Carbon fractions in the world’s dead wood
1.
Pugh, T. A. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
2.
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
3.
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
4.
Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl Acad. Sci. USA 117, 24649–24651 (2020).
ADS CAS PubMed Article PubMed Central Google Scholar
5.
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).
ADS MathSciNet CAS PubMed MATH Article PubMed Central Google Scholar
6.
Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).
ADS Article Google Scholar
7.
Harmon, M. E. et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15, 133–302 (1986).
Article Google Scholar
8.
Weedon, J. T. et al. Global meta‐analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009).
PubMed Article PubMed Central Google Scholar
9.
McGee, G. G. The contribution of beech bark disease-induced mortality to coarse woody debris loads in northern hardwood stands of Adirondack Park, New York, USA. Can. J. Res. 30, 1453–1462 (2000).
Article Google Scholar
10.
Woodall, C. W. et al. Net carbon flux of dead wood in forests of the Eastern US. Oecologia 177, 861–874 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
11.
Campbell, J. L. et al. Estimating uncertainty in the volume and carbon storage of downed coarse woody debris. Ecol. Appl. 29, e01844 (2019).
PubMed PubMed Central Article Google Scholar
12.
Russell, M. B. et al. Quantifying carbon stores and decomposition in dead wood: a review. Ecol. Manag. 350, 107–128 (2015).
Article Google Scholar
13.
Campbell, J., Alberti, G., Martin, J. & Law, B. E. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. Ecol. Manag. 257, 453–463 (2009).
Article Google Scholar
14.
Chambers, J. Q. et al. Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia 141, 596–611 (2004).
ADS PubMed Article PubMed Central Google Scholar
15.
Domke, G. M., Woodall, C. W. & Smith, J. E. Accounting for density reduction and structural loss in standing dead trees: implications for forest biomass and carbon stock estimates in the United States. Carbon Balance Manag. 6, 14 (2011).
PubMed PubMed Central Article Google Scholar
16.
Janisch, J. E. & Harmon, M. E. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiol. 22, 77–89 (2002).
CAS PubMed Article PubMed Central Google Scholar
17.
Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
18.
Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915–922 (2018).
ADS CAS Article Google Scholar
19.
Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: a synthesis. Forests 3, 332–352 (2012).
Article Google Scholar
20.
Martin, A. R. & Thomas, S. C. A reassessment of carbon content in tropical trees. PLoS ONE 6, e23533 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
21.
Weggler, K., Dobbertin, M., Jüngling, E., Kaufmann, E. & Thürig, E. Dead wood volume to dead wood carbon: the issue of conversion factors. Eur. J. Res. 131, 1423–1438 (2012).
Article Google Scholar
22.
Gorgolewski, A., Rudz, P., Jones, T., Basiliko, N. & Caspersen, J. Assessing coarse woody debris nutrient dynamics in managed northern hardwood forests using a matrix transition model. Ecosystems 23, 541–554 (2019).
Article CAS Google Scholar
23.
Moreira, A. B., Gregoire, T. G. & do Couto, H. T. Z. Wood density and carbon concentration of coarse woody debris in native forests. Braz. Ecosyst. 6, 18 (2019).
Article Google Scholar
24.
Sandström, F., Petersson, H., Kruys, N. & Ståhl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. Ecol. Manag. 243, 19–27 (2007).
Article Google Scholar
25.
Cousins, S. J., Battles, J. J., Sanders, J. E. & York, R. A. Decay patterns and carbon density of standing dead trees in California mixed conifer forests. Ecol. Manag. 353, 136–147 (2015).
Article Google Scholar
26.
Harmon, M. E., Fasth, B., Woodall, C. W. & Sexton, J. Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. For. Ecol. Manag. 291, 259–267 (2013).
27.
Köster, K., Metslaid, M., Engelhart, J. & Köster, E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. Ecol. Manag. 354, 35–42 (2015).
Article Google Scholar
28.
Clark, D. B., Clark, D. A., Brown, S., Oberbauer, S. F. & Veldkamp, E. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Ecol. Manag. 164, 237–248 (2002).
Article Google Scholar
29.
Yang, F. F. et al. Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. Ecol. Manag. 259, 1666–1672 (2010).
Article Google Scholar
30.
Chao, K. J. et al. Carbon concentration declines with decay class in tropical forest woody debris. Ecol. Manag. 391, 75–85 (2017).
Article Google Scholar
31.
Guo, J., Chen, G., Xie, J., Yang, Z. & Yang, Y. Patterns of mass, carbon and nitrogen in coarse woody debris in five natural forests in southern China. Ann. Sci. 71, 585–594 (2014).
Article Google Scholar
32.
Martin, A. R., Gezahegn, S. & Thomas, S. C. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Can. J. Res. 45, 744–757 (2015).
CAS Article Google Scholar
33.
Gao, B., Taylor, A. R., Chen, H. Y. & Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. Ecol. Manag. 375, 191–199 (2016).
Article Google Scholar
34.
Dossa, G. G. et al. The cover uncovered: bark control over wood decomposition. J. Ecol. 106, 2147–2160 (2018).
Article Google Scholar
35.
Jones, D. A. & O’Hara, K. L. Variation in carbon fraction, density, and carbon density in conifer tree tissues. Forests 9, 430 (2018).
Article Google Scholar
36.
Fukasawa, Y. The geographical gradient of pine log decomposition in Japan. For. Ecol. Manag. 349, 29–35 (2015).
37.
IPCC. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 4: Agriculture, Forestry and Other Land Use (eds Blain, D., Agus, F., Alfaro, M. A. & Vreuls, H.) 68 (IPCC, 2019).
38.
Jones, D. A. & O’Hara, K. L. The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiol. 36, 1177–1189 (2016).
CAS PubMed Article PubMed Central Google Scholar
39.
Beech, E., Rivers, M., Oldfield, S. & Smith, P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. 36, 454–489 (2017).
Article Google Scholar
40.
Lamlom, S. H. & Savidge, R. A. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25, 381–388 (2003).
CAS Article Google Scholar
41.
Thomas, S. C. & Malczewski, G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. J. Environ. Manag. 85, 659–662 (2007).
CAS Article Google Scholar
42.
Hafner, S. D., Groffman, P. M. & Mitchell, M. J. Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry 74, 257–282 (2005).
CAS Article Google Scholar
43.
Hillis, W. Chemical aspects of heartwood formation. Wood Sci. Technol. 2, 241–259 (1968).
CAS Article Google Scholar
44.
Meerts, P. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Ann. Sci. 59, 713–722 (2002).
Article Google Scholar
45.
Bert, D. & Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Ecol. Manag. 222, 279–295 (2006).
Article Google Scholar
46.
Jones, D. A. & O’Hara, K. L. Carbon density in managed coast redwood stands: implications for forest carbon estimation. Forestry 85, 99–110 (2012).
Article Google Scholar
47.
Ma, S. et al. Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences 15, 693 (2018).
ADS CAS Article Google Scholar
48.
Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).
Article Google Scholar
49.
Ganjegunte, G. K., Condron, L. M., Clinton, P. W., Davis, M. R. & Mahieu, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Ecol. Manag. 187, 197–211 (2004).
Article Google Scholar
50.
Pettersen, R. C. in The Chemistry of Solid Wood (ed. Rowell, R.) 57–126 (American Chemical Society, 1984).
51.
Berg, B., Ekbohm, G. & McClaugherty, C. Lignin and holocellulose relations during long-term decomposition of some forest litters. Long-term decomposition in a Scots pine forest. IV. Can. J. Bot. 62, 2540–2550 (1984).
CAS Article Google Scholar
52.
Schowalter, T. D., Zhang, Y. L. & Sabin, T. E. Decomposition and nutrient dynamics of oak Quercus spp. logs after five years of decomposition. Ecography 21, 3–10 (1998).
Article Google Scholar
53.
Buxton, R. D. Termites and the turnover of dead wood in an arid tropical environment. Oecologia 51, 379–384 (1981).
ADS CAS PubMed Article PubMed Central Google Scholar
54.
Riley, R. et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl Acad. Sci. USA 111, 9923–9928 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
55.
Moore, T. R., Trofymow, J. A., Prescott, C. E., Titus, B. D. & Group, C. W. Can short-term litter-bag measurements predict long-term decomposition in northern forests? Plant Soil 416, 419–426 (2017).
CAS Article Google Scholar
56.
vandenEnden, L., Frey, S. D., Nadelhoffer, K. J., LeMoine, J. M., Lajtha, K. & Simpson, M. J. Molecular-level changes in soil organic matter composition after 10 years of litter, root and nitrogen manipulation in a temperate forest. Biogeochemistry 141, 183–197 (2018).
CAS Article Google Scholar
57.
Warner, D. L., Villarreal, S., McWilliams, K., Inamdar, S. & Vargas, R. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems 20, 1205–1216 (2017).
CAS Article Google Scholar
58.
Van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).
ADS PubMed Article CAS PubMed Central Google Scholar
59.
Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
60.
Brad, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinform. 14, 16 (2013).
Article Google Scholar
61.
Krankina, O. N. & Harmon, M. E. Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. Water Air Soil Pollut. 82, 227–238 (1995).
ADS CAS Article Google Scholar
62.
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
ADS Article Google Scholar
63.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
64.
Lenth, R. V. Least-squares means: the R Package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
Article Google Scholar
65.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
66.
Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn (Sage, 2011).
67.
Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).
PubMed Article PubMed Central Google Scholar
68.
Martin, A. R. et al. Intraspecific trait variation across multiple scales: the leaf economics spectrum in coffee. Funct. Ecol. 31, 604–612 (2017).
Article Google Scholar
69.
Pinheiro, J. et al. nlme: linear and nonlinear mixed effects models. R package version 3.1-131. https://CRAN.R-project.org/package=nlme (2017).
70.
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). More
