The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance
1.
Connell JH. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199:1302–10.
CAS PubMed Article PubMed Central Google Scholar
2.
Moreno-Mateos D, Barbier EB, Jones PC, Jones HP, Aronson J, López-López JA, et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat Commun. 2017;8:14163.
CAS PubMed PubMed Central Article Google Scholar
3.
Rodil IF, Lohrer AM, Chiaroni LD, Hewitt JE, Thrush SF. Disturbance of sandflats by thin terrigenous sediment deposits: consequences for primary production and nutrient cycling. Ecol Appl. 2011;21:416–26.
PubMed Article PubMed Central Google Scholar
4.
Carnell PE, Keough MJ. More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia. Sci Rep. 2020;10:11272.
PubMed PubMed Central Article CAS Google Scholar
5.
McDowell NG, Michaletz ST, Bennett KE, Solander KC, Xu C, Maxwell RM, et al. Predicting Chronic Climate-Driven Disturbances and Their Mitigation. Trends Ecol Evol. 2018;33:15–27.
PubMed Article PubMed Central Google Scholar
6.
Shade A, Peter H, Allison SD, Baho D, Berga M, Buergmann H, et al. Fundamentals of Microbial Community Resistance and Resilience. Front Microbiol. 2012;3:417.
PubMed PubMed Central Article Google Scholar
7.
Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci. 2008;105:11512–9.
CAS PubMed Article PubMed Central Google Scholar
8.
Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, McMahon KD. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance: Bacterial community recovery after lake mixing. Environ Microbiol. 2011;13:2752–67.
CAS PubMed Article PubMed Central Google Scholar
9.
Shade A, Read JS, Youngblut ND, Fierer N, Knight R, Kratz TK, et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 2012;6:2153–67.
CAS PubMed PubMed Central Article Google Scholar
10.
Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci. 2011;108:4554–61.
CAS PubMed Article PubMed Central Google Scholar
11.
Heinsen F-A, Knecht H, Neulinger SC, Schmitz RA, Knecht C, Kühbacher T, et al. Dynamic changes of the luminal and mucosa-associated gut microbiota during and after antibiotic therapy with paromomycin. Gut Microbes. 2015;6:243–54.
CAS PubMed PubMed Central Article Google Scholar
12.
Fukuyama J, Rumker L, Sankaran K, Jeganathan P, Dethlefsen L, Relman DA, et al. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment. PLOS Comput Biol. 2017;13:e1005706.
PubMed PubMed Central Article CAS Google Scholar
13.
Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–21.
CAS PubMed PubMed Central Article Google Scholar
14.
Antwis RE, Garcia G, Fidgett AL, Preziosi RF. Tagging Frogs with Passive Integrated Transponders Causes Disruption of the Cutaneous Bacterial Community and Proliferation of Opportunistic Fungi. Appl Environ Microbiol. 2014;80:4779–84.
PubMed PubMed Central Article CAS Google Scholar
15.
Bates KA, Shelton JMG, Mercier VL, Hopkins KP, Harrison XA, Petrovan SO, et al. Captivity and Infection by the Fungal Pathogen Batrachochytrium salamandrivorans Perturb the Amphibian Skin Microbiome. Front Microbiol. 2019;10:1834.
PubMed PubMed Central Article Google Scholar
16.
Gimblet C, Meisel JS, Loesche MA, Cole SD, Horwinski J, Novais FO, et al. Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation. Cell Host Microbe. 2017;22:13–24.e4.
CAS PubMed PubMed Central Article Google Scholar
17.
Jani AJ, Briggs CJ. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci. 2014;111:E5049–E5058.
CAS PubMed Article PubMed Central Google Scholar
18.
Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9.
CAS PubMed PubMed Central Article Google Scholar
19.
Longcore JE, Pessier AP, Nichols DK. Batrachochytrium Dendrobatidis gen. et sp. nov., a Chytrid Pathogenic to Amphibians. Mycologia. 1999;91:219–27.
Article Google Scholar
20.
Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci. 1998;95:9031–6.
CAS PubMed Article PubMed Central Google Scholar
21.
Crawford AJ, Lips KR, Bermingham E. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc Natl Acad Sci. 2010;107:13777–82.
CAS PubMed Article PubMed Central Google Scholar
22.
Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA. 2006;103:3165–70.
CAS PubMed Article PubMed Central Google Scholar
23.
Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci. 2010;107:9689–94.
CAS PubMed Article PubMed Central Google Scholar
24.
Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KPC, et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett. 2013;16:807–20.
PubMed Article PubMed Central Google Scholar
25.
Hardy BM, Pope KL, Piovia-Scott J, Brown RN, Foley JE. Itraconazole treatment reduces Batrachochytrium dendrobatidis prevalence and increases overwinter field survival in juvenile Cascades frogs. Dis Aquat Organ. 2015;112:243–50.
PubMed Article PubMed Central Google Scholar
26.
McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, et al. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature. 2014;511:224–7.
CAS PubMed PubMed Central Article Google Scholar
27.
Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 2009;3:818–24.
CAS PubMed Article PubMed Central Google Scholar
28.
Muletz CR, Myers JM, Domangue RJ, Herrick JB, Harris RN. Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol Conserv. 2012;152:119–26.
Article Google Scholar
29.
Becker MH, Harris RN, Minbiole KPC, Schwantes CR, Rollins-Smith LA, Reinert LK, et al. Towards a Better Understanding of the Use of Probiotics for Preventing Chytridiomycosis in Panamanian Golden Frogs. Ecohealth. 2011;8:501–6.
PubMed Article PubMed Central Google Scholar
30.
Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA, Lam B, Harris RN, et al. Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Dis Aquat Organ. 2012;98:11–25.
CAS PubMed Article PubMed Central Google Scholar
31.
Belden LK, Hughey MC, Rebollar EA, Umile TP, Loftus SC, Burzynski EA, et al. Panamanian frog species host unique skin bacterial communities. Front Microbiol. 2015; 6:1171.
32.
Bletz MC, Goedbloed DJ, Sanchez E, Reinhardt T, Tebbe CC, Bhuju S, et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun. 2016;7:13699.
CAS PubMed PubMed Central Article Google Scholar
33.
Jani AJ, Briggs CJ. Host and Aquatic Environment Shape the Amphibian Skin Microbiome but Effects on Downstream Resistance to the Pathogen Batrachochytrium dendrobatidis Are Variable. Front Microbiol. 2018;9:487.
PubMed PubMed Central Article Google Scholar
34.
Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ. The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol. 2014;23:1238–50.
PubMed PubMed Central Article Google Scholar
35.
Kueneman JG, Bletz MC, McKenzie VJ, Becker CG, Joseph MB, Abarca JG, et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat Ecol Evol. 2019;3:381–9.
PubMed Article PubMed Central Google Scholar
36.
Küng D, Bigler L, Davis LR, Gratwicke B, Griffith E, Woodhams DC. Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease. PLoS ONE. 2014;9:e87101.
PubMed PubMed Central Article CAS Google Scholar
37.
McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 2012;6:588–96.
CAS Article Google Scholar
38.
Prest TL, Kimball AK, Kueneman JG, McKenzie VJ. Host-associated bacterial community succession during amphibian development. Mol Ecol. 2018;27:1992–2006.
CAS PubMed Article PubMed Central Google Scholar
39.
Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 2016;10:1682–95.
CAS PubMed PubMed Central Article Google Scholar
40.
Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ. Diversity-Stability Dynamics of the Amphibian Skin Microbiome and Susceptibility to a Lethal Viral Pathogen. Front Microbiol. 2019;10:2883.
PubMed PubMed Central Article Google Scholar
41.
Jani AJ, Knapp RA, Briggs CJ. Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proc R Soc B-Biol Sci. 2017;284:20170944.
Article Google Scholar
42.
Walke JB, Becker MH, Loftus SC, House LL, Teotonio TL, Minbiole KPC, et al. Community Structure and Function of Amphibian Skin Microbes: an Experiment with Bullfrogs Exposed to a Chytrid Fungus. PLOS ONE. 2015;10:e0139848.
PubMed PubMed Central Article CAS Google Scholar
43.
Knutie SA, Wilkinson CL, Kohl KD, Rohr JR. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat Commun. 2017;8:86.
PubMed PubMed Central Article CAS Google Scholar
44.
Rachowicz LJ, Knapp RA, Morgan JA, Stice MJ, Vredenburg VT, Parker JM, et al. Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology. 2006;87:1671–83.
PubMed Article PubMed Central Google Scholar
45.
Jones MEB, Paddock D, Bender L, Allen JL, Schrenzel MD, Pessier AP. Treatment of chytridiomycosis with reduced-dose itraconazole. Dis Aquat Organ. 2012;99:243–9.
CAS PubMed Article PubMed Central Google Scholar
46.
Brannelly LA. Reduced Itraconazole Concentration and Durations Are Successful in Treating Batrachochytrium dendrobatidis Infection in Amphibians. JOVE-J Vis Exp. 2014;85:e51166.
Google Scholar
47.
Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ. 2007;73:175–92.
CAS PubMed Article PubMed Central Google Scholar
48.
Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ. 2004;60:141–8.
CAS PubMed Article PubMed Central Google Scholar
49.
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol. 2013;79:5112–20.
CAS PubMed PubMed Central Article Google Scholar
50.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1–e1.
CAS PubMed Article PubMed Central Google Scholar
51.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
CAS PubMed PubMed Central Article Google Scholar
52.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl Environ Microbiol. 2009;75:7537–41.
CAS PubMed PubMed Central Article Google Scholar
53.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.
CAS PubMed Article PubMed Central Google Scholar
54.
Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni C, et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat Commun. 2017;8:1188.
PubMed PubMed Central Article CAS Google Scholar
55.
Arisdakessian C, Cleveland SB, Belcaid M. MetaFlow|mics: Scalable and Reproducible Nextflow Pipelines for the Analysis of Microbiome Marker Data. Pract Exp Adv Res Comput. 2020. Association for Computing Machinery, New York, NY, USA, pp 120–4.
56.
Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Appl Environ Microbiol. 2005;71:8228–35.
CAS PubMed PubMed Central Article Google Scholar
57.
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Google Scholar
58.
Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley statsref: statistics reference online. American Cancer Society;2017. p. 1–15.
59.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
PubMed PubMed Central Article Google Scholar
60.
Joseph MB, Knapp RA. Disease and climate effects on individuals jointly drive post-reintroduction population dynamics of an endangered amphibian. bioRxiv. 2018; 332114.
61.
SanMiguel AJ, Meisel JS, Horwinski J, Zheng Q, Bradley CW, Grice EA. Antiseptic Agents Elicit Short-Term, Personalized, and Body Site–Specific Shifts in Resident Skin Bacterial Communities. J Investig Dermatol. 2018;138:2234–43.
CAS PubMed Article PubMed Central Google Scholar
62.
Volkman J. Sterols in microorganisms. Appl Microbiol Biotechnol. 2003;60:495–506.
CAS PubMed Article PubMed Central Google Scholar
63.
Niño DF, Cauvi DM, De Maio A. Itraconazole, a Commonly Used Antifungal, Inhibits Fcγ Receptor–Mediated Phagocytosis: Alteration of Fcγ Receptor Glycosylation and Gene Expression. Shock. 2014;42:52.
PubMed PubMed Central Article CAS Google Scholar
64.
Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, et al. Inhibition of Dectin-1 Signaling Ameliorates Colitis by Inducing Lactobacillus-Mediated Regulatory T Cell Expansion in the Intestine. Cell Host Microbe. 2015;18:183–97.
CAS Article Google Scholar
65.
Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.
PubMed PubMed Central Article CAS Google Scholar
66.
Zaneveld JR, McMinds R, Vega Thurber R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:17121.
CAS PubMed Article PubMed Central Google Scholar
67.
Wilber MQ, Jani AJ, Mihaljevic JR, Briggs CJ. Fungal infection alters the selection, dispersal and drift processes structuring the amphibian skin microbiome. Ecol Lett. 2019;23:88–98.
PubMed Article PubMed Central Google Scholar
68.
Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, et al. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 2013;8:830–40.
PubMed PubMed Central Article CAS Google Scholar
69.
Santillan E, Constancias F, Wuertz S. Press Disturbance Alters Community Structure and Assembly Mechanisms of Bacterial Taxa and Functional Genes in Mesocosm-Scale Bioreactors. mSystems. 2020;5:e00471–20.
CAS PubMed PubMed Central Article Google Scholar
70.
Rebollar EA, Gutiérrez-Preciado A, Noecker C, Eng A, Hughey MC, Medina D, et al. The Skin Microbiome of the Neotropical Frog Craugastor fitzingeri: inferring Potential Bacterial-Host-Pathogen Interactions From Metagenomic Data. Front Microbiol. 2018;9:466.
PubMed Article PubMed Central Google Scholar
71.
Mountain Yellow-legged Frog Interagency Technical Team. Interagency Conservation Strategy for Mountain Yellow-legged Frogs in the Sierra Nevada (Rana sierrae and Rana muscosa). Version 1. California Department of Fish and Wildlife, National Park Service, U.S. Fish and Wildlife Service, U.S. Forest Service; 2018. More
