More stories

  • in

    Global patterns and climatic controls of forest structural complexity

    1.
    Ali, A. et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests. Sci. Total Environ. 706, 135719 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
    ADS  Article  Google Scholar 

    4.
    Penone, C. et al. Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol. Lett. 22, 170–180 (2019).
    PubMed  Article  Google Scholar 

    5.
    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).
    PubMed  Article  Google Scholar 

    6.
    Gough, C. M., Atkins, J. W., Fahey, R. T. & Hardiman, B. S. High rates of primary production in structurally complex forests. Ecology 100, e02864 (2019).
    PubMed  Article  Google Scholar 

    7.
    Stark, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 15, 1406–1414 (2012).
    PubMed  Article  Google Scholar 

    8.
    Ammer, C. et al. Key ecological research questions for Central European forests. Basic Appl. Ecol. 32, 3–25 (2018).
    Article  Google Scholar 

    9.
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).
    CAS  PubMed  Article  Google Scholar 

    11.
    Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. Meteorol. 242, 1–9 (2017).
    Article  Google Scholar 

    12.
    Seidel, D., Ehbrecht, M., Annighöfer, P. & Ammer, C. From tree to stand-level structural complexity—Which properties make a forest stand complex? Agric. Meteorol. 278, 107699 (2019).
    Article  Google Scholar 

    13.
    Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).
    PubMed  Article  Google Scholar 

    14.
    Gough, C. M., Atkins, J. W., Fahey, R. T., Hardiman, B. S. & LaRue, E. A. Community and structural constraints on the complexity of eastern North American forests. Glob. Ecol. Biogeogr. 29, 2107–2118 (2020).

    15.
    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).
    Article  Google Scholar 

    16.
    Ishii, H. T., Tanabe, S. & Hiura, T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Science 50, 342–355 (2004).
    Google Scholar 

    17.
    Pretzsch, H. Forest dynamics, growth, and yield. In Forest Dynamics, Growth and Yield: From Measurement to Model (ed. Pretzsch, H.) 1–39 (Springer, 2009).

    18.
    Dassot, M., Constant, T. & Fournier, M. The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Ann. Sci. 68, 959–974 (2011).
    Article  Google Scholar 

    19.
    Ehbrecht, M., Schall, P., Juchheim, J., Ammer, C. & Seidel, D. Effective number of layers: a new measure for quantifying three-dimensional stand structure based on sampling with terrestrial LiDAR. Ecol. Manag. 380, 212–223 (2016).
    Article  Google Scholar 

    20.
    Juchheim, J., Ammer, C., Schall, P. & Seidel, D. Canopy space filling rather than conventional measures of structural diversity explains productivity of beech stands. Ecol. Manag. 395, 19–26 (2017).
    Article  Google Scholar 

    21.
    Atkins, J. W., Fahey, R. T., Hardiman, B. S. & Gough, C. M. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 123, 1387–1405 (2018).
    Article  Google Scholar 

    22.
    Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).
    Article  Google Scholar 

    23.
    Fotis, A. T. et al. Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric. Meteorol. 250–251, 181–191 (2018).
    Article  Google Scholar 

    24.
    Juchheim, J., Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Effect of tree species mixing on stand structural complexity. Int. J. Res. 93, 75–83 (2020).
    Google Scholar 

    25.
    Zemp, D. C. et al. Mixed-species tree plantings enhance structural complexity in oil palm plantations. Agric. Ecosyst. Environ. 283, 106564 (2019).
    Article  Google Scholar 

    26.
    Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).
    Article  Google Scholar 

    27.
    Morin, X. Species richness promotes canopy packing: a promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Funct. Ecol. 29, 993–994 (2015).
    Article  Google Scholar 

    28.
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 851–869 https://doi.org/10.1111/nph.15027@10.1111/(ISSN)1469-8137. (2018).

    29.
    Pretzsch, H. Size-structure dynamics in mixed versus monospecific stands. In Mixed-Species Forests: Ecology and Management (eds. Pretzsch, H., Forrester, D. I. & Bauhus, J.) 211–269 (Springer, 2017).

    30.
    Moncrieff, G. R., Bond, W. J. & Higgins, S. I. Revising the biome concept for understanding and predicting global change impacts. J. Biogeogr. 43, 863–873 (2016).
    Article  Google Scholar 

    31.
    Stegen, J. C. et al. Variation in above-ground forest biomass across broad climatic gradients. Glob. Ecol. Biogeogr. 20, 744–754 (2011).
    Article  Google Scholar 

    32.
    Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).
    Article  Google Scholar 

    33.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    34.
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    35.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
    Article  Google Scholar 

    36.
    Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).
    Article  Google Scholar 

    37.
    Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).
    Article  Google Scholar 

    38.
    Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367–381 (2006).
    PubMed  Article  Google Scholar 

    39.
    Klein, T., Randin, C. & Körner, C. Water availability predicts forest canopy height at the global scale. Ecol. Lett. 18, 1311–1320 (2015).
    PubMed  Article  Google Scholar 

    40.
    Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    41.
    Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Thonicke, K. et al. Simulating functional diversity of European natural forests along climatic gradients. J. Biogeogr. 47, 1069–1085 (2020).
    Article  Google Scholar 

    43.
    Willim, K. et al. Assessing understory complexity in beech-dominated Forests (Fagus sylvatica L.) in Central Europe—from managed to primary forests. Sensors 19, 1684 (2019).
    Article  Google Scholar 

    44.
    Eggeling, W. J. Observations on the Ecology of the Budongo Rain Forest, Uganda. J. Ecol. 34, 20–87 (1947).
    Article  Google Scholar 

    45.
    Stephens, S. L. & Gill, S. J. Forest structure and mortality in an old-growth Jeffrey pine-mixed conifer forest in north-western Mexico. Ecol. Manag. 205, 15–28 (2005).
    Article  Google Scholar 

    46.
    Senf, C., Mori, A. S., Müller, J. & Seidl, R. The response of canopy height diversity to natural disturbances in two temperate forest landscapes. Landsc. Ecol. https://doi.org/10.1007/s10980-020-01085-7. (2020)

    47.
    Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 1–8 https://doi.org/10.1038/s41893-020-00609-y. (2020).

    48.
    Krug, J. H. A. Adaptation of Colophospermum mopane to extra-seasonal drought conditions: site-vegetation relations in dry-deciduous forests of Zambezi region (Namibia). Ecosystems 4, 25 (2017).
    Google Scholar 

    49.
    Stovall, A. E. L., Shugart, H. & Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 4385 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 1–10 (2017).
    Article  CAS  Google Scholar 

    51.
    Schuldt, B. et al. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? N. Phytol. 210, 443–458 (2016).
    Article  Google Scholar 

    52.
    Astrup, R., Bernier, P. Y., Genet, H., Lutz, D. A. & Bright, R. M. A sensible climate solution for the boreal forest. Nat. Clim. Change 8, 11–12 (2018).
    ADS  Article  Google Scholar 

    53.
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Klein, T. & Hartmann, H. Climate change drives tree mortality. Science 362, 758–758 (2018).
    ADS  CAS  PubMed  Google Scholar 

    56.
    Puettmann, K. J., Coates, K. D. & Messier, C. C. A Critique of Silviculture: Managing for Complexity. (Island Press, 2012).

    57.
    Camarretta, N. et al. Monitoring forest structure to guide adaptive management of forest restoration: a review of remote sensing approaches. New For. https://doi.org/10.1007/s11056-019-09754-5. (2019).

    58.
    Chiarucci, A. & Piovesan, G. Need for a global map of forest naturalness for a sustainable future. Conserv. Biol. 34, 368–372 (2020).
    PubMed  Article  Google Scholar 

    59.
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Keane, R. E., Holsinger, L. M. & Loehman, R. Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates. Ecol. Manag. 477, 118498 (2020).
    Article  Google Scholar 

    62.
    Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).
    Article  Google Scholar 

    63.
    Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9e99. (2020).

    64.
    Campbell, N. A. Biology. (Pearson Education, 1996).

    65.
    Buchwald, E. A hierarchical terminology for more or less natural forests in relation to sustainable management and biodiversity conservation. In Proc. Third Expert Meeting on Harmonizing Forest-related Definitions for Use by Various Stakeholders. Vol. 18 (Food and Agriculture Organization of the United Nations, 2005).

    66.
    Frey, J., Asbeck, T. & Bauhus, J. Predicting tree-related microhabitats by multisensor close-range remote sensing structural parameters for the selection of retention elements. Remote Sens. 12, 867 (2020).
    ADS  Article  Google Scholar 

    67.
    Ehbrecht, M., Schall, P., Ammer, C., Fischer, M. & Seidel, D. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. Ecol. Manag. 432, 860–867 (2019).
    Article  Google Scholar 

    68.
    Ehbrecht et al. ehbrechtetal/Stand-structural-complexity-index–SSCI: R-code to compute the stand structural complexity index (SSCI). https://doi.org/10.5281/zenodo.4295910. (2017).

    69.
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. https://doi.org/10.6084/m9.figshare.7504448.v3. (2019)

    70.
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1247 (2014).

    72.
    Fehrmann, L. et al. A unified framework for land cover monitoring based on a discrete global sampling grid (GSG). Environ. Monit. Assess. 191, 46 (2019).
    PubMed  Article  Google Scholar  More

  • in

    Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region

    1.
    Srinivasarao, C. et al. Grain yield and carbon sequestration potential of post monsoon sorghum cultivation in Vertisols in the semi arid tropics of central India. Geoderma 175–176, 90–97 (2012).
    ADS  Article  CAS  Google Scholar 
    2.
    Yadav, R. K., Singh, S. P., Lal, D. & Kumar, A. Fodder production and soil health with conjunctive use of saline and good quality water in ustipsamments of a semi-arid region. L. Degrad. Dev. 18, 153–161 (2007).
    Article  Google Scholar 

    3.
    Visser, S., Keesstra, S., Maas, G., de Cleen, M. & Molenaar, C. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a Key to Achieve the SDGs by 2030. Sustainability 11, 6792 (2019).
    Article  Google Scholar 

    4.
    Keesstra, S. et al. Soil-related Sustainable Development Goals: Four concepts to make land degradation neutrality and restoration work. Land 7, 133 (2018).
    Article  Google Scholar 

    5.
    Sharma, B. R. & Minhas, P. S. Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agric. Water Manag. 78, 136–151 (2005).
    Article  Google Scholar 

    6.
    Basak, N., Barman, A., Sundha, P. & Rai, A. K. Recent trends in soil salinity appraisal and management. In Soil Analysis: Recent Trends and Applications (eds Rakshit, A. et al.) 143–162 (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-15-2039-6_9.
    Google Scholar 

    7.
    Liu, T. et al. Soil environment and growth adaptation strategies of Amorpha fruticosa as affected by mulching in a moderately saline wasteland. Land Degrad. Dev. 31, 2672–2683. https://doi.org/10.1002/ldr.3612 (2020).

    8.
    Yu, K. & Wang, G. Long-term impacts of shrub plantations in a desert–oasis ecotone: accumulation of soil nutrients, salinity, and development of herbaceour layer. Land Degrad. Dev. 29, 2681–2693 (2018).
    Article  Google Scholar 

    9.
    Chauhan, C. P. S., Singh, R. B. & Gupta, S. K. Supplemental irrigation of wheat with saline water. Agric. Water Manag. 95, 253–258 (2008).
    Article  Google Scholar 

    10.
    Qadir, M. et al. Productivity enhancement of salt-affected environments through crop diversification. Land Degrad. Dev. 19, 429–453 (2008).
    Article  Google Scholar 

    11.
    Kumar, S. et al. Forage Production Technology for Arable Lands 48 (Indian Grassland and Fodder Research Institute, Jhansi 284 003, Uttar Pradesh, India. Technology Bulletin no.1/2012, 2012).

    12.
    Maas, E. V. & Grattan, S. R. Crop yields as affected by salinity. In Handbook of Plant and Crop Stress (ed. Pessarakli, M.) 55–108 (Marcel Dekker, New York, 1999).
    Google Scholar 

    13.
    Kumar, S., Agrawal, R. K., Dixit A. K., Rai, A. K. & Rai, S. K. Forage crops and their management 60 (Indian Grassland and Fodder Research Institute, Jhansi 284 003, Uttar Pradesh, India. Technology Bulletin no. 2/2012, 2012).

    14.
    Jiang, J., Huo, Z., Feng, S. & Zhang, C. Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crop. Res. 137, 78–88 (2012).
    Article  Google Scholar 

    15.
    Nagaz, K., Masmoudi, M. M. & Mechlia, N. B. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity. J. Saudi Soc. Agric. Sci. 11, 19–27 (2012).
    CAS  Google Scholar 

    16.
    Mosaffa, H. R. & Sepaskhah, A. R. Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agric. Water Manag. 216, 444–456 (2019).
    Article  Google Scholar 

    17.
    Purakayastha, T. J. et al. Soil health card development for efficient soil management in Haryana, India. Soil Tillage Res. 191, 294–305 (2019).
    Article  Google Scholar 

    18.
    Grigg, A. H., Sheridan, G. J., Pearce, A. B. & Mulligan, D. R. The effect of organic mulch amendments on the physical and chemical properties and revegetation success of a saline-sodic minespoil from central Queensland, Australia. Soil Res. 44, 97–105 (2006).
    CAS  Article  Google Scholar 

    19.
    Wang, Q. et al. The effects of no-tillage with subsoiling on soil properties and maize yield: 12-year experiment on alkaline soils of Northeast China. Soil Tillage Res. 137, 43–49 (2014).
    Article  Google Scholar 

    20.
    Basak, N. & Mandal, B. Soil quality management through carbon farming under intensive agriculture systems. Indian J. Fertil. 12, 54–64 (2019).
    Google Scholar 

    21.
    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).
    ADS  Article  Google Scholar 

    22.
    de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 110, 14296–14301 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Anonymous. Vision 2050 31 (ICAR-Central Soil Salinity Research Institute, Karnal, India, 2015). www.cssri.res.in.

    24.
    Singh, A. Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques. Ecol. Indic. 89, 584–589 (2018).
    Article  Google Scholar 

    25.
    Yao, R., Yang, J., Gao, P., Zhang, J. & Jin, W. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil Tillage Res. 128, 137–148 (2013).
    Article  Google Scholar 

    26.
    Napoli, M., Marta, A. D., Zanchi, C. A. & Orlandini, S. Assessment of soil and nutrient losses by runoff under different soil management practices in an Italian hilly vineyard. Soil Tillage Res. 168, 71–80 (2017).
    Article  Google Scholar 

    27.
    Sharma, D. P., Rao, K. V. G. K., Singh, K. N., Kumbhare, P. S. & Oosterbaan, R. J. Conjunctive use of saline and non-saline irrigation waters in semi-arid regions. Irrig. Sci. 15, 25–33 (1994).
    Article  Google Scholar 

    28.
    Sharma, D. P., Singh, K. N. & Kumbhare, P. S. Reuse of agricultural drainage water for crop production. J. Indian Soc. Soil Sci. 49, 483–488 (2001).
    Google Scholar 

    29.
    Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. The soil production function and landscape equilibrium. Nature 388, 358–361 (1997).
    ADS  CAS  Article  Google Scholar 

    30.
    Giacomini, S. J., Recous, S., Mary, B. & Aita, C. Simulating the effects of N availability, straw particle size and location in soil on C and N mineralization. Plant Soil 301, 289–301 (2007).
    CAS  Article  Google Scholar 

    31.
    Nawaz, A., Farooq, M., Lal, R., Rehman, A. & Rehman, H. Comparison of conventional and conservation rice-wheat systems in Punjab, Pakistan. Soil Tillage Res. 169, 35–43 (2017)

    32.
    Rai, A. K., Bhardwaj, R., Sureja, A. K. & Bhattacharyya, D. Effect of pine needles on inorganic nitrogen pools of soil treated with fertilizers and manure under cabbage crop. Range Manag. Agrofor. 32, 118–123 (2011).
    Google Scholar 

    33.
    Dong, Q., Yang, Y., Yu, K. & Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 201, 133–143 (2018).
    Article  Google Scholar 

    34.
    Wade, J. et al. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci. Rep. 10, 3917 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Mitran, T., Mani, P. K., Bandyopadhyay, P. K. & Basak, N. Effects of organic amendments on soil physical attributes and aggregate-associated phosphorus under long-term rice-wheat cropping. Pedosphere 28, 823–832 (2018).
    Article  Google Scholar 

    36.
    Sundha, P., Basak, N., Rai, A. K., Yadav, R. K. & Sharma, D. K. N and P release pattern in saline-sodic soil amended with gypsum and municipal solid waste compost. J. Soil Salin. Water Qual. 9, 145–155 (2017).
    Google Scholar 

    37.
    Margenot, A. J. et al. Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol. Soil Tillage Res. 166, 157–166 (2017).
    Article  Google Scholar 

    38.
    Deubel, A., Hofmann, B. & Orzessek, D. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil Tillage Res. 117, 85–92 (2011).
    Article  Google Scholar 

    39.
    Wei, K., Chen, Z., Zhu, A., Zhang, J. & Chen, L. Application of 31P NMR spectroscopy in determining phosphatase activities and P composition in soil aggregates influenced by tillage and residue management practices. Soil Tillage Res. 138, 35–43 (2014).
    Article  Google Scholar 

    40.
    Domínguez, R., Campillo, C. D., Pena, F. & Delgado, A. Effect of soil properties and reclamation practices on phosphorus dynamics in reclaimed calcareous marsh soils from the Guadalquivir Valley, SW Spain. Arid Land Res. Manag. 15, 203–221 (2001).
    Article  Google Scholar 

    41.
    Ghosh, S., Wilson, B., Ghoshal, S., Senapati, N. & Mandal, B. Organic amendments influence soil quality and carbon sequestration in the Indo-Gangetic plains of India. Agric. Ecosyst. Environ. 156, 134–141 (2012).
    Article  Google Scholar 

    42.
    Ding, Z. et al. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 10, 2736 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Mitran, T., Mani, P. K., Basak, N., Biswas, S. & Mandal, B. Organic amendments influence on soil biological indices and yield in rice-based cropping system in Coastal Sundarbans of India. Commun. Soil Sci. Plant Anal. 48, 170–185 (2017).
    CAS  Article  Google Scholar 

    44.
    Salinas-Garcı́a, J. R. et al. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Tillage Res. 66, 143–152 (2002).
    Article  Google Scholar 

    45.
    Basak, N., Datta, A., Mitran, T., Mandal, B. & Mani, P. K. Impact of organic and mineral inputs onto soil biological and metabolic activities under a long-term rice-wheat cropping system in sub-tropical Indian Inceptisols. J. Environ. Biol. 37, 83–89 (2016).
    PubMed  PubMed Central  Google Scholar 

    46.
    Dixit, A. K. et al. Soil properties, crop productivity and energetics under different tillage practices in fodder sorghum + cowpea–wheat cropping system. Arch. Agron. Soil Sci. 65, 492–506. https://doi.org/10.1080/03650340.2018.1507024 (2019).
    CAS  Article  Google Scholar 

    47.
    Rai, A. K., Bhardwaj, R. & Sureja, A. K. Effect of mixing pine needles litters on soil biological properties and phosphorus availability in soil amended with fertilizers and manures. Commun. Soil Sci. Plant Anal. 48, 1052–1058. https://doi.org/10.1080/00103624.2017.1323096 (2017).
    CAS  Article  Google Scholar 

    48.
    Wichern, F., Islam, M. R., Hemkemeyer, M., Watson, C. & Joergensen, R. G. Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. Front. Sustain. Food Syst. 4, 30 (2020).
    Article  Google Scholar 

    49.
    Meena, M. D. et al. Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard–pearl millet cropping system. Soil Res. 54, 958–969 (2016).
    CAS  Article  Google Scholar 

    50.
    Yan, N. & Marschner, P. Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity. Soil Biol. Biochem. 53, 50–55 (2012).
    CAS  Article  Google Scholar 

    51.
    Gao, Y. et al. Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China. Appl. Soil Ecol. 86, 165–173 (2015).
    Article  Google Scholar 

    52.
    Liang, Y. et al. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol. Biochem. 37, 1185–1195 (2005).
    CAS  Article  Google Scholar 

    53.
    Yuan, B.-C., Li, Z.-Z., Liu, H., Gao, M. & Zhang, Y.-Y. Microbial biomass and activity in salt affected soils under arid conditions. Appl. Soil Ecol. 35, 319–328 (2007).
    Article  Google Scholar 

    54.
    Paul, E. A. & Clark, F. E. Soil Microbiology and Biochemistry (Academic Press, San Diego, 1989).
    Google Scholar 

    55.
    Bünemann, E. K. et al. Soil quality—a critical review. Soil Biol. Biochem. 120, 105–125 (2018).
    Article  CAS  Google Scholar 

    56.
    Silva, A. & Stocker, L. What is a transition? Exploring visual and textual definitions among sustainability transition networks. Glob. Environ. Change 50, 60–74 (2018).
    Article  Google Scholar 

    57.
    Minhas, P. S. & Gupta, R. K. Quality of Irrigation Water: Assessment and Management 123 (Indian Council of Agricultural Research, New Delhi, 1992).
    Google Scholar 

    58.
    Gelaye, K. K., Zehetner, F., Loiskandl, W. & Klik, A. Effects of soil texture and groundwater level on leaching of salt from saline fields in Kesem irrigation scheme, Ethiopia. Soil Water Res. 14, 221–228 (2019).
    CAS  Article  Google Scholar 

    59.
    Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A. & Keesstra, S. D. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecol. Eng. 108, 162–171 (2017).
    Article  Google Scholar 

    60.
    Rodrigo-Comino, J., Davis, J., Keesstra, S. D. & Cerdà, A. Updated measurements in vineyards improves accuracy of soil erosion rates. Agron. J. 110, 411–417 (2018).
    Article  Google Scholar 

    61.
    Kumar, A. et al. Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (Triticum aestivum) varieties. Indian J. Agric. Sci. 88, 1624–1632 (2018).
    CAS  Google Scholar 

    62.
    Soil Survey Division Staff. Soil Survey Manual (United States Department of Agriculture, Washington. Handbook no 18, 1993).

    63.
    Richards, L. A. Diagnosis and Improvement of Saline and Alkali Soils 160 (Government Printing Office (Superindent of Documents), Washington, DC, 1954).

    64.
    Jackson, M. L. Soil Chemical Analysis 498 (Printice Hall of India Pvt Ltd., New Delhi, 1967).
    Google Scholar 

    65.
    Subbiah, B. V. & Asija, G. L. A rapid procedure for assessment of available nitrogen in rice soils. Curr. Sci. 25, 259–260 (1956).
    CAS  Google Scholar 

    66.
    Voroney, R. P. & Paul, E. A. Determination of kC and kNin situ for calibration of the chloroform fumigation-incubation method. Soil Biol. Biochem. 16, 9–14 (1984).
    CAS  Article  Google Scholar 

    67.
    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
    CAS  Article  Google Scholar 

    68.
    Dick, R. P., Breakwell, D. P. & Turco, R. F. Soil Enzyme activities and biodiversity measurements as integrative microbiological indicators. Methods Assess. Soil Qual. https://doi.org/10.2136/sssaspecpub49.c15 (1997).
    Article  Google Scholar 

    69.
    Andrews, S. S. & Carroll, C. R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 11, 1573–1585 (2001).
    Article  Google Scholar 

    70.
    Mandal, B., Basak, N., Singha, R. S. & Biswas, S. Soil health measurement techniques. In Soil Health: Concept, Status and Monitoring (eds. Katyal, J. C. et al.) 1–98 (Indian Society of Soil Science, New Delhi. Bulletin no. 30, 2016). More

  • in

    Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments

    1.
    Zoumis T, Schmidt A, Grigorova L, Calmano W. Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ. 2001;266:195–202.
    CAS  PubMed  Article  Google Scholar 
    2.
    SØNdergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, et al. Lake restoration: successes, failures and long-term effects. J Appl Ecol. 2007;44:1095–105.
    Article  CAS  Google Scholar 

    3.
    Zhao CS, Yang Y, Yang ST, Xiang H, Wang F, Chen X, et al. Impact of spatial variations in water quality and hydrological factors on the food-web structure in urban aquatic environments. Water Res. 2019;153:121–33.
    CAS  PubMed  Article  Google Scholar 

    4.
    Wang C, Zhai W, Shan B. Oxygen microprofile in the prepared sediments and its implication for the sediment oxygen consuming process in a heavily polluted river of China. Environ Sci Pollut Res Int. 2016;23:8634–43.
    CAS  PubMed  Article  Google Scholar 

    5.
    Liu B, Han RM, Wang WL, Yao H, Zhou F. Oxygen microprofiles within the sediment-water interface studied by optode and its implication for aeration of polluted urban rivers. Environ Sci Pollut Res Int. 2017;24:9481–94.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Rysgaard S, Risgaard-Petersen N, Sloth NP, Jensen K, Nielsen LP. Oxygen regulation of nitrification and denitrification in sediments. Limnol Oceanogr. 2003;39:1643–52.
    Article  Google Scholar 

    7.
    Broman E, Sachpazidou V, Pinhassi J, Dopson M. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front Microbiol. 2017;8:2453–2453.
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Zheng B, Wang L, Liu L. Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea, China. Microbiol Res. 2014;169:585–92.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Yu P, Wang J, Chen J, Guo J, Yang H, Chen Q. Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals. Sci Total Environ. 2019;663:654–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Papageorgiou N, Kalantzi I, Karakassis I. Effects of fish farming on the biological and geochemical properties of muddy and sandy sediments in the Mediterranean Sea. Mar Environ Res. 2010;69:326–36.
    CAS  PubMed  Article  Google Scholar 

    11.
    Pfeffer C, Larsen S, Song J, Dong MD, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491:218–21.
    CAS  PubMed  Article  Google Scholar 

    12.
    Nielsen LP, Risgaard-Petersen N. Rethinking sediment biogeochemistry after the discovery of electric currents. Annu Rev Mar Sci. 2015;7:425–42.
    Article  Google Scholar 

    13.
    Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche E-M, et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences. 2017;14:683–701.
    CAS  Article  Google Scholar 

    14.
    Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. 2020;14:1233–46.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Muller H, Bosch J, Griebler C, Damgaard LR, Nielsen LP, Lueders T, et al. Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J. 2016;10:2010–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Malkin SY, Rao AM, Seitaj D, Vasquez-Cardenas D, Zetsche EM, Hidalgo-Martinez S, et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J. 2014;8:1843–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Rao AMF, Malkin SY, Hidalgo-Martinez S, Meysman FJR. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochim et Cosmochim Acta. 2016;172:265–86.
    CAS  Article  Google Scholar 

    18.
    Marzocchi U, Palma E, Rossetti S, Aulenta F, Scoma A. Parallel artificial and biological electric circuits power petroleum decontamination: the case of snorkel and cable bacteria. Water Res. 2020;173:115520.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA. 2019;116:19116–25.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Schauer R, Risgaard-Petersen N, Kjeldsen KU, Bjerg JJT, Jorgensen BB, Schramm A, et al. Succession of cable bacteria and electric currents in marine sediment. ISME J. 2014;8:1314–22.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Burdorf LDW, Malkin SY, Bjerg JT, van Rijswijk P, Criens F, Tramper A, et al. The effect of oxygen availability on long-distance electron transport in marine sediments. Limnol Oceanogr. 2018;63:1799–816.
    CAS  Article  Google Scholar 

    22.
    Zhou J, Deng Y, Luo F, He Z, Yang Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio. 2011;2:e00122-11.
    Article  Google Scholar 

    23.
    Faust K, Raes J. Microbial interactions: from networks to model. Nat Rev Microbiol. 2012;10:538–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. mBio. 2010;1:e00169–110.
    PubMed  PubMed Central  Google Scholar 

    25.
    Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    26.
    Tu Q, Yan Q, Deng Y, Michaletz ST, Buzzard V, Weiser MD, et al. Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol Biochem. 2020;148:107897.
    CAS  Article  Google Scholar 

    27.
    Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19:4993–5009.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinform. 2012;13:113.
    Article  Google Scholar 

    29.
    Kruskal JB. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 1964;29:115–29.
    Article  Google Scholar 

    30.
    Guo X, Feng J, Shi Z, Zhou X, Yuan M, Tao X, et al. Climate warming leads to divergent succession of grassland microbial communities. Nat Clim Change. 2018;8:813–8.
    Article  Google Scholar 

    31.
    Legendre P, Legendre LF. Numerical ecology. 3rd ed. Oxford, UK: Elsevier; 2012.

    32.
    van den Wollenberg AL. Redundancy analysis an alternative for canonical correlation analysis. Psychometrika. 1977;42:207–19.
    Article  Google Scholar 

    33.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.R-project.org/.

    34.
    Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22:1–19.
    Article  Google Scholar 

    35.
    Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology. 2006;87:53–63.
    PubMed  Article  Google Scholar 

    36.
    Scholz VV, Meckenstock RU, Nielsen LP, Risgaard-Petersen N. Cable bacteria reduce methane emissions from rice-vegetated soils. Nat Commun. 2020;11:1878.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, et al. Cable bacteria in freshwater sediments. Appl Environ Microbiol. 2015;81:6003–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Coates JD, Anderson RT, Lovley DR. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol. 1996;62:1099–101.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Coates JD, Chakraborty R, McInerney MJ. Anaerobic benzene biodegradation—a new era. Res Microbiol. 2002;153:621–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Matturro B, Cruz Viggi C, Aulenta F, Rossetti S. Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front Microbiol. 2017;8:952.
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Huisingh J, McNeill JJ, Matrone G. Sulfate reduction by a Desulfovibrio species isolated from sheep rumen. Appl Microbiol. 1974;28:489–97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P. Low-abundance members of the Firmicutes facilitate bioremediation of soil impacted by highly acidic mine drainage from the Malanjkhand Copper Project, India. Front Microbiol. 2018;9:2882–2882.
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682–682.
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Coates JD, Councell T, Ellis DJ, Lovley DR. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe. 1998;4:277–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Caccavo F Jr., Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994;60:3752–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Loesche WJ. Oxygen sensitivity of various anaerobic bacteria. Appl Microbiol. 1969;18:723–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 2009;11:2112–22.
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA. 2009;106:9151–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front Microbiol. 2016;7:1955–1955.
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol. 2004;54:1483–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Rodriguez-Conde S, Molina L, González P, García-Puente A, Segura A. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl Microbiol Biotechnol. 2016;100:10627–36.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Sha S, Zhong J, Chen B, Lin L, Luan T. Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene. Int J Syst Evolut Microbiol. 2017;67:489–97.
    CAS  Article  Google Scholar 

    53.
    Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7:1369.
    PubMed  PubMed Central  Google Scholar 

    54.
    Yan Z, Zhang Y, Wu H, Yang M, Zhang H, Hao Z, et al. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Adv. 2017;7:46690–8.
    CAS  Article  Google Scholar 

    55.
    Weiss JV, Rentz JA, Plaia T, Neubauer SC, Merrill-Floyd M, Lilburn T, et al. Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J. 2007;24:559–70.
    CAS  Article  Google Scholar 

    56.
    Lenchi N, Inceoğlu O, Kebbouche-Gana S, Gana ML, Llirós M, Servais P, et al. Diversity of microbial communities in production and injection waters of Algerian oilfields revealed by 16S rRNA gene Amplicon 454 pyrosequencing. PLoS ONE. 2013;8:e66588.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Nogales B, Moore ER, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol. 2001;67:1874–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Xu P, Xiao E, Zeng L, He F, Wu Z. Enhanced degradation of pyrene and phenanthrene in sediments through synergistic interactions between microbial fuel cells and submerged macrophyte Vallisneria spiralis. J Soils Sediment. 2019;19:2634–49.
    CAS  Article  Google Scholar 

    59.
    Singleton DR, Jones MD, Richardson SD, Aitken MD. Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Appl Microbiol Biotechnol. 2013;97:8381–91.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Lu XY, Zhang T, Fang HH. Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol. 2011;89:1357–71.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Wang C, Huang Y, Zhang Z, Wang H. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB Express. 2018;8:67.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A. Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol. 2012;95:789–98.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Vasquez-Cardenas D, van de Vossenberg J, Polerecky L, Malkin SY, Schauer R, Hidalgo-Martinez S, et al. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME J. 2015;9:1966–78.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Wasmund K, Cooper M, Schreiber L, Lloyd KG, Baker BJ, Petersen DG, et al. Single-cell genome and group-specific dsrAB sequencing implicate marine members of the class Dehalococcoidia (phylum Chloroflexi) in sulfur cycling. mBio. 2016;7:e00266-16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Liang B, Wang L-Y, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D, et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express. 2015;5:117–117.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    66.
    Logan BE, Rossi R, Ragab AA, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol. 2019;17:307–19.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Pisciotta JM, Zaybak Z, Call DF, Nam J-Y, Logan BE. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol. 2012;78:5212–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Wang B, Zhang H, Yang Y, Xu M. Diffusion and filamentous bacteria jointly govern the spatiotemporal process of sulfide removal in sediment microbial fuel cells. Chem Eng J. 2021;405:126680.
    CAS  Article  Google Scholar 

    69.
    Li X, Li Y, Zhang X, Zhao X, Sun Y, Weng L, et al. Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Sci Total Environ. 2019;651:796–806.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Malvankar NS, King GM, Lovley DR. Centimeter-long electron transport in marine sediments via conductive minerals. ISME J. 2015;9:527–31.
    CAS  PubMed  Article  Google Scholar 

    71.
    Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, et al. Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA. 2018;115:5786–91.
    CAS  PubMed  Article  Google Scholar 

    72.
    Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH, van der Veen J, et al. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun. 2019;10:4120.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Teske A. Cable bacteria, living electrical conduits in the microbial world. Proc Natl Acad Sci USA. 2019;116:18759.
    CAS  PubMed  Article  Google Scholar 

    74.
    Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim et Cosmochim Acta. 2012;92:1–13.
    CAS  Article  Google Scholar 

    75.
    Risgaard-Petersen N, Damgaard LR, Revil A, Nielsen LP. Mapping electron sources and sinks in a marine biogeobattery. J Geophys Res Biogeosci. 2014;119:1475–86.
    CAS  Article  Google Scholar  More

  • in

    Ongoing ecological and evolutionary consequences by the presence of transgenes in a wild cotton population

    In this study, we showed that the expression of cry and cp4-epsps genes in wild cotton altered the secretion of EFN, the associations with different ant species, and the levels of herbivore damage on target plants. Wcry constantly maintained a high production of EFN, regardless of the MeJA treatment, but nectar production was minimal in Wcp4-epsps. These changes in nectar inducibility seem to modify the composition of ant communities, foster the dominance of the generalist and defensive species C. planatus in Bt plants and the presence of ants without defensive role, M. ebeninum, in the herbicide tolerant genotype, while W plants had both defending species (C. planatus, C. rectangularis aulicus and P. gracilis) and invasive ant species (P. longicornis) in the same proportion. Furthermore, herbivore damage and its associated ant community were different according to the introgressed transgene.
    Wild and introgressed cotton do not display phenotypic equivalence in natural conditions
    In general, it has been assumed that introgressed and wild genotypes should display similar phenotypes in the absence of the selection agents targeted by transgenes. However, when we compared the control group and the three genotypes, we registered different nectar secretion patterns among them (Fig. 1). Similar results have been registered in populations of bt rice and glyphosate-tolerant sunflowers living in natural conditions where introgressed plants are different from their wild relatives5.
    Transgene expression modified indirect induced defences in wild cotton
    Most plants are able to induce responses after herbivore damage and/or phytohormone exogenous application (i.e. jasmonic acid, JA; methyl jasmonate, MeJA; and salicylic acid, SA)11,28,29. However, unlike wild plants without transgenes, individuals with transgenes were not sensitive to the induction treatment with MeJA for increasing their EFN production (Fig. 1). These results contrast with previous reports on cultivated varieties, such as Bt and glyphosate-resistant (cp4-epsps), in which direct defences such as gossypol terpenoids (160%), hemigossypolone (160%), helicoids 1|4 (213%) and indirect defenses, such as volatile compounds (VOCs) (171.2%) and extrafloral nectar (EFN) (133%), were reported to increase in plants sprinkled with JA and MeJA21,28,29,30.
    The inability of plants with transgenes to have the production of extrafloral nectar induced in them was related to different processes dependent on the identity of the transgenes in question. Whereas Wcry control plants had a high EFN production equivalent to the induced state of W plants, EFN production in Wcp4-epsps plants was inhibited. Contrasting these findings with results obtained under controlled conditions (i.e. greenhouse and crop conditions)3,21, we suggest that EFN production is linked to genotypes with transgenes and abiotic stress in the coastal dunes, because transgenes are connected to main metabolic pathways that respond to stressful conditions21.
    Wild cotton with cp4-epsps
    In the absence of herbicides acting as a selection agent, wild plants with cp4-epsps exhibited large differences compared to wild plants without them. Their low nectar production ( > 8 µg/mL) (Fig. 1) could be linked to the crosstalk between the jasmonate and the salicylate (SA) pathways (Fig. 4, orange and purple section). In G. hirsutum and other species, SA signalling has been proven to negatively affect JA signalling (e.g. Zea mays, Solanum lycopersicum, Nicotiana tabacum and Arabidopsis thaliana)31,32,33: therefore, we suggest an interference between the SA and JA pathways given previous reports that an over-expression of the cp4-epsps gene modifies the second part of the shikimate pathway (post-chorismate), which leads to the synthesis of essential amino acids as phenylalanine, tryptophan, or tyrosine, the latter being a precursor of benzoic acid BE, and SA34,35 (Fig. 4, purple section). This evidence highlights that hidden crosstalk effects among different metabolic pathways can scale up and modify plant phenotypes (e.g. extrafloral nectar production).
    Figure 4

    A diagram illustrating how the expression of cry (A) and cp4-epsps (B) in absence of their selection agent (pests and glyphosate) can affect the extrafloral nectar production. The extrafloral nectar (EFN) production is an induced defence that can be triggered by foliar herbivory, mechanical damage, and exogenous application of phytohormones (i.e. jasmonic acid, methyl jasmonate, and salicylic acid). These factors activate the octadecanoid pathway, and therefore, the production of extrafloral nectar, (A) aqua rectangle. The (C) section is an example of this reaction in a wild cotton plant (without transgenes). After damage, the key genes (yellow mesh) of the octadecanoid pathway are activated and produce extrafloral nectar. Another scenario is when the wild cotton expresses cry genes (A section), in this case, the key genes of the octadecanoid pathway interact synergistically with the cry transgene (green mesh). This triggers an over-expression of the production of EFN (aqua thick arrow), switching from inducible to constitutive responses. When the plants express cp4-epsps (B section), the production of extrafloral nectar is reduced or inhibited. A possible answer is an over-expression of the epsps gene (gold curve arrow), that increased production of salicylic acid which creates a crosstalk between shikimate and octadecanoid pathways (black cross-talk arrow). When the shikimate pathway is activated, the principal inducible defence is the production of volatile organic compounds (VOCs) (pink rectangle).

    Full size image

    Wild cotton with cry
    Wild cotton plants with cry genes continuously produced EFN as a constitutive defence (Fig. 1), in equivalent quantities as the induced state of W plants. EFN production is regulated by the octadecanoid signalling pathway, which can be activated by herbivore damage, mechanical damage, and phytohormones, such as JA and MeJA21,28 (Fig. 4, green section). However, for cotton, a specific elicitor is not necessary36. Four key genes for the synthesis of JA and MeJA have been described: AOS, AOC, HPL, and COI137. In Bt maize, studies comparing GM corn and its isogenic lines report an increase of 24% in phenols and 63% of DIMBOA (2,4-dihidroxi-7-metoxi-1,4-benzoxazin-3-ona; natural defences against lepidopteran herbivores)11. This is consistent with observations of a synergy between maize direct defences and Bt genes, after exogenous applications of JA (Fig. 4, orange section). Considering the latter, we suggest that Wcry cotton may present a similar response, as the genes activating the JA pathway are GhAOS and GhCOI1 (homologs to maize JA biosynthesis genes: ZmAOS and ZmCOI1), in addition to Ghppo1, which confers natural resistance to lepidopteran pest, such as H. armigera38. The interaction of cry with other genes could modify the production of EFN in Wcry plants.
    Effect of the transgenes’ expression on ants associated to wild cotton
    We identified eight species of ants harvesting EFN (Table 2), but with distinctive communities as a function of the plant genotype. This result suggests that the change in quantity, and possibly the composition and quality of EFN, can influence the ant community associated with G. hirsutum39,40,41.
    Changes in plant reward production could potentially compromise the attraction of natural enemies of herbivores42. In our study, the availability of EFN was modified. Although species richness was the same as in W plants (Table 2), the most abundant ant species associated with Wcp4-epsps plants, M. ebeninum, is considered a generalist species. Moreover, due to the lack of aggressive behaviour, this species does not represent an effective biotic defence43. The high abundance of this non-defensive species could be associated with the greater herbivore damage observed in Wcp4-epsps plants (Fig. 2). In contrast, W or Wcry plants showed a greater abundance of more aggressive ant species such as C. planatus, C. rectangulatus, and P. brunneus and significantly less herbivore damage.
    In Wcry cotton, the community of patrolling ants was mainly dominated by C. planatus, in both treatments (control and induction). Interestingly, although the amount of nectar did not vary between treatments, the abundance of ants was significantly different. The dominance of a single ant species could have benefited the plants with increased indirect defence, reducing herbivore damage and promoting a greater seed production per plant, as described in Turnera ulmifolia44, Schomburgkia tibicinis45, and Opuntia stricta42. However, considering the aggressive and dominant behaviour of C. planatus, there may be ecological costs through antagonistic relationships with pollinators. Ants can interrupt pollination and affect plant fitness25,46,47. The outcome of these mutualistic and antagonistic interactions requires further study.
    Effects of transgenes on herbivore damage
    Considering that the type of mutualism that cotton sustains with ants is defensive, we suggest that the change we observed in the composition of ants is likely to have influenced herbivore damage in the different genotypes, which in turn has the potential to reduce fitness as shown by other studies of cotton48,49,50. However, a study carried out on wild upland cotton reported that plants tolerate intermediate levels of leaf damage inflicted by leaf-chewing insects ( More

  • in

    The role of host promiscuity in the invasion process of a seaweed holobiont

    Sample collection
    Algae were sampled from August 27th to September 21st (2017) from seven populations also collected for Bonthond et al. [28], including three native populations; Akkeshi (Japan), Soukanzan (Japan), Rongcheng (China); and four non-native populations; Pleudihen-sur-Rance (France), Nordstrand (Germany), Cape Charles Beach (Viriginia) and Tomales Bay (California, Fig. 1, Table S1). Individuals fixed to hard substratum (see [30]) were sampled at least a meter apart from one another and stored in separate plastic bags. As A. vermiculophyllum has a complex, haplodiplontic life-cycle only diploids were included in the experiment. Life-cycle stages were identified in the field with a dissecting microscope or post-hoc by microsatellite genotyping [31]. After transport in coolers and storage at 4 °C in the lab, bags with algae were shipped to Germany, arriving within 4–6 days after collection. In the climate room (15 °C), individuals were transferred to separate transparent aquaria with transparent lids, containing 1.75 L artificial seawater (ASW) prepared from tap water and 24 gL−1 artificial sea salt without CaCO3 (high CaCO3 concentrations increase disease risk, Weinberger data unpublished) and exposed to 12 h of light per day (86.0 µmol m−2s−1 at the water surface). Aquaria were moderately aerated with aeration stones. Per population, four diploid individuals were acclimated over 31–32 days to climate room conditions prior to starting the experiment. Water was exchanged weekly with new ASW enriched with 2 mL Provasoli-Enrichment Solution (PES; [32]). At the start of the experiment, wet weight was recorded and individuals were divided into two parts of ~10 g each and placed into two plastic tanks with 1.75 L water and 2 mL PES (Fig. 1).
    Fig. 1: Schematic overview of the sampling design and experimental process.

    Algae were collected from native populations Rongcheng (ron), Soukanzan (sou) and Akkeshi (akk) and non-native populations Tomales Bay (tmb), Cape Charles Beach (ccb), Pleudihen-sur-Rance (fdm) and Nordstrand (nor). In the climate room algae were acclimated for 5 weeks and divided into two thalli. One of the thalli was treated for three days with an antibiotic mixture after which both groups were monitored for six weeks, during which the treated algae received inoculum with each water change. Microbiota samples were taken in the field (tfield), directly after disturbance (t0) and after 1, 2, 4 and 6 weeks (t1, t2, t4 and t6).

    Full size image

    Experimental setup
    To rigorously disturb the microbial community, one of each of the pairs of aquaria containing the same algal individual was treated with a combination of antibiotics, aiming to increase the effectivity (10 mgL−1 ampicillin, 10 mgL−1 streptomycin, 10 mgL−1 chloramphenicol) and the other (control) remained untreated. All experimental work was conducted with disposable gloves and sterilized equipment, to minimize contamination. After three days, the water was removed from all tanks (treated and control) and the wet weight was recorded for all algae. All individuals were rinsed with one 1.75 L volume ASW and re-incubated in 1.75 L ASW. Subsequently, both groups received new ASW with 2 mL PES weekly and individuals treated with antibiotics received also 2 mL inoculum. The inoculum was prepared from individuals of all 7 populations, following the procedure to remove epibiota as described in Bonthond et al. [28]. Briefly, apical fragments of 1 g were separated from the thallus and transferred to 50 mL tubes containing 15 ± 1 glass beads (3 mm) and 15 mL ASW and vortexed for 6 min to separate epibiota from the algal tissue. In total, 8 samples were prepared from one individual per population. The resulting suspensions were pooled and mixed with glycerol (20% final glycerol concentration), aliquoted in 50 mL tubes and stored at −20 °C. For each water exchange, a new aliquot was defrosted at room temperature and added to the water of treated algae. Wet weight was recorded weekly with water exchanges. Before weighing the individual on aluminum foil, it was dipped twice on a separate aluminum foil sheet, to reduce attached water in a systematic way. Endo- and epiphytic microbiota were sampled in the field (tfield, [28]), at the start of the experiment (t0), after one week (t1), two weeks (t2), four weeks (t4) and six weeks (t6, Fig. 1). To equalize acclimation times across populations the experiment was stacked into five groups (Table S2). At each sampling moment, 0.5 or 1 g of tissue was separated from all individuals with sterilized forceps and epibiota were extracted similarly to the preparation of the inoculum. The resulting suspension was filtered through 0.2 µm pore size PCTA filters. Both the filters and the remaining tissue were preserved at −20 °C.
    DNA extraction and amplicon sequencing
    Tissue samples were defrosted, rinsed with absolute ethanol and DNA free water to remove hydro- and moderately lipophilic cells and molecules from the surface and cut to fragments with sterilized scissors. DNA was then extracted from these fragments (endobiota) and from preserved filters (epibiota) using the ZYMO Fecal/soil microbe kit (D6102; ZYMO-Research, Irvine, CA, USA), following the manufacturer’s protocol. Although this method to separate endo- and epibiota was shown to resolve distinct communities [28], tightly attached epiphytic cells may not be completely removed from the surface and detectable in endophytic samples as well. Two 16S-V4 amplicon libraries, over which the samples were divided in a balanced manner, were prepared as in Bonthond et al. [28], following the two-step PCR strategy from Gohl et al. [33], using the same set of 16S-V4 target primers and indexing primers. The libraries were sequenced on the Illumina MiSeq platform (2×300 PE) at the Max-Planck-Institute for Evolutionary Biology (Plön, Germany), including four negative DNA extraction controls and four negative and positive PCR controls (mock communities; ZYMO-D6311). The fastq files were de-multiplexed (0 mismatches). Relevant field samples from Bonthond et al. [28] were combined with the new dataset and assembled, quality filtered and classified altogether with Mothur v1.43.0 [34] using the SILVA-alignment release 132 [35]. Sequences were clustered within 3% dissimilarity into OTUs using the opticlust algorithm. Mitochondrial, chloroplast, eukaryotic and unclassified sequences were removed. To prepare the community matrix we discarded singleton OTUs (in the full dataset), samples with More

  • in

    Understanding the seasonality of performance resilience to climate volatility in Mediterranean dairy sheep

    1.
    Henry, B. K., Eckard, R. J. & Beauchemin, K. A. Review: Adaptation of ruminant livestock production systems to climate changes. Animal 12, s445–s456. https://doi.org/10.1017/S1751731118001301 (2018).
    CAS  Article  PubMed  Google Scholar 
    2.
    Sejian, V., Kumar, D., Gaughan, J. B. & Naqvi, S. M. K. Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment. J. Vet. Behav. 17, 6–13. https://doi.org/10.1016/j.jveb.2016.10.009 (2017).
    Article  Google Scholar 

    3.
    Segnalini, M., Bernabucci, U., Vitali, A., Nardone, A. & Lacetera, N. Temperature humidity index scenarios in the Mediterranean basin. Int. J. Biometeorol. 57, 451–458. https://doi.org/10.1007/s00484-012-0571-5 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Carabano, M. J., Bachagha, K., Ramon, M. & Diaz, C. Modeling heat stress effect on Holstein cows under hot and dry conditions: Selection tools. J. Dairy Sci. 97, 7889–7904. https://doi.org/10.3168/jds.2014-8023 (2014).
    CAS  Article  PubMed  Google Scholar 

    5.
    Finocchiaro, R., van Kaam, J. B., Portolano, B. & Misztal, I. Effect of heat stress on production of Mediterranean dairy sheep. J. Dairy Sci. 88, 1855–1864. https://doi.org/10.3168/jds.S0022-0302(05)72860-5 (2005).
    CAS  Article  PubMed  Google Scholar 

    6.
    Sevi, A. & Caroprese, M. Impact of heat stress on milk production, immunity and udder health in sheep: A critical review. Small Ruminant Res. 107, 1–7. https://doi.org/10.1016/j.smallrumres.2012.07.012 (2012).
    Article  Google Scholar 

    7.
    Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005 (2008).
    ADS  Article  Google Scholar 

    8.
    Ozturk, T., Ceber, Z. P., Türkeş, M. & Kurnaz, M. L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 35, 4276–4292. https://doi.org/10.1002/joc.4285 (2015).
    Article  Google Scholar 

    9.
    Williams, C. M. et al. Understanding evolutionary impacts of seasonality: An introduction to the symposium. Integr. Comp. Biol. 57, 921–933. https://doi.org/10.1093/icb/icx122 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Barash, H., Silanikove, N., Shamay, A. & Ezra, E. Interrelationships among ambient temperature, day length, and milk yield in dairy cows under a Mediterranean climate. J. Dairy Sci. 84, 2314–2320. https://doi.org/10.3168/jds.S0022-0302(01)74679-6 (2001).
    CAS  Article  PubMed  Google Scholar 

    11.
    Bernabucci, U. et al. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4, 1167–1183. https://doi.org/10.1017/S175173111000090X (2010).
    CAS  Article  PubMed  Google Scholar 

    12.
    Santana, M. L. Jr. et al. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends. J. Dairy Sci. 98, 9035–9043. https://doi.org/10.3168/jds.2015-9817 (2015).
    CAS  Article  PubMed  Google Scholar 

    13.
    Escarcha, J., Lassa, J. & Zander, K. Livestock under climate change: A systematic review of impacts and adaptation. Climate https://doi.org/10.3390/cli6030054 (2018).
    Article  Google Scholar 

    14.
    van der Werf, J., Graser, H.-U., Frankham, R. & Gondro, C. Adaptation and Fitness in Animal Populations: Evolutionary and Breeding Perspectives on Genetic Resource Management (Springer, New York, 2009).
    Google Scholar 

    15.
    van der Waaij, E. H. A resource allocation model describing consequences of artificial selection under metabolic stress. J. Anim. Sci. 82, 973–981. https://doi.org/10.2527/2004.824973x (2004).
    Article  PubMed  Google Scholar 

    16.
    Colditz, I. G. & Hine, B. C. Resilience in farm animals: Biology, management, breeding and implications for animal welfare. Anim. Prod. Sci. https://doi.org/10.1071/an15297 (2016).
    Article  Google Scholar 

    17.
    Berghof, T. V. L., Poppe, M. & Mulder, H. A. Opportunities to improve resilience in animal breeding programs. Front. Genet. 9, 692. https://doi.org/10.3389/fgene.2018.00692 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Mulder, H. A. Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions. Front. Genet. 7, 178. https://doi.org/10.3389/fgene.2016.00178 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Bishop, S. C. A consideration of resistance and tolerance for ruminant nematode infections. Front. Genet. 3, 168. https://doi.org/10.3389/fgene.2012.00168 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Knap, P. Breeding robust pigs. Aust. J. Exp. Agric. https://doi.org/10.1071/EA05041 (2005).
    Article  Google Scholar 

    21.
    Marjanovic, J., Mulder, H. A., Ronnegard, L. & Bijma, P. Modelling the co-evolution of indirect genetic effects and inherited variability. Heredity 121, 631–647. https://doi.org/10.1038/s41437-018-0068-z (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Mulder, H. A., Bijma, P. & Hill, W. G. Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance. Genetics 175, 1895–1910. https://doi.org/10.1534/genetics.106.063743 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Mulder, H. A., Ronnegard, L., Fikse, W. F., Veerkamp, R. F. & Strandberg, E. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models. Genet. Sel. Evol. 45, 23. https://doi.org/10.1186/1297-9686-45-23 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Westneat, D. F., Wright, J. & Dingemanse, N. J. The biology hidden inside residual within-individual phenotypic variation. Biol. Rev. Camb. Philos. Soc. 90, 729–743. https://doi.org/10.1111/brv.12131 (2015).
    Article  PubMed  Google Scholar 

    25.
    Strandberg, E., Brotherstone, S., Wall, E. & Coffey, M. P. Genotype by environment interaction for first-lactation female fertility traits in UK dairy cattle. J. Dairy Sci. 92, 3437–3446. https://doi.org/10.3168/jds.2008-1844 (2009).
    CAS  Article  PubMed  Google Scholar 

    26.
    Bernabucci, U. et al. The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci. 97, 471–486. https://doi.org/10.3168/jds.2013-6611 (2014).
    CAS  Article  PubMed  Google Scholar 

    27.
    Carabaño, M. J. et al. Breeding and genetics symposium: Breeding for resilience to heat stress effects in dairy ruminants. A comprehensive review. J. Anim. Sci. https://doi.org/10.2527/jas2016.1114 (2017).
    Article  PubMed  Google Scholar 

    28.
    Ramon, M., Diaz, C., Perez-Guzman, M. D. & Carabano, M. J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 99, 5764–5779. https://doi.org/10.3168/jds.2016-10909 (2016).
    CAS  Article  PubMed  Google Scholar 

    29.
    Sanchez-Molano, E. et al. Genetic analysis of novel phenotypes for farm animal resilience to weather variability. BMC Genet. 20, 84. https://doi.org/10.1186/s12863-019-0787-z (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Knap, P. W. & Su, G. Genotype by environment interaction for litter size in pigs as quantified by reaction norms analysis. Animal 2, 1742–1747. https://doi.org/10.1017/S1751731108003145 (2008).
    CAS  Article  PubMed  Google Scholar 

    31.
    Kolmodin, R., Strandberg, E., Madsen, P., Jensen, J. & Jorjani, H. Genotype by environment interaction in nordic dairy cattle studied using reaction norms. Acta Agric. Scand. Sect. A Anim. Sci. 52, 11–24. https://doi.org/10.1080/09064700252806380 (2002).
    Article  Google Scholar 

    32.
    Rauw, W. M. & Gomez-Raya, L. Genotype by environment interaction and breeding for robustness in livestock. Front. Genet. 6, 310. https://doi.org/10.3389/fgene.2015.00310 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Stinchcombe, J. R., Function-valued Traits Working Group, G. & Kirkpatrick, M. Genetics and evolution of function-valued traits: Understanding environmentally responsive phenotypes. Trends Ecol. Evol. 27, 637–647. https://doi.org/10.1016/j.tree.2012.07.002 (2012).
    Article  PubMed  Google Scholar 

    34.
    Reeves, J. L. et al. Seasonal temperature and precipitation effects on cow–calf production in northern mixed-grass prairie. Livestock Sci. 155, 355–363. https://doi.org/10.1016/j.livsci.2013.04.015 (2013).
    Article  Google Scholar 

    35.
    Lateef, A., Das, H., Panchasara, H. H., Nilufar, H. & Sanap, M. J. Seasonal effects on milk yield, erythrocytic and leukocytic indices of Kankrej cattle (Bos indicus). Vet. World 7, 472–477. https://doi.org/10.14202/vetworld.2014.472-477 (2014).
    Article  Google Scholar 

    36.
    Angilletta, M. J. Thermal adaptation: A theoretical and empirical synthesis. Therm. Adapt. Theor. Empir. Synth. https://doi.org/10.1093/acprof:oso/9780198570875.001.1 (2009).
    Article  Google Scholar 

    37.
    Kingsolver, J., Diamond, S. & Gomulkiewicz, R. Integrative Organismal Biology (eds. Martin, L. B., Ghalambor, C. K. & Woods, H. A.) 39–53 (Wiley, New York, 2015).

    38.
    Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 41(Suppl 1), 32–46. https://doi.org/10.1111/j.1365-2052.2010.02043.x (2010).
    Article  PubMed  Google Scholar 

    39.
    Molik, E. et al. Effect of day length and exogenous melatonin on chemical composition of sheep milk. Arch. Anim. Breed. 54, 177–187. https://doi.org/10.5194/aab-54-177-2011 (2011).
    CAS  Article  Google Scholar 

    40.
    Molik, E., Misztal, T. & Dorota A. The Effect of Physiological and Environmental Factors on the Prolactin Profile in Seasonally Breeding Animals. https://www.intechopen.com/books/prolactin/the-effect-of-physiological-and-environmental-factors-on-the-prolactin-profile-in-seasonally-breedin (2013).

    41.
    Peana, I., Fois, G. & Cannas, A. Effects of heat stress and diet on milk production and feed and energy intake of Sarda ewes. Italian J. Anim. Sci. https://doi.org/10.4081/ijas.2007.1s.577 (2010).
    Article  Google Scholar 

    42.
    Peana, I. et al. Cold markedly influences milk yield of Sardinian dairy sheep farms. Italian J. Anim. Sci. 6, 580–580. https://doi.org/10.4081/ijas.2007.1s.580 (2007).
    Article  Google Scholar 

    43.
    do Amaral, B. C. et al. Heat-stress abatement during the dry period: Does cooling improve transition into lactation?. J. Dairy Sci. 92, 5988–5999. https://doi.org/10.3168/jds.2009-2343 (2009).
    CAS  Article  PubMed  Google Scholar 

    44.
    do Amaral, B. C. et al. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domest. Anim. Endocrinol. 38, 38–45. https://doi.org/10.1016/j.domaniend.2009.07.005 (2010).
    CAS  Article  PubMed  Google Scholar 

    45.
    do Amaral, B. C. et al. Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J. Dairy Sci. 94, 86–96. https://doi.org/10.3168/jds.2009-3004 (2011).
    CAS  Article  PubMed  Google Scholar 

    46.
    Serradilla, J. M. et al. Characterisation of Goats’ Response to Heat Stress: Tools to Improve Heat Tolerance. https://www.intechopen.com/books/goat-science/characterisation-of-goats-response-to-heat-stress-tools-to-improve-heat-tolerance (2018).

    47.
    Beilharz, R. G., Luxford, B. G. & Wilkinson, J. L. Quantitative genetics and evolution: Is our understanding of genetics sufficient to explain evolution?. J. Anim. Breed. Genet. 110, 161–170. https://doi.org/10.1111/j.1439-0388.1993.tb00728.x (1993).
    CAS  Article  PubMed  Google Scholar 

    48.
    Rauw, W. M. “Introduction” in Resource Allocation Theory Applied to Farm Animal Production (ed. Rauw, W.M.) 1–21 (CAB International Publishing, Wallingford, 2008).

    49.
    Garner, J. B. et al. Genomic selection improves heat tolerance in dairy cattle. Sci. Rep. 6, 34114. https://doi.org/10.1038/srep34114 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    International Committee for Animal Recording (ICAR). ICAR Guidelines: Dairy Sheep and Goats. http://www.icar.org (2017).

    51.
    Basdagianni, Z., Sinapis, E. & Banos, G. Evaluation of reference lactation length in Chios dairy sheep. Animal 13(1), 1–7. https://doi.org/10.1017/S1751731118000769 (2018).
    Article  PubMed  Google Scholar 

    52.
    Misztal, I. et al. BLUPF90 and related programs (BGF90). In Proceedings of 7th World Congress on Genetics Applied to Livestock Production, Vol. 743 (2002).

    53.
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2019). http://www.r-project.org/index.html.
    Google Scholar 

    54.
    International Committee for Animal Recording (ICAR). ICAR Guidelines: Dairy Sheep and Goats. http://www.icar.org (2020)

    55.
    Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J. & Thompson, R. ASReml User Guide Release 4.1 Structural Specification. (2015). More

  • in

    The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen

    1.
    Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. N. Phytol. 165, 525–538 (2005).
    CAS  Article  Google Scholar 
    2.
    Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE https://doi.org/10.1371/journal.pone.0005102 (2009).

    3.
    Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. Bio. Sci. 59, 593–601 (2009).
    Google Scholar 

    4.
    Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship. Glob. Ecol. Biogeog. 22, 728–736 (2013).
    Article  Google Scholar 

    5.
    Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003 (2018).
    ADS  Article  Google Scholar 

    6.
    Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).
    Article  Google Scholar 

    7.
    Lenton, T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher, C. M.) 289–309 (John Wiley and Sons, Chichester, UK, 2013).

    8.
    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires 1997−2009. Atmos. Chem. Phys. Discuss. 10, 11707–11735 (2010).
    ADS  Article  CAS  Google Scholar 

    9.
    Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires Glob. Chang. Biol. 22, 76–91 (2016).
    Article  Google Scholar 

    10.
    Bond, W. J. & Keeley, J. E. Fire as a global herbivore: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).
    PubMed  Article  Google Scholar 

    11.
    Belcher, C. M., Collinson, M. E. & Scott, A. C. in C. M. Belcher (ed) Fire Phenomena and the Earth System: an Interdisciplinary Guide to Fire Science 229–249 (Wiley, Oxford, 2016).

    12.
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
    CAS  PubMed  Article  Google Scholar 

    13.
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. N. Phytol. 194, 751–759 (2012).
    Article  Google Scholar 

    14.
    Belcher, C. M. & Hudspith, V. A. Changes to cretaceous surface fire behaviour influenced the spread of the early angiosperms. N. Phytol. 213, 1521–1532 (2016).
    Article  CAS  Google Scholar 

    15.
    Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. N. Phytol. 188, 1137–1150 (2010).
    Article  Google Scholar 

    16.
    Keeley, J. E. & Rundel, P. W. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8, 683–690 (2005).
    Article  Google Scholar 

    17.
    Belcher, C. M. & McElwain, J. C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. Roy. Soc. B 361, 903–915 (2006).
    CAS  Article  Google Scholar 

    20.
    Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366, 1333–1337 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Lenton, T. M. & Watson, A. J. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys. Res. Lett. 31, L05202 (2004).
    ADS  Article  CAS  Google Scholar 

    23.
    Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Lenton, T. M. & Watson, A. J. Redfield revisited 2. What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles, B 14, 249–268 (2000).
    ADS  CAS  Article  Google Scholar 

    25.
    Watson, A. J. Consequences for the biosphere of forest and grassland fires. PhD thesis (University of Reading, Reading, UK, 1978).

    26.
    Kump, L. R. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).
    ADS  CAS  Article  Google Scholar 

    27.
    Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a reassessment. Glob. Biogeochem. Cyc. 19, (2005).

    28.
    Van Cappellen, P. & Ingall, E. D. Redox stabilisation of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).
    ADS  PubMed  Article  Google Scholar 

    29.
    Kump, L. R. & Mackenzie, F. T. Regulation of atmospheric O2: feedback in the microbial feedbag. Science 271, 459–460 (1996).
    ADS  CAS  Article  Google Scholar 

    30.
    Canfield, D. E. Sulfur isotopes in coal constrain the evolution of the Phaneroiz sulphur cycle. Proc. Natl Acad. Sci. USA 110, 8443–8446 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Walker, J. C. G. Stability of atmospheric oxygen. Am. J. Sci. 274, 193–214 (1974).
    ADS  CAS  Article  Google Scholar 

    32.
    Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).
    ADS  CAS  Article  Google Scholar 

    33.
    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans: Princeton Series in Geochemistry (Princeton University Press, Princeton, 1984).

    34.
    Berner, R. A. Atmospheric oxygen over Phanerozoic time. Proc. Natl Acad. Sci. USA 96, 10955–10957 (1999).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Lovelock, J. Gaia: a new look at life on Earth (Oxford University Press, New York, 1979).

    36.
    Mahowald, N. M. et al. Impact of biomass burning emissions and land use change on Amazonian atmospheric cycling and deposition of phosphorus. Glob. Biogeochem. Cycles 19, 1–15 (2005).
    Google Scholar 

    37.
    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).
    ADS  CAS  Article  Google Scholar 

    38.
    Robinson, J. M. Phanerozoic O2 variation, fire, and terrestrial ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 223–240 (1989).
    Article  Google Scholar 

    39.
    Midgley, J. J. & Bond, W. J. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher C. M.) 125–134 (Chichester, UK: John Wiley and Sons, 2013).

    40.
    Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
    ADS  CAS  Article  Google Scholar 

    41.
    Mills, B. J. W. et al. Modeliing the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gond. Res. 67, 172–186 (2019).
    ADS  CAS  Article  Google Scholar 

    42.
    Berner, R. A. Biogeochemical cycles of carbon and sulphur and their effect on atmospheric oxygen over Phanerozoic time. Glob. Planet. Chang. 75, 97–122 (1989).
    ADS  Article  Google Scholar 

    43.
    Berner, R. A. Modeling atmospheric O2 over Phaneroic time. Geochim. Cosmochim. Acta 65, 685–694 (2001).
    ADS  CAS  Article  Google Scholar 

    44.
    Lenton, T. M. The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Glob., Chang. Biol. 7, 613–629 (2001).
    ADS  Article  Google Scholar 

    45.
    Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 289, 333–361 (2009).
    ADS  Article  Google Scholar 

    46.
    Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).
    ADS  CAS  Article  Google Scholar 

    48.
    Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).
    ADS  CAS  Article  Google Scholar 

    49.
    Crane, P. R. & lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Lidgard, S. & Crane, P. R. Angiosperm diversification and Cretaceous floristic trends – a comparison of palynofloras and leaf floras. Paleobiology 16, 77–93 (1990).
    Article  Google Scholar 

    51.
    Friis, E. M., Crane, P. R. & Pederson, J. R. Early Flowers and Angiosperm Evolution (Cambridge University Press, New York, 2011).

    52.
    Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).
    Article  Google Scholar 

    53.
    Brodribb, T. J., Feild, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Field, T. S. et al. Fossil evidence for Cretaceous escalation un angiosperm leaf vein evolution. Proc. Natl Acad. Sci. USA 108, 863–8366 (2011).
    Google Scholar 

    55.
    Field, T. S., Arens, N. C., Doyle, J. A. & Dawson, T. E. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30, 82–107 (2004).
    Article  Google Scholar 

    56.
    Mills, B. et al. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochem. Geophys. Geosyst. 15, 4866–4884 (2014).
    ADS  CAS  Article  Google Scholar 

    57.
    Schneider, H. et al. Ferns diversified in the shadow of angiosperms. Nature 428, 553–557 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Brodribb, T. J. & Field, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).
    PubMed  Article  Google Scholar 

    59.
    Royer, D. L., Miller, I. M., Peppe, D. J. & Hickey, L. J. Leaf economic traits from fossils support a weedy habit for early angiosperms. Am. J. Bot. 97, 438–445 (2010).
    PubMed  Article  Google Scholar 

    60.
    Stevens P. F. Angiosperm phylogeny website. Version 12, [Online]. http://www.mobot.org/MOBOT/research/APweb/ (2012).

    61.
    Schwilk, D. W. & Ackerly, D. D. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94, 326–336 (2001).
    Article  Google Scholar 

    62.
    Lamont, B. B. & Downes, K. S. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Pl Ecol. 212, 2111–2125 (2011).
    Article  Google Scholar 

    63.
    Janssen, T. & Bremer, K. The age of major monocot groups inferred from 800+rbcL sequences. Bot. J. Linn. Soc. 146, 385–398 (2004).
    Article  Google Scholar 

    64.
    Krassilov, V. & Voynets, Y. Weedy Albian angiosperms. Acta Palaeobot. 48, 151–169 (2008).
    Google Scholar 

    65.
    Lamont, B. B. & He, T. Fire adapted Gondanan angiosperm floras evolved in the Cretaceous. Bmc. Evol. Biol. 12, 223 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Bowman, D. M. J. S., French, B. J. & Prior, L. D. Have plants evolved to self-immolate? Front. Plant. Sci. https://doi.org/10.3389/fpls.2014.00590 (2014).

    67.
    Crisp, M. D., Burrows, G. E., Cook, l. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun 2, 1–8 (2011).
    Article  CAS  Google Scholar 

    68.
    He, T., Lamont, B. B. & Downes, K. S. Banksia born to burn. N. Phyt. 191, 184–196 (2011).
    Article  Google Scholar 

    69.
    Watson, A. J. & Lovelock, J. E. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher C. M.) 273–287 (John Wiley and Sons, Chichester, UK, 2013).

    70.
    Tiffney, B. H. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Ann. Miss. Bot. Gard. 71, 551–576 (1984).
    Article  Google Scholar 

    71.
    Wheeler, E. A. & Baas, P. A survey of the fossil record for dicotlydonous wood and its significant for evolutionary and ecological wood anatomy. Int. Assoc. Wood. Anatom. Bull. 12, 271–332 (1991).
    Google Scholar 

    72.
    Wing, S. L. & Boucher, L. Ecological aspects of the Cretaceous flowering plant radiation. Ann. Rev. Earth Plan. Sci. 26, 379–421 (1998).
    ADS  CAS  Article  Google Scholar 

    73.
    Johnson, K. R. & Ellis, B. A tropical rainforest in Colorado, 1.4 million years after the Cretaceous-Tertiary boundary. Science 296, 2379–2383 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    74.
    Spicer, R. A., McA, Rees, P. & Chapman, J. L. Cretaceous phytogeography and climate signals. Roy. Soc. Proc. B 341, 277–286 (1993).
    Google Scholar 

    75.
    Beerling, D. J. & Woodward, F. I. Vegetation and the Terrestrial Carbon Cycle: Modelling the First 400 Million Years. (Cambridge, Cambridge and New York, 2001).

    76.
    Bond, W. J. & Midgley, J. J. Fire and the angiosperm revolutions. Int. J. Plant Sci. 173, 1–16 (2012).
    Article  Google Scholar 

    77.
    Wing, S. L. et al. Late Paleocene fossils from the Cerrejón formation, Colombia, are the earliest record of Neotropical rainforest. Proc. Natl Acad. Sci. USA 106, 18627–18632.

    78.
    Boyce, C. K., Brodribb, T., Feild, T. S. & Zweiniecki, M. J. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. Roy. Soc. B 276, 1771–1776 (2009).
    Article  Google Scholar 

    79.
    Balch, J. K. and five others. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    80.
    Donovan, G. H. & Brown, T. C. Be careful what you wish for: The legacy of Smokey Bear. Front. Ecol. Environ. 5, 73–79 (2007).
    Article  Google Scholar  More

  • in

    Author Correction: Expert assessment of future vulnerability of the global peatland carbon sink

    Department of Geography, Texas A&M University, College Station, TX, USA
    J. Loisel

    Department of Geography, University of Exeter, Exeter, UK
    A. V. Gallego-Sala, M. J. Amesbury, D. J. Charman & T. P. Roland

    Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
    M. J. Amesbury, A. Korhola, M. Väliranta, S. Juutinen, K. Minkkinen & S. Piilo

    Department of Geography and Geotop Research Center, University of Quebec at Montreal, Montreal, Quebec, Canada
    G. Magnan & M. Garneau

    Magister of Environment and Soil Science Department, Tanjungpura University, Pontianak, Indonesia
    G. Anshari

    Department of Geography and Environment, University of Hawaii at Manoa, Honolulu, HI, USA
    D. W. Beilman

    Department of Ecology and Territory, Pontificial Xavierian University, Bogota, Colombia
    J. C. Benavides

    Organic Geochemistry Unit, School of Chemistry, and School of Earth Sciences, University of Bristol, Bristol, UK
    J. Blewett & B. D. A. Naafs

    Environmental Studies Program and Earth and Oceanographic Science Department, Bowdoin College, Brunswick, ME, USA
    P. Camill

    Department of Geology, Chulalongkorn University, Bangkok, Thailand
    S. Chawchai

    Department of Geography, University of California, Los Angeles, Los Angeles, CA, USA
    A. Hedgpeth

    Max Planck Institute for Meteorology, Hamburg, Germany
    T. Kleinen & V. Brovkin

    Faculty of Engineering, Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
    D. Large

    Centro de Investigación GAIA Antártica, University of Magallanes, Punta Arenas, Chile
    C. A. Mansilla

    Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
    J. Müller & F. Joos

    Consortium Érudit, Université de Montréal, Montreal, Quebec, Canada
    S. van Bellen

    Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
    J. B. West

    Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, USA
    Z. Yu

    Institute for Peat and Mire Research, School of Geographical Sciences, Northeast Normal University, Changchun, China
    Z. Yu

    Department of Environmental Studies, Mount Holyoke College, South Hadley, MA, USA
    J. L. Bubier

    Department of Geography, McGill University, Montreal, Quebec, Canada
    T. Moore

    Department of Physical Geography, Stockholm University, Stockholm, Sweden
    A. B. K. Sannel

    School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
    S. Page

    Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
    M. Bechtold & W. Swinnen

    School of Geography & Sustainable Development, University of St Andrews, St Andrews, UK
    L. E. S. Cole

    Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL, USA
    J. P. Chanton

    Department of Bioscience, Aarhus University, Roskilde, Denmark
    T. R. Christensen

    Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
    M. A. Davies & S. A. Finkelstein

    Instituto Franco-Argentino para el Estudio del Clima y sus Impactos, Buenos Aires, Argentina
    F. De Vleeschouwer

    Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
    S. Frolking & C. Treat

    Department of Geobotany and Plant Ecology, University of Lodz, Lodz, Poland
    M. Gałka

    Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245, CNRS-UPS-INPT, Toulouse, France
    L. Gandois

    Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
    N. Girkin

    Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
    L. I. Harris

    Stockholm Environment Institute, University of York, York, UK
    A. Heinemeyer

    Max Planck Institute for Biogeochemistry, Jena, Germany
    A. M. Hoyt

    Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    A. M. Hoyt

    Florence Bascom Geoscience Center, United States Geological Survey, Reston, VA, USA
    M. C. Jones

    Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, USA
    K. Kaiser

    Department of Biology, University of Victoria, Victoria, British Columbia, Canada
    T. Lacourse

    Faculty of Geographical and Geological Sciences, Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
    M. Lamentowicz

    Natural Resources Institute Finland (Luke), Helsinki, Finland
    T. Larmola

    Agroscope, Zurich, Switzerland
    J. Leifeld

    Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
    A. Lohila

    Finnish Meteorological Institute, Climate System Research, Helsinki, Finland
    A. Lohila

    Department of Geography, Royal Holloway, University of London, Egham, UK
    A. M. Milner

    Department of Forest Sciences, University of Helsinki, Helsinki, Finland
    K. Minkkinen

    School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
    P. Moss

    Lamont-Doherty Earth Observatory, Palisades, NY, USA
    J. Nichols

    National Park Service, Washington DC, WA, USA
    J. O’Donnell

    Department of Environment & Geography, University of York, York, UK
    R. Payne

    Department of Chemistry, and Department of Geological and Environmental Science, Hope College, Holland, MI, USA
    M. Philben

    Department of Geography and Environmental Science, University of Reading, Reading, UK
    A. Quillet

    Department of Applied Earth Sciences, Uva Wellassa University, Badulla, Sri Lanka
    A. S. Ratnayake

    School of Biosciences, University of Nottingham, Nottingham, UK
    S. Sjögersten

    Département de Géographie, Université de Montréal, Montréal, Québec, Canada
    O. Sonnentag & J. Talbot

    Geography, School of Natural and Built Environment, Queen’s University Belfast, Belfast, UK
    G. T. Swindles

    Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
    A. C. Valach

    Department of Environment and Sustainability, Grenfell Campus, Memorial University, Corner Brook, Newfoundland, Canada
    J. Wu More