Antagonist effects of the leek Allium porrum as a companion plant on aphid host plant colonization
1.
Parolin, P. et al. Secondary plants used in biological control: a review. Int. J. Pest Manag. 58, 91–100 (2012).
Article Google Scholar
2.
Parker, J. E., Snyder, W. E., Hamilton, G. C. & Rodriguez‐Saona, C. Companion planting and insect pest control. Weed and Pest Control – Conventional and New Challenges (2013). https://doi.org/10.5772/55044
3.
Held, D. W., Gonsiska, P. & Potter, D. A. Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae). J. Econ. Entomol. 96, 81–87 (2003).
CAS PubMed Article PubMed Central Google Scholar
4.
Togni, P. H. B., Laumann, R. A., Medeiros, M. A. & Suji, E. R. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol. Exp. Appl. 136, 164–173 (2010).
Article Google Scholar
5.
Deletre, E. et al. Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26, 127–142 (2016).
CAS Article Google Scholar
6.
Ben-Issa, R., Gomez, L. & Gautier, H. Companion plants for aphid pest management. Insects 8, 112 (2017).
PubMed Central Article Google Scholar
7.
Niemeyer, H. Secondary plant chemicals in aphid-host interactions. RK. RK Campbell RD Eikenbary Aphid-plant genotype Interact, 101–111 (1990).
8.
Powell, G., Tosh, C. R. & Hardie, J. HOST PLANT SELECTION BY APHIDS: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).
CAS PubMed Article PubMed Central Google Scholar
9.
Mansion-Vaquié, A., Ferrer, A., Ramon-Portugal, F., Wezel, A. & Magro, A. Intercropping impacts the host location behaviour and population growth of aphids. Entomol. Exp. Appl. 168, 41–52 (2020).
Article Google Scholar
10.
Nottingham, S. F. et al. Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles. J. Chem. Ecol. 17, 1231–1242 (1991).
CAS PubMed Article PubMed Central Google Scholar
11.
Ben Issa, R., Gautier, H. & Gomez, L. Influence of neighbouring companion plants on the performance of aphid populations on sweet pepper plants under greenhouse conditions. Agric. For. Entomol. 19, 181–191 (2017).
Article Google Scholar
12.
Hatt, S., Xu, Q., Francis, F. & Osawa, N. Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. A review. Entomol. Gener. 38, 275–315 (2019).
Article Google Scholar
13.
Basedow, T., Hua, L. & Aggarwal, N. The infestation of Vicia faba L. (Fabaceae) by Aphis fabae (Scop.) (Homoptera: Aphididae) under the influence of Lamiaceae (Ocimum basilicum L. and Satureja hortensis L.). J. Pest Sci. 79, 149 (2006).
Article Google Scholar
14.
Beizhou, S. et al. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants. Pest Manag. Sci. 67, 1107–1114 (2011).
PubMed Article CAS PubMed Central Google Scholar
15.
Glinwood, R., Ninkovic, V., Pettersson, J. & Ahmed, E. Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol. Entomol. 29, 188–195 (2004).
Article Google Scholar
16.
Jankowska, B., Poniedziałek, M. & Jędrszczyk, E. Effect of intercropping white cabbage with French Marigold (Tagetes patula nana L.) and Pot Marigold (Calendula officinalis L.) on the colonization of plants by pest insects. Folia Hortic. 21, 95–103 (2009).
Article Google Scholar
17.
Tang, G. B. et al. Repellent and attractive effects of herbs on insects in pear orchards intercropped with aromatic plants. Agroforest. Syst. 87, 273–285 (2013).
Article Google Scholar
18.
de Lima, J. S. S. et al. Agroeconomic evaluation of intercropping rocket and carrot by uni- and multivariate analyses in a semi-arid region of Brazil. Ecol. Ind. 41, 109–114 (2014).
Article Google Scholar
19.
Sujayanand, G. K., Sharma, R. K., Shankarganesh, K., Saha, S. & Tomar, R. S. Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Fla. Entomol. 98, 305–314 (2015).
Article Google Scholar
20.
McCall, P. J. & Eaton, G. Olfactory memory in the mosquito Culex quinquefasciatus. Med. Vet. Entomol. 15, 197–203 (2001).
CAS PubMed Article PubMed Central Google Scholar
21.
Little, C. M., Chapman, T. W. & Hillier, N. K. Considerations for insect learning in integrated pest management. J. Insect Sci. 19, 6 (2019).
PubMed PubMed Central Article Google Scholar
22.
Bandara, K. A. N. P. et al. Can leek interfere with bean plant-bean fly interaction? Test of ecological pest management in mixed cropping. J. Econ. Entomol. 102, 999–1008 (2009).
CAS PubMed Article PubMed Central Google Scholar
23.
Mutiga, S. K., Gohole, L. S. & Auma, E. O. Effects of integrating companion cropping and nitrogen application on the performance and infestation of collards by Brevicoryne brassicae. Entomol. Exp. Appl. 134, 234–244 (2010).
CAS Article Google Scholar
24.
Dugravot, S., Thibout, E., Abo-Ghalia, A. & Huignard, J. How a specialist and a non-specialist insect cope with dimethyl disulfide produced by Allium porrum. Neth. Entomol. Soc. Entomol. Exp. Appl. 113, 173–179 (2004).
Article Google Scholar
25.
Thibout, E. & Auger, J. Composés soufrés des Allium et lutte contre les insectes. Acta Bot. Gallica 144, 419–426 (1997).
Article Google Scholar
26.
Auger, J., Dugravot, S., Naudin, A. & Abo-Ghalia, A. Utilisation des composes allelochimiques des Allium en tant qu’insecticides. Use of pheromones and other semiochemicals in integrated production IOBC wprs Bulletin Vol. 25, 13 (2002).
27.
Amarawardana, L. et al. Olfactory response of Myzus persicae (Homoptera: Aphididae) to volatiles from leek and chive: potential for intercropping with sweet pepper. Acta Agric. Scand. Sect. B – Soil Plant Sci. 57, 87–91 (2007).
Google Scholar
28.
Zhou, H. et al. Influence of garlic intercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields in China. J. Integr. Agric. 12, 467–473 (2013).
Article Google Scholar
29.
Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 107, 3600–3605 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
30.
Tjallingii, W. F. Electrical recording of stylet penetration activities. In Aphids, Their Biology, Natural Enemies and Control (eds Minks, A. K. & Harrewijn, P.) 95–108 (Elsevier, Amsterdam, 1988).
Google Scholar
31.
Tjallingii, W. F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730 (1978).
Article Google Scholar
32.
Giordanengo, P. EPG-Calc: a PHP-based script to calculate electrical penetration graph (EPG) parameters. Arthropod-Plant Interact. 8, 163–169 (2014).
Article Google Scholar
33.
MacGillivray, M. E. & Anderson, G. B. Three useful insect cages. Can. Entomol. 89, 43–46 (1957).
Article Google Scholar
34.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2014).
Google Scholar
35.
Järvenpää, E. P., Zhang, Z., Huopalahti, R. & King, J. W. Determination of fresh onion (Allium cepa L.) volatiles by solid phase microextraction combined with gas chromatography-mass spectrometry. Z. Lebensm Unters Forsch 207, 39–43 (1998).
Article Google Scholar
36.
Løkke, M. M., Edelenbos, M., Larsen, E. & Feilberg, A. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS) . Sensors 12, 16060–16076 (2012).
PubMed Article CAS PubMed Central Google Scholar
37.
Camacho-Coronel, X., Molina-Torres, J. & Heil, M. Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept. Front. Plant Sci. 11, 121 (2020).
PubMed PubMed Central Article Google Scholar
38.
Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—a mechanism for associational herbivore resistance?. New Phytol. 186, 722–732 (2010).
CAS PubMed Article PubMed Central Google Scholar
39.
Dahlin, I., Vucetic, A. & Ninkovic, V. Changed host plant volatile emissions induced by chemical interaction between unattacked plants reduce aphid plant acceptance with intermorph variation. J Pest Sci 88, 249–257 (2015).
Article Google Scholar
40.
Dardouri, T. et al. Non-host volatiles disturb the feeding behavior and reduce the fecundity of the green peach aphid, Myzus persicae. Pest Manag Sci. https://doi.org/10.1002/ps.6190 (2020).
Article PubMed PubMed Central Google Scholar
41.
Dancewicz, K., Gabryś, B. & Przybylska, M. Effect of garlic (Allium sativum L.) and tansy (Tanaceum vulgare L.) extracts and potassic horticultural soap on the probing and feeding behaviour of Myzus persicae (Sulzer, 1776). Aphids Other Homopterous Insects 17, 126–136 (2011).
Google Scholar
42.
Chyb, S., Eichenseer, H., Hollister, B., Mullin, C. A. & Frazier, J. L. Identification of sensilla involved in taste mediation in adult western corn rootworm (Diabrotica virgifera virgifera LeConte). J. Chem. Ecol. 21, 313–329 (1995).
CAS PubMed Article PubMed Central Google Scholar
43.
Prado, E. & Tjallingii, W. F. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol. Exp. Appl. 82, 189–200 (1997).
Article Google Scholar
44.
Sauge, M.-H., Lacroze, J.-P., Poëssel, J.-L., Pascal, T. & Kervella, J. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomol. Exp. Appl. 102, 29–37 (2002).
Article Google Scholar
45.
Tolosa, T. A. et al. Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J. Chem. Ecol. 45, 982–992 (2019).
CAS PubMed Article PubMed Central Google Scholar
46.
Ninkovic, V., Rensing, M., Dahlin, I. & Markovic, D. Who is my neighbor? Volatile cues in plant interactions. Plant Signal Behav. 14, 1634993 (2019).
PubMed PubMed Central Article CAS Google Scholar
47.
Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17, 44–52 (2014).
PubMed Article PubMed Central Google Scholar
48.
Kumar, P., Mishra, S., Malik, A. & Satya, S. Insecticidal properties of Mentha species: a review. Ind. Crops Prod. 34, 802–817 (2011).
CAS Article Google Scholar
49.
Nuñez-Mejía, G., Valadez-Lira, J. A., Gomez-Flores, R., Rodríguez-Padilla, C. & Tamez-Guerra, P. Trichoplusia ni (Lepidoptera: Noctuidae) survival, immune response, and gut bacteria changes after exposure to Azadirachta indica (Sapindales: Meliaceae) volatiles. Fla. Entomol. 99, 12–20 (2016).
Article Google Scholar
50.
Regnault-Roger, C., Vincent, C. & Arnason, J. T. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57, 405–424 (2012).
CAS PubMed Article PubMed Central Google Scholar
51.
Sousa, R. M. O. F., Rosa, J. S., Oliveira, L., Cunha, A. & Fernandes-Ferreira, M. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Ind. Crops Prod. 63, 226–237 (2015).
CAS Article Google Scholar
52.
Petrakis, E. A. et al. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 62, 272–279 (2014).
CAS Article Google Scholar
53.
Poorjavad, N., Goldansaz, S. H., Dadpour, H. & Khajehali, J. Effect of Ferula assafoetida essential oil on some biological and behavioral traits of Trichogramma embryophagum and T. evanescens. Biocontrol 59, 403–413 (2014).
CAS Article Google Scholar
54.
Vázquez-Covarrubias, D. A., Jiménez-Pérez, A., Castrejón-Ayala, F., Figueroa-Brito, R. & Belmont, R. M. Effects of five species of Chenopodiaceae on the development and reproductive potential of Copitarsia decolora (Lepidoptera: Noctuidae). Fla. Entomol. 98, 80–85 (2015).
Article Google Scholar
55.
Bharti, G., Prasad, S. & Upadhyay, V. B. The influence of plant volatile of Allium sativum on the reproductive ability of multivoltine mulberry silkworm Bombyx mori Linn. Afr. J. Basic Appl. Sci. 5(6), 242–249 (2013).
Google Scholar
56.
Ameline, A., Couty, A., Martoub, M., Sourice, S. & Giordanengo, P. Modification of Macrosiphum euphorbiae colonisation behaviour and reproduction on potato plants treated by mineral oil. Entomol. Exp. Appl. 135, 77–84 (2010).
Article Google Scholar
57.
Calabrese, E. J. Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27, 1451–1474 (2008).
CAS PubMed Article PubMed Central Google Scholar
58.
Ayyanath, M.-M., Cutler, G. C., Scott-Dupree, C. D. & Sibley, P. K. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8, e74532 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
59.
Yu, Y., Shen, G., Zhu, H. & Lu, Y. Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pestic. Biochem. Physiol. 98, 238–242 (2010).
CAS Article Google Scholar
60.
Stephens, D. W. Learning and behavioral ecology: incomplete information and environmental predictability. In Insect Learning: Ecology and Evolutionary Perspectives (eds Papaj, D. R. & Lewis, A. C.) 195–218 (Springer, New York, 1993).
Google Scholar
61.
Bedini, S. et al. Allium sativum, Rosmarinus officinalis, and Salvia officinalis essential oils: a spiced shield against blowflies. Insects 11, 143 (2020).
PubMed Central Article Google Scholar
62.
Shi, J. et al. Laboratory evaluation of acute toxicity of the essential oil of Allium tuberosum leaves and its selected major constituents against Apolygus lucorum (Hemiptera: Miridae). J. Insect Sci. 15, 117 (2015).
PubMed PubMed Central Article CAS Google Scholar More