1.
Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
ADS CAS PubMed Article Google Scholar
2.
Soh, M. C. K. et al. Impacts of habitat degradation on tropical montane biodiversity and ecosystem services: A systematic map for identifying future research priorities. Front. For. Glob. Change. 2, 83 (2019).
Article Google Scholar
3.
Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
4.
Grant, E., Brand, A. B., De Wekker, S., Lee, T. R. & Wofford, J. Evidence that climate sets the lower elevation range limit in a high-elevation endemic salamander. Ecol. Evol. 8(15), 7553–7562 (2018).
PubMed PubMed Central Article Google Scholar
5.
Duclos, T. R., DeLuca, W. V. & King, D. I. Direct and indirect effects of climate on bird abundance along elevation gradients in the Northern Appalachian Mountains. Divers. Distrib. 25, 1670–1683 (2019).
Article Google Scholar
6.
Brehm, G., Süssenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26, 456–466 (2003).
Article Google Scholar
7.
Axmacher, J. C. & Fiedler, K. Habitat type modifies geometry of elevational diversity gradients in geometrid moths (Lepidoptera Geometridae) on Mt Kilimanjaro, Tanzania. Trop. Zool. 21, 243–251 (2009).
Google Scholar
8.
Rahbek, C. The elevational gradient of species richness: A uniform pattern. Ecography 18, 200–205 (1995).
Article Google Scholar
9.
Axmacher, J. C., Liu, Y., Wang, C., Li, L. & Yu, Z. Spatial α-diversity patterns of diverse insect taxa in Northern China: Lessons for biodiversity conservation. Biol. Conserv. 144, 2362–2368 (2011).
Article Google Scholar
10.
Li, J., Liu, H., Wu, Y., Zeng, L. & Huang, X. Spatial patterns and determinants of the diversity of Hemipteran insects in the Qinghai-Tibetan plateau. Front. Ecol. Evol. 7, 165 (2019).
ADS Article Google Scholar
11.
Bender, I. M. A., Kissling, W. D. & Böhning-Gaese, K. Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Sci. Rep. 9, 17708 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
12.
Silveira, F. et al. Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot. Perspect. Plant Ecol. Evol. Syst. 38, 64–73 (2019).
Article Google Scholar
13.
Lohman, D. J. et al. Biogeography of the indo-australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42(1), 205–226 (2011).
Article Google Scholar
14.
Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, e00670 (2019).
Article Google Scholar
15.
Economic Planning Unit (EPU). Eleventh Malaysia Plan 2016–2020. Putrajaya: Prime minister’s department. (Malaysia, 2016).
16.
Sodhi N. S., & Brook, B. W. Southeast Asian Biodiversity in Crisis. (Cambridge University Press, 2006).
17.
Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).
Article Google Scholar
18.
Laurance, W. F. Lessons from research for sustainable development and conservation in Borneo. Forests. 7, 314 (2016).
Article Google Scholar
19.
Schonberg, L. A., Longino, J. T., Nadkarni, N. M. & Yanoviak, S. P. Arboreal ant species richness in primary forest, secondary forest, and pasture habitats of a tropical montane landscape. Biotropica 36, 402–409 (2004).
Article Google Scholar
20.
Peh, K.S.-H. et al. Up in the clouds: Is sustainable use of tropical montane cloud forests possible in Malaysia. Bioscience 61, 27–38 (2011).
Article Google Scholar
21.
Hughes, A. C. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8(1), e01624 (2017).
Article Google Scholar
22.
Lessard, J.-P., Sackett, T. E., Reynolds, W. N., Fowler, D. A. & Sanders, N. J. Determinants of the detrital arthropod community structure: The effects of temperature and resources along an environmental gradient. Oikos 320, 333–343 (2011).
Article Google Scholar
23.
Cronin, D. T., Libalah, M. B., Bergl, R. A. & Hearn, G. W. Biodiversity and conservation of tropical montane ecosystems in the Gulf of Guinea, West Africa. Arct. Antarct. Alp. Res. 46(4), 891–904 (2014).
Article Google Scholar
24.
Nowrouzi, S. et al. Ant diversity and distribution along elevation gradients in the Australian wet tropics: The importance of seasonal moisture stability. PLoS ONE 11(4), e0153420 (2016).
PubMed PubMed Central Article CAS Google Scholar
25.
Perillo, L. N., Neves, F. D. S., Antonini, Y. & Martins, R. P. Compositional changes in bee and wasp communities along neotropical mountain altitudinal gradient. PLoS ONE 12(7), e0182054 (2017).
PubMed PubMed Central Article CAS Google Scholar
26.
Maicher, V. et al. Seasonal shifts of biodiversity patterns and species elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47, 342–354 (2020).
Article Google Scholar
27.
Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119 (2019).
ADS CAS PubMed Article Google Scholar
28.
Musthafa, M. M., Abdullah, F. & Sanchez, U. Comparative study of spatial patterns and ecological niches of beetles in two Malaysian mountains elevation gradients. J. Insect Conserv. 22(5–6), 757–769 (2018).
Article Google Scholar
29.
Musthafa, M. M. & Abdullah, F. Beetles species richness along environmental gradients at montane ecosystem in Fraser’s Hill, peninsular Malaysia. Sains Malays. 48(7), 1395–1407 (2019).
Article Google Scholar
30.
Musthafa, M. M. & Abdullah, F. Coleoptera of genting Highland, Malaysia: Species richness and diversity along the elevations. Arxius de Miscel·lània Zoològica. 17, 123–144 (2019).
31.
Nazaruddin, D. A., Hassan, H. & Sanusi, A. F. A. Some geological attractions of mount chamah area, Kelantan, Malaysia. J. Appl. Sci. Res. 9(3), 1298–1304 (2013).
Google Scholar
32.
Kumaran, J. V. et al. Diversity and conservation status of small mammals in Kelantan, Malaysia. Songklanakarin J. Sci. Technol. 38(2), 213–220 (2016).
Google Scholar
33.
Aweng, E. R., Suhaimi, O. & Izzati, S. N. Benthic macroinvertebrate community structure and distribution in Sungai Pichong, Gunung Chamah, Kelantan, Malaysia. Am. Int. J. Contemp. Res. 2(1), 163–167 (2012).
Google Scholar
34.
Sulaiman, N., Bakri, M. A. M., Kahar, K. M., Yaacob, M. Z. & Boler, I. Moth fauna (Lepidoptera: Heterocera) of Gunung Tebu forest reserve, Terengganu, Malaysia. Malayan Nat. J. 66(4), 376–389 (2014).
Google Scholar
35.
Nordin, R., Malek, I. A. & Manohar, M. Rain forest recreation zone planning using geo spatial tools. Pertanika J. Trop. Agric. Sci. 36, 181–194 (2013).
Google Scholar
36.
Grytnes, J. A., & McCain, C. M. Elevational trends in biodiversity. (ed. Simon, A.L.) Encyclopedia of Biodiversity. 1–8 (USA, 2007).
37.
Lazarina, M. et al. Diversity patterns of different life forms of plants along an elevational gradient in Crete, Greece. Diversity. 11, 200 (2019).
Article Google Scholar
38.
Masse, P. S. M. & Makon, S. D. Effects of human disturbance and altitudinal gradient on Myriapod species richness and abundance at Mount Kala, central Cameroon. Afr. Zool. 54(4), 215–223 (2019).
Article Google Scholar
39.
Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503 (2019).
PubMed PubMed Central Article Google Scholar
40.
Deng, W., Wang, J. & Scott, M. B. Sampling methods affect nematode-trapping fungi biodiversity patterns across an elevational gradient. BMC Microbioogyl. 20, 15 (2020).
Article Google Scholar
41.
Skvarla, M. J. & Dowling, A. P. G. A comparison of trapping techniques (Coleoptera: Carabidae, Buprestidae, Cerambycidae, and Curculionoidea excluding Scolytinae). J. Insect Sci. 17(1), 7–20 (2017).
PubMed PubMed Central Article CAS Google Scholar
42.
Basset, Y. et al. IBISCA-Panama, a large-scale study of arthropod beta-diversity and vertical stratification in a lowland rainforest: Rationale, study sites and field protocols. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. 77, 36–69 (2007).
Google Scholar
43.
Nizar, N. B. M. Geology of the jelebu area, negeri sembilan with emphasis on geomorphological analysis. BSc Thesis University of Malaya, (Malaysia, 2016).
44.
Surjono, S. S., Leman, M. S., Ali, C. A., Mohamed, K. R., & Mada, M. F. H. Petrogenesis and depositional environment of paleozoic sedili and pengerang volcaniclastics in east Johor Basin, peninsular Malaysia. E3S Web of Conferences. 76, 04009 (2019).
45.
Aweng-Eh, R., Ismid-Said, M., Maketab-Mohamed, M. & Ahmad-Abas, K. Macrobenthic community structure and distribution in the Gunung Belumut recreational forest, Kluang, Johor, Malaysia. Aust. J. Basic Appl. Sci. 4(8), 3904–3908 (2010).
Google Scholar
46.
Abdullah, F., & Sabri, M.S.M. Beetle fauna of Gunung Besar Hantu forest reserve, Jelebu. In Siri kepelbagaian biologi hutan: Hutan Gunung Besar Hantu, Negeri Sembilan: Pengurusan hutan, persekitaran fizikal dan kepelbagaian (eds. Rahman, A. et al.) Biology, 199–214 (Jabatan Perhutanan Semenanjung, 2014).
47.
Betz, O., Srisuka, W. & Puthz, V. Elevational gradients of species richness, community structure, and niche occupation of tropical rove beetles (Coleoptera: Staphylinidae: Steninae) across mountain slopes in Northern Thailand. Ecol. Evol. 34, 193–216 (2020).
Article Google Scholar
48.
Zhang, W., Huang, D., Wang, R., Liu, J. & Du, N. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of Northern China. PLoS ONE 11(7), e0159995 (2016).
PubMed PubMed Central Article CAS Google Scholar
49.
Kontopanou, A. & Panitsa, M. Habitat islands on the Aegean islands (Greece): Elevational gradient of chasmophytic diversity, endemism, phytogeographical patterns and need for monitoring and conservation. Diversity. 12(1), 33 (2020).
Article Google Scholar
50.
Jordal, B. H., Normark, B. B., Farrell, B. D. & Kirkendalld, L. R. Extraordinary haplotype diversity in haplodiploid inbreeders: Phylogenetics and evolution of the bark beetle genus Coccotrypes. Mol. Phylogenet. Evol. 23, 171–188 (2002).
CAS PubMed Article PubMed Central Google Scholar
51.
Lassau, S. A., Hochuli, D. F., Cassis, G. & Reid, C. A. M. Effects of habitat complexity on forest beetle diversity: Do functional groups respond consistently. Divers. Distrib. 11, 73–82 (2005).
Article Google Scholar
52.
Cosovic, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests. 11, 343 (2020).
Article Google Scholar
53.
Jankowski, J. E., Ciecka, A. L., Meyer, N. Y. & Rabenold, K. N. Beta diversity along environmental gradients: Implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 78, 315–327 (2009).
PubMed Article PubMed Central Google Scholar
54.
Novotny, V. & Weiblen, G. D. From communities to continents: Beta diversity of herbivorous insects. Ann. Zool. Fenn. 42, 463–475 (2005).
Google Scholar
55.
Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).
Article Google Scholar
56.
Nguyen, D. T. & Gómez-Zurita, J. Subtle ecological gradient in the tropics triggers high species-turnover in a local geographical scale. PLoS ONE 11(6), e0156840 (2016).
PubMed PubMed Central Article CAS Google Scholar
57.
Antão, L. H., McGill, B., Magurran, A. E., Soares, A. M. V. M. & Dornelas, M. β-diversity scaling patterns are consistent across metrics and taxa. Ecography 42, 1012–1023 (2019).
Article Google Scholar
58.
Bevilacqua, S. & Terlizzi, A. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos. Divers. Distrib. 26, 743–757 (2020).
Article Google Scholar
59.
da Silva, P. G., Hernández, M. I. M. & Heino, J. Disentangling the correlates of species and site contributions to beta diversity in dung beetle assemblages. Divers. Distrib. 24, 1674–1686 (2018).
Article Google Scholar
60.
Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).
ADS Article Google Scholar
61.
Brodie, J. F. et al. Lowland biotic attrition revisited: Body size and variation among climate change “winners” and “losers”. Proc. Biol. Sci. 284(1847), 20162335 (2017).
PubMed PubMed Central Google Scholar
62.
Penaloza, R. J. M. et al. Consequences of habitat fragmentation on genetic structure of Chamaedorea alternans (Arecaceae) palm populations in the tropical rain forests of los Tuxtlas, Veracruz, Mexico. Revista Mexicana de Biodiversidad. 87(3), 990–1001 (2016).
Article Google Scholar
63.
Villacampa, J., Whitworth, A., Allen, L. & Malo, J. E. Altitudinal differences in alpha, beta and functional diversity of an amphibian community in a biodiversity hotspot. Neotrop. Biodivers. 5(1), 60–68 (2019).
Article Google Scholar
64.
Kiew, R. The Encyclopedia of Malaysia. Vol. II. Plants Montane Forests (Archipelago Press, 1998).
65.
Shahrudin, S. et al. An addition of reptiles of Gunung inas, Kedah, Malaysia. Russ. J. Herpetol. 20(3), 171–180 (2013).
Google Scholar
66.
Chan, N. W. Degradation of the highland areas in Malaysia. Effects on water resources. Consumer Association of Penang. (ed. Tanah air ku: Land issues in Malaysia). 66–86 (Malaysia, 2000).
67.
Chua, L. S. L. & Saw, L. G. Plants of Krau. FRIM Res. Pam. 126, 227 (2006).
Google Scholar
68.
Ramly, F. N., & Ramli, R. Diversity of understorey birds in Virgin and logged forests of Gunung Angsi forest reserve, Negeri (ed. Sembilan, H. et al.). Harnessing the Potential of Biodiversity, Simposium Biology. 65–68 (Malaysia, 2009).
69.
Sofiah, M. S. Komposisi, kepelbagaian dan biojisim pokok di Hutan Lipur Gunung Belumut, Kluang (Univeristi Kebangsaan, 2010).
Google Scholar
70.
Ashton P. S., Okuda T., Manokaran N. Pasoh research, past and present. In Pasoh (eds. Okuda T. et al.), 1–13 (Springer, 2003).
71.
Rayan, D. M. & Mohamed, S. W. The importance of selectively logged forests for tiger Panthera tigris conservation: A population density estimates in Peninsular Malaysia. Oryx 43(1), 48–51 (2009).
Article Google Scholar
72.
Saito, M. A new species of the genus Tomoderus (Coleoptera, Anthicidae) from the Ryukyu Islands, Southwest Japan. Elytra. 31, 321–323 (2003).
Google Scholar
73.
Mohamedsaid, M. S. (ed. Catalogue of the Malaysian Chrysomelidae Insecta: Coleoptera). (Bulgeria, 2004).
74.
Kirejtshuk, A. G. On the fauna of Nitidulidae (Insecta, Coleoptera) from Taiwan with some taxonomical notes. Annales Historico-Naturales Musei Nationalis Hungarici. 97, 51–113 (2005).
Google Scholar
75.
Naomi, S Taxonomic revision of the genus Stenus latreille, 1797 (Coleoptera, Staphylinidae, steninae) of Japan: Species group of S. indubius Sharp. Jpn. J. Syst. Entomol. 12(1), 39–120 (2006).
76.
Schawaller, W. Revision of the oriental species of the genus Bradymerus perroud, with descriptions of 29 new species (Coleoptera: Tenebrionidae). Stuttgarter beiträge zur Naturkunde. 4, 1–64 (2006).
Google Scholar
77.
Schawaller, W. Two new species and new records of the genus Spinolyprops Pic, 1917 from the oriental region (Coleoptera, Tenebrionidae, Lupropini). ZooKeys. 243, 83–94 (2012).
Article Google Scholar
78.
Schimmel, R. & Tarnawski, D. Monograph of the subtribe Elaterina (Insecta: Coleoptera: Elateridae: Elaterinae). Genus 21(3), 325–487 (2010).
Google Scholar
79.
Assing, V. Four new species and additional records of Palaearctic Sunius, with two new synonymies (Coleoptera: Staphylinidae: Paederinae). Beiträge zur Entomologie. 58, 455–470 (2008).
Article Google Scholar
80.
Grimm, R. Guanobius borneensis n. gen., n. sp. from Borneo (Coleoptera: Tenebrionidae: Alphitobiini). Stuttgarter Beiträge zur Naturkunde A, Neue Serie. 1, 375–379 (2008).
81.
Batelka, J. Clinopalpus hanae, a new genus and species of ripiphorid beetle from Malaysia (Coleoptera: Ripiphoridae: Pelecotominae). Acta Entomologica Musei Nationalis Pragae 49(1), 239–245 (2009).
Google Scholar
82.
Gerstmeier, R. Taxonomic supplement to a revision of Omadius Laporte 1836 (Mawdsley 2006) (Coleoptera: Cleridae). Annales de la Société Entomologique de France. 45(2), 135–144 (2009).
Article Google Scholar
83.
Sittichaya, W., Beaver, R. A., Liu, L.-Y. & Ngampongsai, A. An illustrated key to powder post beetles (Coleoptera, Bostrichidae) associated with rubberwood in Thailand, with new records and a checklist of species found in Southern Thailand. ZooKeys. 26, 33–51 (2009).
Article Google Scholar
84.
Hlaváč, P., Newton, A. F. & Maruyama, M. World catalogue of the species of the tribe Lomechusini (Staphylinidae: Aleocharinae). Zootaxa 3075, 1–151 (2011).
Google Scholar
85.
Prathapan, K. D. & Viraktamath, C. A. A new species of Longitarsus latreille, 1829 (Coleoptera, Chrysomelidae, Galerucinae) pupating inside stem aerenchyma of the hydrophyte host from the Oriental Region. ZooKeys. 87, 1–10 (2011).
Article Google Scholar
86.
Ryvkin, A. B. Contributions to the knowledge of Stenus (Nestus) species of the crassus group (Insecta: Coleoptera: Staphylinidae: Steninae). Four new species from the Russian far east with taxonomic notes. Baltic J. Coleopterol. 11(1), 57–72 (2011).
87.
Caterino, M. S. & Tishechkin, A. K. A systematic revision of Baconia Lewis (Coleoptera, Histeridae, Exosternini). ZooKeys. 343, 1–297 (2013).
Article Google Scholar
88.
Pace, R. New distributional data, new species and three new genera of Aleocharinae from Malaysia, Vietnam and Taiwan (Coleoptera: Staphylinidae). Trop. Zool. 26(1), 33–63 (2013).
Article Google Scholar
89.
Shi, H., Zhou, H. & Liang, H. Taxonomic synopsis of the subtribe Physoderina (Coleoptera, Carabidae, Lebiini), with species revisions of eight genera. Zookeys. 284, 1–129 (2013).
Article Google Scholar
90.
Mertlik, J. & Németh, T. Distributional notes on Lacon nadaii and L. unicolor (Coleoptera: Elateridae). Elateridarium. 8, 61–66 (2013).
Google Scholar
91.
Filippini, V., Micó, E. & Galante, E. Checklist and identification key of Anomalini (Coleoptera, Scarabaeidae, Rutelinae) of Costa Rica. ZooKeys. 621, 63–136 (2016).
Article Google Scholar
92.
Anzaldo, S. S. Review of the genera of Conoderinae (Coleoptera, Curculionidae) from North America, Central America, and the Caribbean. ZooKeys. 683, 51–138 (2017).
Article Google Scholar
93.
Makranczy, G. Review of the Anotylus Cimicoides species group (Coleoptera: Staphylinidae: Oxytelinae). Acta Zool. Acad. Sci. Hung. 63(2), 143–262 (2017).
Article Google Scholar
94.
Sasakawa, K., Kim, J.-K., Kim, J.-K. & Kubota, K. Morphological phylogeny and biogeography of the Pterostichus raptor species group (Coleoptera: Carabidae) of ground beetles, endemic to the Korean Peninsula and adjacent islands. J. Asia-Pac. Entomol. 20, 7–12 (2017).
Article Google Scholar
95.
Murakami, H. A new species of the genus Cladiscus chevrolat, 1843 (Coleoptera: Cleridae: Tillinae) from Borneo, Malaysia. Jpn. J. Syst. Entomol. 23(2), 235–238 (2017).
Google Scholar
96.
Murakami, H. & Cheong, L. F. A new species of the genus Allochotes westwood, 1875 (Coleoptera: Cleridae: Orthopleurinae) from Malay Peninsula. Jpn. J. Syst. Entomol. 24(2), 221–224 (2018).
Google Scholar
97.
Moore, M. R., Cave, R. D. & Branham, M. A. Synopsis of the cyclocephaline scarab beetles (Coleoptera, Scarabaeidae, Dynastinae). ZooKeys. 745, 1–99 (2018).
Article Google Scholar
98.
Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).
PubMed Article PubMed Central Google Scholar
99.
Jost, L. Entropy and diversity. Oikos 113, 363–374 (2006).
Article Google Scholar
100.
Moreno, C. E. et al. Measuring biodiversity in the Anthropocene: A simple guide to helpful methods. Biodivers. Conserv. 26(12), 2993–2998 (2017).
Article Google Scholar
101.
R Development Core Team. A language and environment for statistical computing. R. Foundation for Statistical Computing. (Austria, 2015)
102.
Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
Google Scholar
103.
De Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).
PubMed Article Google Scholar
104.
De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).
Article Google Scholar
105.
De Cáceres, M., Legendre, P., Wiser, S. K. & Brotons, L. Using species combinations in indicator value analyses. Methods Ecol. Evol. 3, 973–982 (2012).
Article Google Scholar
106.
Anderson, M. J. & Walsh, D. C. I. What null hypothesis are you testing? PERMANOVA, ANOSIM and the mantel test in the face of heterogeneous dispersions. Ecol. Monogr. 83, 557–574 (2013).
Article Google Scholar
107.
Clarke, K. R., & Gorley, R. N. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, 18 (United Kingdom, 2015)
108.
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Article Google Scholar
109.
Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21, 760–771 (2012).
Article Google Scholar
110.
Qian, H., Ricklefs, R. E. & White, P. S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22 (2005).
Article Google Scholar More