More stories

  • in

    Cyclotide host-defense tailored for species and environments in violets from the Canary Islands

    1.Craik, D. J., Daly, N. L., Bond, T. & Waine, C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Gran, L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol. Toxicol. (Copenh) 33, 400–408 (1973).CAS 
    Article 

    Google Scholar 
    3.Schoepke, T., Hasan Agha, M. I., Kraft, R., Otto, A. & Hiller, K. Haemolytisch aktive Komponenten aus Viola tricolor L. und Viola arvensis murray. Sci. Pharm. 61, 145–153 (1993).CAS 

    Google Scholar 
    4.Claeson, P., Göransson, U., Johansson, S., Luijendijk, T. & Bohlin, L. Fractionation protocol for the isolation of polypeptides from plant biomass. J. Nat. Prod. 61, 77–81 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Göransson, U., Luijendijk, T., Johansson, S., Bohlin, L. & Claeson, P. Seven novel macrocyclic polypeptides from Viola arvensis. J. Nat. Prod. 62, 283–286 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Poth, A. G. et al. Discovery of cyclotides in the Fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem. Biol. 6, 345–355 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Poth, A. G. et al. Cyclotides associate with leaf vasculature and are the products of a novel precursor in Petunia (Solanaceae). J. Biol. Chem. 287, 27033–27046 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Burman, R. et al. Distribution of circular proteins in plants: Large-scale mapping of cyclotides in the Violaceae. Front. Plant Sci. 6, 20 (2015).ADS 
    Article 

    Google Scholar 
    9.Hernandez, J. F. et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39, 5722–5730 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Nguyen, G. K. T. et al. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J. Biol. Chem. 288, 3370–3380 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Saether, O. et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34, 4147–4158 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ravipati, A. S. et al. Understanding the diversity and distribution of cyclotides from plants of varied genetic origin. J. Nat. Prod. 80, 1522–1530 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Gruber, C. W. et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20, 2471–2483 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Simonsen, S. M. et al. A continent of plant defense peptide diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17, 3176–3189 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Slazak, B., Jacobsson, E., Kuta, E. & Göransson, U. Exogenous plant hormones and cyclotide expression in Viola uliginosa (Violaceae). Phytochemistry 117, 527–536 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lindholm, P. et al. Cyclotides: A novel type of cytotoxic agents. Mol. Cancer Ther. 1, 365–369 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Ovesen, R. G. et al. Biomedicine in the environment: Cyclotides constitute potent natural toxins in plants and soil bacteria. Environ. Toxicol. Chem. 30, 1190–1196 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Pränting, M., Lööv, C., Burman, R., Göransson, U. & Andersson, D. I. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J. Antimicrob. Chemother. 65, 1964–1971 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Tam, J. P., Lu, Y. A., Yang, J. L. & Chiu, K. W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. USA 96, 8913–8918 (1999).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Slazak, B. et al. How Does the sweet violet (Viola odorata L.) fight pathogens and pests—cyclotides as a comprehensive plant host defense system. Front. Plant Sci. 9, 20 (2018).Article 

    Google Scholar 
    21.Colgrave, M. L. et al. Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms. Acta Trop. 109, 163–166 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Jennings, C., West, J., Waine, C., Craik, D. & Anderson, M. A. Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. USA. 98, 10614–10619 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Gilding, E. K. et al. Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol. 210, 717–730 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mylne, J. S., Wang, C. K., van der Weerden, N. L. & Craik, D. J. Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers 94, 635–646 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Dörnenburg, H. Cyclotide synthesis and supply: From plant to bioprocess. Biopolymers 94, 602–610 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Trabi, M. et al. Variations in cyclotide expression in Viola species. J. Nat. Prod. 67, 806–810 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). (Consejería de Política Territorial y Medio Ambiente. Gobierno de Canarias., 2001).28.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Gómez, M. V. M., Esquivel, J. L. M., Díaz, J. R. D. & Izquierdo, M. S. Viola guaxarensis (Violaceae): A new Viola from Tenerife, Canary Islands, Spain. Willdenowia 50, 13–21 (2020).Article 

    Google Scholar 
    30.Rodríguez-Rodríguez, P., De Castro, A. G. F., Seguí, J., Traveset, A. & Sosa, P. A. Alpine species in dynamic insular ecosystems through time: Conservation genetics and niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. Ann. Bot. 123, 505–519 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ireland, D. C., Colgrave, M. L. & Craik, D. J. A novel suite of cyclotides from Viola odorata: Sequence variation and the implications for structure, function and stability. Biochem. J. 400, 1–12 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Burman, R., Gunasekera, S., Strömstedt, A. A. & Göransson, U. Chemistry and biology of cyclotides: Circular plant peptides outside the box. J. Nat. Prod. 77, 724–736 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Trabi, M. & Craik, D. J. Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide1. Plant Cell 16, 2204–2216 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ballard, H. E., Sytsma, K. J. & Kowal, R. R. Shrinking the violets: Phylogenetic relationships of infrageneric groups in Viola (Violaceae) based on internal transcribed spacer DNA sequences. Syst. Bot. 23, 439 (1998).Article 

    Google Scholar 
    35.Batista, F. & Sosa, P. A. Allozyme diversity in natural populations of Viola palmensis. Webb & Berth (Violaceae) from La Palma (Canary Islands): Implications for conservation genetics. Ann. Bot. 90, 725–733 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Marcussen, T., Heier, L., Brysting, A. K., Oxelman, B. & Jakobsen, K. S. From gene trees to a dated allopolyploid network: Insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 64, 84–101 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Marcussen, T., Oxelman, B., Skog, A. & Jakobsen, K. S. Evolution of plant RNA polymerase IV/V genes: Evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae). BMC Evol. Biol. 10, 45 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Gilli, A. Viola anagae Gilli sp. Nov.. Feddes Repert. 89, 595–596 (1979).Article 

    Google Scholar 
    39.Moreno-Saiz, J. Lista Roja 2008 de la Flora Vascular Española (Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas, 2008).
    Google Scholar 
    40.Broussalis, A. M. et al. First cyclotide from Hybanthus (Violaceae). Phytochemistry 58, 47–51 (2001).41.Mulvenna, J. P., Wang, C. & Craik, D. J. CyBase: A database of cyclic protein sequence and structure. Nucleic Acids Res. 34, D192–D194 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hellinger, R. et al. Peptidomics of circular cysteine-rich plant peptides—analysis of the diversity of cyclotides from Viola tricolor by transcriptome- and proteome-mining. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.5b00681 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Slazak, B., Haugmo, T., Badyra, B. & Göransson, U. The life cycle of cyclotides: Biosynthesis and turnover in plant cells. Plant Cell Rep. 39, 1359–1367 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Colgrave, M. L., Jones, A. & Craik, D. J. Peptide quantification by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry: Investigations of the cyclotide kalata B1 in biological fluids. J. Chromatogr. A 1091, 187–193 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Marcussen, T. Allozymic variation in the widespread and cultivated Viola odorata (Violaceae) in western Eurasia. Bot. J. Linn. Soc. 151, 563–571 (2006).Article 

    Google Scholar 
    46.Källback, P., Nilsson, A., Shariatgorji, M. & Andrén, P. E. msIQuant—quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88, 4346–4353 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended.48.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media (Springer, 2009). https://doi.org/10.1007/978-0-387-98141-3.Book 
    MATH 

    Google Scholar 
    49.R Development Core Team, R. R A Language and Environment for Statistical Computing, Vol 1 409 (R Foundation for Statistical Computing, 2011).
    Google Scholar 
    50.Package, T. Package ‘ PMCMRplus ’ R topics documented (2019).51.Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. (2019). https://cran.r-project.org/package=pheatmap.52.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Sigrist, C. J. A. et al. PROSITE: A documented database using patterns and profiles as motif descriptors. Brief. Bioinform. 3, 265–274 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Burman, R. et al. Cyclotide proteins and precursors from the genus Gloeospermum: Filling a blank spot in the cyclotide map of Violaceae. Phytochemistry 71, 13–20 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Levenfors, J. J., Hedman, R., Thaning, C., Gerhardson, B. & Welch, C. J. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol. Biochem. 36, 677–685 (2004).CAS 
    Article 

    Google Scholar 
    58.Broekaert, W. F., Terras, R. F. G., Cammue, B. P. A. & Vandedeyden, J. An automated quantitative assay for fungal growth inhibition. Most 69, 20 (1990).
    Google Scholar 
    59.CLSI. M38–A2 reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard—second edition. Clin. Lab. Stand. Inst. 20, 20 (2008).
    Google Scholar  More

  • in

    Role of meteorological factors in the transmission of SARS-CoV-2 in the United States

    Data collectionWe extracted hourly air temperature and SH from the North America Land Data Assimilation System project46, a near real-time dataset with a 0.125° × 0.125° grid resolution. We spatially and temporally averaged these data into daily county-level records. SH is the mass of water vapor in a unit mass of moist air (g kg−1). Daily downward UV radiation at the surface, with a wavelength of 0.20–0.44 µm, was extracted from the European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis47.Other characteristics of each county, including geographic location, population density, demographic structure of the population, socioeconomic factors, proportion of healthcare workers, intensive care unit (ICU) bed capacity, health risk factors, long-term and short-term air pollution, and climate zone were collected from multiple sources. Geographic coordinates, population density, median household income, percent of people older than 60 years, percent Black residents, percent Hispanic residents, percent owner-occupied housing, percent residents aged 25 years and over without a high school diploma, and percent healthcare practitioners or support staff were collected from the U.S. Census Bureau48. Total ICU beds in each county were derived from Kaiser Health News49. The prevalence of smoking and obesity among adults in each county was obtained from the Robert Wood Johnson Foundation’s 2020 County Health Rankings50. We extracted annual PM2.5 concentrations in the U.S. from 2014 to 2018 from the 0.01° × 0.01° grid resolution PM2.5 estimation provided by the Atmospheric Composition Analysis Group51, and calculated average PM2.5 levels during this 5-year period for each county to represent long-term PM2.5 exposure (Supplementary Fig. 5). Short-term air quality data during the study period, including daily mean PM2.5 and daily maximum 8-h O3, were obtained from the United States Environmental Protection Agency52. We categorized study counties into one of five climate zones based on the guide released by U.S. Department of Energy53 (Supplementary Fig. 6).The county-level COVID-19 case and death data were downloaded from the John Hopkins University Coronavirus Resource Center1. The U.S. county-to-county commuting data were available from the U.S. Census Bureau48. Daily numbers of inter-county visitors to points of interest (POI) were provided by SafeGraph54.Data ethicsSafeGraph utilizes data from mobile applications of which users optionally consent to provide their anonymous location data.Estimation of reproduction numberWe estimated the daily reproduction number (Rt) in all 3142 U.S. counties using a dynamic metapopulation model informed by human mobility data31,55. Rt is the mean number of new infections caused by a single infected person, given the public health measures in place, in a population in which everyone is assumed to be susceptible. In the metapopulation model, two types of movement were considered: daily work commuting and random movement. During the daytime, some commuters travel to a county other than their county of residence, where they work and mix with the populations of that county; after work, they return home and mix with individuals in their home, residential county. Apart from regular commuting, a fraction of the population in each county, assumed to be proportional to the number of inter-county commuters, travels for purposes other than work. As the population present in each county is different during daytime and night-time, we modelled the transmission dynamics of COVID-19 separately for these two time periods, each depicted by a set of ordinary differential equations (Supplementary Notes).To account for case underreporting, we explicitly simulated reported and unreported infections, for which separate transmission rates were defined. Recent studies from several countries indicate that asymptomatic cases of COVID-19, which are typically unreported, are less contagious than symptomatic cases56,57,58,59. Studies on the early transmission of SARS-CoV-2 in China18 and the U.S.60 also showed that undocumented infections are less transmissible than documented infections.In order to reflect the spatiotemporal variation of disease transmission rate and reporting, we allowed transmission rates and ascertainment rates to vary across counties and to change over time. The transmission model simulated daily confirmed cases and deaths for each county. To map infections to deaths, we used an age-stratified infection fatality rate (IFR)61 and computed the weekly IFR for each county as a weighted average using state-level age structure of confirmed cases reported by the U.S. Centers for Disease Control and Prevention. We further adjusted for reporting lags using an observational delay model informed by a U.S. line-list COVID-19 data record62.For the period prior to March 15, 2020, we used commuting data from the U.S. census survey to prescribe the inter-county movement in the transmission model48. Starting March 15, the census survey data are no longer representative due to changes in mobility behavior following the implementation of non-pharmaceutical interventions. We, therefore, used estimates of the reduction of inter-county visitors to POI (e.g., restaurants, stores, etc.) from SafeGraph54 to account for the change in inter-county movement on a county-by-county basis. Because there is no direct relationship between population-level mobility patterns and COVID-19 transmission rates63, we did not model local transmission rate as a function of inter-county mobility. Instead, the SafeGraph data were only used to inform the change of population mixing across counties.To infer key epidemiological parameters, we fitted the transmission model to county-level daily cases and deaths reported from March 15, 2020 to December 31, 2020. The estimated reproduction number was computed as follows:$${R}_{t}=beta Dleft[alpha +left(1-alpha right)mu right],$$
    (1)
    where β is the county-specific transmission rate, μ is the relative transmissibility of unreported infections, α is the county-specific ascertainment rate, and D is the average duration of infectiousness. Note (beta) and (alpha) were defined for each county separately and were allowed to vary over time. Unlike previous studies using effective reproduction number$${R}_{e}=beta Dleft[alpha +left(1-alpha right)mu right]s,$$
    (2)
    where s is the estimated local population susceptibility, we used reproduction number Rt to exclude the influence of population susceptibility on disease transmission rate.D, (mu), (Z) (the average latency period from infection to contagiousness), and a multiplicative factor adjusting random movement ((theta)) were randomly drawn from the posterior distributions inferred from case data through March 13, 202060: (D=3.56) (3.21–3.83), (mu =0.64) (0.56–0.70), (Z=3.59) (95% CI: 3.28–3.99), and (theta =0.15) (0.12–0.17). (Z) and (theta) are used in ordinary differential equations used to model transmission dynamics (Supplementary Notes).The daily transmission rate (beta) and ascertainment rate (alpha) were estimated sequentially for each county using the ensemble adjustment Kalman filter (EAKF)64. Specifically, parameters ({beta }_{i}) and ({alpha }_{i}) for county (i) were updated each day using incidence and death data. We used the estimates on day (t-1) as the prior parameters on day (t), and then updated the priors to posteriors using the EAKF and observations. The posteriors are the estimated parameter values on day (t). To ensure a smooth parameter estimation, we imposed a (pm 30 %) limit on the daily change of parameters ({beta }_{i}) and ({alpha }_{i}). Other smoothing constraints were tested and the results were similar. To avoid possible inaccurate estimation for counties with few cases, we inferred Rt in the 2669 U.S. counties with at least 400 cumulative confirmed cases as of December 31, 2020 (Supplementary Fig. 7).Statistical analysisAll statistical analyses were conducted with R software (version 3.6.1) using the mgcv and dlnm packages.Association between meteorological factors and R
    t
    Given the potential non-linear and temporally delayed effects of meteorological factors, a distributed lag non-linear model65 combined with generalized additive mixed models66 was applied to estimate the associations of daily mean temperature, daily mean SH, and daily mean UV radiation with SARS-CoV-2 Rt. To quantify the total contribution, independent effects, and relative importance of meteorological factors (i.e., temperature, SH, and UV radiation), we included all three variables in the same model. To reduce collinearity, we used cross-basis terms rather than the raw variables (Supplementary Tables 5–6). The full model can be expressed as:$$log (E({{{R}}}_{i,j,t}))= alpha +te(s({{rm{latitude}}}_{i}{,{rm{longitude}}}_{i},{rm{k}}=200),s({{rm{time}}}_{t},{rm{k}}=30))+{rm{cb}}.{rm{temperature}}+{rm{cb}}.{rm{SH}}+ {rm{cb}}.{rm{UV}}\ +{beta }_{1}({rm{population}},{rm{density}}_{i})+{beta }_{2}({rm{percent}},{rm{Black}},{rm{residents}}_{i})+{beta }_{3}({rm{percent}},{rm{Hispanic}},{rm{residents}}_{i})\ +{beta }_{4}({rm{percent}},{rm{people}},{rm{older}},{rm{than}},60,{rm{years}}_{i})+{beta }_{5}({rm{median}},{rm{household}},{rm{income}}_{i})\ +{beta }_{6}({rm{percent}},{rm{owner}}-{rm{occupied}},{rm{housing}}_{i})\ +{beta }_{7}({rm{percent}},{rm{residents}},{rm{older}},{rm{than}},25,{rm{years}},{rm{without}},{rm{a}},{rm{high}},{rm{school}},{rm{diploma}}_{i})\ +{beta }_{8}({rm{number}},{rm{of}},{rm{ICU}},{rm{beds}},{rm{per}},10,000,{rm{people}}_{i})+{beta }_{9}({rm{percent}},{rm{healthcare}},{rm{workers}}_{i})\ quad , {beta }_{10}({rm{day}},{rm{when}},100,{rm{cumulative}},{rm{cases}},{rm{per}},100,000,{rm{people}},{rm{was}},{rm{reached}}_{i})+{re}({rm{county}}_{i})+{re}({rm{state}}_{j})$$
    (3)
    where E(Ri,j,t) refers to the expected Rt in county i, state j, on day t, and α is the intercept. Given the distribution of Rt in our data close to a lognormal distribution (Supplementary Fig. 8), we used log-transformed Rt as the outcome variable, and the Gaussian family in the model. A thin plate spline with a maximum of 200 knots was used to control the coordinates of the centroid of each county; the time trend was controlled by a flexible natural cubic spline over the range of study dates with a maximum of 30 knots; due to the unique pattern of the non-linear time trend of Rt in each county (Supplementary Fig. 4), we constructed tensor product smooths (te) of the splines of geographical coordinates and time, to better control for the temporal and spatial variations (Supplementary Fig. 3).Cb.temperature, cb.SH, and cb.UV are cross-basis terms for the mean air temperature, mean SH and mean UV radiation, respectively. We modeled exposure-response associations (meteorological factors vs. percent change in Rt) using a natural cubic spline with 3 degrees of freedom (df) and modeled the lag-response association using a natural cubic spline with an intercept and 3 df with a maximum lag of 13 days. We adjusted for county-level characteristics, including population density, percent Black residents, percent Hispanic residents, percent people older than 60 years, median household income, percent owner-occupied housing, percent residents older than 25 years without a high school diploma, number of ICU beds per 10,000 people, and percent healthcare workers, given their potential relationship with SARS-CoV-2 transmission67,68,69,70. Day when 100 cumulative cases per 100,000 people was reached in each county was used to approximate local epidemic stage45 (Supplementary Fig. 9). The random effects of state and county were modeled by parametric terms penalized by a ridge penalty (re), to further control for unmeasured state- and county-level confounding. Residual plots were used to diagnose the model (Supplementary Fig. 10). In additional analyses, we included air temperature, SH, and UV radiation in separate models (Supplementary Fig. 2).Based on the estimated exposure-response curves, between the 1st and the 99th percentiles of the distribution of air temperature, SH, and UV radiation, we determined the value of exposure associated with the lowest relative risk of Rt to be the optimum temperature, the optimum SH, or the optimum UV radiation, respectively. The natural cubic spline functions of the exposure-response relationship were then re-centered with the optimum values of meteorological factors as reference values. We report the cumulative relative risk of Rt associated with daily temperature, SH, or UV radiation exposure in the previous two weeks (0– 13 lag days) as the percent changes in Rt when comparing the daily exposure with the optimum reference values (i.e., the cumulative relative risk of Rt equals one and the percent change in Rt equals zero when the temperature, SH, or UV radiation exposure is at its optimum value).Attribution of R
    t to meteorological factorsWe used the optimum value of temperature, SH, or UV radiation as the reference value for calculating the fraction of Rt attributable to each meteorological factor; i.e., the attributable fraction (AF). For these calculations, we assumed that the associations of meteorological factors with Rt were consistent across the counties. For each day in each county, based on the cumulative lagged effect (cumulative relative risk) corresponding to the temperature, SH, or UV radiation of that day, we calculated the attributable Rt in the current and next 13 days, using a previously established method71. Specifically, in a given county, the Rt attributable to a meteorological factor (xt) for a given day t was defined as the attributable absolute excess of Rt (AEx,t, the excess reproduction number on day t attributable to the deviation of temperature or SH from the optimum value) and the attributable fraction of Rt (AFx,, the fraction of Rt attributable to the deviation of the meteorological factor from its optimum value), each accumulated over the current and next 13 days. The formulas can be expressed as:$${{AF}}_{x,t}=1-{rm{exp }}left(-mathop{sum }limits_{l=0}^{13}{beta }_{{x}_{t},l}right)$$
    (4)
    $${{AE}}_{x,t}={{AF}}_{x,t}times mathop{sum }limits_{l=0}^{13}frac{{n}_{t+1}}{13+1},$$
    (5)
    where nt is the Rt on day t, and ({sum }_{l=0}^{13}{beta }_{{x}_{t},l}) is the overall cumulative log-relative risk for exposure xt on day t obtained by the exposure-response curves re-centered on the optimum values. Then, the total absolute excess of Rt attributable to temperature, SH, or UV radiation in each county was calculated by summing the absolute excesses of all days during the study period, and the attributable fraction was calculated by dividing the total absolute excess of Rt for the county by the sum of the Rt of all days during the study period for the county. The attributable fraction for the 2669 counties combined was calculated in a similar manner at the national level. We derived the 95% eCI for the attributable absolute excess and attributable fraction by 1000 Monte Carlo simulations71. The total fraction of Rt attributable to meteorological factors was the sum of the attributable fraction for temperature, SH, and UV radiation. We also calculated the attributable fractions by month in the study period.Sensitivity analysesWe conducted several sensitivity analyses to test the robustness of our results: (a) the lag dimension was redefined using a natural cubic spline and three equally placed internal knots in the log scale; (b) an alternative four df was used in the cross-basis term for meteorological factors in the exposure-response function; (c) the maximum number of knots was reduced to 25 in the flexible natural cubic spline to control time trend in the tensor product smooths; (d) all demographic and socioeconomic variables were excluded from the model; (e) adjustment for the prevalence of smoking and obesity among adults was included in the model; (f) adjustment for climate zone was included in the model; (g) additional adjustment was made for the average PM2.5 concentration in each county during 2014–201845; (h) additional adjustment was made for daily mean PM2.5, and daily maximum 8-h O3. For daily covariates with available data in only some of the counties or study period, the results of sensitivity analyses were compared to the main model re-run on the same partial dataset.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Community context matters for bacteria-phage ecology and evolution

    1.Crick FHC, Barnett FRSL, Brenner S, Watts-Tobin RJ. General Nature of the Genetic Code for Proteins. Nature. 1961;192:1227–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952;36:39–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Luria S, Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943;28:491–511.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: a Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25:219–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Mushegian AR. Are there 10^31 virus particles on Earth, or more, or less? J Bacteriol. 2020;202:e00052–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Dennehy JJ. What Can Phages Tell Us about Host-Pathogen Coevolution? Int J Evol Biol. 2012;2012:1–12.Article 

    Google Scholar 
    7.Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, et al. Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol. 2004;19:189–97.PubMed 
    Article 

    Google Scholar 
    8.Tecon R, Mitri S, Ciccarese D, Or D, Meer JR, van der, Johnson DR. Bridging the Holistic-Reductionist Divide in Microbial Ecology. MSystems. 2019;4:e00265–18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Bohannan BJM, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett. 2000;3:362–77.Article 

    Google Scholar 
    10.Buckling A, Brockhurst MA. Bacteria-Virus Coevolution. In: Orkun S Soyer, editor. Evolutionary Systems Biology. 2012. New York, NY: Springer; 2012. p. 347–70.11.Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:1–16.Article 
    CAS 

    Google Scholar 
    12.De Sordi L, Lourenço M, Debarbieux L. The Battle Within: interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. Cell Host Microbe. 2019;25:210–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    13.Scanlan PD. Bacteria–Bacteriophage Coevolution in the Human Gut: implications for Microbial Diversity and Functionality. Trends Microbiol. 2017;25:614–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Breitbart M. Marine viruses: truth or dare. Annu Rev Mar Sci. 2012;4:425–48.Article 

    Google Scholar 
    15.Pratama AA, van Elsas JD. The ‘neglected’ soil virome–potential role and impact. Trends Microbiol. 2018;26:649–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Lourenço M, De Sordi L, Debarbieux L. The diversity of bacterial lifestyles hampers bacteriophage tenacity. Viruses. 2018;10:1–11.Article 
    CAS 

    Google Scholar 
    17.Martiny JBH, Riemann L, Marston MF, Middelboe M. Antagonistic Coevolution of Marine Planktonic Viruses and Their Hosts. Annu Rev Mar Sci. 2014;6:393–414.Article 

    Google Scholar 
    18.Díaz-Muñoz SL, Koskella B. Bacteria–Phage Interactions in Natural Environments. In: Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology. Cambridge, MA:Academic Press; 2014. p.135–83.19.Avrani S, Schwartz DA, Lindell D. Virus-host swinging party in the oceans. Mob Genet Elem. 2012;2:88–95.Article 

    Google Scholar 
    20.Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-Offs between Competition and Defense Specialists among Unicellular Planktonic Organisms: the “Killing the Winner” Hypothesis Revisited. Microbiol Mol Biol Rev. 2010;74:42–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hansen MF, Svenningsen SL, Røder HL, Middelboe M, Burmølle M. Big Impact of the Tiny: bacteriophage–bacteria Interactions in Biofilms. Trends Microbiol. 2019;27:739–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.O’Brien S, Hodgson DJ, Buckling A. The interplay between microevolution and community structure in microbial populations. Curr Opin Biotechnol. 2013;24:821–5.PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Brockhurst MA, Koskella B. Experimental coevolution of species interactions. Trends Ecol Evol. 2013;28:367–75.PubMed 
    Article 

    Google Scholar 
    24.Geredew Kifelew L, Mitchell JG, Speck P. Mini-review: efficacy of lytic bacteriophages on multispecies biofilms. Biofouling. 2019;35:472–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Miki T, Jacquet S. Complex interactions in the microbial world: Underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquat Micro Ecol. 2008;51:195–208.Article 

    Google Scholar 
    26.Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A. Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol. 2014;27:185–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Hall AR, Ashby B, Bascompte J, King KC. Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends Ecol Evol. 2020;35:539–50.PubMed 
    Article 

    Google Scholar 
    28.Strauss SY. Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos. 2014;123:257–66.Article 

    Google Scholar 
    29.Strauss SY, Irwin RE. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst. 2004;35:435–66.Article 

    Google Scholar 
    30.Inouye B, Stinchcombe JR. Relationships between ecological interaction modifications and diffuse coevolution: similarities, differences, and causal links. Oikos. 2011;95:353–60.Article 

    Google Scholar 
    31.Barraclough TG. How Do Species Interactions Affect Evolutionary Dynamics Across Whole Communities? Annu Rev Ecol Evol Syst. 2015;46:25–48.Article 

    Google Scholar 
    32.Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    33.Gómez P, Bennie J, Gaston KJ, Buckling A. The Impact of Resource Availability on Bacterial Resistance to Phages in Soil. PLoS ONE. 2015;10:e0123752.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Gorter FA, Scanlan PD, Buckling A. Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments. Biol Lett. 2016;12:20150879.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Scanlan JG, Hall AR, Scanlan PD. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. Infect Genet Evol. 2019;73:425–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Gómez P, Buckling A. Bacteria-phage antagonistic coevolution in soil. Science. 2011;332:106–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    37.Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 2004;6:1–11.PubMed 
    Article 

    Google Scholar 
    38.Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator Bdellovibrio. Front Ecol Evol. 2017;5:1–12.Article 

    Google Scholar 
    39.R Core Team. R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.40.Mumford R, Friman VP. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evol Appl. 2017;10:161–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Connell JH. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology. 1961;42:710–23.Article 

    Google Scholar 
    42.Vellend M. Conceptual Synthesis in Community Ecology. Q Rev Biol. 2010;85:183–206.PubMed 
    Article 

    Google Scholar 
    43.Alseth EO, Pursey E, Lujan AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance in Pseudomonas aeruginosa. Nature. 2019;574:549–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Goldhill DH, Turner PE. The evolution of life history trade-offs in viruses. Curr Opin Virol. 2014;8:79–84.PubMed 
    Article 

    Google Scholar 
    45.Keen EC. Tradeoffs in bacteriophage life histories. Bacteriophage. 2014;4:e28365.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Gómez P, Buckling A. Real-time microbial adaptive diversification in soil. Ecol Lett. 2013;16:650–5.PubMed 
    Article 

    Google Scholar 
    47.Houte S, van, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Middelboe M, Hagström A, Blackburn N, Sinn B, Fischer U, Borch NH, et al. Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Micro Ecol. 2001;42:395–406.CAS 
    Article 

    Google Scholar 
    49.Gómez P, Buckling A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 2013;7:2242–4.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.De Sordi L, Khanna V, Debarbieux L. The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses. Cell Host Microbe. 2017;22:801–8.e3.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.De Sordi L, Lourenço M, Debarbieux L. “I will survive”: A tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes. 2019;10:92–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Landsberger M, Gandon S, Meaden S, Chabas H, Buckling A, Westra ER, et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell. 2018;174:908–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Westra ER, van Houte S, Oyesiku-Blakemore S, Makin B, Broniewski JM, Best A, et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol. 2015;25:1043–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol. 2014;1:307–31.PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Rostøl JT, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe. 2019;25:184–94.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Burmeister AR, Turner PE. Trading-off and trading-up in the world of bacteria–phage evolution. Curr Biol. 2020;30:R1120–R1124.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Vienna, Austria: Proc. 3rd Int. Workshop Distrib. Stat. Comput; 2003. p. 1–10.58.Wickham H. ggplot2: elegant Graphics for Data Analysis. Verlag New York: Springer; 2016.59.Wickham H. tidyr: Tidy Messy Data. 2020.60.Plummer M. rjags: Bayesian Graphical Models using MCMC. 2019.61.Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation. 2020.62.Gandon S, Buckling A, Decaestecker E, Day T. Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol. 2008;21:1861–6.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Publisher Correction: Reflections and projections on a decade of climate science

    Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyVeronika EyringInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyVeronika EyringCivil Engineering and Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, IndiaVimal MishraNorwegian Polar Institute, FRAM – High North Research Centre on Climate and the Environment, Tromsø, NorwayGary P. GriffithLevin Lab, Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USAGary P. GriffithKey Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, ChinaLei ChenDepartment of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USATrevor KeenanEcology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USAMerritt R. TuretskyDepartment of Life and Environmental Sciences, Bournemouth University, Poole, UKSally BrownAustralian National University, Crawford School of Public Policy, Canberra, Australian Capital Territory, AustraliaFrank JotzoEnvironmental Science and Policy, University of California, Davis, Davis, CA, USAFrances C. MooreDepartment of Psychology, School of Biological Sciences, University of Cambridge, Cambridge, UKSander van der Linden More

  • in

    Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses

    1.Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. ISME J. 2017;11:1949–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol. 2021;19:225–40.CAS 
    Article 

    Google Scholar 
    5.Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017;357:eaaf3883.7.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    Article 

    Google Scholar 
    8.Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 2019;568:108–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;18:241–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol. 2002;5:246–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Galbán-Malagón C, Berrojalbiz N, Ojeda M-J, Dachs J. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nat Commun 2012;3:862.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 2005;67:170–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA. 2006;103:15280.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol. 2004;186:5189–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA. 2006;103:15582.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Lee TK, Lee J, Sul WJ, Iwai S, Chai BC, Tiedje JM, et al. Novel biphenyl-oxidizing bacteria and dioxygenase genes from a Korean tidal mudflat. Appl Environ Microbiol. 2011;77:3888–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Sul WJ, Park J, Quensen JF, Rodrigues JLM, Seliger L, Tsoi TV, et al. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol. 2009;75:5501–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Uhlik O, Jecna K, Mackova M, Vlcek C, Hroudova M, Demnerova K, et al. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol. 2009;75:6471.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Jiang LF, Luo CL, Zhang DY, Song MK, Sun YT, Zhang G. Biphenyl-Metabolizing microbial community and a functional operon revealed in e-waste-contaminated soil. Environ Sci Technol. 2018;52:8558–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Tillmann S, Strompl C, Timmis KN, Abraham WR. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol. 2005;52:207–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 2007;1:134–48.CAS 
    Article 

    Google Scholar 
    24.Chen S-C, Duan G-L, Ding K, Huang F-Y, Zhu Y-G. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol Ecol. 2018;94:fiy026.25.Neufeld JD, Dumont MG, Vohra J, Murrell JC. Methodological considerations for the use of stable isotope probing in microbial ecology. Micro Ecol. 2007;53:435–42.CAS 
    Article 

    Google Scholar 
    26.Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Mohn WW, Westerberg K, Cullen WR, Reimer KJ. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms. Appl Environ Microbiol. 1997;63:3378–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Wagner-Dobler I, Bennasar A, Vancanneyt M, Strompl C, Brummer I, Eichner C, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol. 1998;64:3014–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Allen MB. Studies with cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol. 1959;32:270–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995;163:96–103.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ouyang WY, Su JQ, Richnow HH, Adrian L. Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing. Environ Int. 2019;126:118–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Tischer K, Zeder M, Klug R, Pernthaler J, Schattenhofer M, Harms H, et al. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol. 2012;35:526–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from SIP-NanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:2342.38.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019;7:e7359–e.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–7.CAS 

    Google Scholar 
    43.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    45.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D14. (D1)CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.Article 
    CAS 

    Google Scholar 
    49.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Budhraja R, Karande S, Ding C, Ullrich MK, Wagner S, Reemtsma T, et al. Characterization of membrane-bound metalloproteins in the anaerobic ammonium-oxidizing bacterium “Candidatus Kuenenia stuttgartiensis” strain CSTR1. Talanta. 2021;223:121711.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20:1466–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13:741–8.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Sachsenberg T, Herbst F-A, Taubert M, Kermer R, Jehmlich N, von Bergen M, et al. MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res. 2015;14:619–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Liu J, He XX, Lin XR, Chen WC, Zhou QX, Shu WS, et al. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. Environ Sci Technol. 2015;49:6438–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol. 1998;16:663–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Garrido-Sanz D, Manzano J, Martín M, Redondo-Nieto M, Rivilla R. Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations. Front Microbiol. 2018;9:232.58.Kikuchi Y, Nagata Y, Ohtsubo Y, Koana T, Takagi M. Pseudomonas fluorescens KKL101, a benzoic acid degrader in a mixed culture that degrades biphenyl and polychlorinated biphenyls. Biosci Biotechnol Biochem. 1995;59:2303–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA. 2008;105:17861.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Robertson BR, Button DK, Koch AL. Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl Environ Microbiol. 1998;64:3900–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Troussellier M, Bouvy M, Courties C, Dupuy C. Variation of carbon content among bacterial species under starvation condition. Aquat Micro Ecol. 1997;13:113–9.Article 

    Google Scholar 
    63.Furukawa K, Miyazaki T. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol. 1986;166:392–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Seeger M, Timmis KN, Hofer B. Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl Environ Microbiol. 1995;61:2654–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Chadhain SM, Moritz EM, Kim E, Zylstra GJ. Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol. 2007;34:605–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Hofer B, Backhaus S, Timmis KN. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 1994;144:9–16.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Harwood CS, Parales RE. The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Rather LJ, Knapp B, Haehnel W, Fuchs G. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J Biol Chem. 2010;285:20615–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, Arntzen EV, et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat Commun. 2016;7:1–12.70.Corteselli EM, Aitken MD, Singleton DR. Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds. Int J Syst Evol Microbiol 2017;67:311–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Fernandez H, Prandoni N, Fernandez-Pascual M, Fajardo S, Morcillo C, Diaz E, et al. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS ONE. 2014;9:e110771.72.Iwai S, Johnson TA, Chai BL, Hashsham SA, Tiedje JM. Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol. 2011;77:3551–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol. 2003;14:262–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol. 2016;1:1–7.75.de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol. 2008;19:579–89.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    76.Rabus R, Wöhlbrand L, Thies D, Meyer M, Reinhold-Hurek B, Kämpfer P. Aromatoleum gen. nov., a novel genus accommodating the phylogenetic lineage including Azoarcus evansii and related species, and proposal of Aromatoleum aromaticum sp. nov., Aromatoleum petrolei sp. nov., Aromatoleum bremense sp. nov., Aromatoleum toluolicum sp. nov. and Aromatoleum diolicum sp. nov. Int J Syst Evol Microbiol. 2019;69:982–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Vogt C, Richnow HH. Bioremediation via in situ microbial degradation of organic pollutants. Adv Biochem Engin/Biotechnol. 2014;142:123–46.
    Google Scholar 
    78.Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol. 2001;35:1663–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Mondello FJ, Turcich MP, Lobos JH, Erickson BD. Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl Environ Microbiol. 1997;63:3096–103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Gomez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol. 2007;189:5705–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

    1.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).ADS 

    Google Scholar 
    2.Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).ADS 
    CAS 

    Google Scholar 
    3.Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2, 68–74 (2014).ADS 

    Google Scholar 
    4.Oberbauer, S. F. et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R. Soc. B Biol. Sci. 368, 1624 (2013).5.Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52 (2019).PubMed 

    Google Scholar 
    6.Jabis, M. D., Winkler, D. E. & Kueppers, L. M. Warming acts through earlier snowmelt to advance but not extend alpine community flowering. Ecology https://doi.org/10.1002/ecy.3108 (2020).7.Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34, 885–888 (2019).PubMed 

    Google Scholar 
    8.Gallinat, A. S., Primack, R. B. & Wagner, D. L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169–176 (2015).PubMed 

    Google Scholar 
    9.Semenchuk, P. R. et al. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity. Environ. Res. Lett. 11, 125006 (2016).10.Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Glob. Chang. Biol. 21, 2634–2641 (2015).ADS 
    PubMed 

    Google Scholar 
    11.Diepstraten, R. A. E., Jessen, T. D., Fauvelle, C. M. D. & Musiani, M. M. Does climate change and plant phenology research neglect the Arctic tundra? Ecosphere 9, e02362 (2018).12.Savage, J. A. A temporal shift in resource allocation facilitates flowering before leaf out and spring vessel maturation in precocious species. Am. J. Bot. 106, 113–122 (2019).PubMed 

    Google Scholar 
    13.Neuner, G. Frost resistance in alpine woody plants. Front. Plant Sci. 5, 654 (2014).14.Kuprian, E., Briceño, V. F., Wagner, J. & Neuner, G. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer. Environ. Exp. Bot. 106, 4–12 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    15.Vitasse, Y., Lenz, A. & Körner, C. The interaction between freezing tolerance and phenology in temperate deciduous trees. Front. Plant Sci. 5, 1–12 (2014).
    Google Scholar 
    16.Maron, J. L., Agrawal, A. A. & Schemske, D. W. Plant–herbivore coevolution and plant speciation. Ecology 100, 1–11 (2019).
    Google Scholar 
    17.Rafferty, N. E. & Ives, A. R. Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecol. Lett. 14, 69–74 (2011).PubMed 

    Google Scholar 
    18.Fitter, A. H. & Fitter, R. S. R. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    19.Post, E. Time in Ecology: A Theoretical Framework (Princeton University Press, 2019).20.Kharouba, H. M., Vellend, M., Sarfraz, R. M. & Myers, J. H. The effects of experimental warming on the timing of a plant-insect herbivore interaction. J. Anim. Ecol. 84, 785–796 (2015).PubMed 

    Google Scholar 
    21.Zohner, C. M., Mo, L. & Renner, S. S. Global warming reduces leaf-out and flowering synchrony among individuals. Elife 7, 1–15 (2018).
    Google Scholar 
    22.Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).ADS 

    Google Scholar 
    23.Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M. & Henry, G. H. R. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob. Chang. Biol. 21, 4651–4661 (2015).ADS 
    PubMed 

    Google Scholar 
    24.Assmann, J. J. et al. Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal Arctic tundra. Glob. Chang. Biol. 25, 2258–2274 (2019).ADS 
    PubMed 

    Google Scholar 
    25.Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180, 157–167 (2011).CAS 
    PubMed 

    Google Scholar 
    26.Kelsey, K. C. et al. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Chang. Biol. 1–15 https://doi.org/10.1111/gcb.15505 (2020).27.Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976 (2006).ADS 

    Google Scholar 
    28.Panchen, Z. A. & Gorelick, R. Prediction of Arctic plant phenological sensitivity to climate change from historical records. Ecol. Evol. 7, 1325–1338 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    29.Livensperger, C. et al. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants 8, 1–15 (2016).
    Google Scholar 
    30.Livensperger, C. et al. Experimentally warmer and drier conditions in an Arctic plant community reveal microclimatic controls on senescence. Ecosphere 10, e02677 (2019).31.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 1922–1940 https://doi.org/10.1111/gcb.14619 (2019).32.Panchen, Z. A. et al. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes. Ann. Bot. 865–873 https://doi.org/10.1093/aob/mcv015 (2015).33.Wu, C. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Chang. 8, 1092–1096 (2018).ADS 
    CAS 

    Google Scholar 
    34.Zhu, W. et al. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr. 21, 260–271 (2012).
    Google Scholar 
    35.Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Chang. Biol. 22, 3702–3711 (2016).ADS 
    PubMed 

    Google Scholar 
    36.Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. Meteorol. 169, 156–173 (2013).
    Google Scholar 
    37.Marchand, F. L. et al. Climate warming postpones senescence in High Arctic Tundra. Arct. Antarct. Alp. Res. 36, 390–394 (2004).
    Google Scholar 
    38.Steltzer, H. & Post, E. Seasons and life cycles. Science 324, 886–887 (2009).PubMed 

    Google Scholar 
    39.Jiang, L. L. et al. Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology 97, 1961–1969 (2016).CAS 
    PubMed 

    Google Scholar 
    40.Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS 
    PubMed 

    Google Scholar 
    41.Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, 1–11 (2007).
    Google Scholar 
    42.Wookey, P. A. et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Chang. Biol. 15, 1153–1172 (2009).ADS 

    Google Scholar 
    43.Arft, A. M. et al. Responses of Tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    44.Buttler, A. et al. Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland. J. Veg. Sci. 26, 964–974 (2015).
    Google Scholar 
    45.Healy, N. C., Oberbauer, S. F. & Hollister, R. D. Examination of surface temperature modification by open-top chambers along moisture and latitudinal gradients in Arctic Alaska using thermal infrared photography. Remote Sens. 1–19 https://doi.org/10.3390/rs8010054 (2016).46.Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).PubMed 

    Google Scholar 
    47.Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 1–8 https://doi.org/10.1038/s41598-018-22258-0 (2018).48.Iler, A. M., Høye, T. T., Inouye, D. W. & Schmidt, N. M. Nonlinear flowering responses to climate: Are species approaching their limits of phenological change? Philos. Trans. R. Soc. B Biol. Sci. 368, 13–16 (2013).
    Google Scholar 
    49.Prevéy, J. et al. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob. Chang. Biol. 23, 2660–2671 (2017).ADS 
    PubMed 

    Google Scholar 
    50.Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and Alpine Tundra ecosystems. Polar Res. 29, 95–109 (2010).
    Google Scholar 
    51.Bokhorst, S. et al. Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Glob. Chang. Biol. 19, 64–74 (2013).ADS 
    PubMed 

    Google Scholar 
    52.Zhu, J., Zhang, Y. & Wang, W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol. Lett. 12, 1–4 (2016).ADS 

    Google Scholar 
    53.Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).
    Google Scholar 
    54.Panchen, Z. A. & Gorelick, R. Canadian arctic archipelago conspecifics flower earlier in the high arctic than the mid-arctic. Int. J. Plant Sci. 177, 661–670 (2016).
    Google Scholar 
    55.Barrett, R. T. & Hollister, R. D. Arctic plants are capable of sustained responses to long-term warming. Polar Res. 35, 1–9 (2016).
    Google Scholar 
    56.Carbognani, M., Bernareggi, G., Perucco, F., Tomaselli, M. & Petraglia, A. Micro-climatic controls and warming effects on flowering time in alpine snowbeds. Oecologia 182, 573–585 (2016).ADS 
    PubMed 

    Google Scholar 
    57.Hollister, R. D., Webber, P. J. & Tweedie, C. E. The response of Alaskan Arctic Tundra to experimental warming: Differences between short- and long-term responses. Glob. Chang. Biol. 11, 525–536 (2005).ADS 

    Google Scholar 
    58.Mulder, C. P. H., Iles, D. T. & Rockwell, R. F. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Glob. Chang. Biol. 23, 801–814 (2017).ADS 
    PubMed 

    Google Scholar 
    59.Marion, G. M. et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Chang. Biol. 3, 20–32 (1997).
    Google Scholar 
    60.Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    61.Hollister, R. D. & Webber, P. J. Biotic validation of small open-top chambers in a tundra ecosystem. Glob. Chang. Biol. 6, 835–842 (2000).ADS 

    Google Scholar 
    62.Henry, G. H. R. & Molau, U. Tundra plants and climate change: The International Tundra Experiment (ITEX). Glob. Chang. Biol. 3, 1–9 (1997).ADS 

    Google Scholar 
    63.Welker, J. M., Molau, U., Parsons, A. N., Robinson, C. H. & Wookey, P. A. Responses of Dryas octopetala to ITEX environmental manipulations: a synthesis with circumpolar comparisons. Glob. Chang. Biol. 3, 61–73 (1997).ADS 

    Google Scholar 
    64.Basnett, S., Nagaraju, S. K., Ravikanth, G. & Devy, S. M. Influence of phylogeny and abiotic factors varies across early and late reproductive phenology of Himalayan Rhododendrons. Ecosphere 10, e02581 (2019).65.Panchen, Z. A. et al. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. N. Phytol. 203, 1208–1219 (2014).CAS 

    Google Scholar 
    66.Davis, C. C., Willis, C. G., Primack, R. B. & Miller-Rushing, A. J. The importance of phylogeny to the study of phenological response to global climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 3202–3213 (2010).
    Google Scholar 
    67.Hänninen, H. et al. Experiments are necessary in process-based tree phenology modelling. Trends Plant Sci. 24, 199–209 (2019).PubMed 

    Google Scholar 
    68.Hanson, P. J. & Walker, A. P. Advancing global change biology through experimental manipulations: Where have we been and where might we go? Glob. Chang. Biol. 26, 287–299 (2020).ADS 
    PubMed 

    Google Scholar 
    69.Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, 1–17 (2016).
    Google Scholar 
    70.Ettinger, A. K. et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Chang. 10, 1137–1142 (2020).71.Augspurger, C. K. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41–50 (2013).PubMed 

    Google Scholar 
    72.Caradonna, P. J. & Bain, J. A. Frost sensitivity of leaves and fl owers of subalpine plants is related to tissue type and phenology. J. Ecol. 55–64 https://doi.org/10.1111/1365-2745.12482 (2016).73.Gezon, Z. J., Inouye, D. W. & Irwin, R. E. Phenological change in a spring ephemeral: Implications for pollination and plant reproduction. Glob. Chang. Biol. 22, 1779–1793 (2016).ADS 
    PubMed 

    Google Scholar 
    74.Iler, A. M. et al. Reproductive losses due to climate change-induced earlier flowering are not the primary threat to plant population viability in a perennial herb. J. Ecol. 107, 1931–1943 (2019).
    Google Scholar 
    75.CaraDonna, P. J. & Waser, N. M. Temporal flexibility in the structure of plant–pollinator interaction networks. Oikos 129, 1369–1380 (2020).
    Google Scholar 
    76.Fründ, J., Dormann, C. F. & Tscharntke, T. Linné’s floral clock is slow without pollinators – flower closure and plant-pollinator interaction webs. Ecol. Lett. 14, 896–904 (2011).PubMed 

    Google Scholar 
    77.Song, C. & Saavedra, S. Structural stability as a consistent predictor of phenological events. Proc. R. Soc. B Biol. Sci. 285, 20180767 (2018).78.Saavedra, S., Rohr, R. P., Olesen, J. M. & Bascompte, J. Nested species interactions promote feasibility over stability during the assembly of a pollinator community. Ecol. Evol. 6, 997–1007 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    79.Mosbacher, J. B., Michelsen, A., Stelvig, M., Hjermstad-Sollerud, H. & Schmidt, N. M. Muskoxen modify plant abundance, phenology, and nitrogen dynamics in a high Arctic Fen. Ecosystems 22, 1095–1107 (2019).
    Google Scholar 
    80.Barboza, P. S., Van Someren, L. L., Gustine, D. D. & Syndonia Bret-Harte, M. The nitrogen window for arctic herbivores: Plant phenology and protein gain of migratory caribou (Rangifer tarandus). Ecosphere 9, e02073 (2018).81.Gougherty, A. V. & Gougherty, S. W. Sequence of flower and leaf emergence in deciduous trees is linked to ecological traits, phylogenetics, and climate. N. Phytol. 220, 121–131 (2018).
    Google Scholar 
    82.Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020).PubMed 

    Google Scholar 
    83.Loe, L. E. et al. The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Glob. Chang. Biol. 993–1002 https://doi.org/10.1111/gcb.15458 (2020).84.Ueyama, M. et al. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecol. Appl. 23, 1798–1816 (2013).PubMed 

    Google Scholar 
    85.White, M. A., Running, S. W. & Thornton, P. E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 42, 139–145 (1999).86.Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).ADS 
    CAS 

    Google Scholar 
    87.Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 3–7 (2008).
    Google Scholar 
    88.Radville, L., Post, E. & Eissenstat, D. M. On the sensitivity of root and leaf phenology to warming in the Arctic. Arctic Antarct. Alp. Res. 50, S100020 (2018).89.Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub-Arctic plant communities. J. Ecol. 104, 239–248 (2016).CAS 

    Google Scholar 
    90.Danby, R. K. & Hik, D. S. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glob. Chang. Biol. 13, 437–451 (2007).ADS 

    Google Scholar 
    91.Dabros, A., Fyles, J. W. & Strachan, I. B. Effects of open-top chambers on physical properties of air and soil at post-disturbance sites in northwestern Quebec. Plant Soil 333, 203–218 (2010).92.Finger Higgens, R. A. et al. Changing Lake Dynamics indicate a drier Arctic in Western Greenland. J. Geophys. Res. Biogeosci. 124, 870–883 (2019).
    Google Scholar 
    93.Leuzinger, S. et al. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol. 26, 236–241 (2011).PubMed 

    Google Scholar 
    94.Molau, U. & MØlgaard, P. ITEX Manual (1996).95.Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).96.Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F. S. & Golicher, D. J. Taxonstand: An r package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).
    Google Scholar 
    97.C3S. ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home%0A (2017).98.Kittel, T. G. F. et al. Contrasting long-term alpine and subalpine precipitation trends in a mid-latitude North American mountain system, Colorado Front Range, USA. Plant Ecol. Divers. 8, 607–624 (2015).
    Google Scholar 
    99.Therneau, T. A package for survival analysis in S. Citeseer 1–83 (2020).100.R Core Team. R: A Language and Environment for Statistical Computing (2019).101.Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).102.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    103.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences linked references are available on JSTOR for this article: inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    104.Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).ADS 

    Google Scholar 
    105.Pebesma, E. Simple features for R: standardized support for spatial vector data. R J 10, 439–446 (2018).
    Google Scholar 
    106.Wickham, H. Elegant Graphics for Data Analysis Media Vol. 35 (Springer Publishing Company, Incorporated, 2009).107.Collins, C. cour10eygrace/OTC_synthesis_analyses: release for Nature Communications manuscript (Version v1.0.3). Zenodo https://doi.org/10.5281/zenodo.4763165 (2021). More

  • in

    Behavioral traits and territoriality in the symbiotic scaleworm Ophthalmonoe pettiboneae

    1.Baeza, J. A. & Thiel, M. Predicting territorial behavior in symbiotic crabs using host characteristics: A comparative study and proposal of a model. Mar. Biol. 142, 93–100. https://doi.org/10.1007/s00227-002-0927-1 (2003).Article 

    Google Scholar 
    2.Kamran, M. & Moore, P. A. Dominance and territory. In Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. & Weekes-Shackelford, V. A.) 1–4 (Springer, 2016).
    Google Scholar 
    3.Grant, J. W. A. Whether or not to defend? The influence of resource distribution. Mar. Behav. Physiol. 22, 137–153. https://doi.org/10.1080/10236249309378862 (1993).ADS 
    Article 

    Google Scholar 
    4.Duffy, J. E. The ecology and evolution of eusociality in sponge-dwelling shrimp. In Genes, Behaviors and Evolution of Social Insects (ed. Kikuchi, T.) 217–254 (Hokkaido University Press, 2002).
    Google Scholar 
    5.Baeza, J. A., Stotz, W. & Thiel, M. Agonistic behaviour and development of territoriality during ontogeny of the sea anemone dwelling crab Allopetrolisthes spinifrons (H. Milne Edwards, 1837)(Decapoda: Anomura: Porcellanidae). Mar. Freshw. Behav. Physiol. 35, 189–202. https://doi.org/10.1080/1023624021000003817 (2002).Article 

    Google Scholar 
    6.Castro, P. Symbiotic Brachyura. In Treatise on Zoology-Anatomy, Taxonomy, Biology. The Crustacea, Volume 9 Part C Vol. 2 (eds Castro, P. et al.) 543–581 (Brill, 2015).Chapter 

    Google Scholar 
    7.Wilson, E. O. Sociobiology: The New Synthesis (Harvard University, 1975).
    Google Scholar 
    8.Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352. https://doi.org/10.2307/1374834 (1943).Article 

    Google Scholar 
    9.Gerking, S. D. Feeding Ecology of Fish (Academic Press, 2014).
    Google Scholar 
    10.Barrows, E. M. Animal Behavior Desk Reference: A Dictionary of Animal Behavior, Ecology, and Evolution (CRC Press, 2000).Book 

    Google Scholar 
    11.Hardy, I. C. W. & Briffa, M. Animal Contests Vol. 357 (Cambridge University Press, 2013).Book 

    Google Scholar 
    12.Dimock, R. V. Jr. Intraspecific aggression and the distribution of a symbiotic polychaete on its host. In Symbiosis in the Sea (ed. Vernberg, W. B.) 29–44 (University of South Carolina Press, 1974).
    Google Scholar 
    13.Duffy, J. E., Morrison, C. L. & Macdonald, K. S. Colony defense and behavioral differentiation in the eusocial shrimp Synalpheus regalis. Behav. Ecol. Sociobiol. 51, 488–495. https://doi.org/10.1007/s00265-002-0455-5 (2002).Article 

    Google Scholar 
    14.Huber, M. E. Aggressive behavior of Trapezia intermedia Miers and T. digitalis Latreille (Brachyura: Xanthidae). J. Crustacean Biol. 7, 238–248. https://doi.org/10.2307/1548604 (1987).Article 

    Google Scholar 
    15.Douglas, A. The Symbiotic Habit (Princeton University Press, 2010).
    Google Scholar 
    16.Williams, J. D. & McDermott, J. J. Hermit crab biocoenoses: A worldwide review of the diversity and natural history of hermit crab associates. J. Exp. Mar. Biol. Ecol. 305, 1–128. https://doi.org/10.1016/j.jembe.2004.02.020 (2004).Article 

    Google Scholar 
    17.Fautin, D. G. The anemonefish symbiosis: What is known and what is not. Symbiosis 10, 23–46 (1991).
    Google Scholar 
    18.Martin, D. & Britayev, T. A. Symbiotic polychaetes: Review of known species. Oceanogr. Mar. Biol. Ann. Rev. 36, 217–340 (1998).
    Google Scholar 
    19.Fernández-Leborans, G. Epibiosis in Crustacea: An overview. Crustaceana 83, 549–640. https://doi.org/10.1163/001121610X532648 (2010).Article 

    Google Scholar 
    20.Stella, J. S., Pratchett, M. S., Hutchings, P. A. & Jones, G. P. Diversity, importance and vulnerability of coral-associated invertebrates. Oceanogr. Mar. Biol. Ann. Rev. 49, 43–116 (2011).
    Google Scholar 
    21.Thiel, M. & Baeza, J. A. Factors affecting the social behaviour of crustaceans living symbiotically with other marine invertebrates: a modelling approach. Symbiosis 30, 163–190 (2001).
    Google Scholar 
    22.Jones, K. M. M. The effect of territorial damselfish (family Pomacentridae) on the space use and behaviour of the coral reef fish Halichoeres bivittatus (Bloch, 1791) (family Labridae). J. Exp. Mar. Biol. Ecol. 324, 99–111. https://doi.org/10.1016/j.jembe.2005.04.009 (2005).Article 

    Google Scholar 
    23.Thiel, M., Zander, A. & Baeza, J. A. Movements of the symbiotic crab Liopetrolisthes mitra between its host sea urchin Tetrapygus niger. Bull. Mar. Sci. 72, 89–101 (2003).
    Google Scholar 
    24.Marin, I. & Britayev, T. A. Symbiotic Community Associated with Corals Galaxea Oken, 1815 (Euphillidae: Scleractinia) Vol. 148 (KMK Press, 2014).
    Google Scholar 
    25.Ross, R. M. Territorial behavior and ecology of the anemonefish Amphiprion melanopus on Guam. Z. Tierpsychol. 46, 71–83. https://doi.org/10.1111/j.1439-0310.1978.tb01439.x (1978).Article 

    Google Scholar 
    26.Kobayashi, M. & Hattori, A. Spacing pattern and body size composition of the protandrous anemonefish Amphiprion frenatus inhabiting colonial host anemones. Ichthyol. Res. 53, 1–6. https://doi.org/10.1007/s10228-005-0305-3 (2006).Article 

    Google Scholar 
    27.Huebner, L. K., Dailey, B., Titus, B. M., Khalaf, M. & Chadwick, N. E. Host preference and habitat segregation among Red Sea anemonefish: Effects of sea anemone traits and fish life stages. Mar. Ecol. Progr. Ser. 464, 1–15. https://doi.org/10.3354/meps09964 (2012).ADS 
    Article 

    Google Scholar 
    28.Duffy, J. E. Eusociality in a coral-reef shrimp. Nature 381, 512–514. https://doi.org/10.1038/381512a0 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Baeza, J. A. & Stotz, W. B. Host-use pattern and host-selection during ontogeny of the commensal crab Allopetrolisthes spinifrons (H. Milne Edwards, 1837) (Decapoda: Anomura: Porcellanidae). J. Nat. Hist. 35, 341–355. https://doi.org/10.1080/002229301300009586 (2001).Article 

    Google Scholar 
    30.Ambrosio, L. J. & Baeza, J. A. Territoriality and conflict avoidance explain asociality (solitariness) of the endosymbiotic pea crab Tunicotheres moseri. PLoS ONE 11, e0148285–e0148285. https://doi.org/10.1371/journal.pone.0148285 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Baeza, J. A. & Thiel, M. The mating system of symbiotic crustaceans: A conceptual model based on optimality and ecological constraints. In Evolutionary Ecology of Social and Sexual Systems: Crustaceans as Model Organisms (eds Duffy, J. E. & Thiel, M.) 250–267 (Oxford University Press, 2007).
    Google Scholar 
    32.Bell, J. L. Distribution and abundance of Dissodactylus mellitae Rathbun (Pinnotheridae) on Mellita quinquiesperforata (Leske)(Echinodermata). J. Exp. Mar. Biol. Ecol. 117, 93–114. https://doi.org/10.1016/0022-0981(88)90220-1 (1988).Article 

    Google Scholar 
    33.Castro, P. Movements between coral colonies in Trapezia ferruginea (Crustacea: Brachyura), an obligate symbiont of scleractinian corals. Mar. Biol. 46, 237–245. https://doi.org/10.1007/BF00390685 (1978).Article 

    Google Scholar 
    34.Baeza, J. A., Simpson, L., Ambrosio, L. J., Guéron, R. & Mora, N. Monogamy in a hyper-symbiotic shrimp. PLoS ONE 11, e0149797. https://doi.org/10.1371/journal.pone.0149797 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Diesel, R. Male-female association in the spider crab Inachus phalangium: The influence of female reproductive stage and size. J. Crustac. Biol. 8, 63–69. https://doi.org/10.1163/193724088X00080 (1988).Article 

    Google Scholar 
    36.Wells, H. W. & Wells, M. J. Observations on Pinnaxodes floridensis, a new species of pinnotherid crustacean commensal in holothurians. Bull. Mar. Sci. 11, 267–279 (1961).
    Google Scholar 
    37.Martin, D. & Britayev, T. A. Symbiotic polychaetes revisited: an update of the known species and relationships (1998–2017). Oceanogr. Mar. Biol. Ann. Rev. 56, 371–448. https://doi.org/10.1201/9780429454455-6 (2018).Article 

    Google Scholar 
    38.Perry, O., Sapir, Y., Perry, G., Ten Hove, H. & Fine, M. Substrate selection of Christmas tree worms (Spirobranchus spp.) in the Gulf of Eilat, Red Sea. J. Mar. Biol. Ass. UK 98, 791–799. https://doi.org/10.1017/S0025315416002022 (2018).Article 

    Google Scholar 
    39.Hunte, W., Colin, B. E. & Marsden, J. R. Habitat selection in the tropical polychaete Spirobranchus giganteus 1 Distribution on corals. Mar. Biol. 104, 87–92 (1990).Article 

    Google Scholar 
    40.Mackie, A. S. Y., Oliver, P. G. & Nygren, A. Antonbruunia sociabilis sp. nov (Annelida: Antonbruunidae) associated with the chemosynthetic deep-sea bivalve Thyasira scotiae Oliver & Drewery, 2014, and a re-examination of the systematic affinities of Antonbruunidae. Zootaxa 3995, 20–36 (2015).Article 

    Google Scholar 
    41.Ruff, R. E. A new species of Bathynoe (Polychaeta: Polynoidae) from the Northeast Pacific Ocean commensal with two species of deep-water asteroids. in: Systematics, Biology and Morphology of World Polychaeta. Proceedings of the Second International Polychaeta Conference. Ophelia Suppl. 5, 219–230 (1991).42.Miura, T. & Ohta, S. Two polychaete species from the deep-sea hydrothermal vent in the Middle Okinawa Trough. Zool. Sci. 8, 383–387 (1991).
    Google Scholar 
    43.Martin, D., Nygren, A., Hjelmstedt, P., Drake, P. & Gil, J. On the enigmatic symbiotic polychaete “Parasyllidea” humesi Pettibone, 1961 (Hesionidae): taxonomy, phylogeny and behaviour. Zool. J. Linn. Soc. 174, 429–446. https://doi.org/10.1111/zoj.12249 (2015).Article 

    Google Scholar 
    44.Chim, C. K., Ong, J. J. L. & Tan, K. S. An association between a hesionid polychaete and temnopleurid echinoids from Singapore. Cah. Biol. Mar. 54, 577–585. https://doi.org/10.21411/CBM.A.ED45E036 (2013).Article 

    Google Scholar 
    45.Goerke, H. Nereis fucata (Polychaeta, Nereidae) als kommensale von Eupagurus bernhardus (Crustacea, Decapoda) Entwicklung einer population und verhalten der art. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 13, 79–81 (1971).
    Google Scholar 
    46.Britayev, T. A., Mekhova, E., Deart, Y. & Martin, D. Do syntopic host species harbour similar symbiotic communities? The case of Chaetopterus spp. (Annelida: Chaetopteridae). PeerJ 5, e2930. https://doi.org/10.7717/peerj.2930 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Britayev, T. A., Martin, D., Krylova, E. M., von Cosel, R. & Aksiuk, E. S. Life-history traits of the symbiotic scale-worm Branchipolynoe seepensis and its relationships with host mussels of the genus Bathymodiolus from hydrothermal vents. Mar. Ecol. Evolut. Perspect. 28, 36–48. https://doi.org/10.1111/j.1439-0485.2007.00152.x (2007).Article 

    Google Scholar 
    48.Britayev, T. A. & Zamyshliak, E. A. Association of the commensal scaleworm Gastrolepidia clavigera (Polychaeta: Polynoidae) with holothurians near the coast of South Vietnam. Ophelia 45, 175–190 (1996).Article 

    Google Scholar 
    49.Britayev, T. A. Life cycle of the symbiotic scale-worm Arctonoe vittata (Polychaeta: Polynoidae). In: Systematics, Biology and Morphology of World Polychaeta. Proceedings of the Second International Polychaeta Conference. Ophelia Suppl. 5, 305–312 (1991).50.Devaney, D. M. An ectocommensal polynoid associated with Indo-pacific echinoderms, primarily ophiuroids. Occ. Pap. Bernice P. Bishop Mus. 23, 287–304 (1967).
    Google Scholar 
    51.Tokaji, H., Nakahara, K. & Goshima, S. Host switching improves survival rate of the symbiotic polychaete Arctonoe vittata. Plank. Bent. Res. 9, 189–196. https://doi.org/10.3800/pbr.9.189 (2014).Article 

    Google Scholar 
    52.Martin, D., Rosell, D. & Uriz, M. J. Harmothoe hyalonemae sp. nov. (Polychaeta, Polynoidae), an exclusive inhabitant of different Atlanto-Mediterranean species of Hyalonema (Porifera, Hexactinellida). Ophelia 35, 169–185 (1992).Article 

    Google Scholar 
    53.Reish, D. J. & Alosi, M. C. Aggressive behavior in the polychaetous annelid family Nereidae. Bull. South. Calif. Acad. Sci. 67, 21–28 (1968).
    Google Scholar 
    54.Evans, S. M. Behavior in polychaetes. Q. Rev. Biol. 46, 379–405 (1971).Article 

    Google Scholar 
    55.Scaps, P. Intraspecific agonistic behaviour in the polychaete Perinereis cultrifera (Grübe). Vie et Milieu 45, 123–128 (1995).
    Google Scholar 
    56.Johnson, H. P. A preliminary account of the marine annelids of the Pacific coast, with descriptions of new species. Proc. Calif. Acad. Sci. 1, 153–199 (1897).
    Google Scholar 
    57.Miers, E. J. Report on the Brachyura collected by HMS Challenger during the years 1873–1876. in: Report on the scientific results of the Voyage of HMS Challenger during the years 1873–76 under the command of Captain George S. Nares, R. N., F.R.S. and the late Captain Frank Tourle Thompson, R. N. Zoology 17, 1–363, pls. 361–329 (1886).58.Latreille, P. A. Trapezie. in Entomologie, ou histoire naturelle des crustaces, des arachnides et des insectes, Vol. 10 695–696 (Encyclopedie Methodique, Histoire Naturelle, 1828).59.Petersen, M. E. & Britayev, T. A. A new genus and species of polynoid scaleworm commensal with Chaetopterus appendiculatus Grube from the Banda Sea (Annelida: Polychaeta), with a review of commensals of Chaetopteridae. Bull. Mar. Sci. 60, 261–276 (1997).
    Google Scholar 
    60.Grube, A. E. Descriptiones Annulatorum novorum mare Ceylonicum habitantium ab honoratissimo Holdsworth collectorum. Proc. Zool. Soc. Lond. 41, 325–329. https://doi.org/10.1111/j.1096-3642.1874.tb02492.x (1874).Article 

    Google Scholar 
    61.Britayev, T. A. & Martin, D. Scale-worms (Polychaeta, Polynoidae) associated with chaetopterid worms (Polychaeta, Chaetopteridae), with description of a new genus and species. J. Nat. Hist. 39, 4081–4099. https://doi.org/10.1080/00222930600556229 (2005).Article 

    Google Scholar 
    62.Grant, J. W. A., Gaboury, C. L. & Levitt, H. L. Competitor-to-resource ratio, a general formulation of operational sex ratio, as a predictor of competitive aggression in Japanese medaka (Pisces: Oryziidae). Behav. Ecol. 11, 670–675. https://doi.org/10.1093/beheco/11.6.670 (2000).Article 

    Google Scholar 
    63.Britayev, T. A. & Smurov, A. V. Distribution and relocation of commensal crabs Pinnixa rathbhuni (Pinnotheridae) on their hosts. Dokl. Akad. Nauk SSSR 300, 1506–1509 (1988).
    Google Scholar 
    64.Walker, A. O. Notes on a collection of Crustacea from Singapore. J. Linn. Soc. Lond. Zool. 20, 107–117. https://doi.org/10.1111/j.1096-3642.1887.tb01440.x (1887).Article 

    Google Scholar 
    65.Kemp, D. J. Habitat selection and territoriality. In Insect behavior: from mechanisms to ecological and evolutionary consequences (eds Córdoba-Aguilar, A. et al.) 80–97 (Oxford University Press, 2018).
    Google Scholar 
    66.Jumars, P. A., Dorgan, K. M. & Lindsay, S. M. Diet of worms emended: An update of polychaete feeding guilds. Ann. Rev. Mar. Sci. 7, 497–520. https://doi.org/10.1146/annurev-marine-010814-020007 (2015).Article 
    PubMed 

    Google Scholar 
    67.Cotter, E., O’Riordan, R. M. & Myers, A. A. A histological study of reproduction in the serpulids Pomatoceros triqueter and Pomatoceros lamarckii (Annelida: Polychaeta). Mar. Biol. 142, 905–914 (2003).Article 

    Google Scholar 
    68.Prevedelli, D., Massamba N’Siala, G., Ansaloni, I. & Simonini, R. Life cycle of Marphysa sanguinea (Polychaeta: Eunicidae) in the Venice Lagoon (Italy). Mar. Ecol. 28, 384–393. https://doi.org/10.1111/j.1439-0485.2007.00160.x (2007).ADS 
    Article 

    Google Scholar 
    69.Bergman, D. A. & Moore, P. A. Prolonged exposure to social odours alters subsequent social interactions in crayfish (Orconectes rusticus). Anim. Behav. 70, 311–318. https://doi.org/10.1016/j.anbehav.2004.10.026 (2005).Article 

    Google Scholar 
    70.Arakaki, J. Y. et al. Battle of the borders: Is a range-extending fiddler crab affecting the spatial niche of a congener species?. J. Exp. Mar. Biol. Ecol. 532, 151445. https://doi.org/10.1016/j.jembe.2020.151445 (2020).Article 

    Google Scholar 
    71.Britayev, T. A. & Mekhova, E. S. Do symbiotic polychaetes migrate from host to host?. Mem. Mus. Victoria 71, 21–25 (2014).Article 

    Google Scholar 
    72.Livermore, J., Perreault, T. & Rivers, T. Luminescent defensive behaviors of polynoid polychaete worms to natural predators. Mar. Biol. 165, 149. https://doi.org/10.1007/s00227-018-3403-2 (2018).Article 

    Google Scholar 
    73.Daly, J. M. Segmentation, autotomy and regeneration of lost posterior segments in Harmothoe imbricata (L) (Polychaeta: Polynoidae). QH1.M454 1, 17–28 (1973).
    Google Scholar 
    74.Schiaparelli, S., Alvaro, M. C. & Barnich, R. Polynoid polychaetes living in the gut of irregular sea urchins: A first case of inquilinism in the Southern Ocean. Antarct. Sci. 23, 144–151. https://doi.org/10.1017/S0954102011000083 (2011).ADS 
    Article 

    Google Scholar 
    75.Sokal, R. R. & Rohlf, F. J. Biometry. The Principles and Practice of Statistics in Biological Research 3rd edn. (W.H. Freeman and Company, 1995).MATH 

    Google Scholar 
    76.Everitt, B. The Analysis of Contingency Tables 2nd edn. (Chapman & Hall, 1992).Book 

    Google Scholar  More

  • in

    Transcriptional response to prolonged perchlorate exposure in the methanogen Methanosarcina barkeri and implications for Martian habitability

    1.Krasnopolsky, V. A., Maillard, J. P. & Owen, T. C. Detection of methane in the martian atmosphere: evidence for life?. Icarus 172, 537–547 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. Detection of methane in the atmosphere of mars. Science 306, 1758–1761 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Geminale, A., Formisano, V. & Giuranna, M. Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56, 1194–1203 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Mumma, M. J. et al. Strong release of methane on mars in northern summer 2003. Science 323, 1041–1045 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Webster, C. R. et al. Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Webster, C. R. et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 1093–1096 (2018).ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Korablev, O. et al. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature 568, 517–520 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Fries, M. et al. A cometary origin for martian atmospheric methane. Geochem. Perspect. Lett. 2, 10–23 (2016).Article 

    Google Scholar 
    9.Keppler, F. et al. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486, 93–96 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Moores, J. E. & Schuerger, A. C. UV degradation of accreted organics on Mars: IDP longevity, surface reservoir of organics, and relevance to the detection of methane in the atmosphere. J. Geophys. Res. Planets 117, E8 (2012).Article 
    CAS 

    Google Scholar 
    11.Schuerger, A. C., Moores, J. E., Clausen, C. A., Barlow, N. G. & Britt, D. T. Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions. J. Geophys. Res. Planets 117, E8 (2012).Article 
    CAS 

    Google Scholar 
    12.Etiope, G., Ehlmann, B. L. & Schoell, M. Low temperature production and exhalation of methane from serpentinized rocks on Earth: a potential analog for methane production on Mars. Icarus 224, 276–285 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Oehler, D. Z. & Etiope, G. Methane seepage on mars: where to look and why. Astrobiology 17, 1233–1264 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Onstott, T. C. et al. Martian CH 4: sources, flux, and detection. Astrobiology 6, 377–395 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Elwood Madden, M. E., Ulrich, S. M., Onstott, T. C. & Phelps, T. J. Salinity-induced hydrate dissociation: A mechanism for recent CH4 release on Mars. Geophys. Res. Lett. https://doi.org/10.1029/2006GL029156 (2007).Article 

    Google Scholar 
    16.Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Kendrick, M. G. & Kral, T. A. Survival of methanogens during desiccation: implications for life on mars. Astrobiology 6, 546–551 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Anderson, K. L., Apolinario, E. E. & Sowers, K. R. Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl. Environ. Microbiol. 78, 1473–1479 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Kral, T. A. & Altheide, S. T. Methanogen survival following exposure to desiccation, low pressure and martian regolith analogs. Planet. Space Sci. 89, 167–171 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Sowers, K. R. & Gunsalus, R. P. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170, 998–1002 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Maestrojuan, G. M. et al. Taxonomy and halotolerance of mesophilic methanosarcina strains, assignment of strains to species, and synonymy of methanosarcina mazei and methanosarcina frisia. Int. J. Syst. Bacteriol. 42, 561–567 (1992).CAS 
    Article 

    Google Scholar 
    22.Sowers, K. R., Boone, J. E. & Gunsalus, R. P. Disaggregation of methanosarcina spp and growth as single cells at elevated osmolarity. Appl. Environ. Microbiol. 59, 3832–3839 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Sowers, K. R. & Gunsalus, R. P. Halotolerance in methanosarcina spp: Role of N(sup(epsilon))-Acetyl-(beta)-Lysine, (alpha)-Glutamate, Glycine Betaine, and K(sup+) as Compatible Solutes for Osmotic Adaptation. Appl. Environ. Microbiol. 61, 4382–4388 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Roessler, M. et al. Identification of a salt-induced primary transporter for glycine betaine in the methanogen methanosarcina mazei go1. Appl. Environ. Microbiol. 68, 2133–2139 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Shcherbakova, V., Oshurkova, V. & Yoshimura, Y. The effects of perchlorates on the permafrost methanogens: implication for autotrophic life on mars. Microorganisms 3, 518–534 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Kral, T. A. et al. Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars. Planet. Space Sci. 120, 87–95 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Rivkina, E. M., Laurinavichus, K. S., Gilichinsky, D. A. & Shcherbakova, V. A. Methane generation in permafrost sediments. Dokl. Biol. Sci. https://doi.org/10.1023/A:1015366613580 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Rivkina, E. et al. Microbial life in permafrost. Adv. Sp. Res. 33, 1215–1221 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Rivkina, E. et al. Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol. Ecol. 61, 1–15 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Takai, K. et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. U. S. A. 105, 10949–10954 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Sinha, N., Nepal, S., Kral, T. & Kumar, P. Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: implications for deep subsurface life on Mars. Planet. Space Sci. 136, 15–24 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Chastain, B. K. & Kral, T. A. Approaching mars-like geochemical conditions in the laboratory: omission of artificial buffers and reductants in a study of biogenic methane production on a Smectite clay. Astrobiology 10, 889–897 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Kral, T. A., Altheide, T. S., Lueders, A. E. & Schuerger, A. C. Low pressure and desiccation effects on methanogens: Implications for life on Mars. Planet. Space Sci. 59, 264–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Mickol, R. L. & Kral, T. A. Low pressure tolerance by methanogens in an aqueous environment: implications for subsurface life on mars. Orig. Life Evol. Biosph. 47, 511–532 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Coates, J. D. & Achenbach, L. A. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat. Rev. Microbiol. 2, 569–580 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Ericksen, G. E. The Chilean Nitrate Deposits: The origin of the Chilean nitrate deposits, which contain a unique group of saline minerals, has provoked lively discussion for more than 100 years. Am. Sci. 71, 366–374 (1983).ADS 

    Google Scholar 
    37.Kounaves, S. P. et al. Discovery of natural perchlorate in the antarctic dry valleys and its global implications. Environ. Sci. Technol. 44, 2360–2364 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Hecht, M. H. et al. Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science 325, 64–67 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115, E12010 (2010).ADS 
    Article 

    Google Scholar 
    40.Glavin, D. P. et al. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planets 118, 1955–1973 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Kounaves, S. P. et al. Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232, 226–231 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Kounaves, S. P., Carrier, B. L., O’Neil, G. D., Stroble, S. T. & Claire, M. W. Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics. Icarus 229, 206–213 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. https://doi.org/10.1038/ngeo2546 (2015).Article 

    Google Scholar 
    44.Clark, B. C. & Kounaves, S. P. Evidence for the distribution of perchlorates on Mars. Int. J. Astrobiol. 15, 311–318 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. Polythermal study of the systems M(ClO4)2–H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+). Russ. J. Appl. Chem. 78, 409–413 (2005).CAS 
    Article 

    Google Scholar 
    46.Chevrier, V. F., Hanley, J. & Altheide, T. S. Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site Mars. Geophys. Res. Lett. 36, L10202 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    47.Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. Modeling aqueous perchlorate chemistries with applications to Mars. Icarus 207, 675–685 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Stillman, D. E. & Grimm, R. E. Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site Mars. J. Geophys. Res. 116, E09005 (2011).ADS 

    Google Scholar 
    49.Toner, J. D., Catling, D. C. & Light, B. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus 233, 36–47 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Nikolakakos, G. & Whiteway, J. A. Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar. Geophys. Res. Lett. 42, 7899–7906 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Maeder, D. L. et al. The Methanosarcina barkeri Genome: Comparative Analysis with Methanosarcina acetivorans and Methanosarcina mazei Reveals Extensive Rearrangement within Methanosarcinal Genomes. J. Bacteriol. 188, 7922–7931 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Sorek, R. & Cossart, P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat. Rev. Genet. 11, 9–16 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Lobo, A. L. & Zinder, S. H. Diazotrophy and Nitrogenase Activity in the Archaebacterium Methanosarcina barkeri 227. Appl. Environ. Microbiol. 54, 1656–1661 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Lobo, A. L. & Zinder, S. H. Nitrogenase in the archaebacterium Methanosarcina barkeri 227. J. Bacteriol. 172, 6789–6796 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Kessler, P. S. & Leigh, J. A. Genetics of nitrogen regulation in Methanococcus maripaludis. Genetics 152, 1343–1351 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Kessler, P. S., Daniel, C. & Leigh, J. A. Ammonia Switch-Off of Nitrogen Fixation in the Methanogenic Archaeon Methanococcus maripaludis: Mechanistic Features and Requirement for the Novel GlnB Homologues, NifI1 and NifI2. J. Bacteriol. 183, 882–889 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Kempf, B. & Bremer, E. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in bacillus subtilis. J. Biol. Chem. 270, 16701–16713 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Kempf, B. & Bremer, E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170, 319–330 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Hoffmann, T. & Bremer, E. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol. Chem. 398, 193–214 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Hippe, H., Caspari, D., Fiebig, K. & Gottschalk, G. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. 76, 494–498 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Kreisl, P. & Kandler, O. Chemical structure of the cell wall polymer of methanosarcina. Syst. Appl. Microbiol. 7, 293–299 (1986).CAS 
    Article 

    Google Scholar 
    62.Jarrell, K. F., Jones, G. M., Kandiba, L., Nair, D. B. & Eichler, J. S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea 2010, 1–13 (2010).Article 
    CAS 

    Google Scholar 
    63.Srinivasan, G. Pyrrolysine encoded by UAG in archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Bin, P., Huang, R. & Zhou, X. Oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed Res. Int. 2017, 1–6 (2017).Article 
    CAS 

    Google Scholar 
    65.Armesto, X. L., Canle, L. M., Fernández, M. I., Garcı́a, M. V. & Santaballa, J. A. First steps in the oxidation of sulfur-containing amino acids by hypohalogenation: very fast generation of intermediate sulfenyl halides and halosulfonium cations. Tetrahedron 56, 1103–1109 (2000).CAS 
    Article 

    Google Scholar 
    66.Casanueva, A., Tuffin, M., Cary, C. & Cowan, D. A. Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol. 18, 374–381 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Oren, A. Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie Van Leeuwenhoek 58, 291–298 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Seibel, B. A. & Walsh, P. J. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol. 205, 297–306 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Lobo, A. L. & Zinder, S. H. Nitrogen fixation by methanogenic bacteria. in Biological Nitrogen Fixation (eds. Stacey, G., Burris, R. H. & Evans, H. J.) 191–211 (Chapman and Hall, 1992).70.Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9, 499–508 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Bardiya, N. & Bae, J.-H. Dissimilatory perchlorate reduction: A review. Microbiol. Res. 166, 237–254 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Barnum, T. P. et al. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J. 12, 1568–1581 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Oren, A., Elevi, B. R. & Mana, L. Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars. Extremophiles 18, 75–80 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Liebensteiner, M. G., Pinkse, M. W. H., Schaap, P. J., Stams, A. J. M. & Lomans, B. P. Archaeal (Per)Chlorate reduction at high temperature: an interplay of biotic and abiotic reactions. Science 340, 85–87 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Bender, K. S. et al. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 187, 5090–5096 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Youngblut, M. D. et al. Perchlorate reductase is distinguished by active site aromatic gate residues. J. Biol. Chem. 291, 9190–9202 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Okeke, B. C., Giblin, T. & Frankenberger, W. T. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut. https://doi.org/10.1016/S0269-7491(01)00288-3 (2002).Article 
    PubMed 

    Google Scholar 
    78.He, L. et al. Biological perchlorate reduction: which electron donor we can choose?. Environ. Sci. Pollut. Res. 26, 16906–16922 (2019).CAS 
    Article 

    Google Scholar 
    79.Xie, T. et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2018.06.011 (2018).Article 
    PubMed 

    Google Scholar 
    80.Chaudhuri, S. K., O’Connor, S. M., Gustavson, R. L., Achenbach, L. A. & Coates, J. D. Environmental factors that control microbial perchlorate reduction. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.68.9.4425-4430.2002 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Abu-Omar, M. M. Effective and catalytic reduction of perchlorate by atom transfer-reaction kinetics and mechanisms. Comments Inorg. Chem. 24, 15–37 (2003).CAS 
    Article 

    Google Scholar 
    82.Adkins, H. & Cramer, H. I. The use of nickel as a catalyst for hydrogenation. J. Am. Chem. Soc. 52, 4349–4358 (1930).CAS 
    Article 

    Google Scholar 
    83.Thauer, R. K. et al. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79, 507–536 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Zhang, H., Bruns, M. A. & Logan, B. E. Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium. Environ. Microbiol. https://doi.org/10.1046/j.1462-2920.2002.00338.x (2002).Article 
    PubMed 

    Google Scholar 
    85.Ide, T., Bäumer, S. & Deppenmeier, U. Energy conservation by the H2: heterodisulfide oxidoreductase from methanosarcina mazei Gö1: identification of two proton-translocating segments. J. Bacteriol. 181, 4076–4080 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Deppenmeier, U. The membrane-bound electron transport system of methanosarcina species. J. Bioenerg. Biomembr. 36, 55–64 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R. & Metcalf, W. W. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. 99, 5632–5637 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Kulkarni, G., Mand, T. D. & Metcalf, W. W. Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri. MBio 9, (2018).89.Bobik, T. Formyl-methanofuran synthesis in Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 87, 323–326 (1990).CAS 
    Article 

    Google Scholar 
    90.Wang, D. M., Shah, S. I., Chen, J. G. & Huang, C. P. Catalytic reduction of perchlorate by H2 gas in dilute aqueous solutions. Sep. Purif. Technol. 60, 14–21 (2008).CAS 
    Article 

    Google Scholar 
    91.Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Mand, T. D. & Metcalf, W. W. Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus Methanosarcina. Microbiol. Mol. Biol. Rev. 83, (2019).93.Rummel, J. D. et al. A new analysis of mars “special regions”: findings of the second MEPAG special regions science analysis group (SR-SAG2). Astrobiology 14, 887–968 (2014).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Bryant, M. P. & Boone, D. R. Emended description of strain MST(DSM 800T), the type strain of methanosarcina barkeri. Int. J. Syst. Bacteriol. 37, 169–170 (1987).Article 

    Google Scholar 
    95.Widdel, F., Kohring, G.-W. & Mayer, F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch. Microbiol. 134, 286–294 (1983).CAS 
    Article 

    Google Scholar 
    96.Francisco, D. E., Mah, R. A. & Rabin, A. C. Acridine orange-epifluorescence technique for counting bacteria in natural waters. Trans. Am. Microsc. Soc. 92, 416 (1973).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    102.Love, M., Anders, S. & Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 15, 10–1186 (2014).Article 
    CAS 

    Google Scholar 
    103.Ogata, H. et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More