Mycorrhizal types influence island biogeography of plants
1.MacArthur, R. H. & Wilson, E. The theory of Island Biogeography. (Princeton University Press, 1967).2.Losos, J. B. & Schluter, D. Analysis of an evolutionary species–area relationship. Nature 408, 847 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).PubMed
Article
PubMed Central
Google Scholar
4.Losos, J. B. & Ricklefs, R. E. The Theory Of Island Biogeography Revisited. (Princeton University Press, 2009).5.Onstein, R. E. et al. Frugivory-related traits promote speciation of tropical palms. Nat. Ecol. Evol. 1, 1903 (2017).PubMed
Article
PubMed Central
Google Scholar
6.Bush, M. B. & Whittaker, R. J. Krakatau: colonization patterns and hierarchies. J. Biogeogr. 18, 341–356 (1991).7.Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).Article
Google Scholar
8.Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).PubMed
PubMed Central
Article
Google Scholar
9.Duchicela, J., Bever, J. D. & Schultz, P. A. Symbionts as filters of plant colonization of islands: tests of expected patterns and environmental consequences in the galapagos. Plants 9, 74 (2020).CAS
PubMed Central
Article
Google Scholar
10.Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 3, 424 (2019).PubMed
Article
PubMed Central
Google Scholar
11.Chaudhary, V. B., Nolimal, S., Sosa‐Hernández, M. A., Egan, C. & Kastens, J. Trait‐based aerial dispersal of arbuscular mycorrhizal fungi. New Phytol. 228, 238–252 (2020).12.Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic press, 2008).13.Oneto, D. L., Golan, J., Mazzino, A., Pringle, A. & Seminara, A. Timing of fungal spore release dictates survival during atmospheric transport. Proc. Natl Acad. Sci. USA 117, 5134–5143 (2020).CAS
Article
Google Scholar
14.Roper, M., Pepper, R. E., Brenner, M. P. & Pringle, A. Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proc. Natl Acad. Sci. USA 105, 20583–20588 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
15.Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209, 1705–1719 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems- a journey towards relevance? New Phytol. 157, 475–492 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 217, 1213–1229 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
18.McCORMICK, M. K. et al. Limitations on orchid recruitment: not a simple picture. Mol. Ecol. 21, 1511–1523 (2012).PubMed
Article
PubMed Central
Google Scholar
19.Selosse, M. A. et al. Saprotrophic fungal symbionts in tropical achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signal. Behav. 5, 349–353 (2010).PubMed
PubMed Central
Article
Google Scholar
20.Smith, G. R., Finlay, R. D., Stenlid, J., Vasaitis, R. & Menkis, A. Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood‐decay basidiomycetes. New Phytol. 215, 747–755 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol. 205, 1443–1447 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Peay, K. G., Schubert, M. G., Nguyen, N. H. & Bruns, T. D. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol. Ecol. 21, 4122–4136 (2012).PubMed
Article
PubMed Central
Google Scholar
23.Pither, J., Pickles, B. J., Simard, S. W., Ordonez, A. & Williams, J. W. Below‐ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160 (2018).PubMed
Article
PubMed Central
Google Scholar
24.van der Heijden, M. G., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
25.Chaudhary, V. B. et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
26.Pyšek, P. et al. Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere 10, e02937 (2019).Article
Google Scholar
27.Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Steidinger, B. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Bueno, C. G. et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob. Ecol. Biogeogr. 26, 690–699 (2017).Article
Google Scholar
30.Cameron, D. D., Leake, J. R. & Read, D. J. Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green‐leaved terrestrial orchid Goodyera repens. New Phytol. 171, 405–416 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Dearnaley, J. D. Further advances in orchid mycorrhizal research. Mycorrhiza 17, 475–486 (2007).PubMed
Article
PubMed Central
Google Scholar
32.Davison, J. et al. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME J. 12, 2211–2224 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Koziol, L. & Bever, J. D. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. J. Ecol. 107, 622–632 (2019).Article
Google Scholar
34.Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).Article
CAS
Google Scholar
35.Koziol, L. et al. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. BioScience 68, 996–1006 (2018).36.Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239 (2019).PubMed
Article
PubMed Central
Google Scholar
37.Zotz, G. The systematic distribution of vascular epiphytes–a critical update. Bot. J. Linn. Soc. 171, 453–481 (2013).Article
Google Scholar
38.Zotz, G. Vascular epiphytes in the temperate zones–a review. Plant Ecol. 176, 173–183 (2005).Article
Google Scholar
39.Taylor, A., Weigelt, P., König, C., Zotz, G. & Kreft, H. Island disharmony revisited using orchids as a model group. New Phytol. 223, 597–606 (2019).PubMed
Article
PubMed Central
Google Scholar
40.Razanajatovo, M. et al. Autofertility and self‐compatibility moderately benefit island colonization of plants. Glob. Ecol. Biogeogr. 28, 341–352 (2019).Article
Google Scholar
41.van Kleunen, M. et al. The Global Naturalized Alien Flora (Glo NAF) database. Ecology 100, e02542 (2019).PubMed
Article
PubMed Central
Google Scholar
42.Pysek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).Article
Google Scholar
43.Weigelt, P., König, C. & Kreft, H. GIFT–A global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).Article
Google Scholar
44.Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 23, 998–1002 (2012).Article
Google Scholar
45.Byng, J. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).Article
Google Scholar
46.Maherali, H. et al. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188, E113–E125 (2016).PubMed
Article
PubMed Central
Google Scholar
47.Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).CAS
Article
Google Scholar
48.Gerdemann, J. Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopathol. 6, 397–418 (1968).Article
Google Scholar
49.Bueno, C. G., Gerz, M., Zobel, M. & Moora, M. Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza 29, 1–11 (2018).Article
CAS
Google Scholar
50.Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115(2018).51.Vrålstad, T. Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol. 164, 7–10 (2004).52.Vrålstad, T., Fossheim, T. & Schumacher, T. Piceirhiza bicolorata–the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol. 145, 549–563 (2000).PubMed
Article
PubMed Central
Google Scholar
53.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed
PubMed Central
Article
Google Scholar
54.Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). Report No. 2331-1258, (US Geological Survey, 2011).55.Center for International Earth Science Information Network – CIESIN – Columbia University, U. N. F. a. A. P.-F., and Centro Internacional de Agricultura Tropical – CIAT. Gridded Population of the World, Version 3 (GPWv3): Population Count Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). (2005).56.Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article
Google Scholar
57.Weigelt, P. & Kreft, H. Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography 36, 417–429 (2013).Article
Google Scholar
58.Kreft, H., Jetz, W., Mutke, J., Kier, G. & Barthlott, W. Global diversity of island floras from a macroecological perspective. Ecol. Lett. 11, 116–127 (2008).PubMed
PubMed Central
Google Scholar
59.Triantis, K. A., Economo, E. P., Guilhaumon, F. & Ricklefs, R. E. Diversity regulation at macro‐scales: species richness on oceanic archipelagos. Glob. Ecol. Biogeogr. 24, 594–605 (2015).Article
Google Scholar
60.Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35, 879–888 (2012).Article
Google Scholar
61.Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST. 27, 716–748 https://doi.org/10.1007/s11749-018-0599-x (2018).Article
Google Scholar
62.R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2019).63.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
64.Delavaux, C. et al. Mycorrhizal Types Influence Island Biogeography of Plants: associated data. Zenodo https://doi.org/10.5281/zenodo.5179626 (2021). More