More stories

  • in

    A millennium of trophic stability in Atlantic cod (Gadus morhua): transition to a lower and converging trophic niche in modern times

    1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: Why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).Article 

    Google Scholar 
    7.Misarti, N., Finney, B. P., Maschner, H. & Wooller, M. J. Changes in northeast Pacific marine ecosystems over the last 4500 years: Evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19, 1139–1151 (2009).ADS 
    Article 

    Google Scholar 
    8.Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, 35–39 (2012).
    Google Scholar 
    9.Szpak, P., Orchard, T. J., Mckechnie, I. & Gröcke, D. R. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: Isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).Article 

    Google Scholar 
    10.McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. USA 111, E807–E816 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Orton, D. C. Archaeology as a tool for understanding past marine resource use and its impact. In Perspectives on Oceans Past (eds Schwerdtner Máñez, K. & Poulsen, B.) 47–69 (Springer, 2016).
    Google Scholar 
    12.Barrett, J. H., Locker, A. M. & Roberts, C. M. The origins of intensive marine fishing in medieval Europe: The English evidence. Proc. R. Soc. Lond. B. 271, 2417–2421 (2004).Article 

    Google Scholar 
    13.Edvardsson, R. The Role of Marine Resources in the Medieval Economy of Vestfirðir, Iceland (CUNY, 2019).
    Google Scholar 
    14.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    15.Wada, E., Kabaya, Y. & Kurihara, Y. Stable isotopic structure of aquatic ecosystems. J. Biosci. 18, 483–499 (1993).CAS 
    Article 

    Google Scholar 
    16.Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta. 48, 1135–1140 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Newsome, S. D. et al. Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: Isotopic analysis of northern fur seal teeth. Mar. Ecol. Prog. Ser. 332, 211–224 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: A long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    20.Emslie, S. D. & Patterson, W. P. Abrupt recent shift in δ13C and δ15N values in Adélie Penguin eggshell in Antarctica. Proc. Natl. Acad. Sci. USA 104, 11666–11669 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Emslie, S. D., Polito, M. J. & Patterson, W. P. Stable isotope analysis of ancient and modern Gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct. Sci. 25, 213–218 (2013).ADS 
    Article 

    Google Scholar 
    22.Drinkwater, K. F. The regime shift of the 1920s and 1930s in the North Atlantic. Prog. Oceanogr. 68, 134–151 (2006).ADS 
    Article 

    Google Scholar 
    23.Ástþórsson, Ó. S., Gíslason, Á. & Jónsson, S. Climate variability and the Icelandic marine ecosystem. Deep-Sea Res. PT II(54), 2456–2477 (2007).ADS 
    Article 

    Google Scholar 
    24.Edvardsson, R., Bárðarson, H., Patterson, W. P., Timsic, S. & Ólafsdóttir, G. Á. Change in Atlantic cod migrations and adaptability of early land-based fishers to severe climate variation in the North Atlantic. Quat. Res. (In press).25.Dahl-Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Ogilvie, A. E. & Jonsson, T. The Iceberg in the Mist: Northern Research in Pursuit of a Little Age (Kluwer Academic, 2001).Book 

    Google Scholar 
    27.Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K. L. & Seidenkrantz, M. S. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology 33, 73–76 (2005).ADS 
    Article 

    Google Scholar 
    28.Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522–538 (2010).ADS 
    Article 

    Google Scholar 
    29.Patterson, W. P., Dietrich, K. A., Holmden, C. & Andrews, J. T. Two millennia of North Atlantic seasonality and implications for Norse colonies. Proc. Natl. Acad. Sci. USA 107, 5306–5310 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Geffen, A. J. et al. High-latitude climate variability and its effect on fisheries resources as revealed by fossil cod otoliths. ICES J. Mar. Sci. 68, 1081–1089 (2011).Article 

    Google Scholar 
    31.Ólafsdóttir, G. Á., Westfall, K. M., Edvardsson, R. & Pálsson, S. Historical DNA reveals the demographic history of Atlantic cod (Gadus morhua) in medieval and early modern Iceland. Proc. R. Soc. Lond. B. 281, 20132976 (2014).
    Google Scholar 
    32.Ólafsdóttir, G. Á., Pétursdóttir, G., Bárðarson, H. & Edvardsson, R. A millennium of north-east Atlantic cod juvenile growth trajectories inferred from archaeological otoliths. PLoS One 12, e0187134 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).Article 

    Google Scholar 
    34.Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).Article 

    Google Scholar 
    37.Persson, A. & Hansson, L. A. Diet shift in fish following competitive release. CJFAS 56, 70–78 (1999).
    Google Scholar 
    38.Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, e103132 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Bas, M. et al. Back to the future? Late Holocene marine food web structure in a warm climatic phase as a predictor of trophodynamics in a warmer South-Western Atlantic Ocean. Glob. Change Biol. 25, 404–419 (2019).ADS 
    Article 

    Google Scholar 
    40.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev. 106, 131–148 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Bas, M. & Cardona, L. Effects of skeletal element identity, delipidation and demineralization on the analysis of stable isotope ratios of C and N in fish bone. J. Fish. Biol. 92, 420–437 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Harrison, R. The Siglunes 2011/12 Archaeofauna. Interim Report on the Fishing Station’s Sampled Faunal Remains. (http://www.nabohome.org/uploads/ramonah/RH_Siglunes_Faunal_Report_5_30_2014.pdf (2014).43.Lárusdóttir, B., Roberts, H. M., Þorgeirsdóttir, S. S., Harrison, R. & Sigurgeirsson, Á. Siglunes. Archaeological investigations in 2011. http://www.nabohome.org/uploads/ramonah/FS480-11121_Siglunes_2011.pdf (2012).44.Leyden, J. J., Wassenaar, L. I., Hobson, K. A. & Walker, E. G. Stable hydrogen isotopes of bison bone collagen as a proxy for Holocene climate on the Northern Great Plains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 87–99 (2006).Article 

    Google Scholar 
    45.Craig, H. Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science 133, 1702–1703 (1961).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob. Change Biol. 12, 611–625 (2006).ADS 
    Article 

    Google Scholar 
    48.Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    49.Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Glob. Biogeochem. Cycles 13, 307–335 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & Mcnichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob. Biogeochem. Cycles 17, 1–20 (2003).Article 
    CAS 

    Google Scholar 
    51.Quay, P. D., Tilbrook, B. & Wong, C. S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256, 74–79 (1992).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.1 (2020).53.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Þór, J. Þ. British Trawlers in Icelandic Waters: History of British Steam Trawling off Iceland, 1889–1916, and the Anglo-Icelandic Fisheries Dispute, 1896–1897 (Fjölvi, 1992).
    Google Scholar 
    57.Þór, J. Þ. Saga Sjávarútvegs á Íslandi. 1902–1939 Vélaöld (Bókaútgáfan Hólar, 2003).
    Google Scholar 
    58.Gill, A. B. The dynamics of prey choice in fish: The importance of prey size and satiation. J. Fish. Biol. 63, 105–116 (2003).Article 

    Google Scholar 
    59.Jennings, S. Size-based analyses of aquatic food webs. In Aquatic Food Webs: An Ecosystem Approach (eds Belgrano, A. et al.) 86–97 (Oxford University Press, 2005).Chapter 

    Google Scholar 
    60.Zenteno, L. et al. Dietary consistency of male South American sea lions (Otaria flavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Biol. 162, 275–289 (2015).CAS 
    Article 

    Google Scholar 
    61.Vales, D. G. et al. Holocene changes in the trophic ecology of an apex marine predator in the South Atlantic Ocean. Oecologia 183, 555–570 (2017).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Bas, M. et al. Predicting habitat use by the Argentine hake Merluccius hubbsi in a warmer world: Inferences from the Middle Holocene. Oecologia 193, 461–474 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Sharpe, D. M. & Chapman, L. J. Niche expansion in a resilient endemic species following introduction of a novel top predator. Freshw. Biol. 59, 2539–2554 (2014).Article 

    Google Scholar 
    64.Jaworski, A. & Ragnarsson, S. Á. Feeding habits of demersal fish in Icelandic waters: A multivariate approach. ICES J. Mar. Sci. 63, 1682–1694 (2006).Article 

    Google Scholar 
    65.Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).Article 

    Google Scholar 
    66.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).Article 

    Google Scholar 
    67.Jennings, S. & Van Der Molen, J. Trophic levels of marine consumers from nitrogen stable isotope analysis: Estimation and uncertainty. ICES J. Mar. Sci. 72, 2289–2300 (2015).Article 

    Google Scholar 
    68.MFRI. Atlantic cod Gadus morhua (MFRI Assessment Reports 2020). Marine and Freshwater Research Institute. https://www.hafogvatn.is/static/extras/images/01-cod_tr_isl1232625.pdf (2020).69.Thorsteinsson, V., Pálsson, Ó. K., Tómasson, G. G., Jónsdóttir, I. G. & Pampoulie, C. Consistency in the behaviour types of the Atlantic cod: Repeatability, timing of migration and geo-location. Mar. Ecol. Prog. Ser. 462, 251–260 (2012).ADS 
    Article 

    Google Scholar  More

  • in

    Upper limits to sustainable organic wheat yields

    1.Goulding, K., Trewavas, A. & Giller, K. E. Feeding the world: a contribution to the debate. World Agric. 2, 32–38 (2011).
    Google Scholar 
    2.Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    3.Epule, T. E. Organic Farming 1–16 (Elsevier, 2019).Book 

    Google Scholar 
    4.FAO. FAO Statistical Pocketbook 2015: World Food and Agriculture. Food and Agriculture Organization; ISBN 978-92-5-108802-9. http://www.fao.org/documents/card/en/c/383d384a-28e6-47b3-a1a2-2496a9e017b2/. Accessed 30 November 2016, 2015.5.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    6.Hazell, P. & Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 495–515 (2008).Article 

    Google Scholar 
    7.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Ladha, J. et al. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6, 19355 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    9.de Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).Article 

    Google Scholar 
    10.Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    11.Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. Lond. B Biol. Sci. 282, 20141396 (2015).
    Google Scholar 
    12.Connor, D. J. Organically grown crops do not a cropping system make and nor can organic agriculture nearly feed the world. Field Crops Res. 144, 145–147. https://doi.org/10.1016/j.fcr.2012.12.013 (2013).Article 

    Google Scholar 
    13.Berry, P. M. et al. Is the productivity of organic farms restricted by the supply of available nitrogen?. Soil Use Manag. 18, 248–255 (2002).Article 

    Google Scholar 
    14.Adamtey, N. et al. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 235, 61–79 (2016).Article 

    Google Scholar 
    15.Poudel, D., Horwath, W., Lanini, W., Temple, S. & Van Bruggen, A. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 90, 125–137 (2002).CAS 
    Article 

    Google Scholar 
    16.Kravchenko, A. N., Snapp, S. S. & Robertson, G. P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Nat. Acad. Sci. 114, 926–931 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).Article 

    Google Scholar 
    18.David, C., Jeuffroy, M., Henning, J. & Meynard, J. Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron. Sust. Dev. 25, 213 (2005).Article 

    Google Scholar 
    19.Köpke, U. Nutrient management in organic farming systems—The Case of Nitrogen. Biol. Agr. Hort. 11, 15–29 (1995).Article 

    Google Scholar 
    20.Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R. & Rayns, F. W. Managing soil fertility in organic farming systems. Soil Use Manag. 18, 239–247 (2002).Article 

    Google Scholar 
    21.Watson, C. et al. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag. 18, 264–273 (2002).Article 

    Google Scholar 
    22.Nimmo, J., Lynch, D. & Owen, J. Quantification of nitrogen inputs from biological nitrogen fixation to whole farm nitrogen budgets of two dairy farms in Atlantic Canada. Nutr. Cycl. Agroecosyst. 96, 93–105 (2013).Article 

    Google Scholar 
    23.Van Kessel, C. & Hartley, C. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?. Field Crops Res. 65, 165–181 (2000).Article 

    Google Scholar 
    24.Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).CAS 
    Article 

    Google Scholar 
    25.Smith, O. M. et al. Organic farming provides reliable environmental benefits but increases variability in crop yields: A global meta-analysis. Front. Sustain. Food Syst. 3, 82 (2019).Article 

    Google Scholar 
    26.Becker, M., Ali, M., Ladha, J. & Ottow, J. Agronomic and economic evaluation of Sesbania rostrata green manure establishment in irrigated rice. Field Crops Res. 40, 135–141 (1995).Article 

    Google Scholar 
    27.Ventura, W. & Watanabe, I. Green manure production of Azolla microphylla and Sesbania rostrata and their long-term effects on rice yields and soil fertility. Biol. Fert. Soils 15, 241–248 (1993).CAS 
    Article 

    Google Scholar 
    28.Bussink, D. & Oenema, O. Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr. Cycl. Agroecosyst. 51, 19–33 (1998).Article 

    Google Scholar 
    29.Fillery, I. The fate of biologically fixed nitrogen in legume-based dryland farming systems: a review. Anim. Prod. Sci. 41, 361–381 (2001).CAS 
    Article 

    Google Scholar 
    30.Oenema, O., Witzke, H., Klimont, Z., Lesschen, J. & Velthof, G. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric. Ecosyst. Environ. 133, 280–288 (2009).CAS 
    Article 

    Google Scholar 
    31.Graham, P. H. & Vance, C. P. Legumes: Importance and constraints to greater use. Plant Physiol. 131, 872–877 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Cassman, K., Whitney, A. & Stockinger, K. Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen source. Crop Sci. 20, 239–244 (1980).CAS 
    Article 

    Google Scholar 
    33.Gunawardena, S., Danso, S. & Zapata, F. Phosphorus requirement and sources of nitrogen in three soybean (Glycine max) genotypes, Bragg, nts 382 and Chippewa. Plant Soil 151, 1–9 (1993).CAS 
    Article 

    Google Scholar 
    34.Scherer, H., Pacyna, S., Manthey, N. & Schulz, M. Sulphur supply to peas (Pisum sativum L.) influences symbiotic N2 fixation. Plant Soil Environ. 52, 72–77 (2006).CAS 
    Article 

    Google Scholar 
    35.Anderson, A. & Spencer, D. Molybdenum in nitrogen metabolism of legumes and non-legumes. Aust. J. Sci. Res. 3, 414–430 (1950).CAS 

    Google Scholar 
    36.Fuchs, J. G. et al. Evaluation of the causes of legume yield depression syndrome using an improved diagnostic tool. Appl. Soil Ecol. 79, 26–36 (2014).Article 

    Google Scholar 
    37.Cassmann, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen use efficiency and nitrogen management. J. Human Environ. 31, 132–140 (2002).Article 

    Google Scholar 
    38.Kramer, A. W., Doane, T. A., Horwath, W. R. & van Kessel, C. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agric. Ecosyst. Envir. 91, 233–243 (2002).Article 

    Google Scholar 
    39.Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    40.van Bruggen, A. H. C. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Dis. 79, 976–984 (1995).Article 

    Google Scholar 
    41.Zehnder, G. et al. Arthropod pest management in organic crops. Annu. Rev. Entomol. 52, 57–80 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bond, W. & Grundy, A. C. Non-chemical weed management in organic farming systems. Weed Res. 41, 383–405 (2001).Article 

    Google Scholar 
    43.Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycl. 23, 99. https://doi.org/10.1029/2009GB003576 (2009).CAS 
    Article 

    Google Scholar 
    44.Lu, C. C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Sci. Data 9, 181 (2017).Article 
    ADS 

    Google Scholar 
    45.Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycl. 13, 647–662 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    46.Crews, T. & Peoples, M. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Envir. 102, 279–297 (2004).Article 

    Google Scholar 
    47.Köpke, U. & Nemecek, T. Ecological services of faba bean. Field Crops Res. 115, 217–233. https://doi.org/10.1016/j.fcr.2009.10.012 (2010).Article 

    Google Scholar 
    48.Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390–397 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Peterson, T. A. & Russelle, M. P. Alfalfa and the nitrogen cycle in the Corn Belt. J. Soil Water Conserv. 46, 229–235 (1991).
    Google Scholar 
    50.Peoples, M., Herridge, D. & Ladha, J. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production?. Plant Soil 174, 3–28 (1995).CAS 
    Article 

    Google Scholar 
    51.Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).Article 

    Google Scholar 
    53.Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    54.Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Kijlstra, A. & Eijck, I. Animal health in organic livestock production systems: A review. NJAS-Wagen. J. Life Sci. 54, 77–94 (2006).Article 

    Google Scholar 
    56.Kramer, S. B., Reganold, J. P., Glover, J. D., Bohannan, B. J. M. & Mooney, H. A. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. PNAS 103, 4522–4527 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    57.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    58.Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sust. 2, 34–42 (2010).Article 

    Google Scholar 
    59.Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 447–465 (2008).PubMed 
    Article 

    Google Scholar 
    60.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    61.Haas, G., Wetterich, F. & Kopke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Envir. 83, 43–53 (2001).Article 

    Google Scholar 
    62.Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945. https://doi.org/10.1016/j.envpol.2010.06.006 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Primary production ultimately limits fisheries economic performance

    1.Kildow, J. T. & McIlgorm, A. The importance of estimating the contribution of the oceans to national economies. Mar. Policy 34, 367–374 (2010).Article 

    Google Scholar 
    2.Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).Article 

    Google Scholar 
    4.National Marine Fisheries Service. Fisheries Economics of the United States, 2016. US Dept. of Commerce, NOAA Tech. Memo. NMFS-F/SPO-187 (2018).5.Jennings, S., Lee, J. & Hiddink, J. G. Assessing fishery footprints and the trade-offs between landings value, habitat sensitivity, and fishing impacts to inform marine spatial planning and an ecosystem approach. ICES J. Mar. Sci. 69, 1053–1063 (2012).Article 

    Google Scholar 
    6.Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. USA 114, E1441–E1449 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).Article 

    Google Scholar 
    12.Marshall, K. N. et al. Ecosystem-based fisheries management for social–ecological systems: Renewing the focus in the United States with next generation fishery ecosystem plans. Conserv. Lett. 11, e12367 (2018).Article 

    Google Scholar 
    13.Link, J. Ecosystem-Based Fisheries Management: Confronting Tradeoffs (Cambridge University Press, 2010).Book 

    Google Scholar 
    14.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    15.Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).PubMed 
    Article 

    Google Scholar 
    17.Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Murawski, S. A. Definitions of overfishing from an ecosystem perspective. ICES J. Mar. Sci. 57, 649–658 (2000).Article 

    Google Scholar 
    19.Breitburg, D. L. et al. Nutrient enrichment and fisheries exploitation: Interactive effects on estuarine living resources and their management. Hydrobiologia 629, 31–47 (2009).CAS 
    Article 

    Google Scholar 
    20.Hondorp, D. W., Breitburg, D. L. & Davias, L. A. Eutrophication and fisheries: Separating the effects of nitrogen loads and hypoxia on the pelagic-to-demersal ratio and other measures of landings composition. Mar. Coast. Fish. 2, 339–361 (2010).Article 

    Google Scholar 
    21.Link, J. S. et al. Emergent properties delineate marine ecosystem perturbation and recovery. Trends Ecol. Evol. 30, 649–661 (2015).PubMed 
    Article 

    Google Scholar 
    22.Tam, J. C. et al. Comparing apples to oranges: Common trends and thresholds in anthropogenic and environmental pressures across multiple marine ecosystems. Front. Mar. Sci. 4, 282 (2017).Article 

    Google Scholar 
    23.Link, J. S. et al. Marine ecosystem assessment in a fisheries management context. Can. J. Fish. Aquat. Sci. 59, 1429–1440 (2002).Article 

    Google Scholar 
    24.Garcia, S. M., Rice, J. & Charles, A. Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-evolution (Wiley-Blackwell, 2014).Book 

    Google Scholar 
    25.Colloca, F. et al. Rebuilding Mediterranean fisheries: A new paradigm for ecological sustainability. Fish Fish. 14, 89–109 (2013).Article 

    Google Scholar 
    26.National Oceanic and Atmospheric Administration (NOAA), Office for Coastal Management (OCM), NOAA Report on the US Marine Economy. NOAA OCM. 23p. https://coast.noaa.gov/digitalcoast/training/econreport.html (2020).27.Teh, L. C. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).Article 

    Google Scholar 
    28.Laterra, P. et al. How are jobs and ecosystem services linked at the local scale?. Ecosyst. Serv. 35, 207–218 (2019).Article 

    Google Scholar 
    29.Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).ADS 
    Article 

    Google Scholar 
    30.Graham, N. A. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Koslow, J. A. & Davison, P. C. Productivity and biomass of fishes in the California Current Large Marine Ecosystem: Comparison of fishery-dependent and-independent time series. Environ. Dev. 17, 23–32 (2016).Article 

    Google Scholar 
    32.Kahru, M., Kudela, R., Manzano-Sarabia, M. & Mitchell, B. G. Trends in primary production in the California Current detected with satellite data. J. Geophys. Res. Oceans 114, C02004 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    33.Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. ICES J. Mar. Sci. 70, 755–767 (2013).Article 

    Google Scholar 
    34.Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Critical points in ecosystem responses to fishing and environmental pressures. Mar. Ecol. Progr. Ser. 521, 1–17 (2015).ADS 
    Article 

    Google Scholar 
    35.Fogarty, M. J. & Murawski, S. A. Large-scale disturbance and the structure of marine systems: Fishery impacts on Georges Bank. Ecol. Appl. 8(sp1), S6–S22 (1998).Article 

    Google Scholar 
    36.Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).ADS 
    Article 

    Google Scholar 
    37.Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).ADS 
    Article 

    Google Scholar 
    38.Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2010).ADS 
    Article 

    Google Scholar 
    39.Banse, K. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 409–440 (Springer, 1992).Chapter 

    Google Scholar 
    40.Murray, C. J. et al. Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2 (2019).Article 

    Google Scholar 
    41.Möllmann, C. Effects of climate change and fisheries on the marine ecosystem of the Baltic Sea. In Oxford Research Encyclopedia of Climate Science (ed. Möllmann, C.) (University Press, 2019). https://doi.org/10.1093/acrefore/9780190228620.013.682.Chapter 

    Google Scholar 
    42.Intergovernmental Oceanographic Commission (IOC-UNESCO) and United Nations Environmental Program (UNEP). Large Marine Ecosystems: Status and Trends (United Nations Environment Programme UNEP, 2016).
    Google Scholar 
    43.Sangha, K. K., Stoeckl, N., Crossman, N. & Costanza, R. A state-wide economic assessment of coastal and marine ecosystem services to inform sustainable development policies in the Northern Territory, Australia. Mar. Policy 107, 103595 (2019).Article 

    Google Scholar 
    44.Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. USA 117, 2218–2224 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.McGowan, J. A., Bograd, S. J., Lynn, R. J. & Miller, A. J. The biological response to the 1977 regime shift in the California Current. Deep Sea Res. Pt. II 50(14–16), 2567–2582 (2003).ADS 
    Article 

    Google Scholar 
    46.Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60(2–4), 245–262 (2004).ADS 
    Article 

    Google Scholar 
    47.Kirkman, S. P. et al. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: A comparative assessment. Fish. Oceanogr. 24(S1), 15–30 (2015).Article 

    Google Scholar 
    48.Link, J. S., Watson, R. A., Pranovi, F. & Libralato, S. Comparative production of fisheries yields and ecosystem overfishing in African Large Marine Ecosystems. Environ. Devel. 36, 100529 (2020).Article 

    Google Scholar 
    49.Ye, Y. et al. Rebuilding global fisheries: The World Summit Goal, costs and benefits. Fish Fish. 14, 174–185 (2013).Article 

    Google Scholar 
    50.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ding, Q., Chen, X., Hilborn, R. & Chen, Y. Vulnerability to impacts of climate change on marine fisheries and food security. Mar. Policy 83, 55–61 (2017).Article 

    Google Scholar 
    52.NOAA Fisheries. NMFS Headquarters Ecosystem Based Fisheries Management Implementation Plan (NOAA Fisheries, 2019).
    Google Scholar 
    53.Witherell, D., Pautzke, C. & Fluharty, D. An ecosystem-based approach for Alaska groundfish fisheries. ICES J. Mar. Sci. 57, 771–777 (2000).Article 

    Google Scholar 
    54.National Aeronautics and Space Administration (NASA). NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Data. NASA OB.DAAC, Greenbelt, MD, USA. (2014)55.Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    56.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Peters, R. et al. Habitat science is a fundamental element in an ecosystem-based fisheries management framework: an update to the Marine Fisheries Habitat Assessment Improvement Plan. US Dept. of Commerce, NOAA. NOAA Tech. Memo. NMFS-F/SPO-181. (2018).58.Cannizzaro, J. P. & Carder, K. L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 101, 13–24 (2006).ADS 
    Article 

    Google Scholar 
    59.Reid, R. N., Almeida, F. P., & Zetlin, C. A. Essential fish habitat source document: Fishery-independent surveys, data sources, and methods. NOAA Tech. Memo. NMFS NE 122. (1999).60.Stauffer, G. NOAA Protocols for Groundfish Bottom Trawl Surveys of the Nation’s Fishery Resources. US Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-65. (2004).61.National Ocean Economics Program. State of the US Ocean and Coastal Economies 2016 Update. Middlebury Institute of International Studies at Monterey, Center for the Blue Economy. (2016).62.Craig, M. T. et al. Status review report of Pacific bluefin tuna (Thunnus orientalis). NOAA Tech. Memo. NMFS-SWFSC-587. (2017).63.National Oceanic and Atmospheric Administration (NOAA). Spatial trends in coastal socioeconomics (STICS): Coastal county definitions. NOAA. 12p. https://coast.noaa.gov/htdata/SocioEconomic/NOAA_CoastalCountyDefinitions.pdf (2013).64.National Oceanic and Atmospheric Administration (NOAA). NOAA Office of Coast Survey maritime zones of the United States. NOAA. (2021). https://nauticalcharts.noaa.gov/data/us-maritime-limits-and-boundaries.html.65.Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 1–9 (2017).Article 

    Google Scholar 
    66.NOAA Fisheries. National marine fisheries service—2nd quarter 2017 update. NOAA Fisheries 53p. (2017). More

  • in

    Analysis of spatiotemporal changes of agricultural land after the Second World War in Czechia

    1.Haddaway, N. R., Styles, D. & Pullin, A. S. Environmental impacts of farm land abandonment in high altitude/mountain regions: A systematic map of the evidence. Environ. Evid. 2(1), 18. https://doi.org/10.1186/2047-2382-2-18 (2013).Article 

    Google Scholar 
    2.Bender, O., Boehmer, H. J., Jens, D. & Schumacher, K. P. Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landsc. Ecol. 20(2), 149–163. https://doi.org/10.1007/s10980-003-1506-7 (2005).Article 

    Google Scholar 
    3.Biró, M., Szitár, K., Horváth, F., Bagi, I. & Molnár, Z. Detection of long-term landscape changes and trajectories in a Pannonian sand region: Comparing land-cover and habitat-based approaches at two spatial scales. Community Ecol. 14(2), 219–230. https://doi.org/10.1556/ComEc.14.2013.2.12 (2013).Article 

    Google Scholar 
    4.Schulp, C. J. E., Levers, C., Kuemmerle, T., Tieskens, K. F. & Verburg, P. H. Mapping and modelling past and future land use change in Europe’s cultural landscapes. Land Use Policy 80, 332–344. https://doi.org/10.1016/j.landusepol.2018.04.030 (2019).Article 

    Google Scholar 
    5.González Díaz, J. A., Celaya, R., Fernández García, R., Osoro, K. & Rosa García, R. Dynamics of rural landscapes in marginal areas of northern Spain: Past, present, and future. Land Degrad. Dev. 30, 141–150. https://doi.org/10.1002/ldr.3201 (2018).Article 

    Google Scholar 
    6.Hersperger, A. M., Gennaio, M.-P., Verburg, P. H., & Buergi, M. Linking land change with driving forces and actors: Four conceptual models. Ecol. Soci. 15(4) (2010). Retrieved from http://apps.webofknowledge.com.infozdroje.czu.cz/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=R1PQ9zBCVnF6m2Wcyo8&page=1&doc=2.7.Khromykh, V. & Khromykh, O. Analysis of spatial structure and dynamics of Tom Valley landscapes based on GIS, digital elevation model and remote sensing. Proc. Soc. Behav. Sci. 120, 811–815. https://doi.org/10.1016/j.sbspro.2014.02.165 (2014).Article 

    Google Scholar 
    8.Kienast, F. Analysis of historic landscape patterns with a geographical information system? A methodological outline. Landsc. Ecol. 8(2), 103–118. https://doi.org/10.1007/BF00141590 (1993).Article 

    Google Scholar 
    9.Matsushita, B., Xu, M. & Fukushima, T. Characterizing the changes in landscape structure in the Lake Kasumigaura Basin, Japan using a high-quality GIS dataset. Landsc. Urban Plan. 78(3), 241–250. https://doi.org/10.1016/j.landurbplan.2005.08.003 (2006).Article 

    Google Scholar 
    10.Plieninger, T. et al. Patterns and drivers of scattered tree loss in agricultural landscapes: Orchard meadows in Germany (1968–2009). PLoS ONE https://doi.org/10.1371/journal.pone.0126178 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Swetnam, R. D. Rural land use in England and Wales between 1930 and 1998: Mapping trajectories of change with a high resolution spatio-temporal dataset. Landsc. Urban Plan. 81(1–2), 91–103. https://doi.org/10.1016/j.landurbplan.2006.10.013 (2007).Article 

    Google Scholar 
    12.Eurostat. Life in Cities. Urban Europe—Statistics on Cities, Towns and Suburbs. (Publications Office of the European Union, 2016). https://doi.org/10.2785/9112013.Fernández Ales, R. Effect of economic development on landscape structure and function in the Province of Seville (SW Spain) and its consequences on conservation. In Land Abandonment and Its Role in Conservation, Options Mediterraneennes, Serie A, Seminaires Mediterraneens Vol. 15 (eds Baudry, J. & Bunce, R. G. H.) 61–69 (Options Méditerranéennes, 1991).
    Google Scholar 
    14.Falcucci, A., Maiorano, L. & Boitana, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 22, 617–631 (2007).Article 

    Google Scholar 
    15.Antrop, M. Why landscapes of the past are important for the future. Landsc. Urban Plan. https://doi.org/10.1016/j.landurbplan.2003.10.002 (2004).Article 

    Google Scholar 
    16.Janečková Molnárová, K., Skřivanová, Z., Kalivoda, O. & Sklenička, P. Rural identity and landscape aesthetics in exurbia: Some issues to resolve from a Central European perspective. Morav. Geogr. Rep. 25(1), 2–12. https://doi.org/10.1515/mgr-2017-0001 (2017).Article 

    Google Scholar 
    17.Bičík, I., Jeleček, L. & Štěpánek, V. Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries. Land Use Policy 18(1), 65–73. https://doi.org/10.1016/S0264-8377(00)00047-8 (2001).Article 

    Google Scholar 
    18.Lipsky, Z. The changing face of the Czech rural landscape. Landsc. Urban Plan. 31(1–3), 39–45. https://doi.org/10.1016/0169-2046(94)01034-6 (1995).Article 

    Google Scholar 
    19.Prishchepov, A. V., Radeloff, C. V., Baumann, M., Kemmerle, T. & Müller, D. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Enivron. Res. Lett. 7, 024021. https://doi.org/10.1088/1748-9326/7/2/024021 (2012).Article 

    Google Scholar 
    20.Forman, T. T. R. & Godron, M. Landscape Ecology (Wiley, 1986).
    Google Scholar 
    21.Míchal, I. Ekologická Stabilita (Veronica, 1994).
    Google Scholar 
    22.Bucala, A. The impact of human activities on land use and land cover changes and environmental processes in the Gorce Mountains (Western Polish Carpathians) in the past 50 years. J. Environ. Manag. 138, 4–14 (2014).Article 

    Google Scholar 
    23.Kozak, J. Forest cover change in the western Carpathians in the past 180 years. A case study in the Orawa region in Poland. Mt. Res. Dev. 23(4), 369–375 (2003).Article 

    Google Scholar 
    24.Latocha, A. Land-use changes and longer-term human–environment interactions in a mountain region (Sudetes Mountains, Poland). Geomorphology 108(1), 48–57. https://doi.org/10.1016/j.geomorph.2008.02.019 (2009).ADS 
    Article 

    Google Scholar 
    25.Prauser, S. & Rees, A. The expulsion of the “German” communities from Eastern Europe at the end of the Second World War (Badia Fiesolana, 2004).
    Google Scholar 
    26.Petráš, R. Reforma správy a národní otázka na počátku první republiky. Historický Obzor: Časopis pro Výuku Dějepisu a Popularizaci Historie 13(5), 133–137 (2002).
    Google Scholar 
    27.Bičík, I. & Kabrda, J. Land use changes in Czech border regions (1845–2000). AUC Geogr. 42, 23–52 (2007).
    Google Scholar 
    28.Staněk, T. & von Arburg, A. Vysídlení Němců a proměny českého pohraničí 1945–1951 (I.) (Vysídlení) (Zdeněk Susa, 2010).
    Google Scholar 
    29.Weber, M. Dědictví krajiny jako výzva pro její současné obyvatele. In Proměny sudetské krajiny, Antikomple (ed. Spurnný, M.) (Nakladatelství Českého lesa, 2006).
    Google Scholar 
    30.Romportl, D., Chuman, T. & Lipsky, Z. Landscape typology of Czechia. Geografie 118(1), 16–39 (2013).Article 

    Google Scholar 
    31.Estel, S. et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 163, 312–325. https://doi.org/10.1016/J.RSE.2015.03.028 (2015).ADS 
    Article 

    Google Scholar 
    32.Levers, C., Schneider, M., Prishchepov, A. V., Estel, S. & Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 644, 95–111. https://doi.org/10.1016/J.SCITOTENV.2018.06.326 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Zelinka, V. Continuity and extinction of agricultural land in the sudetes—A case study in the landscape of highlands and mountains. J. Landsc. Ecol. 11(2), 53–66. https://doi.org/10.2478/jlecol-2018-0006 (2018).Article 

    Google Scholar 
    34.ESRI. ArcGIS 10.6 (2017).35.Statistický lexikon obcí v republice Československé. (I). (Ministerstvo vnitra a Státní úřad statistický.Orbis, 1934).36.CENIA. Historické letecké snímky—50. léta. https://www.cenia.cz (2012).37.Bičík, I. et al. Land use changes in the Czech republic 1845–2010 (Springer, 2015).Book 

    Google Scholar 
    38.Demková, K. & Lipský, Z. Změny nelesní dřevinné vegetace v jihozápadní části bílých karpat v letech 1949–2011. Geogr. Sb. CGS 120(1), 64–83 (2015).
    Google Scholar 
    39.Forejt, M., Skalos, J., Pereponova, A., Plieninger, T. & Vojta, J. Changes and continuity of wood-pastures in the lowland landscape in Czechia. Appl. Geogr. 79, 235–244. https://doi.org/10.1016/j.apgeog.2016.12.016 (2017).Article 

    Google Scholar 
    40.ČÚZK. Geoportál ČÚZK—přístup k mapovým produktům a službám resortu. https://geoportal.cuzk.cz/ (2016).41.Skokanová, H. Application of methodological principles for assessment of land use changes trajectories and processes in South-eastern Moravia for the period 1836–2006 Eastern Moravia for the period 1836–2006. Acta Pruhon. 91, 15–21 (2015).
    Google Scholar 
    42.Grossmann, E. B. & Mladenoff, D. J. Open woodland and savanna decline in a mixed-disturbance landscape (1938 to 1998) in the Northwest Wisconsin (USA) Sand Plain. Landsc. Ecol. 22, 43–55 (2007).Article 

    Google Scholar 
    43.Skaloš, J. et al. What are the transitions of woodlands at the landscape level? Change trajectories of forest, non-forest and reclamation woody vegetation elements in a mining landscape in North-western Czech Republic. Appl. Geogr. 58, 206–216. https://doi.org/10.1016/j.apgeog.2015.02.003 (2015).Article 

    Google Scholar 
    44.Raška, P., Zábranský, V., Brázdil, R. & Lamková, J. The late Little Ice Age landslide calamity in North Bohemia: Triggers, impacts and post-landslide development reconstructed from documentary data (case study of the Kozí vrch Hill landslide). Geomorphology 255, 95–107. https://doi.org/10.1016/j.geomorph.2015.12.009 (2016).ADS 
    Article 

    Google Scholar 
    45.Amici, V. et al. Anthropogenic drivers of plant diversity: Perspective on land use change in a dynamic cultural landscape. Biodivers. Conserv. 24(13), 3185–3199. https://doi.org/10.1007/s10531-015-0949-x (2015).Article 

    Google Scholar 
    46.Bürgi, M. et al. Processes and driving forces in changing cultural landscapes across Europe. Landsc. Ecol. 32(11), 2097–2112. https://doi.org/10.1007/s10980-017-0513-z (2017).Article 

    Google Scholar 
    47.Raška, P., Hruška, V. & Kolektiv, A. Adaptabilita a Resilience (Univerzita J.E. Purkyně v Ústí nad Labem, 2014).
    Google Scholar 
    48.CENIA. CORINE Land Cover 2012 Databáze České Republiky (2014).49.Juřena, J. Soumrak nad českým Podkrkonoším: Německá opkuace Novopacka a Jilemnicka v roce 1938. (FORTprint, 2013).50.Czech Geological Survey. Soil Map of Czech Republic (2018).51.Meduna, P. & Sádlo, J. Bezdězsko—Dokesko. Krajina mezi odolností a stagnací. Hist. Geogr. 35(1), 147–160 (2009).
    Google Scholar 
    52.Novák, J., Sádlo, J. & Svobodová-svitavská, H. Unusual vegetation stability in a lowland pine forest area (Doksy region, Czech Republic). Holocene 22(8), 947–955. https://doi.org/10.1177/0959683611434219 (2012).ADS 
    Article 

    Google Scholar 
    53.Klápště, J. Proměna českých zemí ve středověku. (Lidové noviny, 2012).54.Engstová, B. & Petříček, V. Landscape and vegetation in a military area—Past and present. J. Landsc. Stud. 1, 91–102 (2008).
    Google Scholar 
    55.Turner, M. G. & Gardner, R. H. Landscape Ecology in Theory and Practice 2nd edn. (Springer, 2015).
    Google Scholar 
    56.Chytrý, M. (ed.) Vegetace České republiky 1. Travinná a keříčková vegetace (Academia, 2007).
    Google Scholar 
    57.Chytrý, M., Kučera, T., Kočí, M., Grulich, V. & Lustyk, P. Katalog biotopů České republiky (Agentura ochrany přírody a krajiny ČR, 2010).
    Google Scholar  More

  • in

    The long lives of primates and the ‘invariant rate of ageing’ hypothesis

    Data for non-human primatesWe obtained 30 datasets for six genera of non-human primates: sifaka (Propithecus spp), gracile capuchin monkey (Cebus spp), guenon (Cercopithecus spp), baboon (Papio spp), gorilla (Gorilla spp), and chimpanzee (Pan troglodytes) (Supplementary Data 1). Of these, 17 datasets correspond to long-term projects in the wild, while 13 were contributed by the non-profit Species360 from ZIMS18, which is the most extensive database of life history information for animals under human care.Basic demographic functionsLet X be a random variable for ages at death, with observations x ≥ 0, and let μ (x|θ) be a continuous, non-negative parametric hazards rate or mortality function defined as$$mu left(x,|,{boldsymbol{theta }}right)=mathop{{rm{lim}}}limits_{Delta xto 0}frac{{{Pr }}(x < Xle x+Delta x|X > x)}{Delta x},$$
    (2)
    given that the limit exists, where ({boldsymbol{theta }}in {{mathbb{R}}}^{p}) is a p-dimensional vector of mortality parameters. The cumulative hazards rate is$$Uleft(x|{boldsymbol{theta }}right)=int_{0}^{x}mu (t|{boldsymbol{theta }}){dt},$$
    (3)
    which results in the survival function$$S(x|{boldsymbol{theta }})={{exp }}[-U(x|{boldsymbol{theta }})].$$
    (4)
    The Cumulative distribution function (CDF) of ages at death is F (x | θ) = 1 – S (x | θ), and the probability density function (PDF) of ages at death is f (x | θ) = μ (x | θ) S (x | θ), for x ≥ 0. The remaining life expectancy after age x is calculated as$$eleft(x{rm{|}}{boldsymbol{theta }}right) = frac{{int }_{x}^{{{infty }}}{tf}(t|{boldsymbol{theta }}){dt}}{Fleft({{infty }}right)-Fleft(xright)}\ =frac{{int }_{x}^{{{infty }}}S(t|{boldsymbol{theta }}){dt}}{Sleft(xright)},$$
    (5)
    which yields a life expectancy at birth given by$$eleft(0{rm{|}}{boldsymbol{theta }}right)={int }_{0}^{{{infty }}}S(x|{boldsymbol{theta }}){dx}.$$
    (6)
    The lifespan inequality at birth, as proposed by Demetrius16,36 and later by Keyfitz17, is given by$$H(0|{boldsymbol{theta }}) =-frac{{int }_{0}^{{{infty }}}S(x|{boldsymbol{theta }}){{log }}[S(x|{boldsymbol{theta }})]{dx}}{e(0|{boldsymbol{theta }})}\ = frac{{int }_{0}^{{{infty }}}S(x|{boldsymbol{theta }})U(x|{boldsymbol{theta }}){dx}}{e(0|{boldsymbol{theta }})}.$$
    (7)
    Following Colchero et al.13, we define the lifespan equality as$$varepsilon (x|{boldsymbol{theta }})=-{{log }}[H(x|{boldsymbol{theta }})].$$
    (8)
    For simplicity, henceforth we note the life expectancy, lifespan inequality and lifespan equality at birth as e(0 | θ) = e, H (0 | θ) = H, and ε (0 | θ) = ε, respectively.Survival analysisTo estimate age-specific survival for all the wild populations of non-human primates, we modified the Bayesian model developed by Colchero et al.13 and Barthold et al.37. This model is particularly appropriate for primate studies that follow individuals continuously within a study area and when individuals of one or both sexes can permanently leave the study area (out-migration), while other individuals can join the study population from other areas (in-migration). Thus, it allowed us to make inferences on age-specific survival (or mortality) and on the age at out-migration.Here we use the five parameter Siler mortality function25, as in Eq. (1) where θ = [a0, a0, c, b0, b1] is a vector of parameters to be estimated, and where a0, b0 ({mathbb{in }}{mathbb{R}}) and a1, c, b1 ≥ 0. For all species we studied, individuals of one or both sexes often leave their natal groups to join other neighbouring groups in a process commonly identified as natal dispersal. For some species, individuals who have undergone natal dispersal can then disperse additional times, described as secondary dispersal. Although dispersal within monitored groups (i.e. those belonging to the study area) does not affect the estimation of mortality, the fate of individuals that permanently leave the study area to join unmonitored groups can be mistaken for possible death. We identify this process as “out-migration”, which we classify as natal or immigrant out-migration, the first for natal and the second for secondary dispersals to unmonitored groups. This distinction is particularly relevant because not all out-migrations are identified as such, and therefore the fate of some individuals is unknown after their last detection. For these individuals we define a latent out-migration state at the time they were last detected, given by the random variable indicator O, with observations oij ∈ {0,1}, where oij = 1 if individual i out-migrated and oij = 0 otherwise, and where j = 1 denotes natal out-migration and j = 2 for immigrant out-migration. For known out-migrations, we automatically assign oij = 1. The model therefore estimates the Bernoulli probability of out-migration, πj, such that Oij ~ Bern(πj). Those individuals assigned as exhibiting out-migration, as well as known emigrants and immigrants, contribute to the estimation of the distribution of ages at out-migration. Here, we define a gamma-distributed random variable V for ages at out-migration, with realisations v ≥ 0, where Vj | Oj = 1 ~ Gam(γj1, γj2) and where γj1, γj2  > 0 are parameters to be estimated with j defined as above. The probability density function for the gamma distribution is gV(v | γj1, γj2) for v ≥ 0, with v = xl – αj, where xl is the age at last detection and αj is the minimum age at natal or immigrant out-migration.In addition, since not all individuals have known birth dates, the model samples the unknown births bi as xil = til – bi, where til is the time of last detection for individual i. The likelihood is then defined as$$p({x}_{{il}},{x}_{{if}},|,{boldsymbol{theta}},{boldsymbol{gamma}}_{1},{boldsymbol{gamma}}_{2},{pi }_{j},{o}_{ij})=left{begin{array}{cc}frac{fleft({x}_{il}right)}{Sleft({x}_{if}right)}({1-pi }_{j})hfill& {text{if}}; o_{{ij}}=0\ frac{Sleft({x}_{{il}}right)}{Sleft({x}_{{if}}right)}{pi }_{j}{g}_{V}({x}_{{il}}-{alpha }_{j})& {text{if}}; o_{{ij}}=1end{array}right.,$$
    (9)
    where xif is the age at first detection, given by xif = tif – bi, with tif as the corresponding time of first detection. The parameter vectors γ1 and γ2 are for natal and immigrant out-migration, respectively. In other words, individuals with oij = 0 are assumed to have died shortly after the last detection, while those with oij = 1 are censored and contribute to the estimation of the distribution of ages at out-migration. The full Bayesian posterior is then given by$$pleft({boldsymbol{theta }}{boldsymbol{,}}{{boldsymbol{gamma }}}_{1},{{boldsymbol{gamma }}}_{2},{boldsymbol{pi }},{{bf{b}}}_{u},{{bf{o}}}_{u},|,{{bf{b}}}_{k},{{bf{o}}}_{k},{{bf{t}}}_{f},{{bf{t}}}_{l}right) propto ; pleft({{bf{x}}}_{l},{{bf{x}}}_{f},|,{boldsymbol{theta }},{{boldsymbol{gamma }}}_{1},{{boldsymbol{gamma }}}_{2},{boldsymbol{pi }},{bf{d}}right)\ , times pleft({boldsymbol{theta }}right)pleft({{boldsymbol{gamma }}}_{1}right)pleft({{boldsymbol{gamma }}}_{2}right)pleft({boldsymbol{pi }}right),$$
    (10)
    where the first term on the right-hand-side of Eq. (10) is the likelihood in Eq. (9), and the following terms are the priors for the unknown parameters. The vector π = [π1, π2] is the vector of probabilities of out-migration while the subscripts u and k refer to unknown and known, respectively.Following Colchero et al.13, we used published data, expert information and an agent-based model to estimate the mortality and out-migration prior parameters for each population. We assumed a normal (or truncated normal distribution depending on the parameter’s support) for all the parameters. We used vague priors for the mortality and natal out-migration parameters (sd = 10), and informative priors for the immigrant out-migration parameters (sd = 0.5). We ran six MCMC parallel chains for 25 000 iterations each with a burn-in of 5000 iterations for each population, and assessed convergence using potential scale reduction factor38.For the zoo data we used a simplified version of the model described above, which omitted all parts that related to out-migration. In order to produce Supplementary Figs. 1 and 2, we used the same method as for the zoo data on the human life tables. To achieve this, we created an individual level dataset from the lx column of each population, and then fitted the Siler model to this simulated data. It is important to note that the Siler model provides a close fit to the nonhuman primate data and to high-mortality human populations, although it does not provide the best fit to low-mortality human populations, in part due to the late life mortality plateau common among human populations39 (Supplementary Fig. 6). It is therefore possible that the values of the mortality parameter b1 we report in Supplementary Data 2 for the human populations are under-estimated. Nonetheless, and for the purposes of our analyses, the Siler fits to the human populations we considered here are reasonable (Supplementary Fig. 6) and we can therefore confidently state that the limitations of the Siler model do not affect the generality of our results.Estimation of life expectancy and lifespan equalityBased on the results of the Bayesian inference models, we calculated life expectancy at birth as$$e= int_{0}^{{infty}}Sleft(t| {hat{boldsymbol{theta }}}right){dt},$$
    (11)
    where S (x) is the cumulative survival function as defined in Eq. (4) and where (hat{{boldsymbol{theta }}}) is the vector of mortality parameters calculated as the mean of the conditional posterior densities from the survival analysis described above. We calculated the lifespan inequality17,36, H, as$$H=-frac{1}{e}int_{0}^{{{infty }}}Sleft(x{rm{|}}hat{{boldsymbol{theta }}}right){{log }}left[Sleft(x|hat{{boldsymbol{theta }}}right)right]{dx},$$
    (12)
    from which we calculated lifespan equality, ε, as in Eq. (8). We calculated both measures for each of the study populations, and performed weighted least squares regressions for each genus, with weights given by the reciprocal of the standard error of the estimated life expectancies.Sensitivities of life expectancy and lifespan equality to mortality parametersAs we mentioned above, for simplicity of notation, we will express all demographic functions by their variable notation (e.g. e = e (0 | θ), S = S (x | θ), etc.), while we will alternatively note first partial derivatives, for instance the derivative of e with respect to a given mortality parameter θ ∈ θ, as eθ or ∂e / ∂θ.Proposition: If ({S:}{{mathbb{R}}}_{ge 0}to left[{mathrm{0,1}}right]) is a continuous non-increasing parametric survival function with parameter vector ({boldsymbol{theta }}{boldsymbol{in }}{{mathbb{R}}}^{{boldsymbol{p}}}), with continuous differentiable cumulative hazards function ({U:}{{mathbb{R}}}_{ge 0}to {{mathbb{R}}}_{ge 0}), and with life expetancy at birth, lifespan inequality and lifespan equality as in Eqs. (4)-(6), respectively, then the sensitivity of life expectancy, e, to a given parameter θ ∈ θ is$${e}_{theta }=frac{partial e}{partial theta }=int_{0}^{{{infty }}}{S}_{theta }{dx},$$
    (13)
    while the sensitivity of lifespan equality to θ is$${varepsilon }_{theta }=frac{partial varepsilon }{partial theta }=frac{{e}_{theta }left(1+{H}^{-1}right)-{H}^{-1}{int }_{0}^{{{infty }}}{S}_{theta }{Udx}}{e},$$
    (14)
    where$${S}_{theta }=frac{partial }{partial theta }S(x|{boldsymbol{theta }})$$
    (15)
    is the sensitivity of the survival function at age x to changes in parameter θ.Proof. The sensitivity of lifespan equality to changes in θ is derived from$${e}_{theta }=frac{partial }{partial theta }int_{0}^{{{infty }}}{Sdx},$$
    (16)
    which, by Leibnitz’s rule, Eq. (16) becomes$${e}_{theta }=int_{0}^{{{infty }}}frac{partial S}{partial theta }{dx}=int_{0}^{{{infty }}}{S}_{theta }{dx}.$$
    (17)
    The sensitivity of lifespan equality to changes in θ can be calculated as$${varepsilon }_{theta } =frac{partial }{partial theta }left(-{{log }}, Hright)\ =-frac{partial }{partial theta }{{log }}, H\ =-frac{1}{H}frac{partial H}{partial theta }\ =-frac{1}{H}frac{partial }{partial theta }left(frac{{int }_{0}^{{{infty }}}{SUdx}}{e}right).$$
    (18)
    By the quotient and Leibnitz’s rules, Eq. (18) can be modified as$${varepsilon }_{theta } =-frac{1}{H{e}^{2}}left[frac{partial }{partial theta }left(int _{0}^{{{infty }}}{SUdx}right)e-left(int _{0}^{{{infty }}}{SUdx}right)frac{partial e}{partial theta }right]\ =-frac{1}{{He}}int _{0}^{{{infty }}}frac{partial }{partial theta }left({SU}right){dx}+frac{1}{{He}}frac{int _{0}^{{{infty }}}{SUdx}}{e}frac{partial e}{partial theta }.$$
    (19)
    The first term in Eq. (19) can be further decomposed by the product rule, while the second term can be modified following the equality for H in Eq. (7), which yields$${varepsilon }_{theta } =-frac{1}{{He}}int _{0}^{{{infty }}}left(frac{partial S}{partial theta }U+Sfrac{partial U}{partial theta }right){dx}+frac{1}{e}{e}_{theta }\ =-frac{1}{{He}}left(int _{0}^{{{infty }}}{S}_{theta }{Udx}+int _{0}^{{{infty }}}Sfrac{partial U}{partial theta }dxright)+frac{1}{e}{e}_{theta }.$$
    (20)
    By the chain rule, we have that (frac{partial U}{partial theta }=-frac{partial }{partial theta }{{log }},S=-frac{1}{S}frac{partial S}{partial theta }), which modifies Eq. (20) as$${varepsilon }_{theta } = , -frac{1}{{He}}left(int _{0}^{infty }{S}_{theta }{Udx}-int _{0}^{infty }frac{partial S}{partial theta }{dx}right)+frac{1}{e}{e}_{theta }\ = , -frac{1}{{He}}left(int _{0}^{infty }{S}_{theta }{Udx}-{e}_{theta }right)+frac{1}{e}{e}_{theta }\ = , -frac{int _{0}^{infty }{S}_{theta }{Udx}}{{He}}+frac{{e}_{theta }}{e}left(1+frac{1}{H}right)\ =, frac{{e}_{theta }left(1+{H}^{-1}right)-{H}^{-1}int _{0}^{infty }{S}_{theta }{Udx}}{e},$$
    (21)
    hence completing the proof. ∎Changes in parameters along the genus linesFrom the results in Eqs. (13) and (14), we calculated the vectors of change (gradient vectors) at any point (leftlangle {e}_{j},{varepsilon }_{j}rightrangle) of the life expectancy-lifespan equality landscape, as a function of each of the Siler mortality parameters (See Fig. 2A, B).To quantify the amount of change of each parameter along the genus lines, we derived the sensitivities of a given mortality parameter θ to changes in life expectancy and lifespan equality, namely (frac{partial theta }{partial e}=frac{1}{{e}_{theta }}) for ({e}_{theta }, ne, 0,) and (frac{partial theta }{partial varepsilon }=frac{1}{{varepsilon }_{theta }}) for ({varepsilon }_{theta }, ne, 0). With these sensitivities we calculated the gradient vector$$nabla theta =leftlangle frac{partial theta }{partial e},frac{partial theta }{partial varepsilon }rightrangle$$
    (22)
    for any parameter at any point along the genus lines. Here we find a linear relationship between life expectancy and lifespan equality, given by$$mleft({e}_{{ik}}right)={hat{varepsilon }}_{{ik}}={beta }_{0k}+{beta }_{1k}{e}_{{ik}},$$
    (23)
    for i = 1, …, nk, where nk is the number of populations for genus k, and ({hat{varepsilon }}_{{ik}})is the fitted value of lifespan equality for population i in genus k, and β0k and β1k are linear regresssion parameters for genus k. To estimate the amount of change in parameter θ along the line for genus k, we can solve the path integral$${Theta }_{k}=int _{{C}_{k}}nabla theta d{bf{r}},$$
    (24)
    where path Ck is determined by the linear model for genus k and (d{bf{r}}=leftlangle {de},dhat{varepsilon }rightrangle =leftlangle {de},{d; m}left(eright)rightrangle) is the rate of change in the velocity vector ({bf{r}}=leftlangle e,hat{varepsilon }rightrangle =leftlangle e,mleft(eright)rightrangle).In order to compare results between the different mortality parameters in vector θ, we use the transformation g(θ) = log θ, which yields the following partial derivatives$$frac{partial }{partial e}gleft(theta right)=frac{1}{theta }frac{partial theta }{partial e}$$
    (25)
    and$$frac{partial }{partial varepsilon }gleft(theta right)=frac{1}{theta }frac{partial theta }{partial varepsilon }.$$
    (26)
    Thus the gradient vector becomes$$nabla theta =leftlangle frac{partial }{partial e}gleft(theta right),frac{partial }{partial varepsilon }gleft(theta right)rightrangle$$
    (27)
    while the path integral in Eq. (24) is modified accordingly. In short, the path integral ({Theta }_{j}) provides a measure of the relative change in parameter θ along the genus line (Fig. 3). To allow comparisons between all genera, we scaled the values of each path integral by the length of each line.Applications to the Siler mortality modelThe Cumulative hazards for the Siler mortality model in Eq. (7) is given by$$Uleft(xright)=frac{{e}^{{a}_{0}}}{{a}_{1}}left(1-{e}^{{-a}_{1}x}right)+{cx}+frac{{e}^{{b}_{0}}}{{b}_{1}}left({e}^{{b}_{1}x}-1right),$$
    (28)
    The sensitivities in Eqs. (13) and (14) require calculating Sθ for all θ ∈ θ. Treating S (x) as the function composition W (V), where W = exp(x) and V = – U, then Sθ is$${S}_{theta }=frac{{dW}}{{dV}}{V}_{theta }=-S{U}_{theta },$$
    (29)
    where Uθ is the first derivative of U(x | θ) with respect to θ. For each of the Siler mortality parameters, we then have$${S}_{{a}_{0}}=S(x|{boldsymbol{theta }})frac{{e}^{{a}_{0}}}{{a}_{1}}left({e}^{-{a}_{1}x}-1right)$$
    (30)
    $${S}_{{a}_{1}}=S(x|{boldsymbol{theta }})frac{{e}^{{a}_{0}}}{{a}_{1}}left[frac{1}{{a}_{1}}-{e}^{-{a}_{1}x}left(x+frac{1}{{a}_{1}}right)right]$$
    (31)
    $${S}_{c}=-S(x|{boldsymbol{theta }})x$$
    (32)
    $${S}_{{b}_{0}}=S(x|{boldsymbol{theta }})frac{{e}^{{b}_{0}}}{{b}_{1}}left(1-{e}^{{b}_{1}x}right)$$
    (33)
    $${S}_{{b}_{1}}=S(x|{boldsymbol{theta }})left[{e}^{{b}_{1}x}left(frac{1}{{b}_{1}}-xright)-frac{1}{{b}_{1}}right].$$
    (34)
    All analyses were performed in the free open source programme R40. The R functions we created for this project can be found in41.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Trends of the contributions of biophysical (climate) and socioeconomic elements to regional heat islands

    Spatial and temporal variations of the SRHII at daytime and nighttimeSignificant seasonal differences are observed in the SRHII in the YRDUA (Figure A1 and A2, Appendix A). In the daytime, RHI was concentrated in the Nanjing, “Su-Xi-Chang”, Ningbo, Shanghai, and Hangzhou metropolitan areas. Due to the high built-up areas and PD, the distribution of surface RHI is denser and stronger than that in the north and southwest of the YRDUA. The built-up area can absorb heat and store heat energy, which makes the surface temperatures rise rapidly. In spring and autumn, the spatial distribution of the RHI in spring or autumn was similar to that in summer except the spatial extent was tapered. However, the RHI gradually shrinks and transfers to the southern area of the YRDUA in winter, such as Linhai and Ningbo City, which is due to the relatively high solar radiation of the geographic location of the southern cities. The distance of the RHI is gradually shortened between cities and even into one piece from 2003 to 2017 due to long-term urban expansion and rapid growth of construction land (Figure A1, Appendix A). In the nighttime, the spatial pattern of the RHI is very different from that of the daytime. RHI mainly concentrates on Taihu Lake, Dianshan Lake, Ge Lake in the center part, Hongzhe Lake in the northwest, and Qiandao Lake in the southwest. Because water has a high specific heat capacity, it has the function of preserving heat at nighttime. Some cities like Shanghai, Hangzhou, and Nanjing have the strongest heat island in winter and the weakest heat island in summer. Urban areas usually have dense buildings, PD, and energy emissions, so there are more energy emissions at night. High surface albedo in urban areas at night leads to lower heat storage4,40 and ultimately resulting in smaller UHI at nighttime (Figure A2, Appendix A).From spring to summer and then summer to winter, RHI increases first and then decreases, and it reaches a peak in summer. For example, the proportion of the RHI was 12.65%, 31.03%, 21.12%, and 5.49% in spring, summer, autumn, and winter in 2017, respectively (Fig. 2d). An upward trend in the area of the RHI is observed from 2003 to 2017 in summer. In detail, the proportion of the heat island zone is 21.74%, 22.17%, and 31.03% in the summer of 2003, 2010, and 2017, respectively (Fig. 2d). It is because the urban areas of YRDUA have increased from 3571.01 km2 to 8760.26 km2 in 2003 and 2017, respectively (Figure B1, Appendix B). Moreover, the area of the medium heat island and strong heat island increased by 41.08% and 66.40% from 2003 to 2017 (Fig. 2b,c). A gradual decreasing trend is observed for the four grades of the SRHII (2–4 °C, 4–6 °C,  > 6 °C,  > 2 °C) in winter from 2003 to 2017 (Fig. 2a–d). The area of the RHI in winter was 18,481 km2, 8640 km2, and 6280 km2 in 2003, 2010, and 2017, respectively (Fig. 2d). Vegetation coverage is low in winter and bare soil is formed after harvest. It leads to the RHI decrease in winter. The above results indicated that the SRHII became increasingly hot in summer and increasingly cold in winter and that the trend became more obvious as the SRHII increased in the ranges of 2–4 °C, 4–6 °C,  > 6 °C. However, the seasonal variation of the RHI in the nighttime is opposite to that in the daytime. From spring to summer and then to winter, the area of the RHI decreases first and then increases, and it falls in the lowest value in summer (Fig. 2e–g). For example, the area of RHI is 19,209 km2, 5659 km2, 34,621 km2, and 38,596 km2 in spring, summer, autumn, and winter in 2017, respectively (Fig. 2h). The annual average of RHI regular increases, with values of 17,510 km2, 20,042 km2, and 20,097 km2 in 2003, 2010, and 2017, respectively (Fig. 2h).Figure 2Seasonal and inter-annual variations of the SRHII during the daytime (a–d) and nighttime (e–h) of the YRDUA.Full size imageRelationship between the SRHII and influencing factorsResults showed surface biophysical factors have a higher correlation with SRHII than socio-economic factors and climate factors in the day and night. NDBI and EVI have a stronger effect on SRHII than other biophysical factors in the day. NDBI showed a significant positive correlation with SRHII, while EVI showed a negative correlation with SRHII. In detail, NDBI (r = 0.567, p  autumn  > winter. The dominant influencing factor was the MNDWI in spring, autumn and winter, while EVI had the largest contribution in summer at night. More

  • in

    Application of uniform design to evaluate the different conditions on the growth of algae Prymnesium parvum

    Overview of the study areaThe experimental algae P. parvum was collected from the fishponds in Dawukou, Ningxia, China. Algal water samples were filtered by medium size filter paper and centrifuged, and cultured with F/2 culture medium in the following environmental conditions for 5 days; light intensity of 5000 lx, light/dark ratio of 12 h: 12 h, water temperature of 18.5 ± 0.5 ℃, pH of 8.5 ± 0.1 and salinity of 1.2 ± 0.1 mg/l20,21. The plate separation method was used to separate and purify the cultured algae22. After microscopy, the colony of pure algal cells were transferred to different volumes of triangular glass bottles which contains sterilized F/2 medium for expansion culture. Algae P. parvum propagates vegetatively by cell division, the cell density of algae increases exponentially during the process of propagation thus requires more space. To accommodate this increasing space requirement, different sizes of the triangular glass bottles were used as 50 ml, 250 ml and 10 l. The expansion cultures were maintained in the environmental conditions similar to the initial culture. The algal cells were used for the experiment when they reach the logarithmic growth stage (the logarithmic growth stage was reached in 10 days).Data collection and experimentationThe water sample from the 10 L expansion culture of P. parvum was collected. The initial nutrient concentrations and environmental factors were determined using appropriate methods and equipment in the laboratory. The initial nutrient concentrations and environmental conditions of the algae culture used in this experiment is presented in Table 1.Table 1 Initial nutrient concentrations and environmental conditions of algae culture used in the experiment.Full size tableExperimental factors and their levels for each nutrient concentrations and environmental factors were designed based on the above reference as shown in Table 2. We have designed eight levels for environmental factors (i.e., water temperature, pH and salinity) and ten levels for nutrient concentrations (i.e., nitrogen, phosphorous, silicon and iron).

    1.

    Evaluation of the effects of environmental factors on the growth of P. parvum

    Table 2 Experimental factors and their levels designed for the experiment.Full size tableTo study the effects of environmental factors on the growth of P. parvum, water temperature, pH and salinity were used as the experimental factors by adopting the uniform design23,24,25 of three factors and eight levels as shown in Table 3.Table 3 Combination of environmental factors used for the different levels in the uniform design.Full size tableA 250 ml triangular glass bottle was used to implement each level of the above experiment with three replicates for each level (total of 24 bottles). The algae culture was allowed to grow in F/2 culture medium in the nutrient solution of 100 ml with an inoculation ratio of 1:10 (V/V). These bottles were kept in the light intensity of 5000 lx with light/dark ratio of 12 h: 12 h, while maintaining all other growth conditions to meet the experimental design requirements. The nutrient concentrations of N, P, Si and Fe were maintained at the level of initial concentrations (Table 1). Inoculated algae were cultured in a shaker for 10 days until it reaches its logarithmic growth stage and the growth rate was quantified.

    2.

    Evaluation of the effects of nutrient concentrations on the growth of P. parvum

    To study the effects of nutrient concentrations on the growth of P. parvum, nitrogen, phosphorus, silicon and iron were used as experimental factors by adopting the uniform design5,26 of four factors and ten levels as shown in Table 4. The culture medium was prepared with sodium nitrate (NaNO3) as the nitrogen source, monosodium phosphate (NaH2PO4) as the phosphorus source, sodium metasilicate (Na2SiO3) as the silicon source, and ferric citrate (FeC6H5O7) as a source iron to obtain the appropriate concentrations of nitrogen, phosphorous, silicon and iron as designed for this experiment (Table 2).Table 4 Combination of nutrient concentration used for the different levels in the uniform design.Full size tableA 250 ml triangular glass bottle was used to implement each level of the above experiment with three replicates for each level (total of 30 bottles). The algae culture was allowed to grow in F/2 culture medium with a volume of 100 ml and an inoculation ratio of 1:10 (V/V). These bottles were kept in the light intensity of 5000 lx, light/dark ratio of 12 h: 12 h, water temperature of 18.5 ± 0.5 ℃, pH of 8.5 ± 0.1 and salinity of 1.2 ± 0.1 mg/l. Inoculated algae were cultured in a shaker for 10 days until it reaches its logarithmic growth stage and the biomass density was quantified.

    3.

    Determination of the growth rate of P. parvum

    The algal cell density of the culture of each experimental level was measured using a 0.1 ml count plate under an optical microscope (Leica biological microscope DM1000, Leica Corporation, Oskar-Barnack-Straße, Germany) both at the beginning of the experiment and following 10 days of incubation period as the growth of the algae can reach its logarithmic growth stage at 10 days. Based on the algal cell density measurement, biomass density was calculated using the following formula (Eq. 1) described by Wei and Zhang;$$ Growth;rate;left( K right) = 3.322 times left( {log (N_{t} ) – log left( {N_{0} } right)} right)/left( {t – t_{0} } right) $$
    (1)
    where t is the duration of the experiment in days, N0 is the initial cell density (cell/ml) at the beginning of the experiment, and Nt is the cell density (cell/ml) at the end of day t of the experiment.Data analysis and results

    1.

    Establishment of the regression model between environmental factors and the growth rate

    The growth rate of P. parvum under different levels of environmental factors are shown in Table 5, and the growth curve with time is shown in Fig. 1.Table 5 Growth rates of Prymnesium parvum under the different levels of environmental factors in the uniform design.Full size tableFigure 1The growth curve of P. parvum with time under different environmental factor levels.Full size imageIn multiple quadratic stepwise regression analysis, water temperature (X1), pH (X2) and salinity (X3) were taken as independent variables, and the growth rate (Y) was taken as the dependent variable. From this analysis a quadratic polynomial regression equation (Eq. 2) was developed as follows:$$ Y = – 11.0371 + 0.0682X_{1} + 2.5559X_{2} + 0.7953X_{3} – 0.0019X_{1} ^{2} – 0.1523{text{ }}X_{2} ^{2} – 0.3223{text{ }}X_{3} ^{2} $$
    (2)
    Correlation coefficient (R) of the above equation was 0.9994 and probability (P) of the regression equation was 0.025 (p  X3  > X1. Thus, the contribution of pH  > salinity  > water temperature on the growth rate of P. parvum.

    2.

    Evaluation of the effect of environmental factors on the growth rate of P. parvum

    The environmental conditions that would result in the maximum growth rate of P. parvum were determined by optimizing the regression equation (Eq. 2). The following simple regression models (Eqs. 3–5) of multiple quadratic stepwise regression analyses reveal the relationships between individual environmental factors and the growth rate. These models were obtained by dimensionality reduction analysis in which the other factors were maintained at optimal levels.$$ X_{{1WT}} :;Yleft( {X_{1} } right) = 0.1768 + 0.0682X_{1} – 0.0019X_{1} ^{2} $$
    (3)
    $$ X_{{2pH}} :;Yleft( {X_{2} } right) = – 9.9345 + 2.5559X_{2} – 0.1523{text{ }}X_{2} ^{2} $$
    (4)
    $$ X_{{3salinity}} :;Yleft( {X_{3} } right) = 0.2982 + 0.7953X_{3} – 0.3223{text{ }}X_{3} ^{2} $$
    (5)
    The influence curves of each environmental factor on growth rate of P. parvum are shown in Fig. 2. The behavior of the curves is similar where the growth rate increases initially, then reaches a theoretical maximum and finally declines with increasing level of each environmental factor. Accordingly, P. parvum reaches its theoretical maximum growth rate (0.789) when the water temperature, pH and salinity is 18.11 ℃, 8.39 and 1.23‰, respectively. Therefore, Fig. 2 can be considered as the growth model of P. parvum as affected each of the respective environmental factors.

    3.

    Establishment of regression model between nutrient concentrations and the growth rate

    Figure 2The growth rate of P. parvum as affected by the water temperature (a), pH (b) and salinity (c).Full size imageThe growth rates of P. parvum under the different levels of nutrient concentrations are shown in Table 7, and the growth curve with time is shown in Fig. 3.Table 7 Growth rate of Prymnesium parvum under the different levels of nutrient concentration in the uniform design.Full size tableFigure 3The growth curve of P. parvum with time under different nutrient concentrations factor levels.Full size imageA quadratic polynomial regression equation (Eq. 6) was generated using N (Xi), P (Xii), Si (Xiii) and Fe (Xiv) as independent variables and the growth rate (Y′) as the dependent variable by using multiple quadratic stepwise regression analysis as follows:$$ Y^{prime } = – 1.856686 + 1.371680X_{i} + 0.390361X_{{ii}} + 0.150656X_{{iii}} + 0.587990X_{{iv}} – {text{ }}0.2011178X_{i} ^{2} – 0.186640{text{ }}X_{{ii}} ^{2} – 0.108764{text{ }}X_{{iii}} ^{2} – 0.550523{text{ }}X_{{iv}} ^{2} $$
    (6)
    Correlation coefficient (R) of the above equation was 0.9994 and probability (P) of the regression equation was 0.035 ( Xii  > Xiv  > Xiii. Therefore, the contribution of nitrogen  > phosphorous  > iron  > silicon for the growth of P. parvum.

    4.

    Evaluation of the effect of nutrient concentrations on the growth rate of P. parvum

    Multifactor square stepwise regression model was used to analyze the influence of individual nutrient concentration following the dimensionality reduction. To evaluate the influence of individual nutrient concentration on the growth rate, following sub-models (Eqs. 7–10) were developed by fixing other factors at the optimal level.$$ X_{i} nitrogen:Y^{prime } (X_{i} ) = – 1.4432 + 1.3717X_{i} – 0.2012X_{i} ^{2} $$
    (7)
    $$ X_{{ii}} phosphorus:Y^{prime } (X_{{ii}} ) = 0.6916 + 0.3904X_{{ii}} – 0.1866X_{{ii}} ^{2} $$
    (8)
    $$ X_{{iii}} silicon:Y^{prime } (X_{{iii}} ) = 0.8436 + 0.1507X_{{iii}} – 0.1088X_{{iii}} ^{2} $$
    (9)
    $$ X_{{iv}} iron:Y^{prime } (X_{{iv}} ) = 0.7388 + 0.5880X_{{iv}} – 0.5505X_{{iv}} ^{2} $$
    (10)
    The influence curves of each nutrients on growth rate of P. parvum are shown in Fig. 4. The behavior of the curves shows an initial increase of the growth rate, then the growth rate reaches a theoretical maximum and finally declines with increasing level of concentrations of each nutrient. Accordingly, P. parvum reaches its theoretical maximum growth rate (0.896) when the concentration of nitrogen, phosphorous, silicon and iron is 3.41, 1.05, 0.69, 0.53 mgl−1, respectively. Therefore, Fig. 4 may be considered as the growth model of P. parvum as affected each of the respective nutrients.Figure 4The growth rate of P. parvum as affected by nitrogen (a), phosphorus (b), silicon (c) and iron (d).Full size image More

  • in

    African forest elephant movements depend on time scale and individual behavior

    1.Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 2478 (2015).Article 
    CAS 

    Google Scholar 
    2.Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278 (2010).CAS 
    Article 

    Google Scholar 
    3.Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).PubMed 
    Article 
    ADS 

    Google Scholar 
    4.Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    5.Earl, J. E. & Zollner, P. A. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling. J. Anim. Ecol. 86, 987–997 (2017).PubMed 
    Article 

    Google Scholar 
    6.Bastille-Rousseau, G. & Wittemyer, G. Unveiling multidimensional heterogeneity in resource selection and movement tactics of animal. Ecol. Lett. https://doi.org/10.1111/ele.13327 (2019).Article 
    PubMed 

    Google Scholar 
    7.Hertel, A. G. et al. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).Article 

    Google Scholar 
    8.Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).Article 

    Google Scholar 
    9.Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).PubMed 
    Article 

    Google Scholar 
    10.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 

    Google Scholar 
    11.Wolf, M. & Weissing, F. J. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).PubMed 
    Article 

    Google Scholar 
    12.Swan, G. J. F., Redpath, S. M., Bearhop, S. & McDonald, R. A. Ecology of problem individuals and the efficacy of selective wildlife management. Trends Ecol. Evol. 32, 518–530 (2017).PubMed 
    Article 

    Google Scholar 
    13.Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies?. Biol. Conserv. 209, 34–44 (2017).Article 

    Google Scholar 
    14.Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 1–18 (2020).Article 

    Google Scholar 
    15.Poulsen, J. R. et al. Ecological consequences of forest elephant declines for Afrotropical forests. Conserv. Biol. 32, 559–567 (2018).PubMed 
    Article 

    Google Scholar 
    16.Poulsen, J. R. et al. Poaching empties critical Central African wilderness of forest elephants. Curr. Biol. 27, R134–R135 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Maisels, F. et al. Devastating decline of forest elephants in Central Africa. PLoS ONE 8, e59469 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    18.Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 4, 1–13 (2016).
    Google Scholar 
    19.Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E. & Spiegel, O. Trends and missing parts in the study of movement ecology. Proc. Natl. Acad. Sci. 105, 19060–19065 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    20.Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).PubMed 
    Article 

    Google Scholar 
    21.Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 948–958 (2012).Article 

    Google Scholar 
    22.Oliver, I., Beattie, A. J. & York, A. Spatial fidelity of plant, vertebrate, and invertebrate assemblages in multiple-use forest in Eastern Australia. Conserv. Biol. 12, 822–835 (1998).Article 

    Google Scholar 
    23.van Beest, F. M., Vander Wal, E., Stronen, A. V., Paquet, P. C. & Brook, R. K. Temporal variation in site fidelity: Scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore. Oecologia 52, 409–420 (2002).
    Google Scholar 
    24.Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    25.Ihwagi, F. W. et al. Night-day speed ratio of elephants as indicator of poaching levels. Ecol. Indic. 84, 38–44 (2018).Article 

    Google Scholar 
    26.Wrege, P. H., Rowland, E. D., Thompson, B. G. & Batruch, N. Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration. Conserv. Biol. 24, 1578–1585 (2010).PubMed 
    Article 

    Google Scholar 
    27.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).Article 

    Google Scholar 
    28.Vanleeuwe, H., Gautier-Hion, A. & Cajani, S. Forest clearings and the conservation of elephants (Loxodonta africana cyclotis) in North East Congo Republic. Pachyderm 24, 46–52 (1997).
    Google Scholar 
    29.Mcclintock, B. T., Fisheries, A. & Michelot, T. momentuHMM: R package for generalized hidden Markov models of animal movement. Methods Ecol. Evol. 2018, 1518–1530 (2017).
    Google Scholar 
    30.Vogel, S. M. et al. Exploring movement decisions: Can Bayesian movement-state models explain crop consumption behaviour in elephants (Loxodonta africana)?. J. Anim. Ecol. 89, 1055–1068 (2020).PubMed 
    Article 

    Google Scholar 
    31.Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    32.Van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).PubMed 
    Article 

    Google Scholar 
    33.Lindstedt, S. L. Home range, time, and body size in mammals. Ecology 67, 413–418 (1986).Article 

    Google Scholar 
    34.Mills, E. C. et al. Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon. PLoS One 13, e0199387 (2018).35.Bohrer, G., Beck, P. S. S. A., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 2 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kolowski, J. M. et al. Movements of four forest elephants in an oil concession in Gabon, Central Africa. Afr. J. Ecol. 48, 1134–1138 (2010).Article 

    Google Scholar 
    37.Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20, 1251–1261 (2006).PubMed 
    Article 

    Google Scholar 
    38.Buij, R. et al. Patch-occupancy models indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribution in an industrial corridor in Gabon. Biol. Conserv. 135, 189–201 (2007).Article 

    Google Scholar 
    39.Blake, S. et al. Roadless wilderness area determines forest elephant movements in the Congo Basin. PLoS ONE 3, e3546 (2008).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    40.Torney, C. J., Grant, J., Morrison, T. A., Couzin, I. D. & Levin, S. A. From single steps to mass migration: The problem of scale in the movement ecology of the serengeti wildebeest. Philos. Trans. R. Soc. B Biol. Sci. 373, 2 (2018).
    Google Scholar 
    41.Roberts, C. P., Cain, J. W. & Cox, R. D. Identifying ecologically relevant scales of habitat selection: Diel habitat selection in elk: Diel. Ecosphere 8, 2 (2017).Article 

    Google Scholar 
    42.Sannier, C., McRoberts, R. E., Fichet, L. V. & Makaga, E. M. K. Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon. Remote Sens. Environ. 151, 138–148 (2014).Article 
    ADS 

    Google Scholar 
    43.Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    44.Hoogenboom, I., Daan, S., Dallinga, J. H. & Schoenmakers, M. Seasonal change in the daily timing of behaviour of the common vole Microtus arvalis. Oecologia 61, 18–31. https://doi.org/10.1007/BF00379084(1984).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    45.Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state–space models. Proc. R. Soc. B Biol. Sci. 282, 2 (2015).
    Google Scholar 
    46.Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. 89, 57–67 (2020).PubMed 
    Article 

    Google Scholar 
    47.WCS, W. C. S.- & University, C. for I. E. S. I. N.-C.-C. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). (2005).48.Hadfield, J. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    49.R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. (2019).50.Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models (Cambridge University Press, 2006).Book 

    Google Scholar 
    51.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    52.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News https://doi.org/10.1016/s0306-4522(05)00880-8 (2006).Article 

    Google Scholar 
    53.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    54.Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Houslay, T. M., Vierbuchen, M., Grimmer, A. J., Young, A. J. & Wilson, A. J. Testing the stability of behavioural coping style across stress contexts in the Trinidadian guppy. Funct. Ecol. 32, 424–438 (2018).PubMed 
    Article 

    Google Scholar 
    56.Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13035 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    58.Yackulic, C. B., Strindberg, S., Maisels, F. & Blake, S. The spatial structure of hunter access determines the local abundance of forest elephants (Loxodonta africana cyclotis). Ecol. Appl. 21, 1296–1307 (2011).PubMed 
    Article 

    Google Scholar 
    59.Blake, S. et al. Fruit, minerals, and forest elephant trails: Do all roads lead to Rome?. Biotropica 36, 392 (2006).
    Google Scholar 
    60.Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).Article 
    ADS 

    Google Scholar 
    61.Beirne, C. et al. Climatic and resource determinants of forest elephant movements. Front. Ecol. Evol. 8, 1–14 (2020).Article 

    Google Scholar 
    62.Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).Article 

    Google Scholar 
    63.Bush, E. R. et al. Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ 2020, 1–29 (2020).
    Google Scholar 
    64.Bush, E. R. et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 7791, 7791 (2020).
    Google Scholar 
    65.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).
    Google Scholar 
    66.Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).Article 

    Google Scholar 
    67.McDougall, P. T., Réale, D., Sol, D. & Reader, S. M. Wildlife conservation and animal temperament: Causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim. Conserv. 9, 39–48 (2006).Article 

    Google Scholar  More