1.Baker, M. R., Hofmann, H. A. & Wong, R. Y. Neurogenomics of Behavioural Plasticity in Socioecological Contexts (Wiley, 2001).Book
Google Scholar
2.Koolhaas, J. M. et al. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 23(7), 925–935 (1999).CAS
Article
Google Scholar
3.Koolhaas, J. M., de Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front. Neuroendocrinol. 31(3), 307–321 (2010).CAS
Article
Google Scholar
4.Øverli, Ø. et al. Evolutionary background for stress-coping styles: Relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci. Biobehav. Rev. 31(3), 396–412 (2007).Article
Google Scholar
5.Brown, G. E. et al. Retention of acquired predator recognition among shy versus bold juvenile rainbow trout. Behav. Ecol. Sociobiol. 67(1), 43–51 (2013).Article
Google Scholar
6.Dougherty, L. R. & Guillette, L. M. Linking personality and cognition: a meta-analysis. Philos. Trans. R. Soc. B. Biol. Sci. https://doi.org/10.1098/rstb.2017.0282 (2018).Article
Google Scholar
7.Lucon-Xiccato, T. & Bisazza, A. Individual differences in cognition among teleost fishes. Behav. Process. 141, 184–195 (2017).Article
Google Scholar
8.Miller, N. Cognition in fishes. Behav. Process. https://doi.org/10.1016/j.beproc.2017.03.013 (2017).Article
Google Scholar
9.Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: A behavioural ecology perspective. Philos. Trans. R. Soc. B. Biol. Sci. 367(1603), 2762–2772 (2012).Article
Google Scholar
10.Amy, M., van Oers, K. & Naguib, M. Worms under cover: Relationships between performance in learning tasks and personality in great tits (Parus major). Anim. Cogn. https://doi.org/10.1007/s10071-012-0500-3 (2012).Article
PubMed
Google Scholar
11.Bolhuis, J. E., Schouten, W. G. P., De, L. J. A., Schrama, J. W. & Wiegant, V. M. Individual coping characteristics, rearing conditions and behavioural flexibility in pigs. Behav. Brain Res. 152(2), 351–360 (2004).Article
Google Scholar
12.DePasquale, C., Wagner, T., Archard, G. A., Ferguson, B. & Braithwaite, V. A. Learning rate and temperament in a high predation risk environment. Oecologia 176(3), 661–667 (2014).ADS
CAS
Article
Google Scholar
13.Dugatkin, L. A. & Alfieri, M. S. Boldness, behavioral inhibition and learning. Ethol. Ecol. Evol. 15(1), 43–49 (2003).Article
Google Scholar
14.Mazza, V., Eccard, J. A., Zaccaroni, M., Jacob, J. & Dammhahn, M. The fast and the flexible: Cognitive style drives individual variation in cognition in a small mammal. Anim. Behav. https://doi.org/10.1016/j.anbehav.2018.01.011 (2018).Article
Google Scholar
15.Mesquita, F. O., Borcato, F. L. & Huntingford, F. A. Cue-based and algorithmic learning in common carp: A possible link to stress coping style. Behav. Process. 115, 25–29 (2015).Article
Google Scholar
16.Trompf, L. & Brown, C. Personality affects learning and trade-offs between private and social information in guppies, Poecilia reticulata. Anim. Behav. 88, 99–106 (2014).Article
Google Scholar
17.Budaev, S. V. & Zhuikov, A. Y. Avoidance learning and “personality” in the guppy (Poecilia reticulata). J. Comp. Psychol. 112(1), 92–94 (1998).Article
Google Scholar
18.Exnerová, A., Svádová, K. H., Fučíková, E., Drent, P. & Štys, P. Personality matters: Individual variation in reactions of naive bird predators to aposematic prey. Proc. R. Soc. B. Biol. Sci. https://doi.org/10.1098/rspb.2009.1673 (2010).Article
Google Scholar
19.Miller, K. A., Garner, J. P. & Mench, J. A. Is fearfulness a trait that can be measured with behavioural tests? A validation of four fear tests for Japanese quail. Anim Behav. https://doi.org/10.1016/j.anbehav.2005.08.018 (2006).Article
Google Scholar
20.Øverli, Ø. & Sørensen, C. On the role of neurogenesis and neural plasticity in the evolution of animal personalities and stress coping styles. Brain Behav. Evol. https://doi.org/10.1159/000447085 (2016).Article
PubMed
Google Scholar
21.Sørensen, C., Johansen, I. B. & Øverli, Ø. Neural plasticity and stress coping in teleost fishes. Gen. Comp. Endocrinol. https://doi.org/10.1016/j.ygcen.2012.12.003 (2013).Article
PubMed
Google Scholar
22.Wong, R. Y., Lamm, M. S. & Godwin, J. Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genom. 16(1), 425 (2015).Article
Google Scholar
23.Oswald, M. E., Singer, M. & Robison, B. D. The quantitative genetic architecture of the bold-shy continuum in zebrafish, Denio rerio. PLoS ONE 8(7), e28865. https://doi.org/10.1371/journal.pone.0068828 (2013).CAS
Article
Google Scholar
24.Kfir, A. et al. Learning-induced modulation of the GABAB-mediated inhibitory synaptic transmission: Mechanisms and functional significance. J.. Neurophysiol. https://doi.org/10.1152/jn.00004.2014 (2014).Article
PubMed
Google Scholar
25.Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature https://doi.org/10.1038/nature07319 (2008).Article
PubMed
PubMed Central
Google Scholar
26.Maya-Vetencourt, J. F. et al. Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex. J. Physiol. https://doi.org/10.1113/jphysiol.2012.234237 (2012).Article
PubMed
PubMed Central
Google Scholar
27.Heaney, C. F. & Kinney, J. W. Role of GABABreceptors in learning and memory and neurological disorders. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.01.007 (2016).Article
PubMed
Google Scholar
28.Ploski, J. E., Monsey, M. S., Nguyen, T., DiLeone, R. J. & Schafe, G. E. The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories. PLoS ONE https://doi.org/10.1371/journal.pone.0023760 (2011).Article
PubMed
PubMed Central
Google Scholar
29.Ramamoorthi, K. et al. Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science https://doi.org/10.1126/science.1208049 (2011).Article
PubMed
PubMed Central
Google Scholar
30.Baker, M. R. & Wong, R. Y. Contextual fear learning and memory differ between stress coping styles in zebrafish. Sci. Rep. https://doi.org/10.1038/s41598-019-46319-0 (2019).Article
PubMed
PubMed Central
Google Scholar
31.Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3492 (2013).Article
PubMed
PubMed Central
Google Scholar
32.Lal, P. et al. Identification of a neuronal population in the telencephalon essential for fear conditioning in zebrafish. BMC Biol. https://doi.org/10.1186/s12915-018-0502-y (2018).Article
PubMed
PubMed Central
Google Scholar
33.Ganz, J. et al. Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000 Res. https://doi.org/10.12688/f1000research.5595.2 (2015).Article
Google Scholar
34.de CarmoSilva, R. X., Lima-Maximino, M. G. & Maximino, C. The aversive brain system of teleosts: Implications for neuroscience and biological psychiatry. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2018.10.001 (2018).Article
Google Scholar
35.Panula, P. et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis. https://doi.org/10.1016/j.nbd.2010.05.010 (2010).Article
PubMed
Google Scholar
36.Wong, R. Y. et al. Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio). Behaviour 149(10–12), 1205–1240 (2012).
Google Scholar
37.Kern, E. M. A., Robinson, D., Gass, E., Godwin, J. & Langerhans, R. B. Correlated evolution of personality, morphology and performance. Anim. Behav. 117, 79–86 (2016).Article
Google Scholar
38.Wong, R. Y., McLeod, M. M. & Godwin, J. Limited sex-biased neural gene expression patterns across strains in Zebrafish (Danio rerio). BMC Genom. 15(1), 905. https://doi.org/10.1186/1471-2164-15-905 (2014).Article
Google Scholar
39.Wong, R. Y., Oxendine, S. E. & Godwin, J. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genom. 14(1), 348 (2013).CAS
Article
Google Scholar
40.Goodman, A. C. & Wong, R. Y. Differential effects of ethanol on behavior and GABAA receptor expression in adult zebrafish (Danio rerio) with alternative stress coping styles. Sci. Rep. https://doi.org/10.1038/s41598-020-69980-2 (2020).Article
PubMed
PubMed Central
Google Scholar
41.Baker, M. R., Goodman, A. C., Santo, J. B. & Wong, R. Y. Repeatability and reliability of exploratory behavior in proactive and reactive zebrafish Danio rerio. Sci. Rep. https://doi.org/10.1038/s41598-018-30630-3 (2018).Article
PubMed
PubMed Central
Google Scholar
42.Johnson, Z. V. et al. Exploratory behaviour is associated with microhabitat and evolutionary radiation in Lake Malawi cichlids. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.11.006 (2020).Article
Google Scholar
43.Gerlai, R. Learning and memory in zebrafish (Danio rerio). Methods Cell Biol. https://doi.org/10.1016/bs.mcb.2016.02.005 (2016).Article
PubMed
Google Scholar
44.Norton, W. & Bally-Cuif, L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci. https://doi.org/10.1186/1471-2202-11-90 (2010).Article
PubMed
PubMed Central
Google Scholar
45.Oliveira, R. F. Mind the fish: Zebrafish as a model in cognitive social neuroscience. Front. Neural Circuits https://doi.org/10.3389/fncir.2013.00131 (2013).Article
PubMed
PubMed Central
Google Scholar
46.Wong, R. Y., French, J. & Russ, J. B. Differences in stress reactivity between zebrafish with alternative stress coping styles. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181797 (2019).Article
PubMed
PubMed Central
Google Scholar
47.Maren, S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev.neuro.24.1.897 (2001).Article
PubMed
Google Scholar
48.McCurley, A. T. & Callard, G. V. Characterization of housekeeping genes in zebrafish: Male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol. Biol. https://doi.org/10.1186/1471-2199-9-102 (2008).Article
PubMed
PubMed Central
Google Scholar
49.Wong, R. Y., Ramsey, M. E. & Cummings, M. E. Localizing brain regions associated with female mate preference behavior in a swordtail. PLoS ONE https://doi.org/10.1371/journal.pone.0050355 (2012).Article
PubMed
PubMed Central
Google Scholar
50.Wong, R. Y. & Cummings, M. E. Expression patterns of Neuroligin-3 and tyrosine hydroxylase across the brain in mate choice contexts in female swordtails. Brain Behav Evol https://doi.org/10.1159/000360071 (2014).Article
PubMed
Google Scholar
51.Wullimann, M. F., Rupp, B. & Reichert, H. Neuroanatomy of the zebrafish brain: A topological. Atlas https://doi.org/10.1007/978-3-0348-8979-7 (1996).Article
Google Scholar
52.Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 125(1–2), 279–284 (2001).CAS
Article
Google Scholar
53.Wassertheil, S. & Cohen, J. Statistical power analysis for the behavioral sciences. Biometrics https://doi.org/10.2307/2529115 (1970).Article
Google Scholar
54.Starkings, S. IBM SPSS statistics 19 made simple by Colin D. Gray and Paul R. Kinnear. Int. Stat. Rev. https://doi.org/10.1111/j.1751-5823.2012.00187_13.x (2012).Article
Google Scholar
55.Richardson, J. T. E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. https://doi.org/10.1016/j.edurev.2010.12.001 (2011).Article
Google Scholar
56.Benito, E. & Barco, A. The neuronal activity-driven transcriptome. Mol. Neurobiol. https://doi.org/10.1007/s12035-014-8772-z (2015).Article
PubMed
Google Scholar
57.Vertkin, I. et al. GABA B receptor deficiency causes failure of neuronal homeostasis in hippocampal networks. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1424810112 (2015).Article
PubMed
Google Scholar
58.von Trotha, J. W., Vernier, P. & Bally-Cuif, L. Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. Eur. J. Neurosci. https://doi.org/10.1111/ejn.12692 (2014).Article
Google Scholar
59.Ganz, J. et al. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J. Comp. Neurol. https://doi.org/10.1002/cne.22757 (2012).Article
PubMed
Google Scholar
60.Perathoner, S., Cordero-Maldonado, M. L. & Crawford, A. D. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. J. Neurosci. Res. https://doi.org/10.1002/jnr.23712 (2016).Article
PubMed
Google Scholar
61.Qiu, J. et al. Decreased Npas4 and Arc mRNA levels in the hippocampus of aged memory-impaired wild-type but not memory preserved 11β-HSD1 deficient mice. J. Neuroendocrinol. https://doi.org/10.1111/jne.12339 (2016).Article
PubMed
PubMed Central
Google Scholar
62.Vindas, M. A. et al. How do individuals cope with stress? Behavioural, physiological and neuronal differences between proactive and reactive coping styles in fish. J. Exp. Biol. https://doi.org/10.1242/jeb.153213 (2017).Article
PubMed
Google Scholar
63.Øverli, Ø., Pottinger, T. G., Carrick, T. R., Øverli, E. & Winberg, S. Brain monoaminergic activity in rainbow trout selected for high and low stress responsiveness. Brain. Behav. Evol. https://doi.org/10.1159/000047238 (2001).Article
PubMed
Google Scholar
64.Walker, D. L., Toufexis, D. J. & Davis, M. Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur. J. Pharmacol. https://doi.org/10.1016/S0014-2999(03)01282-2 (2003).Article
PubMed
Google Scholar
65.Goode, T. D. & Maren, S. Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn. Mem. https://doi.org/10.1101/lm.044206.116 (2017).Article
PubMed
PubMed Central
Google Scholar
66.Henckens, M. J. A. G. et al. CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery. Mol. Psychiatry https://doi.org/10.1038/mp.2016.133 (2017).Article
PubMed
Google Scholar
67.Rink, E. & Wullimann, M. F. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. https://doi.org/10.1016/j.brainres.2004.03.027 (2004).Article
PubMed
Google Scholar
68.Boulton, K. et al. How integrated are behavioral and endocrine stress response traits? A repeated measures approach to testing the stress-coping style model. Ecol. Evol. 5(3), 618–633 (2015).Article
Google Scholar
69.Baugh, A. T. et al. Corticosterone responses differ between lines of great tits (Parus major) selected for divergent personalities. Gen. Comp. Endocrinol. 175(3), 488–494 (2012).CAS
Article
Google Scholar
70.Wong RY, French J, Russ JB (2018) Differences in stress reactivity between zebrafish with alternative stress coping styles. Dissertation (University of Nebraska at Omaha).71.Furukawa-Hibi, Y., Yun, J., Nagai, T. & Yamada, K. Transcriptional suppression of the neuronal PAS domain 4 (Npas4) gene by stress via the binding of agonist-bound glucocorticoid receptor to its promoter. J. Neurochem. https://doi.org/10.1111/jnc.12034 (2012).Article
PubMed
Google Scholar
72.Ibi, D. et al. Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J. Neurochem. https://doi.org/10.1111/j.1471-4159.2007.05207.x (2008).Article
PubMed
Google Scholar
73.Yun, J. et al. Chronic restraint stress impairs neurogenesis and hippocampus-dependent fear memory in mice: Possible involvement of a brain-specific transcription factor Npas4. J. Neurochem. https://doi.org/10.1111/j.1471-4159.2010.06893.x (2010).Article
PubMed
Google Scholar
74.Sun, X. & Lin, Y. Npas4: Linking neuronal activity to memory. Trends Neurosci. https://doi.org/10.1016/j.tins.2016.02.003 (2016).Article
PubMed
PubMed Central
Google Scholar
75.Makkar, S. R., Zhang, S. Q. & Cranney, J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology https://doi.org/10.1038/npp.2010.53 (2010).Article
PubMed
PubMed Central
Google Scholar More