European cephalopods distribution under climate-change scenarios
1.
SAUP. Sea Around Us. http://www.seaaroundus.org/data/ (2020).
2.
Coll, M., Navarro, J., Olson, R. J. & Christensen, V. Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models. Deep Sea Res. Part II Top. Stud. Oceanogr. 95, 21–36 (2013).
ADS Article Google Scholar
3.
Hastie, L. et al. Cephalopods in the north-eastern Atlantic: Species, biogeography, ecology, exploitation and conservation. In Oceanography and Marine Biology (eds. Gibson, R., Atkinson, R. & Gordon, J.) vol. 20092725, 111–190 (CRC Press, Boca Raton, 2009).
4.
Piatkowski, U. & Pierce, G. J. Impact of cephalopods in the food chain and their interaction with the environment and fisheries: An overview. Fish. Res. 6, 5–10 (2001).
Article Google Scholar
5.
Pierce, G. J. et al. A review of cephalopod–environment interactions in European Seas. Hydrobiologia 612, 49–70 (2008).
Article Google Scholar
6.
André, J., Haddon, M. & Pecl, G. T. Modelling climate-change-induced nonlinear thresholds in cephalopod population dynamics. Glob. Change Biol. 16, 2866–2875 (2010).
ADS Article Google Scholar
7.
Jereb, P. et al. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooper. Res. Rep. 325, 1–360 (2015).
Google Scholar
8.
Sims, D. W., Genner, M. J., Southward, A. J. & Hawkins, S. J. Timing of squid migration reflects North Atlantic climate variability. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2607–2611 (2001).
9.
Dorey, N. et al. Ocean acidification and temperature rise: Effects on calcification during early development of the cuttlefish Sepia officinalis. Mar. Biol. 160, 2007–2022 (2013).
CAS Article Google Scholar
10.
Rodhouse, P. G. K. et al. Environmental effects on cephalopod population dynamics. In Advances in Marine Biology vol. 67, 99–233 (Elsevier, Amsterdam, 2014).
11.
Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).
ADS CAS Article Google Scholar
12.
Otto, F. E. L., Frame, D. J., Otto, A. & Allen, M. R. Embracing uncertainty in climate change policy. Nat. Clim. Change 5, 917–920 (2015).
ADS Article Google Scholar
13.
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
ADS CAS Article Google Scholar
14.
van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).
ADS Article Google Scholar
15.
Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).
ADS CAS PubMed Article Google Scholar
16.
Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).
ADS Article Google Scholar
17.
Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).
PubMed Article Google Scholar
18.
Vidal, E. A. G., DiMarco, F. P., Wormuth, J. H. & Lee, P. G. Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bull. Mar. Sci. 71, 915–931 (2002).
Google Scholar
19.
Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407 (2016).
CAS PubMed Article Google Scholar
20.
van der Kooij, J., Engelhard, G. H. & Righton, D. A. Climate change and squid range expansion in the North Sea. J. Biogeogr. 43, 2285–2298 (2016).
Article Google Scholar
21.
Jin, Y., Jin, X., Gorfine, H., Wu, Q. & Shan, X. Modeling the oceanographic impacts on the spatial distribution of common cephalopods during autumn in the yellow sea. Front. Mar. Sci. 7, (2020).
22.
Pang, Y. et al. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 208, 22–33 (2018).
Article Google Scholar
23.
Le Marchand, M. et al. Climate change in the Bay of Biscay: Changes in spatial biodiversity patterns could be driven by the arrivals of southern species. Mar. Ecol. Prog. Ser. 647, 17–31 (2020).
ADS Article Google Scholar
24.
Lima, F. D., Ángeles-González, L. E., Leite, T. S. & Lima, S. M. Q. Global climate changes over time shape the environmental niche distribution of Octopus insularis in the Atlantic Ocean. Mar. Ecol. Prog. Ser. 652, 111–121 (2020).
ADS Article Google Scholar
25.
Xavier, J. C., Peck, L. S., Fretwell, P. & Turner, J. Climate change and polar range expansions: Could cuttlefish cross the Arctic?. Mar. Biol. 163, 78 (2016).
Article Google Scholar
26.
Selig, E. R. et al. Mapping global human dependence on marine ecosystems. Conserv. Lett. 12, e12617 (2019).
Article Google Scholar
27.
Blasiak, R. et al. Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS ONE 12, e0179632 (2017).
PubMed PubMed Central Article CAS Google Scholar
28.
FAO. The State of Mediterranean and Black Sea Fisheries. (General Fisheries Commission for the Mediterranean, 2016).
29.
Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
30.
Badjeck, M.-C., Perry, A., Renn, S., Brown, D. & Poulain, F. The vulnerability of fishing-dependent economies to disasters. FAO Fish. Aquac. Circ. 1081, 1–19 (2013).
Google Scholar
31.
Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).
Article Google Scholar
32.
Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).
Article Google Scholar
33.
Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elementa Sci. Anthropocene 6, 9 (2018).
Article Google Scholar
34.
Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).
ADS PubMed PubMed Central Article Google Scholar
35.
Pierce, G. J. et al. Status and trends of European cephalopod stocks. In ASC 2019 ICES Conference, Gothenburg, Sweden 1 (2019).
36.
Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
Article Google Scholar
37.
Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, New Haven, 1978).
Google Scholar
38.
Peterson, A. & Soberón, J. Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza e Conservação 10, 1–6 (2012).
Article Google Scholar
39.
Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: The once and future niche. Proc. Natl. Acad. Sci. 106, 19651–19658 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
40.
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).
ADS Article Google Scholar
41.
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
PubMed Article Google Scholar
42.
Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. https://doi.org/10.1111/ddi.12892 (2019).
Article Google Scholar
43.
Goberville, E., Beaugrand, G., Hautekèete, N.-C., Piquot, Y. & Luczak, C. Uncertainties in the projection of species distributions related to general circulation models. Ecol. Evol. 5, 1100–1116 (2015).
PubMed PubMed Central Article Google Scholar
44.
Leroy, B. et al. Forecasted climate and land use changes, and protected areas: The contrasting case of spiders. Divers. Distrib. 20, 686–697 (2014).
Article Google Scholar
45.
Schickele, A. et al. Modelling European small pelagic fish distribution: Methodological insights. Ecol. Model. 416, 108902 (2020).
Article Google Scholar
46.
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
ADS PubMed PubMed Central Article Google Scholar
47.
Barbet-Massin, M., Thuiller, W. & Jiguet, F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models?. Ecography 33, 878–886 (2010).
Article Google Scholar
48.
Beaugrand, G., Luczak, C., Goberville, E. & Kirby, R. Marine biodiversity and the chessboard of life. PLoS ONE 13, e0194006 (2018).
PubMed PubMed Central Article CAS Google Scholar
49.
Støa, B., Halvorsen, R., Mazzoni, S. & Gusarov, V. I. Sampling bias in presence-only data used for species distribution modelling: Theory and methods for detecting sample bias and its effects on models. Sommerfeltia 38, 1–53 (2018).
Article Google Scholar
50.
Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).
Article Google Scholar
51.
Voldoire, A. et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 40, 2091–2121 (2013).
Article Google Scholar
52.
Hourdin, F. et al. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim. Dyn. 40, 2167–2192 (2013).
Article Google Scholar
53.
Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2013).
ADS Article Google Scholar
54.
Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: Assessing the assumptions and uncertainties. PNAS 106, 19729–19736 (2009).
ADS CAS PubMed Article Google Scholar
55.
Martinez-Meyer, E. Climate change and biodiversity: Some considerations in forecasting shifts in species’ potential distributions. Biodivers. Inform. 2, 42–55 (2005).
Article Google Scholar
56.
Levitus, S. Climatological atlas of the world ocean. Eos Trans. Am. Geophys. Union 64, 962–963 (2011).
ADS Article Google Scholar
57.
Cabanes, C. et al. The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci. 9, 1–18 (2013).
ADS Article Google Scholar
58.
Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5: Climate Changes in MPI-ESM. J. Adv. Model. Earth Syst. 5, 572–597 (2013).
ADS Article Google Scholar
59.
Stevens, B. et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).
ADS Article Google Scholar
60.
Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. Discuss. 4, 689–763 (2011).
ADS Google Scholar
61.
Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive: GISS MODEL-E2 CMIP5 SIMULATIONS. J. Adv. Model. Earth Syst. 6, 141–184 (2014).
ADS Article Google Scholar
62.
Beaugrand, G., Lenoir, S., Ibañez, F. & Manté, C. A new model to assess the probability of occurrence of a species, based on presence-only data. Mar. Ecol. Prog. Ser. 424, 175–190 (2011).
ADS Article Google Scholar
63.
Raybaud, V., Bacha, M., Amara, R. & Beaugrand, G. Forecasting climate-driven changes in the geographical range of the European anchovy (Engraulis encrasicolus). ICES J. Mar. Sci. 74, 1288–1299 (2017).
Article Google Scholar
64.
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
Article Google Scholar
65.
Thuiller, W., Georges, D., Engler, R. & Breiner, F. Ensemble Platform for Species Distribution Modelling. (2016).
66.
Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Article Google Scholar
67.
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1198-2 (2020).
Article PubMed Google Scholar
68.
Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).
CAS Article Google Scholar
69.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Distance to the nearest coast. https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/ (01/03/2018) (2009).
70.
Hattab, T. et al. Towards a better understanding of potential impacts of climate change on marine species distribution: A multiscale modelling approach. Glob. Ecol. Biogeogr. 23, 1417–1429 (2014).
Article Google Scholar
71.
Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
Google Scholar
72.
Ben Rais Lasram, F. et al. An open-source framework to model present and future marine species distributions at local scale. Ecol. Inform. 59, 101130 (2020).
Article Google Scholar
73.
Montgomery, D. C. Design and Analysis of Experiments (Wiley, Hoboken, 2005).
Google Scholar
74.
Getz, W. M. & Wilmers, C. C. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27, 489–505 (2006).
Article Google Scholar
75.
Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87, 1465–1471 (2004).
Article Google Scholar
76.
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
Article Google Scholar
77.
Leroy, B. et al. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45, 1994–2002 (2018).
Article Google Scholar
78.
Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5, eaar6993 (2019).
ADS PubMed PubMed Central Article Google Scholar
79.
Elith, J., Ferrier, S., Huettmann, F. & Leathwick, J. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecol. Model. 186, 280–289 (2005).
Article Google Scholar
80.
VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).
ADS Article Google Scholar
81.
Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).
ADS Article Google Scholar
82.
Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8, 245–251 (2018).
ADS Article Google Scholar
83.
Péron, C., Weimerskirch, H. & Bost, C.-A. Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc. Biol. Sci. 279, 2515–2523 (2012).
PubMed PubMed Central Article Google Scholar
84.
Bloor, I. S. M., Attrill, M. J. & Jackson, E. L. Chapter One—A Review of the Factors Influencing Spawning, Early Life Stage Survival and Recruitment Variability in the Common Cuttlefish (Sepia officinalis). In Advances in Marine Biology (ed. Lesser, M.) vol. 65, 1–65 (Academic Press, Cambridge, 2013).
85.
Vidal, E. A. G., Roberts, M. J. & Martins, R. S. Yolk utilization, metabolism and growth in reared Loligo vulgaris reynaudii paralarvae. Aquat. Living Resour. 18, 385–393 (2005).
Article Google Scholar
86.
Bouchaud, O. Energy consumption of the cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda) during embryonic development, preliminary results. Bull. Mar. Sci. 49, 333–340 (1991).
Google Scholar
87.
Laptikhovsky, V. Latitudinal and bathymetric trends in egg size variation: A new look at Thorson’s and Rass’s rules. Mar. Ecol. 27, 7–14 (2006).
ADS Article Google Scholar
88.
Hengl, T., Sierdsema, H., Radović, A. & Dilo, A. Spatial prediction of species’ distributions from occurrence-only records: Combining point pattern analysis, ENFA and regression-kriging. Ecol. Model. 220, 3499–3511 (2009).
Article Google Scholar
89.
Clarke, M. R. The role of cephalopods in the world’s oceans: general conclusions and the future. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1105–1112 (1996).
ADS Article Google Scholar
90.
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).
Article Google Scholar
91.
Kissling, W. D. et al. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents: Modelling multispecies interactions. J. Biogeogr. 39, 2163–2178 (2012).
Article Google Scholar
92.
Clark, J. S., Gelfand, A. E., Woodall, C. & Zhu, K. More than the sum of the parts: Forest climate response from joint species distribution models. Ecol. Appl. 24, 990–999 (2014).
PubMed Article Google Scholar
93.
Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
Article Google Scholar
94.
Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).
Article Google Scholar
95.
Lee, Q., Thorson, J. T., Gertseva, V. V. & Punt, A. E. The benefits and risks of incorporating climate-driven growth variation into stock assessment models, with application to Splitnose Rockfish (Sebastes diploproa). ICES J. Mar. Sci. 75, 245–256 (2018).
Article Google Scholar
96.
Colléter, M., Gascuel, D., Ecoutin, J.-M. & Tito de Morais, L. Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Sénégal. Ecol. Model. 232, 1–13 (2012).
Article Google Scholar
97.
Allen, K. R. Relation between production and biomass. J. Fish. Res. Board Can. 28, 1573–1581 (1971).
Article Google Scholar
98.
FAO. Review of the state of world marine fishery resources. FAO Fish. Aquac. Tech. Pap. 334 (2011).
99.
Cheung, W. W. L. et al. Transform high seas management to build climate resilience in marine seafood supply. Fish Fish. 18, 254–263 (2016).
Article Google Scholar
100.
Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).
ADS Article Google Scholar
101.
Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).
ADS Article Google Scholar
102.
Ojea, E., Lester, S. E. & Salgueiro-Otero, D. Adaptation of fishing communities to climate-driven shifts in target species. One Earth 2, 544–556 (2020).
Article Google Scholar More