Telomere lengths correlate with fitness but assortative mating by telomeres confers no benefit to fledgling recruitment
1.
Jiang, Y., Bolnick, D. I. & Kirkpatrick, M. Assortative mating in animals. Am. Nat. 181, E125–E138. https://doi.org/10.1086/670160 (2013).
Article PubMed Google Scholar
2.
Cooke, F., Finney, G. H. & Rockwell, R. F. Assortative mating in lesser snow geese (Anser caerulescens). Behav. Genet. 6, 127–140 (1976).
CAS Article Google Scholar
3.
Otronen, M. Size assortative mating in the yellow dung fly Scatophaga stercoraria. Behavior 126, 63–76 (1993).
Article Google Scholar
4.
Wang, D. et al. Scrutinizing assortative mating in birds. PLoS Biol. 17, e3000156. https://doi.org/10.1371/journal.pbio.3000156 (2019).
CAS Article PubMed PubMed Central Google Scholar
5.
Sin, Y. W. et al. MHC class II-assortative mate choice in European badgers (Meles meles). Mol. Ecol. 24, 3138–3150. https://doi.org/10.1111/mec.13217 (2015).
Article PubMed Google Scholar
6.
Angelier, F., Weimerskirch, H., Barbraud, C. & Chastel, O. Is telomere length a molecular marker of individual quality? Insights from a long‐lived bird. Funct. Ecol. https://doi.org/10.1111/1365-2435.13307 (in press).
7.
Monaghan, P. Organismal stress, telomeres and life histories. J. Exp. Biol. 217, 57–66. https://doi.org/10.1242/jeb.090043 (2014).
Article PubMed Google Scholar
8.
Bronikowski, A. M. The evolution of aging phenotypes in snakes: a review and synthesis with new data. Age 30, 169–176. https://doi.org/10.1007/s11357-008-9060-5 (2008).
CAS Article PubMed PubMed Central Google Scholar
9.
Tricola, G. et al. The rate of telomere loss is related to maximum lifespan in birds. Philos. Trans. R. Soc. B 373, 20160445. https://doi.org/10.1098/rstb.2016.0445 (2018).
Article Google Scholar
10.
Young, R. C. et al. Age, sex, and telomere dynamics in a long-lived seabird with male-biased parental care. PLoS ONE 8, e74931. https://doi.org/10.1371/journal.pone.0074931 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
11.
Sudyka, J., Arct, A., Drobniak, S. M., Gustafsson, L. & Cichon, M. Birds with high lifetime reproductive success experience increased telomere loss. Biol. Lett. 15, 20180637. https://doi.org/10.1098/rsbl.2018.0637 (2019).
Article PubMed PubMed Central Google Scholar
12.
Parolini, M. et al. Telomere length is reflected by plumage coloration and predicts seasonal reproductive success in the barn swallow. Mol. Ecol. 26, 6100–6109. https://doi.org/10.1111/mec.14340 (2017).
CAS Article PubMed Google Scholar
13.
Le Vaillant, M. et al. Telomere length reflects individual quality in free-living adult king penguins. Polar Biol. 38, 2059–2067. https://doi.org/10.1007/s00300-015-1766-0 (2015).
Article Google Scholar
14.
Salomons, H. M. et al. Telomere shortening and survival in free-living corvids. Proc. R. Soc. B 276, 3157–3165. https://doi.org/10.1098/rspb.2009.0517 (2009).
CAS Article PubMed Google Scholar
15.
Salmón, P., Nilsson, J. F., Watson, H., Bensch, S. & Isaksson, C. Selective disappearance of great tits with short telomeres in urban areas. Proc. R. Soc. B 284, 20171349. https://doi.org/10.1098/rspb.2017.1349 (2017).
CAS Article PubMed Google Scholar
16.
Cerchiara, J. A. et al. Magellanic penguin telomeres do not shorten with age with increased reproductive effort, investment, and basal corticosterone. Ecol. Evol. 7, 5682–5691. https://doi.org/10.1002/ece3.3128 (2017).
Article PubMed PubMed Central Google Scholar
17.
Aabye, I. Telomere length does not correlate with individual quality in a population of blue tits (Cyanistes caeruleus) Masters thesis, University of Oslo, (2017).
18.
Caprioli, M. et al. Nestling telomere length does not predict longevity, but covaries with adult body size in wild barn swallows. Biol. Lett. 9, 20130340. https://doi.org/10.1098/rsbl.2013.0340 (2013).
Article PubMed PubMed Central Google Scholar
19.
Bauch, C., Becker, P. H. & Verhulst, S. Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird. Proc. R. Soc. B 280, 20122540. https://doi.org/10.1098/rspb.2012.2540 (2013).
Article PubMed Google Scholar
20.
Monaghan, P. Telomeres and life histories: the long and the short of it. Ann. N. Y. Acad. Sci. 1206, 130–142. https://doi.org/10.1111/j.1749-6632.2010.05705.x (2010).
ADS Article PubMed Google Scholar
21.
Haussmann, M. F. & Heidinger, B. J. Telomere dynamics may link stress exposure and ageing across generations. Biol. Lett. 11, 20150396. https://doi.org/10.1098/rsbl.2015.0396 (2015).
CAS Article PubMed PubMed Central Google Scholar
22.
Giraudeau, M., Angelier, F. & Sepp, T. Do telomeres influence pace-of-life-strategies in response to environmental conditions over a lifetime and between generations?. BioEssays https://doi.org/10.1002/bies.201800162 (2019).
Article PubMed Google Scholar
23.
Young, A. J. The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philos. Trans. R. Soc. B 373, 20160452. https://doi.org/10.1098/rstb.2016.0452 (2018).
CAS Article Google Scholar
24.
Olsson, M., Wapstra, E. & Friesen, C. R. Evolutionary ecology of telomeres: a review. Ann. N. Y. Acad. Sci. 1422, 5–28. https://doi.org/10.1111/nyas.13443 (2018).
ADS Article PubMed Google Scholar
25.
Schull, Q. et al. Assortative pairing by telomere length in king penguins and relationships with breeding success. Can. J. Zool. 96, 639–647. https://doi.org/10.1139/cjz-2017-0094 (2018).
CAS Article Google Scholar
26.
Belmaker, A. The role of telomere length in the life history and behavior of Tree Swallows (Tachycineta bicolor) PhD thesis, Cornell University, (2016).
27.
Johnsen, A., Pauliny, A., Lifjeld, J. T. & Blomqvist, D. Is telomere length associated with mate choice in a songbird with a high rate of extrapair paternity?. PLoS ONE 12, e0182446. https://doi.org/10.1371/journal.pone.0182446 (2017).
CAS Article PubMed PubMed Central Google Scholar
28.
Khoriauli, L. et al. Assortative mating for telomere length and antioxidant capacity in barn swallows (Hirundo rustica). Behav. Ecol. Sociobiol. 71, 124. https://doi.org/10.1007/s00265-017-2352-y (2017).
Article Google Scholar
29.
Broer, L. et al. Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 21, 1163–1168. https://doi.org/10.1038/ejhg.2012.303 (2013).
CAS Article PubMed PubMed Central Google Scholar
30.
Burley, N. Parental investment, mate choice, and mate quality. Proc. Natl. Acad. Sci. USA 74, 3476–3479 (1977).
ADS CAS Article Google Scholar
31.
Guerra, M. & Drummond, H. Reversed sexual size dimorphism and parental care: minimal division of labour in the blue-footed booby. Behaviour 132, 479–496 (1995).
Article Google Scholar
32.
Torres, R. & Velando, A. A dynamic trait affects continuous pair assessment in the blue-footed booby Sula nebouxii. Behav. Ecol. Sociobiol. 55, 65–72. https://doi.org/10.1007/s00265-003-0669-1 (2003).
Article Google Scholar
33.
Torres, R. & Velando, A. Male preference for female foot colour in the socially monogamous blue-footed booby Sula nebouxii. Anim. Behav. 69, 59–65. https://doi.org/10.1016/j.anbehav.2004.03.008 (2005).
Article Google Scholar
34.
Sánchez-Macouzet, O. Monogamia serial y fidelidad en el bobo de patas azules PhD thesis, Universidad Nacional Autónoma de México, (2017).
35.
Drummond, H. & Rodríguez, C. Viability of booby offspring is maximized by having one young parent and one old parent. PLoS ONE 10, e0133213. https://doi.org/10.1371/journal.pone.0133213 (2015).
CAS Article PubMed PubMed Central Google Scholar
36.
Nelson, J. B. Pelicans, Cormorants, and their Relatives: The Pelecaniformes Vol. 661 (Oxford University Press, 2006).
37.
Torres, R. & Velando, A. Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby. J. Anim. Ecol. 76, 1161–1168. https://doi.org/10.1111/j.1365-2656.2007.01282.x (2007).
Article PubMed Google Scholar
38.
Velando, A., Beamonte-Barrientos, R. & Torres, R. Pigment-based skin colour in the blue-footed booby: an honest signal of current condition used by females to adjust reproductive investment. Oecologia 149, 535–542. https://doi.org/10.1007/s00442-006-0457-5 (2006).
ADS Article PubMed Google Scholar
39.
Torres, R. & Velando, A. in Advances in the Study of Behavior Vol. 42: Behavioral ecology of tropical animals (ed Regina Macedo) 155–188 (2010).
40.
Kiere, L. M. & Drummond, H. Extrapair behaviour reveals flexible female choosiness and mixed support for classic good genes in blue-footed boobies. Anim. Behav. 95, 145–153. https://doi.org/10.1016/j.anbehav.2014.07.007 (2014).
Article Google Scholar
41.
Noguera, J. C., Metcalfe, N. B., Boner, W. & Monaghan, P. Sex-dependent effects of nutrition on telomere dynamics in zebra finches (Taeniopygia guttata). Biol. Lett. 11, 20140938. https://doi.org/10.1098/rsbl.2014.0938 (2015).
Article PubMed PubMed Central Google Scholar
42.
Tarry-Adkins, J. L. & Ozanne, S. E. The impact of early nutrition on the aging trajectory. Proc. Nutr. Soc. 73, 289–301. https://doi.org/10.1017/S002966511300387X (2014).
CAS Article PubMed Google Scholar
43.
Taff, C. C. & Freeman-Gallant, C. R. Sexual signals reflect telomere dynamics in a wild bird. Ecol. Evol. 7, 3436–3442. https://doi.org/10.1002/ece3.2948 (2017).
Article PubMed PubMed Central Google Scholar
44.
Holveck, M.-J. & Riebel, K. Low-quality females prefer low-quality males when choosing a mate. Proc. R. Soc. B 277, 153–160. https://doi.org/10.1098/rspb.2009.1222 (2010).
Article PubMed Google Scholar
45.
Ratikainen, I. I. & Kokko, H. Differential allocation and compensation: Who deserves the silver spoon?. Behav. Ecol. 21, 195–200. https://doi.org/10.1093/beheco/arp168 (2010).
Article Google Scholar
46.
Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).
CAS Article Google Scholar
47.
Lessells, C. K. M. & McNamara, J. M. Sexual conflict over parental investment in repeated bouts: negotiation reduces overall care. Proc. R. Soc. B 279, 1506–1514 (2012).
CAS Article Google Scholar
48.
Slagsvold, T. & Lifjeld, J. T. Hatching asynchrony in birds: the hypothesis of sexual conflict over parental investment. Am. Nat. 134, 239–253 (1989).
Article Google Scholar
49.
Kokko, H. Good genes, old age and life-history trade-offs. Evol. Ecol. 12, 739–750 (1998).
Article Google Scholar
50.
Kokko, H. & Lindstrom, J. Evolution of female preference for old mates. Proc. R. Soc. B 263, 1533–1538. https://doi.org/10.1098/rspb.1996.0224 (1996).
ADS Article Google Scholar
51.
Ramos, A. G. et al. Interactive effects of male and female age on extra-pair paternity in a socially monogamous seabird. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-014-1769-9 (2014).
Article Google Scholar
52.
Drummond, H., Torres, R. & Krishnan, V. V. Buffered development: resilience after aggressive subordination in infancy. Am. Nat. 161, 794–807. https://doi.org/10.1086/375170 (2003).
Article PubMed Google Scholar
53.
Beamonte-Barrientos, R., Velando, A., Drummond, H. & Torres, R. Senescence of maternal effects: aging influences egg quality and rearing capacities of a long-lived bird. Am. Nat. https://doi.org/10.1086/650726 (2010).
Article PubMed Google Scholar
54.
Kim, S.-Y., Torres, R., Domínguez, C. A. & Drummond, H. Lifetime philopatry in the blue-footed booby: a longitudinal study. Behav. Ecol. 18, 1132–1138. https://doi.org/10.1093/beheco/arm091 (2007).
Article Google Scholar
55.
Osorio-Beristain, M. & Drummond, H. Natal dispersal and deferred breeding in the blue-footed booby. Auk 110, 234–239 (1993).
Google Scholar
56.
Ramos, A. G. et al. Habitat structure and colony structure constrain extrapair paternity in a colonial bird. Anim. Behav. 95, 121–127. https://doi.org/10.1016/j.anbehav.2014.07.003 (2014).
Article Google Scholar
57.
Gaunt, A. S. et al. Guidelines to the use of wild birds in research (The Ornithological Counciil, 1999).
58.
Merkling, T. et al. Food availability and offspring sex in a monogamous seabird: insights from an experimental approach. Behav. Ecol. 23, 751–758. https://doi.org/10.1093/beheco/ars023 (2012).
Article Google Scholar
59.
Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. https://doi.org/10.1093/nar/30.10.e47 (2002).
Article PubMed PubMed Central Google Scholar
60.
Foote, C. G. Avian Telomere Dynamics Ph.D. thesis, University of Glasgow, (2008).
61.
Morinha, F., Magalhães, P. & Blanco, G. Standard guidelines for the publication of telomere qPCR results in evolutionary ecology. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13152 (in press).
62.
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29, e45 (2001).
CAS Article Google Scholar
63.
R: A language and environment for statistical computing v. 3.5.0 (Vienna, Austria, 2020).
64.
nlme: Linear and Nonlinear Mixed Effects Models (2011).
65.
Verhulst, S. Improving comparability between qPCR-based telomere studies. Mol. Ecol. Resour. 20, 11–13. https://doi.org/10.1111/1755-0998.13114 (2020).
CAS Article PubMed Google Scholar More