. Separating the nature and nurture of the allocation of energy in response to global change. Integr. Comp. Biol. 54, 284–295 (2014).Article 

    Google Scholar 
    26.Barner, A. K. et al. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Glob. Change Biol. 24, 4464–4477 (2018).Article 

    Google Scholar 
    27.Spitzner, F., Giménez, L., Meth, R., Harzsch, S. & Torres, G. Unmasking intraspecific variation in offspring responses to multiple environmental drivers. Mar. Biol. 166, 112 (2019).Article 
    CAS 

    Google Scholar 
    28.Torres, G., Thomas, D. N., Whiteley, N. M., Wilcockson, D. & Giménez, L. Maternal and cohort effects modulate offspring responses to multiple stressors. Proc. R. Soc. B 287, 20200492 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. A practical guide to measuring local adaptation. Ecol. Lett. 16, 1195–1205 (2013).30.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Coleman, R. et al. A continental scale evaluation of the role of limpet grazing on rocky shores. Oecologia 147, 556–564 (2006).PubMed 
    Article 

    Google Scholar 
    32.Hewitt, J. E., Thrush, S. F., Dayton, P. K. & Bonsdorff, E. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale‐dependent systems. Am. Nat. 169, 398–408 (2007).PubMed 
    Article 

    Google Scholar 
    33.Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    34.Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).Article 

    Google Scholar 
    35.Benedetti-Cecchi, L. Variance in ecological consumer-resource interactions. Nature 407, 370–374 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Schäfer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).Article 

    Google Scholar 
    37.Hastie, T, Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009).38.Garfinkel, A., Shevtsov, J. & Guo, Y. Modelling Life (Springer, 2017).39.Durrant, H. M. S., Clark, G. F., Dworjanyn, S. A., Byrne, M. & Johnston, E. L. Seasonal variation in the effects of ocean warming and acidification on a native bryozoan, Celleporaria nodulosa. Mar. Biol. 160, 1903–1911 (2013).Article 

    Google Scholar 
    40.Jensen, G. C., McDonald, P. S. & David, A. A. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262 (2002).Article 

    Google Scholar 
    41.Jungblut, S., Beermann, J., Boos, K., Saborowski, R. & Hagen, W. Population development of the invasive crab Hemigrapsus sanguineus (De Haan, 1853) and its potential native competitor Carcinus maenas (Linnaeus, 1758) at Helgoland (North Sea) between 2009 and 2014. Aquat. Inv. 12, 85–96 (2017).Article 

    Google Scholar 
    42.Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398 (2010).CAS 
    Article 

    Google Scholar 
    43.Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).Article 

    Google Scholar 
    44.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Progr. Oceanogr. 141, 227–238 (2016).Article 

    Google Scholar 
    45.Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).CAS 
    Article 

    Google Scholar 
    46.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    47.Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge? Proc. R. Soc. B 287, 20200709 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Pandori, L. L. M. & Sorte, C. J. B. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128, 621–629 (2019).Article 

    Google Scholar 
    49.Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).Article 

    Google Scholar 
    50.Gouvêa, L. P. et al. Interactive effects of marine heatwaves and eutrophication on the ecophysiology of a widespread and ecologically important macroalga. Limnol. Oceanogr. 62, 2056–2075 (2017).Article 
    CAS 

    Google Scholar 
    51.Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Change Biol. 26, 4800–4811 (2020).Article 

    Google Scholar 
    52.Von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014-2016. Mar. Ecol. Prog. Ser. 613, 171–182 (2019).Article 

    Google Scholar 
    53.Dawirs, R. R., Püschel, C. & Schorn, F. Temperature and growth in Carcinus maenas L. (Decapoda: Portunidae) larvae reared in the laboratory from hatching through metamorphosis. J. Exp. Mar. Biol. Ecol. 100, 47–74 (1986).Article 

    Google Scholar 
    54.Torres, G. & Giménez, L. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct. Ecol. 34, 1564–1576 (2020).Article 

    Google Scholar 
    55.Roman, J. O. E. & Palumbi, S. R. A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol. Ecol. 13, 2891–2898 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Zeng, C., Rotllant, G., Gimenez, L. & Romano, N. In The Natural History of Crustacea: Developmental Biology and Larval Ecology (eds Anger, K., Harzsch, S. & Thiel, M.) Vol. 7, Ch. 7 (Oxford Univ. Press, 2020).57.Nougué, O., Svendsen, N., Jabbour-Zahab, R., Lenormand, T. & Chevin, L.-M. The ontogeny of tolerance curves: habitat quality vs. acclimation in a stressful environment. J. Anim. Ecol. 85, 1625–1635 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Enriquez-Urzelai, U. et al. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 189, 385–394 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Epifanio, C. E., Dittel, A. I., Park, S., Schwalm, S. & Fouts, A. Early life history of Hemigrapsus sanguineus, a non-indigenous crab in the Middle Atlantic Bight (USA). Mar. Ecol. Prog. Ser. 170, 231–238 (1998).Article 

    Google Scholar 
    61.Karlsson, R., Obst, M. & Berggren, M. Analysis of potential distribution and impacts for two species of alien crabs in Northern Europe. Biol. Inv. 21, 3109–3119 (2019).Article 

    Google Scholar 
    62.Sulkin, S., Blanco, A., Chan, J. & Bryant, M. Effects of limiting access to prey on development of first zoeal stage of the brachyuran crabs Cancer magister and Hemigrapsus oregonensis. Mar. Biol. 131, 515–521 (1998).Article 

    Google Scholar 
    63.Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10 (2011).PubMed 
    Article 

    Google Scholar 
    64.Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).Article 

    Google Scholar 
    65.Zuur, A., Ieno, E. N., Walker, N., Savaliev, A. A. & Smith, G. M. Mixed Effect Models and Extensions in Ecology with R (Springer, 2009).66.R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2017).67.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-137. (2018).68.Giménez, L. & Torres, G. Effect of simulated heatwaves on larval performance of two marine invertebrates. PANGAEA https://doi.org/10.1594/PANGAEA.934715 (2021). More

  • in

    Fine-root traits in the global spectrum of plant form and function

    1.Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (John Wiley and Sons, 2001).2.Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).Article 

    Google Scholar 
    3.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Kattge, J. et al. TRY plant trait database — enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    7.Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).PubMed 
    Article 

    Google Scholar 
    8.Guerrero-Ramírez, N. R. et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37 (2021).Article 

    Google Scholar 
    9.McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 207, 505–518 (2015).PubMed 
    Article 

    Google Scholar 
    10.Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).CAS 
    Article 

    Google Scholar 
    11.Eissenstat, D. M. Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 15, 763–782 (1992).Article 

    Google Scholar 
    12.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).Article 

    Google Scholar 
    13.Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    14.Shen, Y. et al. Linking aboveground traits to root traits and local environment: implications of the plant economics spectrum. Front. Plant Sci. 10, 1412 (2019).Article 

    Google Scholar 
    15.Kramer-Walter, K. R. et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).Article 

    Google Scholar 
    16.Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).PubMed 
    Article 

    Google Scholar 
    17.Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.de la Riva, E. G. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424, 35–48 (2018).Article 
    CAS 

    Google Scholar 
    20.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).Article 

    Google Scholar 
    21.Liese, R., Alings, K. & Meier, I. C. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front. Plant Sci. 8, 315 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Niklas, K. J. Modelling below- and above-ground biomass for non-woody and woody plants. Ann. Bot. 95, 315–321 (2005).PubMed 
    Article 

    Google Scholar 
    24.Liu, G. et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol. 188, 543–553 (2010).PubMed 
    Article 

    Google Scholar 
    25.Galland, T., Carmona, C. P., Götzenberger, L., Valencia, E. & de Bello, F. Are redundancy indices redundant? An evaluation based on parameterized simulations. Ecol. Indic. 116, 106488 (2020).Article 

    Google Scholar 
    26.Valverde‐Barrantes, O. J., Maherali, H., Baraloto, C. & Blackwood, C. B. Independent evolutionary changes in fine‐root traits among main clades during the diversification of seed plants. New Phytol. 228, 541–553 (2020).PubMed 
    Article 

    Google Scholar 
    27.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    28.Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).Article 

    Google Scholar 
    29.De Deyn, G. B. & Van der Putten, W. H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 20, 625–633 (2005).PubMed 
    Article 

    Google Scholar 
    30.Pausas, J. G. & Bond, W. J. Humboldt and the reinvention of nature. J. Ecol. 107, 1031–1037 (2019).Article 

    Google Scholar 
    31.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Moora, M. Mycorrhizal traits and plant communities: perspectives for integration. J. Veg. Sci. 25, 1126–1132 (2014).Article 

    Google Scholar 
    33.Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2021).34.McCormack, M. L. & Iversen, C. M. Physical and functional constraints on viable belowground acquisition strategies. Front. Plant Sci. 10, 1215 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Wells, C. E. & Eissenstat, D. M. Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J. Plant Growth Regul. 21, 324–334 (2002).CAS 
    Article 

    Google Scholar 
    36.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.USDA. USDA PLANTS Database (accessed 3rd July 2020); https://plants.sc.egov.usda.gov38.Engemann, K. et al. A plant growth form dataset for the New World. Ecology 97, 3243 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.BGCI. GlobalTreeSearch online database (accessed 3rd July 2020); https://www.bgci.org/globaltree_search.php40.The Plant List. The Plant List (accessed 17th February 2020); http://www.theplantlist.org41.Cayuela, L., Macarro, I., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (2019).42.Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Oliveira, B. F., Sheffers, B. R. & Costa, G. C. Decoupled erosion of amphibians’ phylogenetic and functional diversity due to extinction. Glob. Ecol. Biogeogr. 29, 309–319 (2020).Article 

    Google Scholar 
    44.Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    45.Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    46.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    47.Whittakker, R. H. Communities and Ecosystems (Macmillan, 1975).48.Stefan, V. & Levin, S. plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001 https://github.com/valentinitnelav/plotbiomes (2021).49.Ricklefs, R. E. The Economy of Nature (W. H. Freeman and Company, 2008).50.GBIF. GBIF Occurrence Download (accessed 15 December 2019); https://doi.org/10.15468/dl.thlxph51.South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).Article 

    Google Scholar 
    52.Dinno, A. paran: Horn’s Test of Principal Components/Factors. R package version 1.5.2. https://CRAN.R-project.org/package=paran (2018).53.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. https://doi.org/10.18637/jss.v022.i04 (2007).54.Duong, T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v021.i07 (2015).55.Duong, T. ks: Kernel smoothing. R package version 1.11.5 https://CRAN.R-project.org/package=ks (2019).56.Carmona, C. P., Bello, F., Mason, N. W. H. & Lepš, J. Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology 100, e02876 (2019).PubMed 
    Article 

    Google Scholar 
    57.Carmona, C. P. TPD: methods for measuring functional diversity based on Trait Probability Density. R package version 1.1.0. https://CRAN.R-project.org/package=TPD (2019).58.Duong, T. & Hazelton, M. L. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    59.Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).PubMed 
    Article 

    Google Scholar 
    60.Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).Article 

    Google Scholar 
    61.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    62.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 https://CRAN.R-project.org/package=vegan (2019).63.Carmona, C. P. et al. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall. J. Appl. Ecol. 49, 1084–1093 (2012).Article 

    Google Scholar 
    64.Micó, E. et al. Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Sci. Rep. 10, 1520 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evol. 9, 305–319 (2018).Article 

    Google Scholar 
    66.Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. The density awakens: a reply to Blonder. Trends Ecol. Evol. 31, 667–669 (2016).PubMed 
    Article 

    Google Scholar 
    67.Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    68.de Bello, F., Carmona, C. P., Mason, N. W. H., Sebastià, M.-T. & Lepš, J. Which trait dissimilarity for functional diversity: trait means or trait overlap? J. Veg. Sci. 24, 807–819 (2013).Article 

    Google Scholar 
    69.Traba, J., Iranzo, E. C., Carmona, C. P. & Malo, J. E. Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos 126, 1400–1409 (2017).Article 

    Google Scholar 
    70.Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex Hull Volume. Ecology 87, 1465–1471 (2006).PubMed 
    Article 

    Google Scholar 
    71.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article 

    Google Scholar 
    72.Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    73.Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    74.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. USA 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Carmona, C. P., de Bello, F., Sasaki, T., Uchida, K. & Pärtel, M. Towards a common toolbox for rarity: a response to Violle et al. Trends Ecol. Evol. 32, 889–891 (2017).PubMed 
    Article 

    Google Scholar 
    76.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    78.Gower, J. C. General coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).Article 

    Google Scholar 
    79.Carmona, C. P. et al. Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Funct. Ecol. 34, 1448–1460 (2020).Article 

    Google Scholar 
    80.Gherardi, L. A. & Sala, O. E. Global patterns and climatic controls of belowground net carbon fixation. Proc. Natl Acad. Sci. USA 117, 20038–20043 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Impact of feed glyphosate residues on broiler breeder egg production and egg hatchability

    This is an observational study with no intervention on flock and hatchery practices. None of the birds or eggs were exposed to experimental procedures. The study was based mainly on existing data provided by the hatchery company (DanHatch Denmark A/S) from five broiler breeder flocks in Denmark during the period from November 2018 to January 2019 when the breeders were 46 to 62 weeks of age, see details in Table 1. In addition, feed samples from the flock locations and eggs from grocery stores were acquired.Table 1 Flocks and production periods.Full size tableThe average age of breeders was 48–59 weeks (SD from 0.5 to 2.2) ranging from 46–50 weeks to 57–62 weeks (Table 1; Supplementary Fig. S1 online) with observation period ranging from 1.6 to 7.6 weeks in the five flocks. Average laying percent over observation days was 65% (SD = 5.4%) and average hatchability over deliveries was 79% (SD = 5.8%).Feed samplesTwenty-six feed samples were collected for analysis of glyphosate content, 3 to 10 feed samples per flock. The glyphosate concentration related to a given sampling date was assumed representative for the flock from this day and until next sampling. Average duration of the preceding samples were used as duration for the last sampling date within each flock. Glyphosate (N‐(phosphonomethyl) glycine) and the glyphosate degradation product, aminomethylphosphonic acid (AMPA) in feed samples were analysed by the method described by Nørskov et al.4.Production dataData on egg production and hatchability from periods following each feed sampling was obtained from the hatchery company. Daily information was available on laying percent (100% * number of eggs/number of breeders), breeder age (days) and egg weight. For the hatchability, this was calculated as the proportion of eggs placed in incubators from which a viable chicken hatched (but presented as a percentage, i.e. multiplied by 100%). Daily egg weight had been calculated as the average from approx. 30 randomly sampled eggs.Glyphosate concentration of the feed consumed by the breeders during the 10 days prior to laying was the explanatory variable of main interest. The weighted average of glyphosate concentrations across the 10 days of development from follicle to ovulation of egg was used with number of days each glyphosate sample is representative during these 10 days as weights. For hatchability, glyphosate concentrations were aggregated at the level of delivery by weighted averaging using number of hatch eggs as weights.Eggs from grocery storesNo eggs were obtained from the five flocks, however we acquired eight cartons of conventional as well as eight cartons of organic eggs from eight different grocery stores. Three eggs from each carton were selected and egg yolk were analysed for glyphosate by the microLC-MS/MS method as described by Nørskov et al.4 adjusted to the egg yolk matrix.Statistical analysisLaying percent and hatchability were analysed by linear mixed effects models, including a random effect of flock and a first order autoregressive correlation structure to account for the repeated measurements from each flock. Following two covariates were considered for both outcomes: average egg weight (g) and breeder age (decimal weeks). However, since egg weight and breeder age are highly correlated (Pearson’s correlation coefficient ranging from 0.73 to 0.95 in the five flocks; Supplementary Fig. S1 online), only breeder age was included in the models. An important reason for this choice being that average egg weight was missing for 24% and 43% of the days from flock 4 and 5, respectively. In the age range used for this study, laying percent decrease with breeder age (Supplementary Fig. S1 online) as substantiated by a correlation coefficient between − 0.38 and − 0.87. Hatchability also decrease with breeder age (Supplementary Fig. S1 online).In addition, storage time on farm until delivery (1 to 5 days) and storage time at hatchery until incubation starts (1 to 11 days) were included as covariates for hatchability. The incubation start date was determined as date of hatching minus 21 days. For hatchability, covariates obtained from flock production data were aggregated at the level of delivery by weighted averaging; using daily number of eggs as weights for the calculation of average egg weight, number of hatch eggs as weights for average storage time on farm, and current number of breeders as weights for average breeder age. Weighted average storage time on farm until delivery varied from 1.0 to 4.0 and was on average 2.1 days. For storage time at hatchery, deliveries had been split on one to four incubator start dates. Therefore, weighted average of storage days was calculated using number of delivered eggs as weights. Weighted average storage time at hatchery before incubation starts varied from 1.2 to 8.0 days and was on average 4.8 days.Final models were fitted with restricted maximum likelihood estimation using the lme function from the nlme package v. 3.1-152 in R version 4.0.45 and with a significance level of 0.05. Fixed effects were tested by χ2 likelihood ratio tests after maximum likelihood estimation. Model checking was carried out by examination of qq-plots for normality and scatter plots of residuals versus predicted values to look for uncovered trends and variance heterogeneity. More