Demographic effects of interacting species: exploring stable coexistence under increased climatic variability in a semiarid shrub community
1.
Jongejans, E., de Kroon, H., Tuljapurkar, S. & Shea, K. Plant populations track rather than buffer climate fluctuations. Ecol. Lett. 13, 736–743 (2010).
PubMed Article Google Scholar
2.
Tenhumberg, B., Crone, E. E., Ramula, S. & Tyre, A. J. Time-lagged effects of weather on plant demography: Drought and Astragalus scaphoides. Ecology 99, 915–925 (2018).
PubMed Article Google Scholar
3.
Boyce, M. S., Haridas, C. V., Lee, C. T. & the NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).
PubMed Article PubMed Central Google Scholar
4.
Törang, P., Ehrlén, J. & Ågren, J. Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia 163, 99–109 (2010).
ADS PubMed Article PubMed Central Google Scholar
5.
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
Article Google Scholar
6.
García-Cervigón, A. I., Camarero, J. J., Cueva, E., Espinosa, C. I. & Escudero, A. Climate seasonality and tree growth strategies in a tropical dry forest. J. Veg. Sci. 31, 266–280 (2020).
Article Google Scholar
7.
Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl. Acad. Sci. U.S.A. 103, 12793–12798 (2006).
ADS CAS PubMed PubMed Central Article Google Scholar
8.
Wasonga, O., Gabiri, G., MacOpiyo, L., Mburu, J. & Majaliwa, J. G. M. Land cover and soil properties influence on forage quantity in a semiarid region in East Africa. Appl. Environ. Soil Sci. 2019, 6874268 (2019).
Google Scholar
9.
Zheng, X. X., Liu, G. H., Fu, B. J., Jin, T. T. & Liu, Z. F. Effects of biodiversity and plant community composition on productivity in semiarid grasslands of Hulunbeir, Inner Mongolia, China. Ann. N. Y. Acad. Sci. 1195, E52–E64 (2010).
PubMed Article Google Scholar
10.
Saiz, H. & Alados, C. L. Changes in semi-arid plant species associations along a livestock grazing gradient. PLoS ONE 9, e91478 (2012).
Google Scholar
11.
Chacón-Labella, J., de la Cruz, M., Pescador, D. S. & Escudero, A. Individual species affect plant traits structure in their surroundings: Evidence of functional mechanisms of assembly. Oecologia 180, 975–987 (2016).
ADS PubMed Article Google Scholar
12.
Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).
Article Google Scholar
13.
Nicolè, F., Dahlgren, J. P., Vivat, A., Till-Bottraud, I. & Ehrlén, J. Interdependent effects of habitat quality and climate on population growth of an endangered plant. J. Ecol. 99, 1211–1218 (2011).
Article Google Scholar
14.
McIntire, E. J. B. & Fajardo, A. Facilitation as a ubiquitous driver of biodiversity. New Phytol. 201, 403–416 (2014).
PubMed Article Google Scholar
15.
Mihoč, M. A. K. et al. Soil under nurse plants is always better than outside: A survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408, 31–41 (2016).
Article CAS Google Scholar
16.
Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant–plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).
Article Google Scholar
17.
Gustaffson, C. & Ehrlén, J. Effects of intraspecific and interspecific density on the demography of a perennial herb, Sanicula europaea. Oikos 100, 317–324 (2003).
Article Google Scholar
18.
García-Cervigón, A. I., Iriondo, J. M., Linares, J. C. & Olano, J. M. Disentangling facilitation along the life cycle: Impacts of plant–plant interactions at vegetative and reproductive stages in a Mediterranean forb. Front. Plant Sci. 7, 129 (2016).
PubMed PubMed Central Article Google Scholar
19.
Miriti, M. N. Ontogenetic shift from facilitation to competition in a desert shrub. J. Ecol. 94, 973–979 (2006).
Article Google Scholar
20.
Soliveres, S. L., DeSoto, L., Maestre, F. T. & Olano, J. M. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspect. Plant Ecol. Evol. Syst. 12, 227–234 (2010).
Article Google Scholar
21.
Dahlgren, J. P. & Ehrlén, J. Linking environmental variation to population dynamics of a forest herb. J. Ecol. 97, 666–674 (2009).
Article Google Scholar
22.
Griffith, A. B. Positive effects of native shrubs on Bromus tectorum demography. Ecology 91, 141–154 (2010).
PubMed Article Google Scholar
23.
Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L. & Louda, S. M. Integral projection models show exotic thistle is more limited than native thistle by ambient competition and herbivory. Ecosphere 6, 69 (2015).
Article Google Scholar
24.
García-Algarra, J., Galeano, J., Pastor, J. M., Iriondo, J. M. & Ramasco, J. J. Rethinking the logistic approach for population dynamics of mutualistic interactions. J. Theoret. Biol. 363, 332–343 (2014).
MathSciNet MATH Article Google Scholar
25.
Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).
Article Google Scholar
26.
Chu, C. & Adler, P. B. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecol. Monogr. 85, 373–392 (2015).
Article Google Scholar
27.
Easterling, M. R., Ellner, S. P. & Dixon, P. M. Size-specific sensitivity: Applying a new structured population model. Ecology 81, 694–708 (2000).
Article Google Scholar
28.
Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).
PubMed Article Google Scholar
29.
Rees, M. & Ellner, S. P. Integral projection models for populations in temporally varying environments. Ecol. Monogr. 79, 575–594 (2009).
Article Google Scholar
30.
Williams, J. L., Jacquemyn, H., Ochocki, B. M., Brys, R. & Miller, T. E. X. Life history evolution under climate change and its influence on the population dynamics of a long-lived plant. J. Ecol. 103, 798–808 (2015).
Article Google Scholar
31.
IPCC. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
32.
Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. U.S.A. 95, 14839–14842 (1998).
ADS CAS PubMed PubMed Central Article Google Scholar
33.
Olano, J. M., Eugenio, M. & Escudero, A. Site effect is stronger than species identity in driving demographic responses of Helianthemum (Cistaceae) shrubs in gypsum environments. Am. J. Bot. 98, 1–8 (2011).
Article Google Scholar
34.
Arroyo-Cosultchi, G., Golubov, J. & Mandujano, M. C. Pulse seedling recruitment on the population dynamics of a columnar cactus: Effect of an extreme rainfall event. Acta Oecol. 71, 52–60 (2016).
ADS Article Google Scholar
35.
Quintana-Ascencio, P. F., Caballero, I., Olano, J. M., Escudero, A. & Albert, M. J. Does habitat structure matter? Spatially explicit population modeling of an Iberian gypsum endemic. Popul. Ecol. 51, 317–328 (2009).
Article Google Scholar
36.
Eugenio, M., Olano, J. M., Ferrandis, P., Martínez-Duro, E. & Escudero, A. Population structure of two dominant gypsophyte shrubs through a secondary plant succession. J. Arid Environ. 76, 30–35 (2012).
ADS Article Google Scholar
37.
Martínez, I. et al. Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust. J. Bot. 54, 339–348 (2006).
Article Google Scholar
38.
Sánchez, A. M., Alonso-Valiente, P., Albert, M. J. & Escudero, A. How might edaphic specialists in gypsum islands respond to climate change? Reciprocal sowing experiment to infer local adaptation and phenotypic plasticity. Ann. Bot. 120, 135–146 (2017).
PubMed PubMed Central Article Google Scholar
39.
Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).
ADS PubMed Article Google Scholar
40.
Escudero, A., Somolinos, R. C., Olano, J. M. & Rubio, A. Factors controlling the establishment of Helianthemum squamatum (L.) Dum., an endemic gypsophite of semi-arid Spain. J. Ecol. 87, 290–302 (1999).
Article Google Scholar
41.
Escudero, A., Iriondo, J. M., Olano, J. M., Rubio, A. & Somolinos, R. Factors affecting establishment of a gypsophyte: The case of Lepidium subulatum (Brassicaceae). Am. J. Bot. 87, 861–871 (2000).
CAS PubMed Article Google Scholar
42.
Aragón, C. F., Albert, M. J., Giménez-Benavides, L., Luzuriaga, A. L. & Escudero, A. Environmental scales on the reproduction of a gypsophyte: A hierarchical approach. Ann. Bot. 99, 519–527 (2007).
PubMed PubMed Central Article Google Scholar
43.
Caballero, I., Olano, J. M., Loidi, J. & Escudero, A. A model for small-scale seed bank and standing vegetation connection along time. Oikos 117, 1788–1795 (2008).
Article Google Scholar
44.
de la Cruz, M., Romão, R. L., Escudero, A. & Maestre, F. T. Where do seedlings go? A spatio-temporal analysis of seedling mortality in a semi-arid gypsophyte. Ecography 31, 720–730 (2008).
Article Google Scholar
45.
Tye, M. R. et al. Assessing seed and microsite limitation on population dynamics of a gypsophyte through experimental soil crust disturbance and seed addition. Plant Ecol. 218, 595–607 (2017).
Article Google Scholar
46.
Olano, J. M., Caballero, I., Loidi, J. & Escudero, A. Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum. J. Veg. Sci. 16, 215–222 (2005).
Article Google Scholar
47.
Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS ONE 7, e41270 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
48.
Peralta, A. M. L., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).
CAS Article Google Scholar
49.
Wilcock, C. & Neiland, R. Pollination failure in plants: Why it happens and when it matters. Trends Plant Sci. 7, 270–277 (2002).
CAS PubMed Article PubMed Central Google Scholar
50.
Watson, I. W., Westoby, M. & Holm, A. M. Continuous and episodic components of demographic change in arid zone shrubs: Models of two Eremophila species from Western Australia compared with published data on other species. J. Ecol. 85, 833–846 (1997).
Article Google Scholar
51.
Schwinning, S., Sala, O. E., Loik, M. E. & Ehleringer, J. R. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141, 191–193 (2004).
ADS PubMed Article Google Scholar
52.
Wiegand, K., Jeltsch, F. & Ward, D. Minimum recruitment frequency in plants with episodic recruitment. Oecologia 141, 363–372 (2004).
ADS PubMed Article Google Scholar
53.
Caballero, I., Olano, J. M., Escudero, A. & Loidi, J. Seed bank structure along a semi-arid gypsum gradient in central Spain. J. Arid Environ. 55, 287–299 (2003).
ADS Article Google Scholar
54.
Olano, J. M., Caballero, I. & Escudero, A. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation. Ann. Bot. 109, 299–307 (2012).
CAS PubMed Article Google Scholar
55.
Holzapfel, C. & Mahall, B. E. Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80, 1747–1761 (1999).
Article Google Scholar
56.
Schöb, C., Prieto, I., Armas, C. & Pugnaire, F. I. Consequences of facilitation: One plant’s benefit is another plant’s cost. Funct. Ecol. 28, 500–508 (2014).
Article Google Scholar
57.
Chesson, R. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Article Google Scholar
58.
Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
PubMed Article Google Scholar
59.
Shipley, B. et al. Reinforcing foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).
ADS PubMed Article Google Scholar
60.
Lankau, R. A. & Strauss, S. Y. Newly rare or newly common: Evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol. Appl. 4, 338–353 (2011).
PubMed PubMed Central Article Google Scholar
61.
Escavy, J. I., Herrero, M. J. & Arribas, M. E. Gypsum resources of Spain: Temporal and spatial distribution. Ore Geol. Rev. 49, 72–84 (2012).
Article Google Scholar
62.
Monturiol, F. & Alcalá-del-Olmo, L. Mapa de Asociaciones de Suelos de la Comunidad de Madrid. Escala 1:200.000 (Consejo Superior de Investigaciones Científicas, Madrid, 1990).
Google Scholar
63.
Guerrero-Campo, J., Palacio, S., Pérez-Rontome, C. & Montserrat-Martí, G. Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in north-east Spain. Ann. Bot. 98, 439–447 (2006).
PubMed PubMed Central Article Google Scholar
64.
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1–7. http://CRAN.R-project.org/package=lme4. Accessed June 2018 (2014).
65.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–120. http://CRAN.R-project.org/package=nlme. Accessed June 2018 (2015).
66.
Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. IPMpack: An R package for integral projection models. Methods Ecol. Evol. 4, 195–200 (2013).
Article Google Scholar
67.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed June 2018 (2015). More