Effects of fertilizer under different dripline spacings on summer maize in northern China
1.China. China statistical yearbook. (China Statistics Press, 2020).2.Shiferaw, B., Prasanna, B. M., Hellin, J. & Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 3, 307–327 (2011).Article
Google Scholar
3.Chen, M. P., Sun, F. & Shindo, J. China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios. Resour. Conserv. Recycl. 111, 10–27 (2016).Article
Google Scholar
4.He, Y. X. et al. Tracking ammonia morning peak, sources and transport with 1 Hz measurements at a rural site in North China Plain. Atmos. Environ. 235, 117630 (2020).CAS
Article
Google Scholar
5.Zhang, Y. et al. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ. Pollut. 158, 490–501 (2010).CAS
PubMed
Article
Google Scholar
6.Ayars, J. E., Fulton, A. & Taylor, B. Subsurface drip irrigation in California—Here to stay?. Agric. Water Manag. 157, 39–47 (2015).Article
Google Scholar
7.Chauhdary, J. N., Bakhsh, A., Engel, B. A. & Ragab, R. Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach. Agric. Water Manag. 221, 449–461 (2019).Article
Google Scholar
8.Mali, S. S., Naik, S. K., Jha, B. K., Singh, A. K. & Bhatt, B. P. Planting geometry and growth stage linked fertigation patterns: Impact on yield, nutrient uptake and water productivity of Chilli pepper in hot and sub-humid climate. Sci. Hortic. (Amsterdam) 249, 289–298 (2019).Article
Google Scholar
9.Silber, A. et al. High fertigation frequency: the effects on uptake of nutrients, water and plant growth. Plant Soil 253, 467–477 (2003).CAS
Article
Google Scholar
10.Wu, D. L. et al. Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China. Agric. Water Manag. 213, 200–211 (2019).Article
Google Scholar
11.Ning, D. et al. Deficit irrigation combined with reduced N-fertilizer rate can mitigate the high nitrous oxide emissions from Chinese drip-fertigated maize field. Glob. Ecol. Conserv. 20, e00803 (2019).Article
Google Scholar
12.Sandhu, O. S. et al. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agric. Water Manag. 219, 19–26 (2019).Article
Google Scholar
13.Li, H. et al. Effects of different nitrogen fertilizers on the yield, water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agric. Water Manag. 243, 106474 (2021).Article
Google Scholar
14.Lamm, F. R., Stone, L. R., Manges, H. L. & O’Brien, D. M. Optimum lateral spacing for subsurface drip-irrigated corn. Trans. ASAE 40, 1021–1027 (1997).Article
Google Scholar
15.Bozkurt, Y., Yazar, A., Gençel, B. & Sezen, M. S. Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey. Agric. Water Manag. 85, 113–120 (2006).Article
Google Scholar
16.Chen, R. et al. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crop. Res. 179, 52–62 (2015).Article
Google Scholar
17.Zhou, L. et al. Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil. Agric. Water Manag. 184, 114–123 (2017).Article
Google Scholar
18.Eissa, M. A. Efficiency of P fertigation for drip-irrigated potato grown on calcareous sandy soils. Potato Res. 62, 97–108 (2019).CAS
Article
Google Scholar
19.Irmak, S., Djaman, K. & Rudnick, D. R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig. Sci. 34, 271–286 (2016).Article
Google Scholar
20.Yao, Y. L. et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crop. Res. 218, 254–266 (2018).Article
Google Scholar
21.Ziadi, N., Cambouris, A. N., Nyiraneza, J. & Nolin, M. C. Across a landscape, soil texture controls the optimum rate of N fertilizer for maize production. Field Crop. Res. 148, 78–85 (2013).Article
Google Scholar
22.Fang, H. et al. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau. China. Soil Tillage Res. 199, 104546 (2020).Article
Google Scholar
23.Zheng, J. et al. Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China. Agric. Water Manag. 248, 106778 (2021).Article
Google Scholar
24.Qi, X. L. et al. Grain yield and apparent N recovery efficiency of dry direct-seeded rice under different N treatments aimed to reduce soil ammonia volatilization. Field Crop. Res. 134, 138–143 (2012).Article
Google Scholar
25.Han, K., Zhou, C. J. & Wang, L. Q. Reducing ammonia volatilization from maize fields with separation of nitrogen fertilizer and water in an alternating furrow irrigation system. J. Integr. Agric. 13, 1099–1112 (2014).CAS
Article
Google Scholar
26.Amin, A.E.-E.A.Z. Carbon sequestration, kinetics of ammonia volatilization and nutrient availability in alkaline sandy soil as a function on applying calotropis biochar produced at different pyrolysis temperatures. Sci. Total Environ. 726, 138489 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
27.Li, H. T. et al. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools. Agric. Ecosyst. Environ. 308, 107272 (2021).CAS
Article
Google Scholar
28.Sun, B. et al. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ. Int. 144, 105989 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Tabli, N. et al. Plant growth promoting and inducible antifungal activities of irrigation well water-bacteria. Biol. Control 117, 78–86 (2018).Article
Google Scholar
30.Zhong, X. M. et al. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 306, 107183 (2021).CAS
Article
Google Scholar
31.Li, C., Sun, M. X., Xu, X. B. & Zhang, L. X. Characteristics and influencing factors of mulch film use for pollution control in China: Microcosmic evidence from smallholder farmers. Resour. Conserv. Recycl. 164, 105222 (2021).Article
Google Scholar
32.Li, M. N., Wang, Y. L., Adeli, A. & Yan, H. J. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crop. Res. 218, 115–125 (2018).Article
Google Scholar
33.Pinheiro, P. L. et al. Straw removal reduces the mulch physical barrier and ammonia volatilization after urea application in sugarcane. Atmos. Environ. 194, 179–187 (2018).ADS
CAS
Article
Google Scholar
34.Zhu, H. et al. Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil. CATENA 190, 104527 (2020).CAS
Article
Google Scholar
35.Oppong Danso, E. et al. Effect of different fertilization and irrigation methods on nitrogen uptake, intercepted radiation and yield of okra (Abelmoschus esculentum L.) grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 147, 34–42 (2015).Article
Google Scholar
36.Liu, R. H. et al. Chemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou Reservoir. Nutr. Cycl. Agroecosystems 98, 295–307 (2014).CAS
Article
Google Scholar
37.Sanz-Cobena, A. et al. Strategies for greenhouse gas emissions mitigation in mediterranean agriculture: A review. Agric. Ecosyst. Environ. 238, 5–24 (2017).CAS
Article
Google Scholar
38.Zhou, J. B., Xi, J. G., Chen, Z. J. & Li, S. X. Leaching and transformation of nitrogen fertilizers in soil after application of n with irrigation: A soil column method. Pedosphere 16, 245–252 (2006).CAS
Article
Google Scholar
39.Rosemary, F., Vitharana, U. W. A., Indraratne, S. P., Weerasooriya, R. & Mishra, U. Exploring the spatial variability of soil properties in an Alfisol soil catena. CATENA 150, 53–61 (2017).CAS
Article
Google Scholar
40.Liu, Y., Lv, J. S., Zhang, B. & Bi, J. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China. Sci. Total Environ. 450–451, 108–119 (2013).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
41.Vasu, D. et al. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res. 169, 25–34 (2017).Article
Google Scholar
42.Jin, J. Y., Bai, Y. L. & Yang, L. P. High Efficiency Soil Nutrient Testing Technology and Equipment (China Agriculture Press, 2006) (in Chinese).
Google Scholar
43.Tan, Y. et al. Improving wheat grain yield via promotion of water and nitrogen utilization in arid areas. Sci. Rep. 11, 13821 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
44.Ren, Y. et al. Effect of sowing proportion on above- and below-ground competition in maize–soybean intercrops. Sci. Rep. 11, 15760 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Wang, Z. H., Liu, X. J., Ju, X. T., Zhang, F. S. & Malhi, S. S. Ammonia volatilization loss from surface-broadcast urea: comparison of vented- and closed-chamber methods and loss in winter wheat–summer maize rotation in North China plain. Commun. Soil Sci. Plant Anal. 35, 2917–2939 (2004).CAS
Article
Google Scholar
46.Zhou, L. P. et al. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field. J. Plant Nutr. Fertil. 22, 1449–1457 (2016) (in Chinese).
Google Scholar
47.Huang, T. M. et al. Grain zinc concentration and its relation to soil nutrient availability in different wheat cropping regions of China. Soil Tillage Res. 191, 57–65 (2019).Article
Google Scholar
48.Wang, Z., Li, J. & Li, Y. Effects of drip system uniformity and nitrogen application rate on yield and nitrogen balance of spring maize in the North China Plain. Field. Crop. Res. 159, 10–20 (2014).Article
Google Scholar
49.Brar, H. S., Vashist, K. K. & Bedi, S. Phenology and yield of spring maize (Zea mays L.) under different drip irrigation regimes and planting methods. J. Agric. Sci. Technol. 18, 831–843 (2016).
Google Scholar
50.Poch-Massegú, R., Jiménez-Martínez, J., Wallis, K. J., Ramírez de Cartagena, F. & Candela, L. Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions. Agric. Water Manag. 134, 1–13 (2014).Article
Google Scholar
51.Yuan, Z. Q. et al. Film mulch with irrigation and rainfed cultivations improves maize production and water use efficiency in Ethiopia. Ann. Appl. Biol. 175, 215–227 (2019).Article
Google Scholar
52.Wang, J. L. Research on the use of water and fertilizer for drip irrigation multiple cropping silage maize (Shihezi University, 2016) (in Chinese).
Google Scholar
53.Lamm, F. R. & Trooien, T. P. Subsurface drip irrigation for corn production: a review of 10 years of research in Kansas. Irrig. Sci. 22, 195–200 (2003).Article
Google Scholar
54.Yan, X. L., Jia, L. M. & Dai, T. F. Effects of water and nitrogen coupling under drip irrigation on tree growth and soil nitrogen content of Populus × euramericana cv. ‘Guariento’. Chin. J. Appl. Ecol. 29, 2195 (2018) (in Chinese).
Google Scholar
55.Sun, W. T., Sun, Z. X., Wang, C. X., Gong, L. & Zhang, Y. L. Coupling effect of water and fertilizer on corn yield under drip fertigation. Sci. Agric. Sin. 39, 563–568 (2006) (in Chinese).
Google Scholar
56.Banerjee, B., Pathak, H. & Aggarwal, P. Effects of dicyandiamide, farmyard manure and irrigation on crop yields and ammonia volatilization from an alluvial soil under a rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Biol. Fertil. Soils 36, 207–214 (2002).CAS
Article
Google Scholar
57.Yang, Q. L., Liu, P., Dong, S. T., Zhang, J. W. & Zhao, B. Effects of fertilizer type and rate on summer maize grain yield and ammonia volatilization loss in northern China. J. Soils Sediments 19, 2200–2211 (2019).CAS
Article
Google Scholar
58.Zhou, G. W. et al. Effects of saline water irrigation and N application rate on NH3 volatilization and N use efficiency in a drip-irrigated cotton field. Water Air Soil Pollut. 227, 103 (2016).ADS
Article
CAS
Google Scholar
59.Zheng, J., Kilasara, M. M., Mmari, W. N. & Funakawa, S. Ammonia volatilization following urea application at maize fields in the East African highlands with different soil properties. Biol. Fertil. Soils 54, 411–422 (2018).CAS
Article
Google Scholar
60.Li, Z. et al. Nitrogen use efficiency and ammonia oxidation of corn field with drip irrigation in Hetao irrigation district. J. Irrig. Drain. 37, 37–42,49 (2018) (in Chinese).61.Zheng, L. et al. Impact of fertilization on ammonia volatilization and N2O emissions in an open vegetable field. Chin. J. Appl. Ecol. 29, 4063–4070 (2018) (in Chinese).
Google Scholar
62.Li, Y. Q., Liu, G., Hong, M., Wu, Y. & Chang, F. Effect of optimized nitrogen application on nitrous oxide emission and ammonia volatilization in Hetao irrigation area. Acta Sci. Circumst. 39, 578–584 (2019) (in Chinese).CAS
Google Scholar
63.Das, P. et al. Emissions of ammonia and nitric oxide from an agricultural site following application of different synthetic fertilizers and manures. Geosci. J. 12, 177–190 (2008).ADS
CAS
Article
Google Scholar
64.Cai, G. X. et al. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr. Cycl. Agroecosyst. 63, 187–195 (2002).CAS
Article
Google Scholar
65.Wang, X. L. et al. Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin. Agric. Water Manag. 241, 106436 (2020).Article
Google Scholar
66.Li, G. et al. Effect of drip fertigation on summer maize in north China. Sci. Agric. Sin. 52, 1930–1941 (2019) (in Chinese).
Google Scholar More