Ecology
Subterms
More stories
88 Shares199 Views
in EcologyRadiolysis generates a complex organosynthetic chemical network
1.
Garrison, W. M., Morrison, D. C., Hamilton, J. G., Benson, A. A. & Calvin, M. Reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science 114, 416–418 (1951).
CAS PubMed Article ADS PubMed Central Google Scholar
2.
Draganić, Z. D., Draganić, I. G. & Borovičanin, M. The radiation chemistry of aqueous solutions of hydrogen cyanide in the megarad dose range. Radiat. Res. 66, 42–53 (1976).
PubMed Article ADS PubMed Central Google Scholar3.
Bar-Nun, A. & Hartman, H. Synthesis of organic compounds from carbon monoxide and water by UV photolysis. Origins Life 9, 93–101 (1978).
CAS Article ADS Google Scholar4.
Miller, S. L. & Urey, H. C. Organic compound synthesis on the primitive earth. Science 130, 245–251 (1959).
CAS PubMed Article ADS PubMed Central Google Scholar5.
Pasek, M. A., Dworkin, J. P. & Lauretta, D. S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 71, 1721–1736 (2007).
CAS Article ADS Google Scholar6.
Lim, R. W. J. & Fahrenbach, A. C. Radicals in prebiotic chemistry. Pure Appl. Chem. 92, 1971–1986 (2020).
CAS Article Google Scholar7.
Studer, A. & Curran, D. P. Catalysis of radical reactions: A radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).
CAS Article Google Scholar8.
Shock, E. L. et al. Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim. Cosmochim. Acta 74, 4005–4043 (2010).
CAS Article ADS Google Scholar9.
Bím, D., Maldonado-Domínguez, M., Rulíšek, L. & Srnec, M. Beyond the classical thermodynamic contributions to hydrogen atom abstraction reactivity. Proc. Natl. Acad. Sci. USA 115, E10287–E10294 (2018).
PubMed Article CAS PubMed Central Google Scholar10.
Mayer, J. M. Hydrogen atom abstraction by metal–oxo complexes: Understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998).
CAS Article Google Scholar11.
Gutowski, M. & Kowalczyk, S. A study of free radical chemistry: Their role and pathophysiological significance. Acta Biochim. Pol. 60, 1–16 (2013).
CAS PubMed Article PubMed Central Google Scholar12.
Moran, J. & Rauscher, S. Energy and self-organization at the origin of metabolism. Commun. Chem. (in rev.).13.
Nghe, P. et al. Prebiotic network evolution: Six key parameters. Mol. BioSyst. 11, 3206–3217 (2015).
CAS PubMed Article PubMed Central Google Scholar14.
Jolley, C. & Douglas, T. Topological biosignatures: Large-scale structure of chemical networks from biology and astrochemistry. Astrobiology 12, 29–39 (2012).
CAS PubMed Article ADS PubMed Central Google Scholar15.
Solé, R. V. & Munteanu, A. The large-scale organization of chemical reaction networks in astrophysics. Europhys. Lett. 68, 170–176 (2004).
Article ADS CAS Google Scholar16.
Shenhav, B., Solomon, A., Lancet, D. & Kafri, R. in Transactions on Computational Systems Biology I (ed. Priami, C.) 14–27 (Springer, Berlin, 2005).
Google Scholar17.
Brown, J. H. et al. The fractal nature of nature: Power laws, ecological complexity and biodiversity. Philos. Trans. R. Soc. Lond. B 357, 619–626 (2002).
Article Google Scholar18.
Walker, S. I. & Mathis, C. in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids (ed. Menor-Salvár, C.) 263–291 (Springer, Berlin, 2018).
Google Scholar19.
Hordijk, W., Hein, J. & Steel, M. Autocatalytic sets and the origin of life. Entropy 12, 1733–1742 (2010).
CAS Article ADS Google Scholar20.
Albert, R. Scale-free networks in cell biology. J. Cell. Sci. 118, 4947–4957 (2005).
CAS PubMed Article PubMed Central Google Scholar21.
Liu, R., Mao, G. & Zhang, N. Research of chemical elements and chemical bonds from the view of complex network. Found. Chem. 21, 193–206 (2019).
CAS Article Google Scholar22.
Estrada, E. The complex networks of earth minerals and chemical elements. MATCH Commun. Math. Comput. Chem. 59, 605–624 (2008).
MathSciNet CAS MATH Google Scholar23.
Fricker, M. D., Boddy, L., Nakagaki, T. & Bebber, D. P. In Adaptive Biological Networks (eds. Gross, T. & Sayama, H.) 51–70 (Springer, Berlin, 2009).
Google Scholar24.
Nicolis, G. Chemical chaos and self-organization. J. Phys. Condens. Matter 2, SA47–SA62 (1990).
CAS Article ADS Google Scholar25.
Pérez-Mercader, J. In Astrobiology (eds. Horneck, G. & Baumstark-Khan, C.) 337–360 (Springer, Berlin, 2002).
Google Scholar26.
Li, W. Expansion-modification systems: A model for spatial 1/f spectra. Phys. Rev. A 43, 5240–5260 (1991).
MathSciNet CAS PubMed Article ADS PubMed Central Google Scholar27.
Albert, R. & Barabási, A.-L. Topology of evolving networks: Local events and universality. Phys. Rev. Lett. 85, 5234–5237 (2000).
CAS PubMed Article ADS PubMed Central Google Scholar28.
Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
MathSciNet PubMed MATH Article ADS PubMed Central Google Scholar29.
Marković, D. & Gros, C. Power laws and self-organized criticality in theory and nature. Phys. Rep. 536, 41–74 (2014).
MathSciNet Article ADS Google Scholar30.
Adler, R., Feldman, R. & Taqqu, M. (eds.) A Practical Guide to Heavy Tails: Statistical Techniques and Applications (Springer, Berlin, 1998).
Google Scholar31.
Patten, B. C. & Higashi, M. Modified cycling index for ecological applications. Ecol. Modell. 25, 69–83 (1984).
Article Google Scholar32.
Essington, T. E. & Carpenter, S. R. Nutrient cycling in lakes and streams: Insights from a comparative analysis. Ecosystems 3, 131–143 (2000).
CAS Article Google Scholar33.
Christian, R. R. & Thomas, C. R. Network analysis of nitrogen inputs and cycling in the Neuse River estuary, North Carolina, USA. Estuaries 26, 815–828 (2003).
CAS Article Google Scholar34.
Allesina, S. & Ulanowicz, R. E. Cycling in ecological networks: Finn’s index revisited. Comput. Biol. Chem. 28, 227–233 (2004).
CAS PubMed MATH Article PubMed Central Google Scholar35.
Loreau, M. Material cycling and the stability of ecosystems. Am. Nat. 143, 508–513 (1994).
Article Google Scholar36.
DeAngelis, D. L. et al. Nutrient dynamics and food-web stability. Annu. Rev. Ecol. Syst. 20, 71–95 (1989).
Article Google Scholar37.
Artzy-Randrup, Y. & Stone, L. Connectivity, cycles, and persistence thresholds in metapopulation networks. PLoS Comput. Biol. 6, e1000876 (2010).
MathSciNet PubMed PubMed Central Article ADS CAS Google Scholar38.
Newsholme, E. A. & Crabtree, B. Substrate cycles in metabolic regulation and in heat generation. Biochem. Soc. Symp. 41, 61–109 (1976).
CAS Google Scholar39.
Kritz, M. V., dos Santos, M. T., Urrutia, S. & Schwartz, J.-M. Organising metabolic networks: Cycles in flux distributions. J. Theor. Biol. 265, 250–260 (2010).
MathSciNet PubMed MATH Article PubMed Central Google Scholar40.
Valentine, J. W. & May, C. L. Hierarchies in biology and paleontology. Paleobiology 22, 23–33 (1996).
Article Google Scholar41.
McShea, D. W. The hierarchical structure of organisms: A scale and documentation of a trend in the maximum. Paleobiology 27, 405–423 (2001).
Article Google Scholar42.
Trebilco, R., Baum, J. K., Salomon, A. K. & Dulvy, N. K. Ecosystem ecology: Size-based constraints on the pyramids of life. Trends Ecol. Evol. 28, 423–431 (2013).
PubMed Article PubMed Central Google Scholar43.
Lindeman, R. L. The trophic-dynamic aspect of ecology. Bull. Math. Biol. 53, 167–191 (1991).
Article Google Scholar44.
Kleidon, A. & Lorenz, R. D. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond (Springer, Berlin, 2005).
Google Scholar45.
Goldenfeld, N. & Woese, C. Life is physics: Evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys. 2, 375–399 (2011).
CAS Article ADS Google Scholar46.
Braakman, R. & Smith, E. The compositional and evolutionary logic of metabolism. Phys. Biol. 10, 011001 (2013).
PubMed Article ADS CAS PubMed Central Google Scholar47.
Ji, S. Molecular Theory of the Living Cell: Concepts, Molecular Mechanisms, and Biomedical Applications (Springer, Berlin, 2012).
Google Scholar48.
Yi, R. et al. A continuous reaction network that produces RNA precursors. Proc. Natl. Acad. Sci. USA 117, 13267–13274 (2020).
CAS PubMed Article PubMed Central Google Scholar49.
Yi, R., Hongo, Y., Yoda, I., Adam, Z. R. & Fahrenbach, A. C. Radiolytic synthesis of cyanogen chloride, cyanamide and simple sugar precursors. ChemistrySelect 3, 10169–10174 (2018).
CAS Article Google Scholar50.
Ritson, D. & Sutherland, J. D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 4, 895–899 (2012).
CAS PubMed PubMed Central Article Google Scholar51.
Ferus, M. et al. High energy radical chemistry formation of HCN-rich atmospheres on early Earth. Sci. Rep. 7, 6275 (2017).
PubMed PubMed Central Article ADS CAS Google Scholar52.
Getoff, N. Significance of solvated electrons (eaq−) as promoters of life on Earth. In Vivo 28, 61–66 (2014).
CAS PubMed PubMed Central Google Scholar53.
Negrón-Mendoza, A., Draganić, Z. D., Navarro-González, R. & Draganić, I. G. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles. Radiat. Res. 95, 248–261 (1983).
Article ADS Google Scholar54.
Adam, Z. R. et al. Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci. Rep. 8, 265 (2018).
PubMed PubMed Central Article ADS CAS Google Scholar55.
Bedau, M. A. et al. Open problems in artificial life. Artif. Life 6, 363–376 (2000).
CAS PubMed Article PubMed Central Google Scholar56.
Grassberger, P. in Information Dynamics NATO ASI Series (Series B: Physics) (eds. Atmanspacher, H. & Scheingraber, H.) 15–33 (Springer, Berlin, 1991).
Google Scholar57.
Kaneko, K. Chaos as a source of complexity and diversity in evolution. Artif. Life 1, 163–177 (1993).
Article Google Scholar58.
Buhl, D. & Ponnamperuma, C. Interstellar molecules and the origin of life. Sp. Life Sci. 3, 157–164 (1971).
CAS ADS Google Scholar59.
Airapetian, V. S., Glocer, A., Gronoff, G., Hébrard, E. & Danchi, W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452–455 (2016).
CAS Article ADS Google Scholar60.
Paranicas, C., Cooper, J. F., Garrett, H. B., Johnson, R. E. & Sturner, S. J. in Europa (eds. Pappalardo, R. T. et al.) 529–544 (University of Arizona Press, Tucson, 2009).
Google Scholar61.
Takano, Y., Masuda, H., Kaneko, T. & Kobayashi, K. Formation of amino acids from possible interstellar media by γ-rays and UV irradiation. Chem. Lett. 31, 986–987 (2002).
Article Google Scholar62.
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).
CAS PubMed Article ADS PubMed Central Google Scholar63.
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).
MathSciNet MATH Article ADS Google Scholar64.
Grohe, M. in Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems 1–16 (Portland, OR, USA, 2020).65.
Grover, A. & Leskovec, J. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 855–864 (San Francisco, CA, USA, 2016).66.
Palumbo, E. et al. in The Semantic Web: European Semantic Web Conference Vol. 11155, 117–120 (Springer, Crete, Greece, 2018).67.
Kim, M., Baek, S. H. & Song, M. Relation extraction for biological pathway construction using node2vec. BMC Bioinform. 19, 206 (2018).
Article CAS Google Scholar68.
Shen, Z., Chen, F., Yang, L. & Wu, J. Node2vec representation for clustering journals and as a possible measure of diversity. J. Data Inf. Sci. 4, 79–92 (2019).
Google Scholar69.
Barabási, A.-L. & Oltvai, Z. N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).
PubMed Article CAS PubMed Central Google Scholar70.
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).
CAS PubMed Article ADS PubMed Central Google Scholar71.
Ritson, D. J. & Sutherland, J. D. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry. Angew. Chem. Int. Ed. 52, 5845–5847 (2013).
CAS Article Google Scholar72.
Fahrenbach, A. C. et al. Common and potentially prebiotic origin for precursors of nucleotide synthesis and activation. J. Am. Chem. Soc. 139, 8780–8783 (2017).
CAS PubMed PubMed Central Article Google Scholar73.
Muñoz, M. A. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 90, 031001 (2018).
MathSciNet Article ADS Google Scholar74.
Langton, C. G. Computation at the edge of chaos: Phase transitions and emergent computation. Phys. D Nonlinear Phenom. 42, 12–37 (1990).
MathSciNet Article ADS Google Scholar75.
Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).
CAS PubMed Article ADS PubMed Central Google Scholar76.
Gaveau, B., Moreau, M. & Toth, J. Scenarios for self-organized criticality in dynamical systems. Open Syst. Inf. Dyn. 7, 297–308 (2000).
MathSciNet MATH Article Google Scholar77.
Bak, P. & Paczuski, M. Complexity, contingency, and criticality. Proc. Natl. Acad. Sci. USA 92, 6689–6696 (1995).
CAS PubMed Article ADS PubMed Central Google Scholar78.
Hoffmann, H. & Payton, D. W. Optimization by self-organized criticality. Sci. Rep. 8, 2358 (2018).
PubMed PubMed Central Article ADS CAS Google Scholar79.
Lovecchio, E., Allegrini, P., Geneston, E., West, B. J. & Grigolini, P. From self-organized to extended criticality. Front. Physiol. 3, 98 (2012).
PubMed PubMed Central Article Google Scholar80.
Lima-Mendez, G. & van Helden, J. The powerful law of the power law and other myths in network biology. Mol. BioSyst. 5, 1482–1493 (2009).
CAS PubMed Article PubMed Central Google Scholar81.
Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).
Article ADS CAS Google Scholar82.
Stumpf, M. P. H. & Porter, M. A. Critical truths about power laws. Science 335, 665–666 (2012).
MathSciNet CAS PubMed MATH Article ADS PubMed Central Google Scholar83.
Mitzenmacher, M. A brief history of generative models for power law and lognormal distributions. Internet Math. 1, 226–251 (2003).
MathSciNet MATH Article Google Scholar84.
Glassman, I., Yetter, R. A. & Glumac, N. G. Combustion 41–69 (Elsevier, New York, 2015).
Google Scholar85.
Gleiss, P. M., Stadler, P. F., Wagner, A. & Fell, D. A. Relevant cycles in chemical reaction networks. Adv. Complex Syst. 4, 207–226 (2001).
MathSciNet MATH Article Google Scholar86.
Dančík, V., Basu, A. & Clemons, P. in Systems Biology (eds. Prokop, A. & Csukas, B.) 129–178 (Springer, Berlin, 2013).
Google Scholar87.
Patten, B. C., Higashi, M. & Burns, T. P. Trophic dynamics in ecosystem networks: Significance of cycles and storage. Ecol. Modell. 51, 1–28 (1990).
Article Google Scholar88.
Orgel, L. E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 6, e18 (2008).
PubMed PubMed Central Article CAS Google Scholar89.
Monks, P. S. Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev. 34, 376–395 (2005).
CAS PubMed Article PubMed Central Google Scholar90.
Platt, U. et al. in Tropospheric Chemistry: Results of the German Tropospheric Chemistry Programme (eds. Seiler, W. et al.) 359–394 (Springer, Berlin, 2002).
Google Scholar91.
Vasas, V., Fernando, C., Santos, M., Kauffman, S. & Szathmáry, E. Evolution before genes. Biol. Direct 7, 1 (2012).
PubMed PubMed Central Article Google Scholar92.
Robertson, M. P. & Joyce, G. F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 4, a003608 (2012).
PubMed PubMed Central Article CAS Google Scholar93.
Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2020).
PubMed PubMed Central Article ADS Google Scholar94.
Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).
CAS PubMed Article PubMed Central Google Scholar95.
Soloveichik, D., Cook, M., Winfree, E. & Bruck, J. Computation with finite stochastic chemical reaction networks. Nat. Comput. 7, 615–633 (2008).
MathSciNet MATH Article Google Scholar96.
Bastian, M., Heymann, S. & Jacomy, M. in Proceedings of the Third International AAAI Conference on Weblogs and Social Media 361–362 (2009).97.
Alstott, J., Bullmore, E. & Plenz, D. powerlaw: A Python package for analysis of heavy-tailed distributions. PLoS One 9, e85777 (2014).
PubMed PubMed Central Article ADS CAS Google Scholar More100 Shares129 Views
in EcologyMobilizing the past to shape a better Anthropocene
1.
Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).
CAS PubMed Article Google Scholar
2.
Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).
CAS PubMed Article Google Scholar3.
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
CAS PubMed PubMed Central Article Google Scholar4.
Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005).
CAS PubMed Article Google Scholar5.
Schirrmeister, B. E., de Vos, J. M., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).
CAS PubMed Article Google Scholar6.
Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).
Article Google Scholar7.
Braje, T. J. Earth systems, human agency, and the Anthropocene: Planet Earth in the human age. J. Archaeol. Res. 23, 369–396 (2015).
Article Google Scholar8.
Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the age of humans. Proc. Natl Acad. Sci. USA 117, 8250–8253 (2020).
CAS PubMed Article Google Scholar9.
Sabloff, J. A. Archaeology Matters: Action Archaeology in the Modern World (Routledge, 2008).10.
Guttmann-Bond, E. Sustainability out of the past: how archaeology can save the planet. World Archaeol. 42, 355–366 (2010).
Article Google Scholar11.
Reed, K. & Ryan, P. Lessons from the past and the future of food. World Archaeol. 51, 1–16 (2019).
Article Google Scholar12.
Isendahl, C. & Stump, D. (eds) The Oxford Handbook of Historical Ecology and Applied Archaeology (Oxford Univ. Press, 2019).13.
Fisher, C. Archaeology for sustainable agriculture. J. Archaeol. Res. 28, 393–441 (2019).
Article Google Scholar14.
Wolverton, S. & Lyman, R. L. (eds) Conservation Biology and Applied Zooarchaeology (Univ. Arizona Press, 2012).15.
Folke, C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).
Article Google Scholar16.
Raymond, H. The ecologically noble savage debate. Annu. Rev. Anthropol. 36, 177–190 (2007).
Article Google Scholar17.
Steffen, W., Grinevald, J., Crutzen, P. J. & McNeill, J. R. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. Lond. A 369, 842–867 (2011).
Google Scholar18.
Ellis, E., Maslin, M., Boivin, N. & Bauer, A. A. Involve social scientists in defining the Anthropocene. Nature 540, 192–193 (2016).
Article Google Scholar19.
Smith, B. D. & Zeder, M. A. The onset of the Anthropocene. Anthropocene 4, 8–13 (2013).
Article Google Scholar20.
Lewis, S. L. & Maslin, M. Defining the Anthropocene. Nature 519, 171–180 (2015).
CAS PubMed Article PubMed Central Google Scholar21.
Boivin, N. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).
CAS PubMed Article PubMed Central Google Scholar22.
Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).
CAS PubMed Article PubMed Central Google Scholar23.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
CAS PubMed Article PubMed Central Google Scholar24.
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
CAS PubMed Article PubMed Central Google Scholar25.
Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: a Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4, 14–23 (2013).
Article Google Scholar26.
Haines-Young, R. & Potschin, M. in Ecosystem Ecology: A New Synthesis (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).27.
Foster, D. et al. The importance of land-use legacies to ecology and conservation. BioScience 53, 77–88 (2003).
Article Google Scholar28.
Willis, K. J. & Birks, H. J. B. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, 1261–1265 (2006).
CAS PubMed Article PubMed Central Google Scholar29.
Dietl, G. P. & Flessa, K. W. Conservation paleobiology: putting the dead to work. Trends Ecol. Evol. 26, 30–37 (2011).
PubMed Article PubMed Central Google Scholar30.
Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).
PubMed Article PubMed Central Google Scholar31.
Scharf, E. A. Deep time: the emerging role of archaeology in landscape ecology. Landsc. Ecol. 29, 563–569 (2014).
Article Google Scholar32.
Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).
CAS Article Google Scholar33.
Whitlock, C., Colombaroli, D., Conedera, M. & Tinner, W. Land‐use history as a guide for forest conservation and management. Conserv. Biol. 32, 84–97 (2018).
PubMed Article PubMed Central Google Scholar34.
Frazier, J. Sustainable use of wildlife: the view from archaeozoology. Nat. Conserv. 15, 163–173 (2007).
Article Google Scholar35.
Lyman, R. L. A warrant for applied palaeozoology. Biol. Rev. 87, 513–525 (2012).
PubMed Article PubMed Central Google Scholar36.
Braje, T. & Rick, T. C. From forest fires to fisheries management: anthropology, conservation biology, and historical ecology. Evol. Anthropol. 22, 303–311 (2013).
PubMed Article PubMed Central Google Scholar37.
Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).
PubMed Article PubMed Central Google Scholar38.
Barak, R. S. et al. Taking the long view: integrating recorded, archeological, paleoecological, and evolutionary data into ecological restoration. Int. J. Plant Sci. 177, 90–102 (2016).
Article Google Scholar39.
Lambrides, A. B. & Weisler, M. I. Pacific Islands ichthyoarchaeology: implications for the development of prehistoric fishing studies and global sustainability. J. Archaeol. Res. 24, 275–324 (2016).
Article Google Scholar40.
Foster, T., Olsen, L., Dale, V. & Cohen, A. Studying the past for the future: managing modern biodiversity from historic and prehistoric data. Hum. Organ. 69, 149–157 (2010).
Article Google Scholar41.
Wilmshurst, J. M. et al. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conserv. Biol. 28, 202–212 (2014).
PubMed Article PubMed Central Google Scholar42.
Nogué, S. et al. Island biodiversity conservation needs palaeoecology. Nat. Ecol. Evol. 1, 0181 (2017).
Article Google Scholar43.
Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).
CAS PubMed Article PubMed Central Google Scholar44.
Newsome, S. D. et al. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proc. Natl Acad. Sci. USA 104, 9709–9714 (2007).
CAS PubMed Article PubMed Central Google Scholar45.
Szpak, P., Orchard, T., McKechnie, I. & Gröcke, D. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).
Article Google Scholar46.
McCune, J. L., Pellatt, M. G. & Vellend, M. Multidisciplinary synthesis of long-term human–ecosystem interactions: a perspective from the Garry oak ecosystem of British Columbia. Biol. Conserv. 166, 293–300 (2013).
Article Google Scholar47.
Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
CAS PubMed Article PubMed Central Google Scholar48.
Corlett, R. T. The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol. Conserv. 163, 13–21 (2013).
Article Google Scholar49.
Hofman, C. A. & Rick, T. C. Ancient biological invasions and island ecosystems: tracking translocations of wild plants and animals. J. Archaeol. Res. 26, 65–115 (2018).
Article Google Scholar50.
Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122 (2012).
CAS PubMed PubMed Central Article Google Scholar51.
Hofman, C. A., Rick, T. C., Fleischer, R. C. & Maldonado, J. E. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends Ecol. Evol. 30, 540–549 (2015).
PubMed Article PubMed Central Google Scholar52.
Waters, J. M. & Grosser, S. Managing shifting species: ancient DNA reveals conservation conundrums in a dynamic world. BioEssays 38, 1177–1184 (2016).
CAS PubMed Article PubMed Central Google Scholar53.
Valentine, K. et al. Ancient DNA reveals genotypic relationships among Oregon populations of the sea otter (Enhydra lutris). Conserv. Genet. 9, 933–938 (2008).
Article Google Scholar54.
Newsome, S. D. et al. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California. Proc. Natl Acad. Sci. USA 107, 9246–9251 (2010).
CAS PubMed Article PubMed Central Google Scholar55.
Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: a long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 36249 (2016).
CAS PubMed PubMed Central Article Google Scholar56.
Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
CAS PubMed Article PubMed Central Google Scholar57.
Brewington, S. et al. Islands of change vs. islands of disaster: managing pigs and birds in the Anthropocene of the North Atlantic. Holocene 25, 1676–1684 (2015).
Article Google Scholar58.
Hicks, M. et al. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) Ch. 12 (Oxford Univ. Press, 2019).59.
Grayson, D. K. & Delpech, F. Pleistocene reindeer and global warming. Conserv. Biol. 19, 557–562 (2005).
Google Scholar60.
Enghoff, I. B., MacKenzie, B. R. & Nielson, E. E. The Danish fish fauna during the warm Atlantic period (ca. 7000–3900 BC): forerunner of future changes? Fish. Res. 87, 167–180 (2007).
Article Google Scholar61.
Tengberg, A. et al. Cultural ecosystem services provided by landscapes: assessment of heritage values and identity. Ecosyst. Serv. 2, 14–26 (2012).
Article Google Scholar62.
Walter, R. K. & Hamilton, R. J. A cultural landscape approach to community-based conservation in Solomon Islands. Ecol. Soc. 19, 41 (2014).
Article Google Scholar63.
Ekblom, A., Shoemaker, A., Gillson, L., Lane, P. & Lindholm, K. J. Conservation through biocultural heritage—examples from sub-Saharan Africa. Land 8, 5 (2019).
Article Google Scholar64.
Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).
CAS PubMed Article Google Scholar65.
Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).
CAS Article Google Scholar66.
Bowman, D. M. et al. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R. Soc. Lond. B 371, 20150169 (2016).
Article Google Scholar67.
Kelly, L. T. & Brotons, L. Using fire to promote biodiversity. Science 355, 1264–1265 (2017).
CAS PubMed Article Google Scholar68.
Beale, C. M. et al. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecol. Lett. 21, 557–567 (2018).
PubMed PubMed Central Article Google Scholar69.
Gillson, L., Whitlock, C. & Humphrey, G. Resilience and fire management in the Anthropocene. Ecol. Soc. 24, 14 (2019).
Article Google Scholar70.
Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).
CAS PubMed Article Google Scholar71.
Hlubik, S., Berna, F., Feibel, C., Braun, D. & Harris, J. W. K. Researching the nature of fire at 1.5 Mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry. Curr. Anthropol. 58, S243–S257 (2017).
Article Google Scholar72.
Yibarbuk, D. et al. Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: a tradition of ecosystem management. J. Biogeogr. 28, 325–343 (2001).
Article Google Scholar73.
Black, B. A., Ruffner, C. M. & Abrams, M. D. Native American influences on the forest composition of the Allegheny Plateau, northwest Pennsylvania. Can. J. For. Res. 36, 1266–1275 (2006).
Article Google Scholar74.
Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).
CAS Article Google Scholar75.
Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Env. Res. 38, 57–80 (2013).
Article Google Scholar76.
Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
PubMed PubMed Central Article Google Scholar77.
Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian Dark Earth forests. Front. Ecol. Evol. 6, 111 (2018).
Article Google Scholar78.
Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
PubMed PubMed Central Article Google Scholar79.
Nowacki, G. J. & Abrams, M. D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58, 123–138 (2008).
Article Google Scholar80.
Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Env. 11, e55–e63 (2013).
Google Scholar81.
Archibald, S. Managing the human component of fire regimes: lessons from Africa. Philos. Trans. R. Soc. Lond. B 371, 20150346 (2016).
Article CAS Google Scholar82.
Roos, C. I. et al. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philos. Trans. R. Soc. Lond. B 371, 20150469 (2016).
Article Google Scholar83.
North, M. P. et al. Reform forest fire management. Science 349, 1280–1281 (2015).
CAS PubMed Article Google Scholar84.
Lawes, M. J. et al. Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. Int. J. Wildland Fire 23, 712–722 (2015).
Article Google Scholar85.
Edwards, A., Russell-Smith, J. & Meyer, M. Contemporary fire regime risks to key ecological assets and processes in north Australian savannas. Int. J. Wildland Fire 24, 857–870 (2015).
Article Google Scholar86.
Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
PubMed Article Google Scholar87.
Whitehead, P. J., Bowman, D. M., Preece, N., Fraser, F. & Cooke, P. Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management. Int. J. Wildland Fire 12, 415–425 (2003).
Article Google Scholar88.
Mitchell, R. J. et al. Future climate and fire interactions in the southeastern region of the United States. For. Ecol. Manag. 327, 316–326 (2014).
Article Google Scholar89.
Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107, 19167–19170 (2010).
CAS PubMed Article Google Scholar90.
Whitehead, P. J., Purdon, P., Russell-Smith, J., Cooke, P. M. & Sutton, S. The management of climate change through prescribed savanna burning: emerging contributions of indigenous people in northern Australia. Public Admin. Dev. 28, 374–385 (2008).
Article Google Scholar91.
Mistry, J., Bilbao, B. A. & Berardi, A. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America. Philos. Trans. R. Soc. Lond. B 371, 20150174 (2016).
Article CAS Google Scholar92.
Gillson, L. & Willis, K. J. ‘As Earth’s testimonies tell’: wilderness conservation in a changing world. Ecol. Lett. 7, 990–998 (2004).
Article Google Scholar93.
Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. BioScience 36, 368–373 (1986).
Article Google Scholar94.
Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).
CAS PubMed Article Google Scholar95.
Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815–822 (2001).
CAS PubMed Article Google Scholar96.
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
CAS PubMed Article Google Scholar97.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
CAS PubMed Article Google Scholar98.
Renard, D. et al. Ecological engineers ahead of their time: the functioning of pre-Columbian raised-field agriculture and its potential contributions to sustainability today. Ecol. Eng. 45, 30–44 (2012).
Article Google Scholar99.
Kunen, J. L. Ancient Maya agricultural installations and the development of intensive agriculture in NW Belize. J. Field. Archaeol. 28, 325–346 (2001).
Article Google Scholar100.
Erickson, C. L. in Managing Change: Sustainable Approaches to the Conservation of the Built Environment (eds Erickson, C. L. et al.) 181–204 (Getty Conservation Institute, 2003).101.
Sandor, J. A. & Eash, N. S. Significance of ancient agricultural soils for long‐term agronomic studies and sustainable agriculture research. Agron. J. 83, 29–37 (1991).
Article Google Scholar102.
Marston, J. M. Modeling resilience and sustainability in ancient agricultural systems. J. Ethnobiol. 35, 585–605 (2015).
Article Google Scholar103.
Logan, A. L., Stump, D., Goldstein, S. T., Orijemie, E. A. & Schoeman, M. H. Usable pasts forum: critically engaging food security. Afr. Archaeol. Rev. 36, 419–438 (2019).
Article Google Scholar104.
Stump, D. “Ancient and backward or long-lived and sustainable?” The role of the past in debates concerning rural livelihoods and resource conservation in eastern Africa. World Dev. 38, 1251–1122 (2010).
Article Google Scholar105.
Spriggs, M. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 395–411 (Oxford Univ. Press, 2019).106.
Herath, S., Mishra, B., Wong, P. & Weerakoon, S. B. in Resilient Asia: Fusion of Traditional and Modern Systems for a Sustainable Future (eds Takeuchi, K. et al.) 151–187 (Springer, 2018).107.
Lang, C. & Stump, D. Geoarchaeological evidence for the construction, irrigation, cultivation, and resilience of 15th–18th century AD terraced landscape at Engaruka, Tanzania. Quat. Res. 88, 382–399 (2017).
Article Google Scholar108.
Abeywardana, N., Schütt, B., Wagalawatta, T. & Bebermeier, W. Indigenous agricultural systems in the Dry Zone of Sri Lanka: management transformation assessment and sustainability. Sustainability 11, 910 (2019).
Article Google Scholar109.
Kendall, A. & Drew, D. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 423–440 (Oxford Univ. Press, 2019).110.
Erickson, C. L. & Candler, K. L. in Fragile Lands of Latin America: Strategies For Sustainable Development (ed. Browder, J. O.) 230–248 (Westview Press, 1989).111.
Erickson, C. L. Raised field agriculture in the Lake Titicaca Basin: putting ancient agriculture back to work. Expedition 30, 8–16 (1988).
Google Scholar112.
McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).
CAS PubMed Article PubMed Central Google Scholar113.
Lombardo, U., Canal-Beeby, E., Fehr, S. & Veit, H. Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy? J. Archaeol. Sci. 38, 502–512 (2011).
Article Google Scholar114.
Kurashima, N., Fortini, L. & Ticktin, T. The potential of indigenous agricultural food production under climate change in Hawaiʻi. Nat. Sustain. 2, 191–199 (2019).
Article Google Scholar115.
Marshall, K. et al. Restoring people and productivity to Puanui: challenges and opportunities in the restoration of an intensive rain-fed Hawaiian field system. Ecol. Soc. 22, 23 (2017).
Article Google Scholar116.
Lincoln, N. K. et al. Restoration of ‘Āina Malo’o on Hawai’i Island: expanding biocultural relationships. Sustainability 10, 3985 (2018).
Article Google Scholar117.
Atlas, W. I. et al. Ancient fish weir technology for modern stewardship: lessons from community-based salmon monitoring. Ecosyst. Health Sustain. 3, 1341284 (2017).
Article Google Scholar118.
Rodrigues, L., Lombardo, U., Beeby, E. C. & Veit, H. Linking soil properties and pre-Columbian agricultural strategies in the Bolivian lowlands: the case of raised fields in Exaltación. Quat. Int. 437, 143–155 (2017).
Article Google Scholar119.
Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).
CAS PubMed Article PubMed Central Google Scholar120.
Herrera, A. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 459–479 (Oxford Univ. Press, 2019).121.
Barthel, S. & Isendahl, C. Urban gardens, agriculture, and water management: sources of resilience for long-term food security in cities. Ecol. Econ. 86, 224–234 (2013).
Article Google Scholar122.
Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia: combating the erosion of diversity in landscapes of food production. Ecol. Soc. 18, 71 (2013).
Article Google Scholar123.
Maezumi, S. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).
PubMed PubMed Central Article Google Scholar124.
Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia—safeguarding diversity of practices for food security and biodiversity. Glob. Environ. Change 23, 1142–1152 (2013).
Article Google Scholar125.
Poschlod, P. & Braun-Reichert, R. Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe-history, value, status, and conservation. Biol. Conserv. 211, 60–68 (2017).
Article Google Scholar126.
Smýkal, P., Nelson, M. N., Berger, J. D. & Von Wettberg, E. J. The impact of genetic changes during crop domestication. Agronomy 8, 119 (2018).
Article Google Scholar127.
Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).
CAS PubMed Article PubMed Central Google Scholar128.
Cheng, A. Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 269, 136–142 (2018).
CAS PubMed Article PubMed Central Google Scholar129.
Mueller, N. G., Fritz, G. J., Patton, P., Carmody, S. & Horton, E. T. Growing the lost crops of eastern North America’s original agricultural system. Nat. Plants 3, 17092 (2017).
PubMed Article PubMed Central Google Scholar130.
Logan, A. L. “Why Can’t People Feed Themselves?”: archaeology as alternative archive of food security in Banda, Ghana. Am. Anthropol. 118, 508–524 (2016).
Article Google Scholar131.
Mueller, N. G., White, A. & Szilagyi, P. Experimental cultivation of eastern North America’s lost crops: insights into agricultural practice and yield potential. J. Ethnobiol. 39, 549–566 (2019).
Article Google Scholar132.
Palmer, S. A., Smith, O. & Allaby, R. G. The blossoming of plant archaeogenetics. Ann. Anat. 194, 146–156 (2012).
CAS PubMed Article PubMed Central Google Scholar133.
Østerberg, J. T. et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373–384 (2017).
PubMed Article CAS PubMed Central Google Scholar134.
McNeill, J. R. & Winiwarter, V. Breaking the sod: humankind, history, and soil. Science 304, 1627–1629 (2004).
CAS PubMed Article PubMed Central Google Scholar135.
Brown, A. G. & Walsh, K. Societal stability and environmental change: examining the archaeology‐soil erosion paradox. Geoarchaeology 32, 23–35 (2017).
Article Google Scholar136.
Sandor, J. A. & Homburg, J. A. Anthropogenic soil change in ancient and traditional agricultural fields in arid to semiarid regions of the Americas. J. Ethnobiol. 37, 196–217 (2017).
Article Google Scholar137.
Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41 (2001).
CAS PubMed Article PubMed Central Google Scholar138.
Lehmann, J., Kern, D. C., Glaser, B. & Woods, W. I. (eds) Amazonian Dark Earths: Origin, Properties, Management (Springer, 2007).139.
Blume, H. P. & Leinweber, P. Plaggen soils: landscape history, properties, and classification. J. Plant Nutr. Soil Sci. 16, 319–327 (2004).
Article Google Scholar140.
Davidson, D. A., Dercon, G., Stewart, M. & Watson, F. The legacy of past urban waste disposal on local soils. J. Archaeol. Sci. 33, 778–783 (2006).
Article Google Scholar141.
Sandor, J. A. & Eash, N. S. Ancient agricultural soils in the Andes of southern Peru. Soil Sci. Soc. Am. J. 59, 170–179 (1995).
CAS Article Google Scholar142.
Fairhead, J. & Leach, M. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 265–278 (Springer, 2009).143.
McFadgen, B. G. Maori plaggen soils in New Zealand, their origin and properties. J. R. Soc. N. Z. 10, 3–18 (1980).
Article Google Scholar144.
Calvelo Pereira, R. et al. Detailed carbon chemistry in charcoals from pre‐European Māori gardens of New Zealand as a tool for understanding biochar stability in soils. Eur. J. Soil Sci. 65, 83–95 (2014).
CAS Article Google Scholar145.
Downie, A. E., Van Zwieten, L., Smernik, R. J., Morris, S. & Munroe, P. R. Terra Preta Australis: reassessing the carbon storage capacity of temperate soils. Agric. Ecosyst. Environ. 140, 137–147 (2011).
Article Google Scholar146.
Kern, J., Giani, L., Teixeira, W., Lanza, G. & Glaser, B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? CATENA 172, 104–112 (2019).
CAS Article Google Scholar147.
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).
PubMed Article CAS PubMed Central Google Scholar148.
Bezerra, J., Turnhout, E., Rittl, T. F., Arts, B. & Kuyper, T. W. The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar. J Environ. Policy Plan. 21, 623–635 (2019).
Article Google Scholar149.
Novotny, E. H. et al. Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J. Braz. Chem. Soc. 20, 1003–1010 (2009).
CAS Article Google Scholar150.
Lehmann, J. & Joseph, S. in Biochar for Environmental Management (eds Lehmann, J. & Joseph, S.) 1–14 (Routledge, 2015).151.
Kim, J. S., Sparovek, G., Longo, R. M., De Melo, W. J. & Crowley, D. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 39, 684–690 (2007).
CAS Article Google Scholar152.
Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).
CAS Article Google Scholar153.
Jorio, A. et al. Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil Tillage Res. 122, 61–66 (2012).
Article Google Scholar154.
More, A. F. et al. Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: insights from the Black Death. GeoHealth 1, 211–219 (2017).
PubMed PubMed Central Article Google Scholar155.
Factura, H. et al. Terra Preta sanitation: re-discovered from an ancient Amazonian civilisation – integrating sanitation, bio-waste management and agriculture. Water Sci. Technol. 61, 2673–2679 (2010).
CAS PubMed Article PubMed Central Google Scholar156.
Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B 362, 187–196 (2007).
CAS Article Google Scholar157.
Fedick, S. L. & Morrison, B. A. Ancient use and manipulation of landscape in the Yalahau region of the northern Maya lowlands. Agric. Hum. Values 21, 207–219 (2004).
Article Google Scholar158.
Sedov, S. et al. Soil genesis in relation to landscape evolution and ancient sustainable land use in the northeastern Yucatan Peninsula, Mexico. Atti Soc. Tosc. Sci. Nat. Mem. A 112, 115–126 (2007).
Google Scholar159.
Acksel, A., Kapenberg, A., Kühn, P. & Leinweber, P. Human activity formed deep, dark topsoils around the Baltic Sea. Geoderma Region. 10, 93–101 (2017).
Article Google Scholar160.
Marshall, F. et al. Ancient herders enriched and restructured African grasslands. Nature 561, 387–390 (2018).
CAS PubMed Article PubMed Central Google Scholar161.
Muchiru, A. N., Western, D. & Reid, R. S. The impact of abandoned pastoral settlements on plant and nutrient succession in an African savanna ecosystem. J. Arid Environ. 73, 322–331 (2009).
Article Google Scholar162.
Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl Acad. Sci. USA 110, 12589–12594 (2013).
CAS PubMed Article PubMed Central Google Scholar163.
Beach, T., Luzzadder-Beach, S., Dunning, N., Hageman, J. & Lohse, J. Upland agriculture in the Maya Lowlands: ancient Maya soil conservation in northwestern Belize. Geogr. Rev. 92, 372–397 (2002).
Article Google Scholar164.
Akimoto, H. Global air quality and pollution. Science 302, 1716–1719 (2003).
CAS PubMed Article PubMed Central Google Scholar165.
Hong, S., Candelone, J. P., Patterson, C. & Boutron, C. F. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272, 246–249 (1996).
CAS Article Google Scholar166.
Hong, S., Candelone, J. P., Patterson, C. C. & Boutron, C. F. Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265, 1841–1843 (1994).
CAS PubMed Article PubMed Central Google Scholar167.
Shotyk, W. et al. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281, 1635–1640 (1998).
CAS PubMed Article PubMed Central Google Scholar168.
Borsos, E., Makra, L., Béczi, R., Vitányi, B. & Szentpéteri, M. Anthropogenic air pollution in the ancient times. Acta Climatol. Chorolog. 36–37, 5–15 (2003).
Google Scholar169.
Pyatt, F. B. & Grattan, J. P. Some consequences of ancient mining activities on the health of ancient and modern human populations. J. Public Health 23, 235–236 (2001).
CAS Article Google Scholar170.
Pyatt, F. B., Pyatt, A. J., Walker, C., Sheen, T. & Grattan, J. P. The heavy metal content of skeletons from an ancient metalliferous polluted area in southern Jordan with particular reference to bioaccumulation and human health. Ecotoxicol. Environ. Saf. 60, 295–300 (2005).
CAS PubMed Article PubMed Central Google Scholar171.
Longman, J., Veres, D., Finsinger, W. & Ersek, V. Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution. Proc. Natl Acad. Sci. USA 115, E5661–E5668 (2018).
PubMed Article CAS PubMed Central Google Scholar172.
Renberg, I. et al. Environmental history: a piece in the puzzle for establishing plans for environmental management. J. Environ. Manag. 90, 2794–2800 (2009).
CAS Article Google Scholar173.
Bennion, H., Battarbee, R. W., Sayer, C. D., Simpson, G. L. & Davidson, T. A. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J. Paleolimnol. 45, 533–544 (2011).
Article Google Scholar174.
Bindler, R., Rydberg, J. & Renberg, I. Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J. Paleolimnol. 45, 519–531 (2011).
Article Google Scholar175.
Fuller, D. Q. et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21, 743–759 (2011).
Article Google Scholar176.
Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).
Article Google Scholar177.
Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).
CAS Article Google Scholar178.
Pyatt, F. B. Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicol. Environ. Saf. 50, 60–64 (2001).
CAS PubMed Article Google Scholar179.
Pyatt, F. B., Gilmore, G., Grattan, J. P., Hunt, C. O. & McLaren, S. An imperial legacy? An exploration of the environmental impact of ancient metal mining and smelting in southern Jordan. J. Archaeol. Sci. 27, 771–778 (2000).
Article Google Scholar180.
Bindler, R., Renberg, I. & Klaminder, J. Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J. Paleolimnol. 40, 755–770 (2008).
Article Google Scholar181.
Farmer, J. G. et al. Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years. Sci. Total Environ. 407, 5578–5588 (2009).
CAS PubMed Article Google Scholar182.
Knabb, K. A. et al. Environmental impacts of ancient copper mining and metallurgy: multi-proxy investigation of human-landscape dynamics in the Faynan valley, southern Jordan. J. Archaeol. Sci. 74, 85–101 (2016).
CAS Article Google Scholar183.
Grattan, J. P., Gilbertson, D. D. & Hunt, C. O. The local and global dimensions of metalliferous pollution derived from a reconstruction of an eight thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan. J. Archaeol. Sci. 34, 83–110 (2007).
Article Google Scholar184.
Wilson, B. & Pyatt, F. B. Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus. Bull. Environ. Contam. Toxicol. 78, 390–394 (2007).
CAS PubMed Article Google Scholar185.
Seto, K. C. & Shepherd, J. M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 1, 89–95 (2009).
Article Google Scholar186.
Simon, D. & Adam-Bradford, A. in Balanced Urban Development: Options and Strategies for Liveable Cities (eds Maheshwari, B. et al.) 57–83 (Springer, 2016).187.
Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: the low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).
Article Google Scholar188.
Lucero, L. J., Fletcher, R. & Coningham, R. From ‘collapse’ to urban diaspora: the transformation of low-density, dispersed agrarian urbanism. Antiquity 89, 1139–1154 (2015).
Article Google Scholar189.
Fletcher, R. in The Comparative Archaeology of Complex Societies (ed. Smith, M. E.) 285–320 (Cambridge Univ. Press, 2011).190.
Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).
CAS PubMed Article Google Scholar191.
Barthel, S. et al. Global urbanization and food production in direct competition for land: leverage places to mitigate impacts on SDG2 and on the Earth System. Anthropocene Rev. 6, 71–97 (2019).
Article Google Scholar192.
Wilkinson, A. The Garden in Ancient Egypt (Rubicon Press, 1998).193.
Edmondson, J. L. et al. The hidden potental of urban horticulture. Nat. Food 1, 155–159 (2020).
Article Google Scholar194.
Scarborough, V. L. et al. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. Proc. Natl Acad. Sci. USA 109, 12408–12413 (2012).
CAS PubMed Article Google Scholar195.
Angelakis, A. N. & Spyridakis, S. V. Major urban water and wastewater systems in Minoan Crete, Greece. Water Sci. Technol. Water Supply 13, 564–573 (2013).
Article Google Scholar196.
Mays, L., Antoniou, G. P. & Angelakis, A. N. History of water cisterns: legacies and lesson. Water 5, 1916–1940 (2013).
Article Google Scholar197.
French, K. D. & Duffy, C. J. Understanding ancient Maya water resources and the implications for a more sustainable future. Wiley Interdiscip. Rev. Water 1, 305–313 (2014).
Article Google Scholar198.
Chase, A. S. Beyond elite control: residential reservoirs at Caracol, Belize. Wiley Interdiscip. Rev. Water 3, 885–897 (2016).
Article Google Scholar199.
Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).
CAS PubMed Article Google Scholar200.
Van de Noort, R. Conceptualising climate change archaeology. Antiquity 85, 1039–1048 (2011).
Article Google Scholar201.
Hudson, M. J., Aoyama, M., Hoover, K. C. & Uchiyama, J. Prospects and challenges for an archaeology of global climate change. Wiley Interdiscip. Rev. Clim. Change 3, 313–328 (2012).
Article Google Scholar202.
Sandweiss, D. H. & Kelley, A. R. Archaeological contributions to climate change research: the archaeological record as a paleoclimatic and paleoenvironmental archive. Annu. Rev. Anthropol. 41, 371–391 (2012).
Article Google Scholar203.
Rockman, M. & Hritz, C. Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl Acad. Sci. USA 117, 8295–8302 (2020).
CAS PubMed Article PubMed Central Google Scholar204.
Douglass, K. & Cooper, J. Archaeology, environmental justice, and climate change on islands of the Caribbean and southwestern Indian Ocean. Proc. Natl Acad. Sci. USA 117, 8254–8262 (2020).
CAS PubMed Article PubMed Central Google Scholar205.
Nelson, M. C. et al. Climate challenges, vulnerabilities, and food security. Proc. Natl Acad. Sci. USA 113, 298–303 (2016).
CAS PubMed Article PubMed Central Google Scholar206.
Mitchell, P. Practising archaeology at a time of climatic catastrophe. Antiquity 82, 1093–1103 (2008).
Article Google Scholar207.
Weiss, H. & Bradley, R. S. What drives societal collapse? Science 291, 609–610 (2001).
CAS PubMed Article PubMed Central Google Scholar208.
Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).
CAS PubMed Article PubMed Central Google Scholar209.
Weninger, B. et al. The impact of rapid climate change on prehistoric societies during the Holocene in the eastern Mediterranean. Doc. Praehistorica 36, 7–59 (2009).
Article Google Scholar210.
Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).
CAS PubMed Article PubMed Central Google Scholar211.
Anderson, D. G., Maasch, K. A., Sandweiss, D. H. & Mayewski, P. A. in Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions (eds Anderson, D. G. et al.) 1–23 (Academic Press, 2007).212.
Kintigh, K. W. & Ingram, S. E. Was the drought really responsible? Assessing statistical relationships between climate extremes and cultural transitions. J. Archaeol. Sci. 89, 25–31 (2018).
Article Google Scholar213.
Amand, F. S. et al. Leveraging legacy archaeological collections as proxies for climate and environmental research. Proc. Natl Acad. Sci. USA 117, 8287–8294 (2020).
Article CAS Google Scholar214.
Jones, T. L. et al. Environmental imperatives reconsidered: demographic crises in western North America during the Medieval climatic anomaly. Curr. Anthropol. 40, 137–170 (1999).
CAS PubMed Article PubMed Central Google Scholar215.
Mann, M. E. in Encyclopedia of Global Environmental Change (ed. MacCracken, M. C.) 504–509 (John Wiley & Sons, Ltd, 2002).216.
Flohr, P., Fleitmann, D., Matthews, R., Matthews, W. & Black, S. Evidence of resilience to past climate change in Southwest Asia: early farming communities and the 9.2 and 8.2 ka events. Quat. Sci. Rev. 136, 23–39 (2016).
Article Google Scholar217.
Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).
CAS PubMed Article PubMed Central Google Scholar218.
Roscoe, P. A changing climate for anthropological and archaeological research? Improving the climate‐change models. Am. Anthropol. 116, 535–548 (2014).
Google Scholar219.
Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).
PubMed Article CAS PubMed Central Google Scholar220.
Petraglia, M. D., Groucutt, H., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl Acad. Sci. USA 117, 8263–8270 (2020).
CAS PubMed Article PubMed Central Google Scholar221.
Manuel, M., Lightfoot, D. & Fattahi, M. The sustainability of ancient water control techniques in Iran: an overview. Water Hist. 10, 13–30 (2018).
Article Google Scholar222.
Avriel-Avni, N., Avni, Y., Babad, A. & Meroz, A. Wisdom dwells in places: what can modern farmers learn from ancient agricultural systems in the desert of the Southern Levant? J. Arid Environ. 163, 86–98 (2019).
Article Google Scholar223.
Lasaponara, R., Rojas, J. L. & Masini, N. in The Ancient Nasca World (eds Lasaponara, R. et al.) 279–327 (Springer, 2016).224.
Bebermeier, W., Meister, J., Withanachchi, C. R., Middelhaufe, I. & Schütt, B. Tank cascade systems as a sustainable measure of watershed management in South Asia. Water 9, 231 (2017).
Article Google Scholar225.
Altschul, J. H. et al. Opinion: Fostering synthesis in archaeology to advance science and benefit society. Proc. Natl Acad. Sci. USA 114, 10999–11002 (2017).
CAS PubMed Article PubMed Central Google Scholar226.
Tainter, J. The Collapse of Complex Societies (Cambridge Univ. Press, 1988).227.
Redman, C. L. Human Impact on Ancient Environments (Univ. Arizona, 1999).228.
Redman, C. L. Resilience theory in archaeology. Am. Anthropol. 107, 70–77 (2005).
Article Google Scholar229.
Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).
CAS PubMed Article PubMed Central Google Scholar230.
Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).
Article Google Scholar231.
Lane, P. Archaeology in the age of the Anthropocene: a critical assessment of its scope and societal contributions. J. Field Archaeol. 40, 485–498 (2015).
Article Google Scholar232.
Catlin, K. A. Archaeology for the Anthropocene: scale, soil, and the settlement of Iceland. Anthropocene 15, 13–21 (2016).
Article Google Scholar233.
Kintigh, K. W. et al. Grand challenges for archaeology. Proc. Natl Acad. Sci. USA 111, 879–880 (2014).
CAS PubMed Article PubMed Central Google Scholar234.
Smith, M. E. Sprawl, squatters and sustainable cities: can archaeological data shed light on modern urban issues? Camb. Archaeol. J. 20, 229–253 (2010).
Article Google Scholar235.
Dave, R. Archaeology must open up to become more diverse. The Guardian (23 May 2016); https://go.nature.com/36mbRRl236.
White, W. & Draycott, C. Why the whiteness of archaeology is a problem. Sapiens (7 July 2020); https://go.nature.com/3lhgS3T237.
Smith, C. & Wobst, H. M. Indigenous Archaeologies: Decolonising Theory and Practice (Routledge, 2004).238.
Hamilakis, Y. Decolonial archaeology as social justice. Antiquity 92, 518–520 (2018).
Article Google Scholar239.
Mustaphi, C. J. C. et al. Integrating evidence of land use and land cover change for land management policy formulation along the Kenya-Tanzania borderlands. Anthropocene 28, 100228 (2019).
Article Google Scholar240.
Widgren, M. in Rethinking Environmental History World-System History and Global Environmental Change (eds Hornberg, A. et al.) 61–77 (Rowman Altamira, 2007).241.
Matthews, D. German humanities scholars’ unusual role. Inside Higher Ed (24 April 2020); https://go.nature.com/3nbVCNi242.
Agnoletti, M. (ed.) The Conservation of Cultural Landscapes (CABI, 2006).243.
Lowenthal, D. The Past is a Foreign Country – Revisited (Cambridge Univ. Press, 2015). More100 Shares169 Views
in EcologyAuthor Correction: Clustered versus catastrophic global vertebrate declines
Affiliations
Department of Biology, McGill University, Montreal, Quebec, Canada
Brian Leung & Anna L. HargreavesBieler School of Environment, McGill University, Montreal, Quebec, Canada
Brian LeungDepartment of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
Dan A. GreenbergSchool of Biology and Ecology, University of Maine, Orono, ME, USA
Brian McGillMitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
Brian McGillCentre for Biological Diversity, University of St Andrews, St Andrews, UK
Maria DornelasIndicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UK
Robin FreemanAuthors
Brian LeungAnna L. Hargreaves
Dan A. Greenberg
Brian McGill
Maria Dornelas
Robin Freeman
Corresponding author
Correspondence to Brian Leung. More188 Shares139 Views
in EcologyGenome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale
1.
Suomalainen, E., Saura, A. & Lokki, J. Cytology and Evolution in Parthenogenesis (CRC Press, 1987).
2.
Astaurov, B. L. Experimental alterations of the developmental cytogenetic mechanisms in mulberry silkworms: artificial parthenogenesis, polyploidy, gynogenesis, and androgenesis. Adv. Morphog. 6, 199–257 (1967).
CAS PubMed Article Google Scholar3.
Innes, D. J. & Hebert, P. D. N. The origin and genetic basis of obligate parthenogenesis in daphnia pulex. Evolution 42, 1024–1035 (1988).
PubMed Article Google Scholar4.
Saura, A., Lokki, J. & Suomalainen, E. Origin of polyploidy in parthenogenetic weevils. J. Theor. Biol. 163, 449–456 (1993).
Article Google Scholar5.
Schwander, T., Henry, L. & Crespi, B. J. Molecular evidence for ancient asexuality in timema stick insects. Curr. Biol. 21, 1129–1134 (2011).
CAS PubMed Article Google Scholar6.
Birky, C. W. Jr. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144, 427–437 (1996).
PubMed Google Scholar7.
Mark Welch, D. & Meselson, M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288, 1211–1215 (2000).
CAS PubMed Article Google Scholar8.
Jaron, K. S. et al. Genomic features of parthenogenetic animals. J. Hered. https://doi.org/10.1093/jhered/esaa031 (2020).9.
Scholtz, G. et al. Ecology: parthenogenesis in an outsider crayfish. Nature 421, 806 (2003).
CAS PubMed Article Google Scholar10.
Lyko, F. The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363, 544–552 (2017).
PubMed Article Google Scholar11.
Martin, P., Dorn, N. J., Kawai, T., van der Heiden, C. & Scholtz, G. The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib. Zool. 79, 107–118 (2010).
Article Google Scholar12.
Vogt, G. et al. The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biol. Open 4, 1583–1594 (2015).
CAS PubMed PubMed Central Article Google Scholar13.
Schön, I., Martens, K. & van, Dijk P. Lost Sex. The Evolutionary Biology of Parthenogenesis (Springer, 2009).14.
Martin, P., Kohlmann, K. & Scholtz, G. The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94, 843–846 (2007).
CAS PubMed Article Google Scholar15.
Vogt, G. et al. Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol. 211, 510–523 (2008).
CAS PubMed Article Google Scholar16.
Vogt, G., Tolley, L. & Scholtz, G. Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J. Morphol. 261, 286–311 (2004).
PubMed Article Google Scholar17.
Kato, M., Hiruta, C. & Tochinai, S. The behavior of chromosomes during parthenogenetic oogenesis in Marmorkrebs Procambarus fallax f. virginalis. Zool. Sci. 33, 426–430 (2016).
Article Google Scholar18.
Gutekunst, J. et al. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat. Ecol. Evol. 2, 567–573 (2018).
PubMed Article Google Scholar19.
Chucholl, C. Marbled crayfish gaining ground in Europe: the role of the pet trade as invasion pathway. in Freshwater Crayfish: Global Overview (eds Kawai, T. et al.) 83–114 (CRC Press, 2015).20.
Jones, J. P. G. et al. The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions 11, 1475–1482 (2009).
Article Google Scholar21.
Kawai, T. et al. Parthenogenetic alien crayfish (Decapoda: Cambaridae) spreading in Madagascar. J. Crust. Biol. 29, 562–567 (2009).
Article Google Scholar22.
Andriantsoa, R. et al. Ecological plasticity and commercial impact of invasive marbled crayfish populations in Madagascar. BMC Ecol. 19, 8 (2019).
PubMed PubMed Central Article Google Scholar23.
Chucholl, C. & Pfeiffer, M. First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817). Aquat. Invasions 5, 405–412 (2010).
Article Google Scholar24.
Lipták, B. et al. Expansion of the marbled crayfish in Slovakia: beginning of an invasion in the Danube catchment? J. Limnol. 75, 305–312 (2016).
Google Scholar25.
Novitsky, R. A. & Son, M. O. The first records of Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] (Crustacea, Decapoda, Cambaridae) in Ukraine. Ecol. Montenegrina 5, 44–46 (2016).
Article Google Scholar26.
Patoka, J. et al. Predictions of marbled crayfish establishment in conurbations fulfilled: evidences from the Czech Republic. Biologia 71, 1380–1385 (2016).
CAS Article Google Scholar27.
Pârvulescu, L. et al. First established population of marbled crayfish Procambarus fallax (Hagen, 1870) f. virginalis (Decapoda, Cambaridae) in Romania. Bioinvasions Rec. 6, 357–362 (2017).
Article Google Scholar28.
Deidun, A. et al. Invasion by non-indigenous freshwater decapods of Malta and Sicily, central Mediterranean Sea. J. Crust. Biol. 38, 748–753 (2018).
Google Scholar29.
Ercoli, F., Kaldre, K., Paaver, T. & Gross, R. First record of an established marbled crayfish Procambarus virginalis (Lyko, 2017) population in Estonia. Bioinvasions Rec. 8, 675–683 (2019).
Article Google Scholar30.
Charlesworth, B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).
CAS PubMed Article Google Scholar31.
Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).
CAS PubMed Article Google Scholar32.
Munoz, J., Chaturvedi, A., De Meester, L. & Weider, L. J. Characterization of genome-wide SNPs for the water flea Daphnia pulicaria generated by genotyping-by-sequencing (GBS). Sci. Rep. 6, 28569 (2016).
CAS PubMed PubMed Central Article Google Scholar33.
Flynn, J. M., Chain, F. J., Schoen, D. J. & Cristescu, M. E. Spontaneous mutation accumulation in Daphnia pulex in selection-free vs. competitive environments. Mol. Biol. Evol. 34, 160–173 (2017).
CAS PubMed Article Google Scholar34.
Fazalova, V. & Nevado, B. Low spontaneous mutation rate and pleistocene radiation of pea aphids. Mol. Biol. Evol. 37, 2045–2051 (2020).
CAS PubMed Article Google Scholar35.
Krebs, C. J. Estimating abundance in animal and plant populations. in Ecological Methodology https://www.zoology.ubc.ca/~krebs/downloads/krebs_chapter_02_2020.pdf (2014).36.
van der Heiden, C. A. & Dorn, N. J. Benefits of adjacent habitat patches to the distribution of a crayfish population in a hydro-dynamic wetland landscape. Aquat. Ecol. 51, 219–233 (2017).
Article Google Scholar37.
Liu, H. et al. Direct determination of the mutation rate in the bumblebee reveals evidence for weak recombination-associated mutation and an approximate rate constancy in insects. Mol. Biol. Evol. 34, 119–130 (2017).
CAS PubMed Article Google Scholar38.
Vandel, A. La parthénogenèse géographique. Contribution à l’étude biologique et cytologique de la parthénogenèse naturelle. Bull. Biol. Fr. Belg. 62, 164–281 (1928).
Google Scholar39.
Baker, H. G. Characteristics and modes of origin of weeds. in The Genetics of Colonising Species (eds Baker, H. G. & Stebbins, G. L.) 147–172 (Academic Press, 1965).40.
Tilquin, A. & Kokko, H. What does the geography of parthenogenesis teach us about sex? Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150538 (2016).
PubMed PubMed Central Article Google Scholar41.
Van Doninck, K., Schon, I., De Bruyn, L. & Martens, K. A general purpose genotype in an ancient asexual. Oecologia 132, 205–212 (2002).
PubMed Article Google Scholar42.
Van Doninck, K., Schon, I., Martens, K. & Backeljau, T. Clonal diversity in the ancient asexual ostracod Darwinula stevensoni assessed by RAPD-PCR. Heredity 93, 154–160 (2004).
PubMed Article CAS Google Scholar43.
Gatzmann, F. et al. The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes. Epigenetics Chromatin 11, 57 (2018).
PubMed PubMed Central Article CAS Google Scholar44.
Carneiro, V. C. & Lyko, F. Rapid epigenetic adaptation in animals and its role in invasiveness. Integr. Comp. Biol. 60, 267–274 (2020).
CAS PubMed PubMed Central Article Google Scholar45.
Mauvisseau, Q., Tönges, S., Andriantsoa, R., Lyko, F. & Sweet, M. Early detection of an emerging invasive species: eDNA monitoring of a parthenogenetic crayfish in freshwater systems. Manag. Biol. Invasions 10, 461–472 (2019).
Article Google Scholar46.
Andriantsoa, R. et al. Perceived socio-economic impacts of the marbled crayfish invasion in Madagascar. PLoS ONE 15, e0231773 (2020).
CAS PubMed PubMed Central Article Google Scholar47.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Article Google Scholar48.
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
CAS PubMed PubMed Central Article Google Scholar49.
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
CAS PubMed PubMed Central Article Google Scholar50.
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
CAS PubMed PubMed Central Article Google Scholar51.
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).
CAS PubMed PubMed Central Article Google Scholar52.
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
CAS Article Google Scholar53.
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Article Google Scholar54.
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
CAS PubMed Article Google Scholar55.
Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods–a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
CAS PubMed Article Google Scholar56.
Johnson, K. E. et al. Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect. PLoS Biol. 17, e3000399 (2019).
CAS PubMed PubMed Central Article Google Scholar57.
Maiakovska, O. & Legrand, C. OlenaMaiakovska/Population_Analysis_MC. Zenodo, https://doi.org/10.5281/zenodo.4110932 (2020). More150 Shares159 Views
in EcologyThe effectiveness of national biodiversity investments to protect the wealth of nature
1.
Huwyler, F., Kappeli, J., Serafimova, K., Swanson, E. & Tobin, J. Conservation Finance: Moving Beyond Donor Funding Toward an Investor-driven Approach (WWF, Credit Suisse and McKinsey & Company, 2014); http://go.nature.com/2Ka5Y2u
2.
Deutz, A. et al. Financing Nature: Closing the Global Biodiversity Financing Gap: Full Report (Paulson Institute, Nature Conservancy and Cornell Atkinson Center for Sustainability, 2020).3.
Halpern, B. et al. Gaps and mismatches between global conservation priorities and spending. Conserv. Biol. 20, 56–64 (2006).
Article Google Scholar4.
James, A., Gaston, K. J. & BalmfordA. Can we afford to conserve biodiversity? BioScience 51, 43–52 (2001).
Article Google Scholar5.
McCarthy, D. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).
CAS Article Google Scholar6.
Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rates ‘Accelerating’ (IPBES, 2019); http://go.nature.com/2V4ZBN97.
The Global Risks Report 2020 (WEF, 2020); https://go.nature.com/3ahNfg88.
IUCN Views on the Preparation, Scope and Content of the Post-2020 Global Biodiversity Framework (IUCN, 2018); https://go.nature.com/2WlW3ti9.
Biodiversity: Finance and the Economic and Business Case for Action (OECD, 2019); https://go.nature.com/3h0F9Kc10.
Parker, C. & Cranford, M. The Little Biodiversity Finance Book. A Guide to Proactive Investment in Natural Capital (Global Canopy Program, 2010); https://go.nature.com/3mwyxUJ11.
Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
Article Google Scholar12.
Kearney, S. G. et al. Estimating the benefit of well-managed protected areas for threatened species conservation. ORYX 54, 276–284 (2020).
Article Google Scholar13.
Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (IIASA, 2020); https://go.nature.com/387GkDq14.
Stepping, K. M. K. & Meijer, K. S. The challenges of assessing the effectiveness of biodiversity-related development aid. Trop. Conserv. Sci. https://doi.org/10.1177/1940082918770995 (2018).15.
Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2018).
Article Google Scholar16.
Gallo-Cajiao, E. et al. Crowdfunding biodiversity conservation. Conserv. Biol. 32, 1426–1435 (2018).
Article Google Scholar17.
Parker, C., Cranford, M., Oakes, N. & Leggett, M. The Little Biodiversity Finance Book 3rd edn (Global Canopy Programme, 2012).18.
Arlaud, M. et al. in Towards a Sustainable Bioeconomy: Principles, Challenges and Perspectives (eds Filho, W. L. et al.) Ch. 5 (Springer, 2018); https://doi.org/10.1007/978-3-319-73028-8_519.
Rawat, U. S. & Agarwal, N. K. Biodiversity: concept, threats and conservation. Environ. Conserv. J. 16, 19–28 (2015).
Article Google Scholar20.
Gorobets, A. Wild fauna conservation: IUCN-CITES match is required. Ecol. Indic. 112, 106091 (2020).
Article Google Scholar21.
Rodrigues, A. S. L. et al. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).
Article Google Scholar22.
Rao, M., Naro-Maciel, E. & Sterling, E. Protected Areas and Biodiversity Conservation II: Management and Effectiveness (Network of Conservation Educators and Practitioners, 2009).23.
Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411 (2019).
Article Google Scholar24.
BIOFIN The Biodiversity Finance Initiative Workbook 2018 (United Nations Development Programme, 2018).25.
Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).
CAS Article Google Scholar26.
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
Article Google Scholar27.
Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).
CAS Article Google Scholar28.
Turner, W. et al. Global conservation of biodiversity and ecosystem services. BioScience 57, 868–873 (2007).
Article Google Scholar29.
Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).
CAS Article Google Scholar30.
Hily, E. et al. Assessing the cost-effectiveness of a biodiversity conservation policy: a bio-econometric analysis of Natura 2000 contracts in forests. Ecol. Econ. 119, 197-208 (2015).31.
Ferraro, P. J., McIntosh, C. & Ospina, M. The effectiveness of the US endangered special act: an econometric analysis using matching methods. J. Environ. Econ. Manag. 54, 245–261 (2007).
Article Google Scholar32.
Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).
CAS Article Google Scholar33.
Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).
CAS Article Google Scholar34.
Richerzhagen, C. et al. Why We Need More and Better Biodiversity Aid Briefing Paper 13 (German Development Institute, 2016); https://go.nature.com/2K0S9Dz35.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).36.
Karousakis, K. Evaluating the Effectiveness of Policy Instruments for Biodiversity: Impact Evaluation, Cost-effectiveness Analysis and Other Approaches Environment Working Paper No.141 (OECD, 2018).37.
Isaza, C., Bofill, W. & Cabrera, H. Cost-effective species conservation: an application to Huemul (Hippocamelus bisulcus) in Chile. Environ. Dev. Econ. 12, 535–551 (2007).
Article Google Scholar38.
Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. Forest conservation and slippage: evidence from Mexico’s national payments for ecosystem services program. Land Econ. 88, 613–638 (2012).
Article Google Scholar39.
Bare, M. Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10, 125010 (2015).
Article Google Scholar40.
Ferraro, P. J. et al. More strictly protected areas are not necessarily more protective: evidence from Bolivia, Costa Rica, Indonesia, and Thailand. Environ. Res. Lett. 8, 025011 (2013).
Article Google Scholar41.
Lindsey, P. A. et al. More than $1 billion needed annually to secure Africa’s protected areas with lions. Proc. Natl Acad. Sci. USA 115, E10788–E10796 (2018).
CAS Article Google Scholar42.
Bonham, C. et al. Conservation trust funds, protected area management effectiveness and conservation outcomes: lessons from the global conservation fund. Parks 20, 89–100 (2014).
Article Google Scholar43.
Hein, Lars et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).
CAS Article Google Scholar44.
Natural Capital Accounting and Valuing Ecosystem Services Project (UN, 2019); http://go.nature.com/2K2jsxn45.
Ecosystem Valuation and Natural Capital Accounting (Gaborone Declaration for Sustainability in Africa, 2012); http://www.gaboronedeclaration.com/nca46.
Climate Public Expenditure and Institutional Review (CPEIR) (UNDP, 2015); https://go.nature.com/2K0C7tp47.
BIOFIN Workbook: Mobilising Resources for Biodiversity and Sustainable Development (UND, 2016); https://go.nature.com/3p1PDMb48.
Shieh, G. Effect size, statistical power, and sample size for assessing interactions between categorical and continuous variables. Br. J. Math. Stat. Psychol. 72, 136–154 (2019).
Article Google Scholar49.
Leon, A. C. & Heo, M. Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model. Comput. Stat. Data Anal. 53, 603–608 (2009).
Article Google Scholar50.
Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).
Article Google Scholar51.
Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
CAS Article Google Scholar52.
Luther, D. A. et al. Determinants of bird conservation—action implementation and associated population trends of threatened species. Conserv. Biol. 30, 1338–1346 (2016).
Article Google Scholar53.
Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).
CAS Article Google Scholar54.
Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, I60007 (2016).
Article Google Scholar55.
Keith, D. A. et al. Scientific foundations for an IUCN Red List of ecosystems. PLoS ONE 8, e62111 (2013).
CAS Article Google Scholar56.
Kaufmann, D., Kraay, A. & Mastruzzi, M. The worldwide governance indicators: methodology and analytical issues. Hague J. Rule Law 3, 220–246 (2011).
Article Google Scholar57.
Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle (Academiai Kiado, 1973).58.
Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).
Article Google Scholar59.
Angrist, J. D. & Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion (Princeton Univ. Press, 2009); http://go.nature.com/3r5t6zA60.
Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data 2nd edn (MIT Press, 2010). More225 Shares159 Views
in EcologySimulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H. W. Li in Southwest China
1.
Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
ADS CAS PubMed Article Google Scholar
2.
Zhou, X., Zhang, Y. & Downing, A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the gurbantunggut desert, northwestern China. Soil Biol. Biochem. 47, 67–77 (2012).
CAS Article Google Scholar3.
Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).
ADS CAS PubMed Article Google Scholar4.
Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of south China under high air pollution. Biogeosciences 5, 339–352 (2008).
ADS CAS Article Google Scholar5.
Hoorens, B., Aerts, R. & Stroetenga, M. Does initial litter chemistry explain litter mixture effects on decomposition?. Oecologia 137, 578–586 (2003).
ADS PubMed Article Google Scholar6.
Passarinho, J. A. P., Lamosa, P., Baeta, J. P., Santos, H. & Ricardo, C. P. P. Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves. Physiol. Plantarum 127, 100–110 (2006).
CAS Article Google Scholar7.
Shen, F. F. et al. Litterfall ecological stoichiometry and soil available nutrients under long-term nitrogen deposition in a Chinese fir plantation. Acta Ecol. Sin. 38, 7477–7487 (2018).
Google Scholar8.
Huangfu, C. & Wei, Z. Nitrogen addition drives convergence of leaf litter decomposition rates between Flaveria bidentis and native plant. Plant Ecol. 219, 1355–1368 (2018).
Article Google Scholar9.
Vivanco, L. & Austin, A. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Global Change Biol. 17, 1963–1974 (2011).
ADS Article Google Scholar10.
Li, H., Wei, Z., Huangfu, C., Chen, X. & Yang, D. Litter mixture dominated by leaf litter of the invasive species, Flaveria bidentis, accelerates decomposition and favors nitrogen release. J. Plant Res. 130, 167–180 (2017).
CAS PubMed Article Google Scholar11.
Aerts, R. D. C. H. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78, 244–260 (1997).
Article Google Scholar12.
Osono, T. & Takeda, H. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res. 19, 593–602 (2004).
Article Google Scholar13.
Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).
CAS Article Google Scholar14.
García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).
PubMed Article Google Scholar15.
Song, C., Liu, D., Yang, G., Song, Y. & Mao, R. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of northeast China. Ecol. Eng. 37, 1578–1582 (2011).
Article Google Scholar16.
Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).
Article Google Scholar17.
Chen, F. et al. Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. Plant Soil. 437, 413 (2019).
CAS Article Google Scholar18.
Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest. Environ. Pollut. 250, 143–154 (2019).
CAS PubMed Article Google Scholar19.
Hou, S. et al. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytol. 229, 296–307 (2020).
PubMed Article Google Scholar20.
Yu, Z. et al. Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biol. Biochem. 90, 188–196 (2015).
CAS Article Google Scholar21.
Pichon, N. et al. Decomposition disentangled: A test of the multiple mechanisms by which nitrogen enrichment alters litter decomposition. Funct. Ecol. 34, 1485–1496 (2020).
Article Google Scholar22.
Hobbie, S. et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 82, 389–405 (2012).
Article Google Scholar23.
Knops, J., Naeem, S. & Reich, P. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biol. 13, 1960–1971 (2007).
ADS Article Google Scholar24.
Prescott, C. E. Does nitrogen availability control rates of litter decomposition in forests?. Plant Soil. 168, 83–88 (1995).
Article Google Scholar25.
Zhou, Y., Wang, L., Chen, Y., Zhang, J. & Liu, Y. Litter stoichiometric traits have stronger impact on humification than environment conditions in an alpine treeline ecotone. Plant Soil 453, 545–560 (2020).
CAS Article Google Scholar26.
Mooshammer, M. et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech litter. Ecology 93, 770–782 (2012).
PubMed Article Google Scholar27.
Remy, E. et al. Driving factors behind litter decomposition and nutrient release at temperate forest edges. Ecosystems 24, 755–771 (2017).
Google Scholar28.
Zhou, S. et al. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the rainy area of western China. Plant Soil 420, 135–145 (2017).
CAS Article Google Scholar29.
Cornwell, W. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
PubMed Article Google Scholar30.
Norris, M., Avis, P., Reich, P. & Hobbie, S. E. Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil 367, 347–361 (2013).
CAS Article Google Scholar31.
Berg, B. & McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration 2nd edn. (Springer, Berlin, 2008).
Google Scholar32.
Cuchietti, A., Marcotti, E., Gurvich, D. E., Cingolani, A. M. & Harguindeguy, N. P. Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. Appl. Soil Ecol. 82, 44–51 (2014).
Article Google Scholar33.
Jing, H. & Wang, G. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the loess plateau of China. For. Ecol. Manag. 476, 118465 (2020).
Article Google Scholar34.
Sun, T., Dong, L., Wang, Z., Lü, X. & Mao, Z. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biol. Biochem. 93, 50–59 (2016).
CAS Article Google Scholar35.
Carrera, A. L. & Bertiller, M. B. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands. J. Environ. Manag. 114, 505–511 (2013).
CAS Article Google Scholar36.
Sun, Z. et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil. Agr. For. Meteorol. 197, 103–110 (2014).
Article Google Scholar37.
He, X., Lin, Y., Han, G. & Ma, T. Litterfall interception by understorey vegetation delayed litter decomposition in Cinnamomum camphora plantation forest. Plant Soil 372, 207–219 (2013).
CAS Article Google Scholar38.
Wang, Q. et al. Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China. Appl. Soil Ecol. 136, 148–157 (2019).
Article Google Scholar39.
Chen, J. et al. Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biol. 23, 1328–1337 (2016).
ADS Article Google Scholar40.
Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).
CAS Article Google Scholar41.
Jing, X. et al. Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem. Appl. Soil Ecol. 107, 205–213 (2016).
Article Google Scholar42.
Jing, X. et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Sci. Total Environ. 607–608, 806–815 (2017).
ADS PubMed Article CAS Google Scholar43.
Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Decomposition of trembling aspen leaf litter under long-term nitrogen and sulfur deposition: effects of litter chemistry and forest floor microbial properties. For. Ecol. Manag. 412, 53–61 (2018).
Article Google Scholar44.
Huang, X. et al. Autotoxicity hinders the natural regeneration of Cinnamomum migao H W. Li in southwest China. Forests 10, 919 (2019).
Article Google Scholar45.
Feng, H., Xue, L. & Chen, H. Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. Eur. J. For. Res. 137, 819–830 (2018).
Article Google Scholar46.
Diepen, L. V. et al. Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay. Ecosphere 6, t205 (2015).
Article Google Scholar47.
Zechmeister-Boltenstern, S. et al. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 85, 133–155 (2015).
Article Google Scholar48.
Hobbie, S. E. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology 89, 2633–2644 (2008).
PubMed Article Google Scholar49.
Hobbie, S. Interactions between litter lignin and nitrogenitter lignin and soil nitrogen availability during leaf litter decomposition in a hawaiian montane forest. Ecosystems 3, 484–494 (2000).
CAS Article Google Scholar50.
Zhang, J. et al. Effect of nitrogen and phosphorus addition on litter decomposition and nutrients release in a tropical forest. Plant Soil 454, 139–153 (2020).
CAS Article Google Scholar51.
Apolinário, V. et al. Litter decomposition of signalgrass grazed with different stocking rates and nitrogen fertilizer levels. Agron. J. 106, 1–6 (2014).
Article Google Scholar52.
Takeda, H. Decomposition Processes of Litter Along a Latitudinal Gradient (Springer, Dordrecht, 1998).
Google Scholar53.
Torreta, N. K. & Takeda, H. Carbon and nitrogen dynamics of decomposing leaf litter in a tropical hill evergreen forest. Eur. J. Soil Biol. 35, 57–63 (1999).
CAS Article Google Scholar54.
Song, Y., Song, C., Ren, J., Zhang, X. & Jiang, L. Nitrogen input increases Deyeuxia angustifolia litter decomposition and enzyme activities in a marshland ecosystem in Sanjiang plain, northeast China. Wetlands. 39, 549–557 (2019).
Article Google Scholar55.
Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).
ADS CAS PubMed PubMed Central Article Google Scholar56.
Xia, M. A. T. A. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems 21, 1–14 (2018).
CAS PubMed PubMed Central Article Google Scholar57.
Chen, F., Feng, X. & Liang, C. Endogenous versus exogenous nutrient affects C, N, and P dynamics in decomposing litters in mid-subtropical forests of China. Ecol. Res. 27, 923–932 (2012).
CAS Article Google Scholar58.
Zhou, Z., Wang, C., Zheng, M., Jiang, L. & Luo, Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 115, 433–441 (2017).
CAS Article Google Scholar59.
He, X. et al. Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol. Res. 27, 273 (2011).
ADS Article Google Scholar60.
Berg, B. R. & Laskowski, R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover, Advances in Ecological Research Vol. 38 (Academic Press, Waltham, 2006).
Google Scholar61.
Hall, S., Huang, W., Timokhin, V. & Hammel, K. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology 101, e03113 (2020).
PubMed Article Google Scholar62.
Tu, L. et al. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS ONE 9, e88752 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar63.
Zhou, X. & Zhang, Y. Temporal dynamics of soil oxidative enzyme activity across a simulated gradient of nitrogen deposition in the gurbantunggut desert, northwestern China. Geoderma 213, 261–267 (2014).
ADS CAS Article Google Scholar64.
Hao, C. et al. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLoS ONE 8, e84101 (2013).
ADS Article Google Scholar65.
Cameron, K. C., Di, H. J. & Moir, J. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162, 145–173 (2013).
CAS Article Google Scholar66.
Waldrop, M. P., Zak, D. R., Sinsabaugh, R. L., Gallo, M. & Lauber, C. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol. Appl. 14, 1172–1177 (2004).
Article Google Scholar67.
Freedman, Z. B., Upchurch, R. A., Zak, D. R. & Cline, L. C. Anthropogenic N deposition slows decay by favoring bacterial metabolism: Insights from metagenomic analyses. Front. Microbiol. 7, 259 (2016).
PubMed PubMed Central Article Google Scholar68.
Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).
CAS PubMed Article Google Scholar69.
Weand, M. P., Arthur, M. A., Lovett, G. M., McCulley, R. L. & Weathers, K. C. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol. Biochem. 42, 2161–2173 (2010).
CAS Article Google Scholar70.
Wang, C. et al. Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest. Ecol. Res. 26, 505–513 (2011).
CAS Article Google Scholar71.
Feng, H., Xue, L. & Chen, H. Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. Eur. J. Forest Res. 137, 819 (2018).
Article Google Scholar72.
Frey, S. D., Knorr, M., Parrent, J. L. & Simpson, R. T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196, 159–171 (2004).
Article Google Scholar73.
Zheng, Z. et al. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. For. Ecol. Manag. 400, 123–128 (2017).
Article Google Scholar74.
Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).
ADS Article Google Scholar75.
Liu, G., Jiang, N. & Zhang, L. D. Soil Physical and Chemical Analysis and Description of Soil Profiles (Standards Press of China, Beijing, 1996).
Google Scholar76.
Bao, S. D. Soil and Agricultural Chemistry Analysis 3rd edn. (China Agricultural Press, Beijing, 2013).
Google Scholar77.
Allen, S. E. Chemical analysis of Ecological Materials, 2nd edn, Vol. 13 (Blackwell Scientific Publications, Oxford, 1989).
Google Scholar78.
Rowland, A. P. & Roberts, J. D. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun. Soil Sci. Plan. 25, 269–277 (1994).
CAS Article Google Scholar79.
Olson, J. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).
Article Google Scholar80.
Bockheim, J., Jepsen, E. A. & Heisey, D. M. Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin. Can. J. For. Res. 21, 803–812 (1991).
CAS Article Google Scholar More263 Shares179 Views
in EcologyAnalysis of global human gut metagenomes shows that metabolic resilience potential for short-chain fatty acid production is strongly influenced by lifestyle
Our results are consistent with a non-industrial gut harboring a more resilient ecology with respect to SCFA production, while the industrial gut ecology would be vulnerable to disruption of such pathways, yet the pattern is complex and nuanced. The increased gene abundance in non-industrial populations and overall ratio of acetate:butyrate:propionate generally agrees with previous studies of SCFAs5,12. Similarly, the higher genus-level diversity of bacteria encoding acetate, compared to the other SCFAs, is expected and matches studies that have documented the taxa that encode different SCFAs13,17,19. The overall high richness, high diversity at Hill numbers 1 and 2, and high Gini-Simpson indices found in non-industrial populations at the genus level indicates a highly diverse and evenly distributed production of SCFAs. From an ecological perspective, uneven production of SCFA dominated by a few bacteria in industrial gut microbiomes means lower functional diversity and less redundancy, which ultimately leads to an expectation of decreased resilience. In other words, this study finds that industrial gut microbiomes are at a higher risk of reduced SCFA production because SCFA synthesis is dominated by only a few genera. Given the lower resilience, factors that disrupt the gut ecology are expected to have a more extreme consequence to those living an industrial lifestyle.
While there is an overall trend of increased genus-level functional diversity and redundancy for SCFA production in non-industrial populations, variation exists when examining the SCFAs and populations individually. At the genus-level, the pastoral and rural agricultural populations have increased richness of genera encoding genes involved in acetate and butyrate synthesis, while there is similarity across the different lifestyles for genus richness for propionate encoding taxa. Although hunter-gatherers have similar, or lower, genus richness as industrial populations, they have significantly higher diversity at Hill number orders 1 and 2 and Gini-Simpson indices for butyrate and propionate. Additionally, the pastoralists have a generally similar profile to the industrial populations for acetate and propionate Hill number diversity, as well as similarity to the industrial populations in species PD, which may be linked to this pastoralist group having a diet similar to some industrial populations; namely, a diet high in dairy and red meat consumption, coupled with few dietary sources of plant-derived fibers23. This paints a complex picture. Non-industrial populations have a high diversity of genera encoding butyrate synthesis, and butyrate production is spread more evenly across genera in non-industrial populations than in industrial populations. Hunter-gatherers and rural agriculturalists have significantly greater evenness of propionate production, even though they have fewer number of total genera encoding this SCFA. Finally, the richness and evenness of genera encoding acetate is similar between industrial and non-industrial populations. Ecologically, we would expect the industrial populations to be less resilient for production of butyrate and propionate when faced with a shift in taxonomic composition, while non-industrial populations may be only marginally more resilient for acetate production compared to industrial populations. Intriguingly, SCFA relative abundance does not appear to correlate to resilience profile. Acetate and butyrate are significantly more abundant in non-industrial populations but only butyrate shows much stronger resilience profile for non-industrial populations. Additionally, propionate is slightly more abundant in industrial populations, although not significantly, yet our results indicate greater resilience in non-industrial groups for propionate production. This indicates that measuring only total gene, and/or molar, abundance is not enough to make statements about metabolic processes in the human microbiome; rather, ecological approaches are necessary to understand diversity in functional potential of the human microbiome.
The increased species-level alpha diversity in industrial populations initially runs counter to the genus-level results but the genus and species level results ultimately yield similar interpretations after accounting for ecology and ascertainment bias, as discussed below. The substantially higher species richness in industrial populations is striking; however, the differences in PD between industrial and non-industrial populations are not nearly as extreme. This means that the high species richness in the industrial populations is driven by species that are closely phylogenetically related. Indeed, we observed SCFA producing genera found at high abundance in industrial populations (Bacteroides and Clostridium) to have up to nine species encoding SCFAs, while highly abundant non-industrial genera only have one or two species. Therefore, what first appears to indicate high species-level ecological resilience in SCFA production in the industrial populations is actually the result of closely related species performing the same function. It follows that closely related species may be prone to changes in abundance or even elimination after certain types of ecosystem shift events. For example, narrow-spectrum antibiotics33 and exposure to various xenobiotic compounds that lead to variable bacterial metabolic responses34 are events that can affect a limited range of bacteria and lead to shifts in microbial abundance and metabolic activity. While this result has ecological implications, it is also likely the result of historical trends of microbiology research. Bacterial taxa at high abundance in non-industrial gut microbiomes have not been a focus of microbiological isolation and species identification until recently; therefore, we expect more species to be identified from non-industrial gut microbiomes in the future35. Additionally, classification of bacteria into distinct genera and species is undergoing a revolution in the genomic era36 meaning that the high number of species classified to Bacteroides and Clostridium may ultimately be reclassified to different genera. Nevertheless, the fact that we observe a large jump in species richness, but only a minor increase in species PD, in the industrial gut microbiomes suggests that the high industrial species richness is driven by closely related species and therefore, results in the same interpretation as the genus richness results: diversity is high in non-industrial populations.
Ascertainment bias extends to the databases used to identify taxa and genes: fewer genes were identified in non-industrial populations and a smaller proportion of these genes can be linked back to bacteria at every taxonomic level, in non-industrial gut microbiomes. In some cases, such as butyrate synthesis genes, less than 10% of genes are identified to species for non-industrial populations, while over 50% of such identifications were possible for industrial populations. A decreased ability to identify the genus and species encoding SCFA synthesis genes in non-industrial populations means that the ecological metrics underestimate the true ecological diversity of these genes. Moreover, the drop-off in classification from the genus to the species level was significantly greater in non-industrial populations compared to industrial populations. This drop-off means a much lesser ability to identify species compared to genera in non-industrial populations, which helps explain why species diversity was substantially lower in non-industrial populations. Nevertheless, the statistically significant differences observed at the genus-level send a strong signal of the high functional diversity, and potential resilience, of SCFA synthesis genes in non-industrial gut microbiomes.
The metagenome-wide poor performance in terms of gene identification and classifying SCFA genes to genera and species indicates a bias in reference databases that underrepresents diversity in non-industrial gut microbiomes, which is unsurprising. Bias is expected because the vast majority of human gut microbiome studies have used samples from industrial populations. There is an immense challenge in including non-industrial communities in biomedical research, including recruiting research participants, sustaining longitudinal sampling, building culturally appropriate community relationships, and even securing transport of samples35. This has resulted in comparatively few metagenomic studies of human gut microbiomes from non-industrial settings35. Nevertheless, our data demonstrate the extent of this bias and how it can hinder more in-depth study of human gut microbiome health. Given this sizable ascertainment bias favored industrial populations, the non-industrial populations are likely even more diverse, more resilient, than our databases can sufficiently characterize, making our genus-level results even stronger. Without a serious investment to include such populations, the characterization of microbiomes will remain naive to the ecological breadth of the core, healthy, human gut. Imagine studying forest ecology, with only city parks at your disposal. This has been, overwhelmingly, the analogous practice of human microbiome research.
The relative lack of microbiome studies with non-industrial populations means an underrepresentation of not only metagenomic data and genome annotation but also fewer opportunities for cultivation and validation of novel species of bacteria. This ultimately leads to an inequality in the depth to which researchers can describe microbiome samples from non-industrial communities, compared to industrial microbiomes, as diverse groups of novel taxa may be grouped into a single group of “unknown” or “unclassified” bacteria35. Similarly, an incomplete picture of microbial functional potential means that genes may be misidentified or even unannotated completely. Unknown taxa and misidentified genes may be playing key roles in ecological and metabolic processes but researchers are unable to confidently identify them, let alone make statements about their importance in a microbial ecology35. Recent human gut microbiome metagenome studies from diverse populations will undoubtedly improve database representation but the number of studies and metagenomic samples from non-industrial populations still pales in comparison to industrial gut microbiomes26,35,37,38.
Limitations in annotating the full extent of microbial diversity impacts health research. Recently proposed ‘Microbiota Insufficiency Syndrome (MIS)’2 postulates that, while the microbiome has adapted to industrialization, these adaptations are maladaptive to human health. The decreased phylogenetic diversity and loss of specific taxa (e.g. Prevotellaceae, Succinivibrionaceae, and Spirochaetaceae) observed in industrial gut microbiomes may contribute to the increase in non-communicable chronic diseases found at higher prevalence in industrial populations. The root cause of MIS in industrial populations is undoubtedly multifactorial; however, diet is suggested to play a major role2. This syndrome is compelling and we postulate that this insufficiency precisely rests on the stability of functional capacity. Our findings of decreased resilience in industrial populations, as well as species-level diversity driven by a few closely related species, fits in well with MIS. Low resilience in SCFA production may ultimately manifest itself as altered colonocyte function and/or autoimmune disruptions (both symptoms of MIS) due to a decrease in SCFA bioavailability after a group SCFA-producing bacteria were wiped-out during an ecological shift, such as antibiotic or xenobiotic exposure. Similar to MIS, diet is likely to play an important role in SCFA resilience. The non-industrial populations studied in this paper consume much more fiber than industrial populations, on average3,5,14,25,26, and microbial fermentation of dietary fibers is a major source of SCFAs in the human digestive tract39. A diet poor in dietary fiber means less substrate for microbial fermentation and therefore less SCFA production and also higher competition for that fiber, potentially resulting in competitive exclusion and less microbial diversity. Nevertheless, if we are unable to fully characterize and annotate non-industrial gut microbiomes then we will be unable to paint a complete picture of MIS. Currently, we have confidence that there is a wealth of undiscovered resilience in non-industrial gut microbiomes. Once we describe the extent of this diversity/resilience, through increased sampling and focus on partnerships with research institutes in industrializing countries, we will have a more complete picture of MIS and possibly develop therapeutic approaches to combat non-communicable chronic diseases related to the human gut microbiome.
Improved sampling, metabolic profiling, and annotation will not only improve our understanding of SCFA resilience, but it will also permit more detailed picture microbiome wide resilience. Our work shows the value of focusing on specific SCFA genes, due to their importance in human biology and previously reported variation in SCFA molar abundance between industrial and non-industrial populations31,32; however, future work will undoubtedly add to our findings. One avenue for future work is through analyzing SCFA molar concentrations in fecal samples in a longitudinal setting and comparing these results to predicted SCFA resilience from metagenome panels. Unlike genomic data, where we can infer about SCFA production potential via taxonomic diversity, one-time measures of fecal SCFA molar concentrations will not inform about future resilience because SCFA molar concentrations carry no information about which taxa produce each SCFA. Longitudinal SCFA concentration and metagenomic data from non-industrial populations, or animal models, is necessary to inform about SCFA resilience and production in diverse lifestyles. Another avenue for future work is to focus resilience analysis on other microbiome functions of interest, such as resilience of antibiotic resistance genes and amino acid biosynthetic pathways. These valuable studies would be valuable for comparing microbiome resilience dynamics for different functions, with the caveat that there is sufficient genomic annotation data to yield interpretable results.
Lack of sample diversity is not unique to human microbiome research, as human genetics research has been grappling with this very issue for decades. In 2009, 96% of individuals included in human genome-wide association studies (GWAS) claimed European ancestry, as compared to 78% in 201940. Thus, while there have been improvements, GWAS clearly fail to reflect the breadth of human diversity. Incorporating diverse populations in human genome and microbiome research has the potential to greatly benefit the scientific community’s understanding of human biology and develop treatments that are based on human diversity rather than European-ancestry genetics and microbiomes. A key component of increasing representation in genetics and microbiome studies is that these studies are designed as partnerships with minority and/or indigenous communities in a manner that builds both trust between the community and researchers, as well as facilitates the ability for the sample donors to exercise their rights on how data are treated and shared41. More