More stories

  • in

    Comprehensive characterisation of Culicoides clastrieri and C. festivipennis (Diptera: Ceratopogonidae) according to morphological and morphometric characters using a multivariate approach and DNA barcode

    Molecular analyses
    Results of molecular analyses
    The sequences obtained are available in GenBank (Supplementary Information 1). Sequence alignments were 399 bp for COI and 587 bp for 28S including gaps.
    Phylogenetic analysis
    Our molecular analysis (Fig. 1) with both markers generated seven supported clusters, six of which were in agreement with the morphological determination (i.e. C. alazanicus, C. brunnicans, C. circumscriptus, C. furcillatus, C. nubeculous and C. pictipennis). However, one cluster (i.e. two species) corresponded to undistinguished C. clastrieri and C. festivipennis.
    Figure 1

    Block diagram of the study.

    Full size image

    In addition, the COI mtDNA tree shows that C. furcillatus is the sister of the “C. clastrieri/festivipennis” clade. Indeed, C. pictipennis is the sister species of C. brunnicans while C. circumscriptus is positioned between the two clades.
    Moreover, the 28S rDNA tree shows that C. pictipennis is the sister of the “C. clastrieri/festivipennis” clade. The other species are positioned in several places without a clade.
    Intra- and inter-specific comparison
    The COI Genbank sequences show little intraspecific divergence in both C. clastrieri (0.1 ± 0.1%) and C. festivipennis (1.2 ± 0.4%). The interspecific difference between C. clastrieri and in C. festivipennis is 0.7 ± 0.2%.
    Small intraspecific divergences with COI sequences were observed in our sample: C. alazanicus (1.2 ± 0.4%), C. brunnicans (0.7 ± 0.2%), C. circumscriptus (2.2 ± 0.5%), C. clastrieri (0.3 ± 0.1%), C. festivipennis (0.4 ± 0.1%), C. furcillatus (1.5 ± 0.4%), C. nubeculosus (0.2 ± 0.1%) and C. pictipennis (1.1 ± 0.3%).
    Finally, C. festivipennis and C. clastrieri—grouped in the same main clade—showed small interspecific distances (0.4 ± 0.2%); these were not identified as separate species based on DNA barcodes. We therefore decided to create a new group (C. clastrieri/festivipennis clade) based on interspecific distance. The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 16.6 ± 1.4%. Interspecific K2P values for different (Table 1) species and taxa ranged from 27.3% (between C. furcillatus and C. nubeculosus; between C. circumscriptus-and C. furcillatus) to 17.2 ± 2.1% (between C. circumscriptus and the C. clastrieri/festivipennis clade) for our samples. For the COI Genbank sequences, we observed approximatively the same proportion and the same species (Table 1). We remarked very little interspecific divergence between our sample of the C. clastrieri/festivipennis clade and the C. clastrieri/festivipennis Genbank clade (0.6 ± 0.4%).
    Table 1 Estimation of pairwise distance (± SD) of the Culicoides species for the COI domain of the mtDNA and D1D2 region of the rDNA.
    Full size table

    Analysis from 28S rDNA sequences did not show any intraspecific divergence whatever the taxa (0.000) with the exception of C. nubeculosus (0.1 ± 0.1%) and C. festivipennis/C.clastrieri (0.1 ± 0%). The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 2.1 ± 0.03%. Interspecific K2P values for different species (Table 1) and taxa ranged from 1.2% (between C. circumscriptus and C. furcillatus; C. furcillatus and C. brunnicans, the main C. clastrieri/festivipennis clade and C. furcillatus) to 5.3 ± 0.9% (between C. circumscriptus and C. nubeculosus).
    Morphometric and morphological analyses
    In all, 148 specimens identified as C. alazanicus (n = 10), C. brunnicans (n = 27), C. circumscriptus (n = 27), C. clastrieri (n = 21), C. festivipennis (n = 20), C. furcillatus (n = 14), C. nubeculosus (n = 19) and C. pictipennis (n = 20) were analysed with 11 wing landmarks/specimens (Fig. 2).
    Figure 2

    Trees obtained from nucleotide analysis of: (a) COI mtDNA; (b) 28S rDNA (with MP method) sequences of C. alazanicus, C. brunnicans, C. circumscriptus C. clastrieri, C. festivipennis, C. furcillatus, C. nubeculosus and C. pictipennis and bootstrap values are shown in nodes (1000 replicates).

    Full size image

    Principal component analyses
    Principal component analysis (PCA) was used to observe possible grouping trends.
    Firstly, we performed a first normed PCA using the “Wing landmarks” model. The first three axes accounted for 76%, 15% and 8% of the total variance, which suggests a weak structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that was unable to separate the species (Fig. 3).
    Figure 3

    Principal component analysis (PCA): percentage of variance explained for each PCA dimension and results.

    Full size image

    Secondly, we performed a first normed PCA on the “Wing morphological characters” model. The various specimens of each species are represented by a single point suggesting a close correlation of wing morphological characters. This model, without variance, is not validated and does not permit species separation.
    We studied the “Full wing (landmarks and morphological, characters)” model through a normed PCA on raw data. C. clastrieri could be clearly separated from C. festivipennis. The first five axes accounted for 40%, 25%, 12%, 10% and 5% of the total variance. The scatterplot separated unambiguously and without overlap C. clastrieri-C. festivipennis on the one hand and the six species on the other hand (Fig. 3).
    Finally, we performed a first normed PCA on the “Full model” (Morphological characters—wing, head, abdomen, legs—and wing landmarks). The first nine axes accounted for 26%, 23%, 22%, 10%, 8%., 4%, 3%, 2% and 1% of the total variance, which reveals good structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that presents the same topology as the wing morphological model (Fig. 3).
    This supports discrimination according to the species’ wing pattern. Similarly, and some body pattern characters could be used to identify Culicoides from the clastrieri/festivipennis clade better and quicker. With that objective in mind, we performed analyses on three datasets: (1) “Wing landmarks” (11 landmarks); (2) “Full wing” (38 items) and (3) the “Full model” that includes 71 items.
    Discriminant analyses
    PLS-DA and sPLS-DA models were used in order to discriminate the extremes (i.e. the most sensitive and most robust groups) using the three datasets (species, models and components) as described. The accuracy and the balanced error rate (BER) for the two models were compared and are summarised in Supplementary Information 2 and Fig. 4.
    Figure 4

    Balanced error rate (BER) choosing the number of dimensions. Performance and ncomp selection.

    Full size image

    The tuning step of the number of components to select showed that 16 components were necessary to lower the BER (Fig. 4A,B) for the “Wing landmarks” data. The AUC values with 16 components are as follows: C. alazanicus (0.97, p  More

  • in

    Past and future potential range changes in one of the last large vertebrates of the Australian continent, the emu Dromaius novaehollandiae

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl. Acad. Sci. 103, 632–636 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Latinne, A. et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. J. Biogeogr. 42, 1714–1726 (2015).
    Article  Google Scholar 

    4.
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Knick, S. T. & Rotenberry, J. T. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds. Ecology 81, 220–227 (2000).
    Article  Google Scholar 

    6.
    Enright, N. J. & Thomas, I. Pre-European fire regimes in Australian ecosystems. Geogr. Compass 2, 979–1011 (2008).
    Article  Google Scholar 

    7.
    Bowman, D. M. The impact of Aboriginal landscape burning on the Australian biota. N. Phytolog. 140, 385–410 (1998).
    Article  Google Scholar 

    8.
    Rule, S. et al. The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Gillespie, R., Brook, B. W. & Baynes, A. Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa Aust. J Palaeontol. 30, 163–186 (2006).
    Article  Google Scholar 

    10.
    Roberts, R. G. et al. New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Nat. Acad. Sci. 112, 4531–4540 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS One 3, e1745 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Bradshaw, C. J. Little left to lose: Deforestation and forest degradation in Australia since European colonization. J. Plant Ecol. 5, 109–120 (2012).
    Article  Google Scholar 

    15.
    Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. Emu 113, 168–176 (2013).
    Article  Google Scholar 

    16.
    Rogers, R. Dispersal of germinable seeds by emus in semi-arid Queensland. Emu 94, 132–134 (1994).
    Article  Google Scholar 

    17.
    Bradford, M. G. & Westcott, D. A. Consequences of Southern Cassowary (Casuarius casuarius, L) gut passage and deposition pattern on the germination of rainforest seeds. Austral. Ecol. 35, 325–333 (2010).
    Article  Google Scholar 

    18.
    Dawson, T., Read, D., Russell, E. & Herd, R. Seasonal variation in daily activity patterns, water relations and diet of emus. Emu 84, 93–102 (1984).
    Article  Google Scholar 

    19.
    Quin, B. Diet and habitat of Emus Dromaius novaehollandiae in the Grampians Ranges, south-western Victoria. Emu 96, 114–122 (1996).
    Article  Google Scholar 

    20.
    Higgins, S., Nathan, R. & Cain, M. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?. Ecology 84, 1945–1956 (2003).
    Article  Google Scholar 

    21.
    Calviño-Cancela, M., Dunn, R. R., Van Etten, E. J. & Lamont, B. Emus as non-standard seed dispersers and their potential for long-distance dispersal. Ecography 29, 632–640 (2006).
    Article  Google Scholar 

    22.
    Calviño-Cancela, M., He, T. & Lamont, B. B. Distribution of myrmecochorous species over the landscape and their potential long-distance dispersal by emus and kangaroos. Divers. Distrib. 14, 11–17 (2008).
    Article  Google Scholar 

    23.
    McGrath, R. & Bass, D. Seed dispersal by emus on the New South Wales north-east coast. Emu 99, 248–252 (1999).
    Article  Google Scholar 

    24.
    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Vidal, M. M., Pires, M. M. & Guimarães, P. R. Jr. Large vertebrates as the missing components of seed-dispersal networks. Biol. Cons. 163, 42–48 (2013).
    Article  Google Scholar 

    26.
    Ruxton, G. D. & Schaefer, H. M. The conservation physiology of seed dispersal. Philos. Trans. R. Soc. B Biol. Sci. 367, 1708–1718 (2012).
    Article  Google Scholar 

    27.
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).
    CAS  Article  Google Scholar 

    28.
    Miller, G. H. & Fogel, M. L. Calibrating δ18O in Dromaius novaehollandiae (emu) eggshell calcite as a paleo-aridity proxy for the Quaternary of Australia. Geochim. Cosmochim. Acta 193, 1–13 (2016).
    ADS  CAS  Article  Google Scholar 

    29.
    Breckwoldt, R. Wildlife in the home paddock. Nat. Conserv. Farm. 20, 20 (1983).
    Google Scholar 

    30.
    Le Souëf, D. Extinct Tasmanian Emu. Emu Austral. Ornithol. 3, 229–231 (1904).
    Article  Google Scholar 

    31.
    Thomson, V. A. et al. Genetic diversity and drivers of dwarfism in extinct island emu populations. Biol. Lett. 14, 20 (2018).
    Article  Google Scholar 

    32.
    Department of Planning, Industry and Environment (DPIE) (2002). Emu population in the New South Wales North Coast Bioregion and Port Stephens local government area. NSW Sci. Determ. 20, 20 (2018).
    Google Scholar 

    33.
    Franklin, J. Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16, 321–330 (2010).
    Article  Google Scholar 

    34.
    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Glazier, D. S. & Eckert, S. E. Competitive ability, body size and geographical range size in small mammals. J. Biogeogr. 29, 81–92 (2002).
    Article  Google Scholar 

    36.
    Gaston, K. J. How large is a species’ geographic range?. Oikos 20, 434–438 (1991).
    Article  Google Scholar 

    37.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    38.
    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Article  Google Scholar 

    39.
    Östergård, H. & Ehrlén, J. Among population variation in specialist and generalist seed predation—the importance of host plant distribution, alternative hosts and environmental variation. Oikos 111, 39–46 (2005).
    Article  Google Scholar 

    40.
    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).
    Article  Google Scholar 

    41.
    Thuiller, W., Araújo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe?. J. Biogeogr. 31, 353–361 (2004).
    Article  Google Scholar 

    42.
    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. 98, 4534–4539 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Davies, S. J. J. F., Beck, M. W. R. & Kruiskamp, J. P. Results of banding 154 emus in Western Australia. Wildl. Res. 16, 77–79 (1971).
    Article  Google Scholar 

    44.
    Pople, A., Cairns, S. & Grigg, G. Distribution and abundance of emus Dromaius novaehollandiae in relation to the environment in the South Australian pastoral zone. Emu 91, 222–229 (1991).
    Article  Google Scholar 

    45.
    Davies, S. Aspects of a study of emus in semi-arid Western Australia. Proc. Ecol. Soc. Aust. 3, 160–166 (1968).
    Google Scholar 

    46.
    Coddington, C. L. & Cockburn, A. The mating system of free-living emus. Aust. J. Zool. 43, 365–372 (1995).
    Article  Google Scholar 

    47.
    Taylor, E. L., Blache, D., Groth, D., Wetherall, J. D. & Martin, G. B. Genetic evidence for mixed parentage in nests of the emu (Dromaius novaehollandiae). Behav. Ecol. Sociobiol. 47, 359–364 (2000).
    Article  Google Scholar 

    48.
    Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius casuarius) in North Queensland, Australia. Biotropica 40, 338–343 (2008).
    Article  Google Scholar 

    49.
    Moore, L. Population ecology of the southern cassowary Casuarius casuarius johnsonii, Mission Beach north Queensland. J. Ornithol. 148, 357–366 (2007).
    Article  Google Scholar 

    50.
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).
    Article  Google Scholar 

    51.
    Grice, D., Caughley, G. & Short, J. Density and distribution of emus. Wildl. Res. 12, 69–73 (1985).
    Article  Google Scholar 

    52.
    Nield, A. P., Enright, N. J. & Ladd, P. G. Study of seed dispersal by Emu (Dromaius novaehollandiae) in the Jarrah (Eucalyptus marginata) forests of south-western Australia through satellite telemetry. Emu 115, 29–34 (2015).
    Article  Google Scholar 

    53.
    Davies, S. The food of emus. Aust. J. Ecol. 3, 411–422 (1978).
    Article  Google Scholar 

    54.
    Osborne, W. & Green, K. Seasonal changes in composition, abundance and foraging behavior of birds in the snowy mountains. Emu 92, 93–105 (1992).
    Article  Google Scholar 

    55.
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    56.
    Mackey, B. G. & Lindenmayer, D. B. Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28, 1147–1166 (2001).
    Article  Google Scholar 

    57.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Article  Google Scholar 

    58.
    Warren, M. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Thomas, C. D. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 139–145 (2000).
    CAS  Article  Google Scholar 

    60.
    Quigley, M. C., Horton, T., Hellstrom, J. C., Cupper, M. L. & Sandiford, M. Holocene climate change in arid Australia from speleothem and alluvial records. Holocene 20, 1093–1104 (2010).
    ADS  Article  Google Scholar 

    61.
    Shulmeister, J. & Lees, B. G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. Holocene 5, 10–18 (1995).
    ADS  Article  Google Scholar 

    62.
    Weber, L. C., VanDerWal, J., Schmidt, S., McDonald, W. J. & Shoo, L. P. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. J. Biogeogr. 41, 222–238 (2014).
    Article  Google Scholar 

    63.
    Avilés, J. M., Soler, J. J. & Pérez-Contreras, T. Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proc. R. Soc. Lond. B Biol. Sci. 273, 2821–2829 (2006).
    Google Scholar 

    64.
    Lahti, D. C. & Ardia, D. R. Shedding light on bird egg color: Pigment as parasol and the dark car effect. Am. Nat. 187, 547–563 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Magige, F. J., Moe, B. & Røskaft, E. The white colour of the Ostrich (Struthio camelus) egg is a trade-off between predation and overheating. J. Ornithol. 149, 323–328 (2008).
    Article  Google Scholar 

    66.
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Article  Google Scholar 

    67.
    Maloney, S. & Dawson, T. Thermoregulation in a large bird, the emu (Dromaius novaehollandiae). J. Comp. Physiol. B. 164, 464–472 (1994).
    Article  Google Scholar 

    68.
    Dawson, T., Herd, R. & Skadhauge, E. Water turnover and body water distribution during dehydration in a large arid-zone bird, the emu, Dromaius novaehollandiae. J. Comp. Physiol. 153, 235–240 (1983).
    Article  Google Scholar 

    69.
    McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).
    Article  Google Scholar 

    70.
    Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Dickman, C. R. Impact of exotic generalist predators on the native fauna of Australia. Wildl. Biol. 2, 185–195 (1996).
    Article  Google Scholar 

    72.
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Article  Google Scholar 

    73.
    Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species—climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).
    ADS  Article  Google Scholar 

    74.
    Thuiller, W. et al. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr. 12, 313–325 (2003).
    Article  Google Scholar 

    75.
    Pfennigwerth, S. “The mighty cassowary”: The discovery and demise of the King Island emu. Arch. Nat. Hist. 37, 74–90 (2010).
    Article  Google Scholar 

    76.
    Heupink, T. H., Huynen, L. & Lambert, D. M. Ancient DNA suggests Dwarf and ‘Giant’Emu are conspecific. PLoS One 6, e18728 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 7, 744–751 (2019).
    Article  Google Scholar 

    78.
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com (2020).

    79.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    PubMed  Article  Google Scholar 

    81.
    Molloy, S. W., Davis, R. A., Dunlop, J. A. & van Etten, E. Applying surrogate species presences to correct sample bias in species distribution models: A case study using the Pilbara population of the Northern Quoll. Nat. Conserv. 18, 27–46 (2017).
    Google Scholar 

    82.
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall, London, 2015).
    Google Scholar 

    83.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 25, 1965–1978 (2005).
    Article  Google Scholar 

    84.
    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramme. Remote Sens. 57, 241–262 (2003).
    ADS  Article  Google Scholar 

    85.
    Werner, M. Shuttle radar topography mission (SRTM) mission overview. Frequenz 55, 75–79 (2001).
    ADS  Article  Google Scholar 

    86.
    ESRI, ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute (2011).

    87.
    Hill, M. J., Lesslie, R., Barry, A. & Barry, S. A simple, portable, spatial multi-criteria analysis shell–MCAS-S. In MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand. 12–15 (2005).

    88.
    Australian Government Department of Agriculture, Water and the Environment (ABARES), Australian Fire Frequency (1988–2015), Australian Government. http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification (2016).

    89.
    Australian Government Department of Environmen and Energy, Australian Vegetation Attribute Manual: National Vegetation Information System, Version 6.0, Canberra (2018).

    90.
    National Aeronautics and Space Administration Socioeconomic Data and Applications Center. Gridded Population of the World v4 (2017).

    91.
    Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN). Last of the Wild Project, Version 2: Global Human Footprint Dataset (Geographic). NASA Socioeconomic Data and Applications Center (SEDAC). Columbia University. Palisades, NY (2005).

    92.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    93.
    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Article  Google Scholar 

    94.
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    95.
    Marquaridt, D. W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12, 591–612 (1970).
    Article  Google Scholar 

    96.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    97.
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).
    Article  Google Scholar 

    98.
    Anderson, R. P. & Gonzalez, I. Jr. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).
    Article  Google Scholar 

    99.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    100.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    101.
    Hegel, T. M., Cushman, S. A., Evans, J. & Huettmann, F. Spatial Complexity, Informatics, and Wildlife Conservation 273–311 (Springer, Tokoyo, 2010).
    Google Scholar 

    102.
    Pearce, J. L. & Boyce, M. S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43, 405–412 (2006).
    Article  Google Scholar 

    103.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    104.
    Otto-Bliesner, B. L. et al. Last glacial maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).
    ADS  Article  Google Scholar 

    105.
    Bi, D. et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 63, 41–64 (2012).
    Article  Google Scholar 

    106.
    Cooper, A. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Yonezawa, T. et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 27, 68–77 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
    Article  Google Scholar 

    109.
    Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. dismo: Species distribution modeling. R package v1.1-4 (2017). More

  • in

    Planting period is the main factor for controlling maize rough dwarf disease

    1.
    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).
    PubMed  Article  Google Scholar 
    2.
    García-Arenal, F. & McDonald, B. A. An analysis of the durability of resistance to plant viruses. Phytopathology 93, 941–952 (2003).
    PubMed  Article  Google Scholar 

    3.
    Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).
    PubMed  Article  Google Scholar 

    4.
    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
    CAS  PubMed  Article  Google Scholar 

    5.
    Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 46, 75–100 (2008).
    CAS  PubMed  Article  Google Scholar 

    6.
    Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Meentemeyer, R. K., Haas, S. E. & Václavík, T. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu. Rev. Phytopathol. 50, 379–402 (2012).
    CAS  PubMed  Article  Google Scholar 

    8.
    Boccardo, G. & Milne, R.G. Plant Reovirus Group. Description of Plant Viruses. No. 294. CM/AAB (1984).

    9.
    Dovas, C. I., Eythymiou, K. & Katis, N. I. First report of maize rough dwarf virus (MRDV) on maize crops in Greece. Plant Pathol. 53, 238–238 (2004).
    Article  Google Scholar 

    10.
    Lenardon, S. L., March, G. J., Nome, S. F. & Ornaghi, J. A. Recent outbreak of “Mal de Rio Cuarto” virus on corn in Argentina. Plant Dis. 82, 448 (1998).
    CAS  PubMed  Article  Google Scholar 

    11.
    Zhang, H., Chen, J., Lei, J. & Adams, M. J. Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by rice black-streaked dwarf virus. Eur. J. Plant Pathol. 107, 563–567 (2001).
    CAS  Article  Google Scholar 

    12.
    Hoang, A. T. et al. Identification, characterization, and distribution of southern rice black-streaked dwarf virus in Vietnam. Plant Dis. 95, 1063–1069 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Achon, M. A., Serrano, L., Clemente-Orta, G. & Barcelo, A. The virome of maize rough dwarf disease: molecular genome diversification, phylogeny and selection. Ann Appl Biol. 176, 192–202 (2020).
    CAS  Article  Google Scholar 

    14.
    Lovisolo, O. Maize Rough Dwarf Virus. Descriptions of Plant Viruses No. 72. Commonw. Mycol. Inst. Asso. Appl. Biol. (1971).

    15.
    Achon, M. A. & Sobrepere, M. Incidence of potyviruses in commercial maize fields and their seasonal cycles in Spain. JPDP 108, 399–406 (2001).
    CAS  Google Scholar 

    16.
    Achon, M. A. & Alonso-Dueñas, N. Impact of 9 years of Bt-maize cultivation on the distribution of maize viruses. Transgenic Res. 18, 387–397 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Achon, M. A., Subira, J. & Sin, E. Seasonal occurrence of Laodelphax striatellus in Spain: effect on the incidence of Maize rough dwarf virus. Crop Prot. 47, 1–5 (2013).
    Article  Google Scholar 

    18.
    Achon, M. A., Serrano, L., Sabate, J. & Porta, C. Understanding the epidemiological factors that intensify the incidence of maize rough dwarf disease in Spain. Ann. Appl. Biol. 166, 311–320 (2015).
    CAS  Article  Google Scholar 

    19.
    CABI, 2017. Laodelphax striatellus. Crop protection compendium, Wallingford, UK: CAB International. https://www.cabi.org/isc/datasheet/10935 (2017).

    20.
    Milne, R. G. & Lovisolo, O. Maize rough dwarf and related viruses. Adv. Virus. Res. 21, 267–341 (1977).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Häni, A., Günthart, H. & Brunetti, R. Identifikation des Rauhverzwergungsvirus an Mais im Tessin. Landwirtschaft Schweiz 2, 131–136 (1989).
    Google Scholar 

    22.
    Hibino, H. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34, 249–274 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Bar-Tsur, A., Saadi, H. & Antignu, Y. Resistance of corn genotypes to maize rough darf virus. Maydica 33, 189–200 (1988).
    Google Scholar 

    24.
    Rodriguez-Pardina, P. E., Gimenez-Pecci, M. P. & Laguna, I. G. Wheat: a new natural host for the Mal de rio cuarto virus in the endemic disease area, Rio Cuarto, Cordoba province, Argentina. Plant Dis. 82, 149–152 (1998).
    Article  Google Scholar 

    25.
    Wang, H. D. et al. Recent rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease–yield loss relationships, and seedling susceptibility. Plant Dis. 92, 1190–1196 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Wang, H. D. et al. Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathol. 58, 815–825 (2009).
    Article  Google Scholar 

    27.
    Cirilo, A. G. & Andrade, F. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Sci. 34, 1039–1043 (1994).
    Article  Google Scholar 

    28.
    Farnham, D. E. Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agron. J. 93, 1049–1053 (2001).
    Article  Google Scholar 

    29.
    Kucharik, C. J. A multidecadal trend of earlier corn planting in the central USA. Agron. J. 98, 1544–1550 (2006).
    Article  Google Scholar 

    30.
    Bruns, H. A. & Abbas, H. K. Planting date effects on Bt and non-Bt corn in the mid-south USA. Agron. J. 98, 100–106 (2006).
    Article  Google Scholar 

    31.
    Achon, M. A. & Clemente, G. Nuevos retos en el control de las enfermedades virales del maíz. Vida rural 424, 44–50 (2017).
    Google Scholar 

    32.
    Maresma, A., Ballesta, A., Santiveri, F. & Lloveras, J. Sowing date affects maize development and yield in irrigated Mediterranean Environments. Agriculture 9, 67 (2019).
    Article  Google Scholar 

    33.
    Chaplin-Kramer, R. et al. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Harpaz, I. Maize Rough Dwarf (Israel Universities Press, Jerusalem, 1972).
    Google Scholar 

    35.
    Conti, M. Investigations on the epidemiology of maize rough dwarf virus. I. Overwintering of virus in its planthopper vector, Acta HI Congr. Un. Fitopat. Medit., Oeiras 22–28 Outubro 1972, 11. (1972).  

    36.
    Thresh, J. M. The origins and epidemiology of some important plant virus diseases. Appl. Biol. 5, 1–65 (1980).
    Google Scholar 

    37.
    Grilli, M. P. The role of landscape structure on the abundance of a disease vector planthopper: a quantitative approach. Landsc. Ecol. 25, 383–394 (2010).
    Article  Google Scholar 

    38.
    Conti, M. Investigations on the epidemiology of maize rough dwarf virus III. Field symptoms, incidence and control. Maydica 21, 165–175 (1976).
    Google Scholar 

    39.
    Syobu, S. I., Otuka, A. & Matsumura, M. Trap catches of the small brown planthopper, Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), in northern Kyushu district, Japan in relation to weather conditions. Appl. Entomol. Zool. 46, 41–50 (2011).
    Article  Google Scholar 

    40.
    Clemente-Orta, G., Albajes, R. & Achon, M. A. Early planting, management of edges and non-crop habitats reduce potyvirus infection in maize. Agron. Sustain. Dev. 40, 21 (2020).
    Article  Google Scholar 

    41.
    Clemente-Orta, G. et al. Changes in landscape composition influence the abundance of insects on maize: the role of fruit orchards and alfalfa crops. Agric. Ecosyst. Environ. 291, 106805 (2020).
    CAS  Article  Google Scholar 

    42.
    Grilli, M. P. & Bruno, M. Regional abundance of a planthopper pest: the effect of host match area and configuration. Entomol. Exp. Appl. 122, 133–143 (2007).
    Article  Google Scholar 

    43.
    Grilli, M. P. & Gorla, D. E. The effect of agroecosystem management on the abundance of Delphacodes kuscheli (Homopteran: Delphacidae), vector of the maize rough dwarf virus, in central Argentina. Maydica 43, 77–82 (1998).
    Google Scholar 

    44.
    MacArthur, R. H. & Wilson, E. O. Island Biogeography (Princeton University Press, Princeton, 1967).
    Google Scholar 

    45.
    Root, R. B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleraceae). Ecol. Monogr. 43, 95–124 (1973).
    Article  Google Scholar 

    46.
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Trumper, E.V. Modelos de epidemiologia matemática aplicados al estudio de1 sistema Virus MRC-maiz-Delphacidae (“Ma1 de Rio Cuarto”). Tesis doctoral. Universidad National de Cordoba (1996).

    48.
    Cheng, J. A. Rice Planthoppers in the Past Half Century in China. Rice Planthoppers: Ecology, Management Social Economics and Policy 1–32 (Springer, Dordrecht, 2015).
    Google Scholar 

    49.
    Liu, Z. et al. (2016) The effect of landscape composition on the abundance of Laodelphax striatellus Fallén in fragmented agricultural landscapes. Land 5, 36 (2016).
    Article  Google Scholar 

    50.
    Clemente-Orta, G. & Álvarez, H. A. L. influencia del paisaje agrícola en el control biológico desde una perspectiva espacial. Revista Ecosistemas 28, 13–25 (2019).
    Article  Google Scholar 

    51.
    Madeira, F. et al. Stable carbon and nitrogen isotope signatures to determine predator dispersal between alfalfa and maize. Biol. Control. 77, 66–75 (2014).
    Article  Google Scholar 

    52.
    Cantero-Martínez, C. & Moncunill, J. Sistemas agrícolas de la Plana de Lleida: Descripción y evaluación de los sistemas de producción en el área del canal Segarra-Garrigues antes de su puesta en funcionamiento. (2012).

    53.
    Braun-Blanquet, J. Fitosociología. Bases para el estudio de las comunidades vegetales (Blume, Madrid, 1979).
    Google Scholar 

    54.
    DePaulo, J. J. & Powell, C. A. Extraction of double-stranded RNA from plant tissues without the use of organic solvents. Plant Dis. 79, 246–248 (1995).
    CAS  Article  Google Scholar 

    55.
    Albajes, R., Lumbierres, B., Pons, X. & Comas, J. Representative taxa in field trials for environmental risk assessment of genetically modified maize. Bull. Entomol. Res. 103, 724–733 (2013).
    CAS  PubMed  Article  Google Scholar 

    56.
    Ardanuy, A., Lee, M. S. & Albajes, R. Landscape context influences leafhopper and predatory Orius spp. abundances in maize fields. Agric. Forest. Entomol. 20, 81–92 (2018).
    Article  Google Scholar 

    57.
    Holzinger, W. E., Kammerlander, I. & Nickel, H. The Auchenorrhyncha of Central Europe. In Fulgoromorpha, Cicadomorpha Excl-Cicadellidae Vol. 1 (ed. Brill) (Brill, Leiden-Boston, 2003).
    Google Scholar 

    58.
    ESRI. ArcGIS Desktop Version 10.3.1 (Environmental Systems Research Institute, Redlands, 2015).
    Google Scholar 

    59.
    Bartoń, K. (2018). Package “MuMIn” Title Multi-Model Inference. In: CRAN-R. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

    60.
    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
    MathSciNet  Article  Google Scholar 

    61.
    Paradis, E. Package “ape” Title Analyses of Phylogenetics and Evolution Depends R. https://cran.r-project.org/web/packages/ape/ape.pdf (2019).

    62.
    Max, K. et al. Caret: Title Classification and Regression Training. R package version: 6.0-84. https://cran.r-project.org/web/packages/caret/caret.pdf (2018).

    63.
    Bates, D. et al. Lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. R package version 1.1-21. https://cran.r-project.org/web/packages/lme4/lme4.pdf (2019).

    64.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Article  Google Scholar 

    65.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ R version 3.6.2. (2019). More

  • in

    Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants

    1.
    Becerra, J. X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl Acad. Sci. USA 112, 6098–6103 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth? Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Grimaldi, D. A. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).

    4.
    Strong, D. R., Lawton, J. H. & Southwood, R. Insects on Plants: Community Patterns and Mechanisms (Harvard University Press, 1984).

    5.
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Article  Google Scholar 

    6.
    Thompson, J. N. Concepts of coevolution. Trends Ecol. Evol. 4, 179–183 (1989).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Mitter, C., Farrell, B. & Wiegmann, B. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am. Nat. 132, 107–128 (1988).
    Article  Google Scholar 

    8.
    Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Berenbaum, M. & Specialization, P. F. Chemical Mediation of Host-plant Specialization: The Papilionid Paradigm. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (University of California Press, 2008).

    10.
    Winter, S., Friedman, A. L. L., Astrin, J. J., Gottsberger, B. & Letsch, H. Timing and host plant associations in the evolution of the weevil tribe Apionini (Apioninae, Brentidae, Curculionoidea, Coleoptera) indicate an ancient co-diversification pattern of beetles and flowering plants. Mol. Phylogenet. Evol. 107, 179–190 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Kergoat, G. J. et al. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nat. Commun. 9, 5089 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Wheat, C. W. et al. The genetic basis of a plant–insect coevolutionary key innovation. Proc. Natl Acad. Sci. USA 104, 20427–20431 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Calla, B. et al. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: Birth, death and adaptation. Mol. Ecol. 26, 6021–6035 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Nallu, S. et al. The molecular genetic basis of herbivory between butterflies and their host plants. Nat. Ecol. Evol. 2, 1418–1427 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Karageorgi, M. et al. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574, 409–412 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Sahoo, R. K., Warren, A. D., Collins, S. C. & Kodandaramaiah, U. Hostplant change and paleoclimatic events explain diversification shifts in skipper butterflies (Family: Hesperiidae). BMC Evol. Biol. 17, 174 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Condamine, F. L., Rolland, J., Höhna, S., Sperling, F. A. H. & Sanmartín, I. Testing the role of the red queen and court jester as drivers of the macroevolution of apollo butterflies. Syst. Biol. 67, 940–964 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Letsch, H. et al. Climate and host-plant associations shaped the evolution of ceutorhynch weevils throughout the Cenozoic. Evolution 72, 1815–1828 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Winkler, I. S., Mitter, C. & Scheffer, S. J. Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies. Proc. Natl Acad. Sci. USA 106, 18103–18108 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).
    PubMed  Article  Google Scholar 

    23.
    Janz, N. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 42, 71–89 (2011).
    Article  Google Scholar 

    24.
    Suchan, T. & Alvarez, N. Fifty years after Ehrlich and Raven, is there support for plant–insect coevolution as a major driver of species diversification? Entomol. Exp. Appl. 157, 98–112 (2015).
    Article  Google Scholar 

    25.
    Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).
    CAS  PubMed  Article  Google Scholar 

    26.
    Simon, J.-C. et al. Genomics of adaptation to host-plants in herbivorous insects. Brief. Funct. Genomics 14, 413–423 (2015).
    CAS  PubMed  Article  Google Scholar 

    27.
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA 114, 9641–9646 (2017).
    CAS  PubMed  Article  Google Scholar 

    28.
    Hua, X. & Bromham, L. Darwinism for the genomic age: connecting mutation to diversification. Front. Genet. 8, 12 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Hembry, D. H. & Weber, M. G. Ecological interactions and macroevolution: a new field with old roots. Annu. Rev. Ecol. Evol. Syst. 51, (2020).

    30.
    Scriber, J. M., Tsubaki, Y. & Lederhouse, R. C. Swallowtail Butterflies: Their Ecology and Evolutionary Biology (Scientific Publishers, 1995).

    31.
    Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47, 57–92 (2002).
    CAS  PubMed  Article  Google Scholar 

    32.
    Schmeiser, H. H., Stiborovà, M. & Arlt, V. M. Chemical and molecular basis of the carcinogenicity of Aristolochia plants. Curr. Opin. Drug Discov. Dev. 12, 141–148 (2009).
    CAS  Google Scholar 

    33.
    Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013).
    PubMed  Article  CAS  Google Scholar 

    34.
    Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15, 267–277 (2012).
    PubMed  Article  Google Scholar 

    35.
    Simonsen, T. J. et al. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27, 113–137 (2011).
    Article  Google Scholar 

    36.
    Berenbaum, M. R., Favret, C. & Schuler, M. A. On defining ‘Key Innovations’ in an adaptive radiation: cytochrome P450s and Papilionidae. Am. Nat. 148, S139–S155 (1996).
    Article  Google Scholar 

    37.
    Cohen, M. B., Schuler, M. A. & Berenbaum, M. R. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl Acad. Sci. USA 89, 10920–10924 (1992).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Li, W., Schuler, M. A. & Berenbaum, M. R. Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. Proc. Natl Acad. Sci. USA 100(Suppl.), 14593–14598 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Thompson, J. N. Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies. Evolution 42, 118–128 (1988).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Thompson, J. N., Wehling, W. & Podolsky, R. Evolutionary genetics of host use in swallowtail butterflies. Nature 344, 148–150 (1990).
    ADS  Article  Google Scholar 

    41.
    Berenbaum, M. R. & Feeny, P. P. in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (ed. Tilmon, K.) 2–19 (University of California Press, 2008).

    42.
    Zakharov, E. V., Caterino, M. S. & Sperling, F. A. H. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst. Biol. 53, 193–215 (2004).
    PubMed  Article  Google Scholar 

    43.
    Braby, M., Trueman, J. & Eastwood, R. When and where did troidine butterflies (Lepidoptera: Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous. Invertebr. Syst. 19, 113–143 (2005).
    Article  Google Scholar 

    44.
    Condamine, F. L., Silva-Brandão, K. L., Kergoat, G. J. & Sperling, F. A. Biogeographic and diversification patterns of Neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia. BMC Evol. Biol. 12, 82 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace. Sci. Rep. 5, 11860 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Allio, R. et al. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Syst. Biol. 69, 38–60 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    McKenna, D. D., Sequeira, A. S., Marvaldi, A. E. & Farrell, B. D. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc. Natl Acad. Sci. USA.106, 7083–7088 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Takahashi, D. & Setoguchi, H. Molecular phylogeny and taxonomic implications of Asarum (Aristolochiaceae) based on ITS and matK sequences. Plant Species Biol. 33, 28–41 (2018).
    Article  Google Scholar 

    49.
    Wanke, S. et al. Evolution of Piperales—matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Mol. Phylogenet. Evol. 42, 477–497 (2007).
    CAS  PubMed  Article  Google Scholar 

    50.
    Neinhuis, C., Wanke, S., Hilu, K. W., Müller, K. & Borsch, T. Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trnL-trnF sequences. Plant Syst. Evol. 250, 7–26 (2005).
    Article  Google Scholar 

    51.
    Wanke, S., González, F. & Neinhuis, C. Systematics of pipevines: combining morphological and fast‐evolving molecular characters to investigate the relationships within subfamily Aristolochioideae. Int. J. Plant Sci. 167, 1215–1227 (2006).
    CAS  Article  Google Scholar 

    52.
    González, F. et al. Present trans-Pacific disjunct distribution of Aristolochia subgenus Isotrema (Aristolochiaceae) was shaped by dispersal, vicariance and extinction. J. Biogeogr. 41, 380–391 (2014).
    Article  Google Scholar 

    53.
    Durden, C. J. & Rose, H. Butterflies from the Middle Eocene: The Earliest Occurrence of Fossil Papilionoidea (Lepidoptera) (Prarce-Sellards Ser. Tax. Mem. Mus., 1978).

    54.
    Sohn, J., Labandeira, C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 3286, 1–132 (2012).
    Article  Google Scholar 

    55.
    de Jong, R. Estimating time and space in the evolution of the Lepidoptera. Tijdschr. voor Entomol. 150, 319–346 (2007).
    Article  Google Scholar 

    56.
    Hofmann, C.-C. & Zetter, R. Upper Cretaceous sulcate pollen from the Timerdyakh formation, Vilui Basin (Siberia). Grana 49, 170–193 (2010).
    Article  Google Scholar 

    57.
    Meller, B. The first fossil Aristolochia (Aristolochiaceae, Piperales) leaves from Austria. Palaeontol. Electron 17, 1–17 (2014).
    Google Scholar 

    58.
    Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. Ser. B 344, 305–311 (1994).
    ADS  CAS  Article  Google Scholar 

    59.
    Nee, S. Birth-death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).
    Article  Google Scholar 

    60.
    Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: Decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Crisp, M. D. & Cook, L. G. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Xue, B. et al. Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae. Mol. Phylogenet. Evol. 142, 106659 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Folk, R. A. et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proc. Natl Acad. Sci. USA 116, 10874–10882 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Sun, M. et al. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Cheng, T. et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 1, 1747–1756 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Rane, R. V. et al. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 31, 131–138 (2019).
    MathSciNet  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Cong, Q., Borek, D., Otwinowski, Z. & Grishin, N. V. Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Rep. 10, 910–919 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Li, X. et al. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat. Commun. 6, 8212 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Nishikawa, H. et al. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat. Genet. 47, 405–409 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Thomas, G. W. C. & Hahn, M. W. Determining the null model for detecting adaptive convergence from genomic data: a case study using echolocating mammals. Mol. Biol. Evol. 32, 1232–1236 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Zou, Z. & Zhang, J. No genome-wide protein sequence convergence for echolocation. Mol. Biol. Evol. 32, 1237–1241 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).

    76.
    Yang, Z. Computational Molecular Evolution (Oxford University Press, 2006).

    77.
    Venkat, A., Hahn, M. W. & Thornton, J. W. Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nat. Ecol. Evol. 2, 1280–1288 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Mendes, F. K. & Hahn, M. W. Gene tree discordance causes apparent substitution rate variation. Syst. Biol. 65, 711–721 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).
    ADS  CAS  PubMed Central  Article  Google Scholar 

    80.
    Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11, 3795 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    McGee, M. D. et al. The ecological and genomic basis of explosive adaptive radiation. Nature 586, 75–79 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Thomas, G. W. C. et al. Gene content evolution in the arthropods. Genome Biol. 21, 15 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    de Medeiros, B. A. S. & Farrell, B. D. Evaluating species interactions as a driver of phytophagous insect divergence. bioRxiv https://doi.org/10.1101/842153 (2019).

    84.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    86.
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Ronquist, F. et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133 (2004).
    CAS  PubMed  Article  Google Scholar 

    92.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. & Douzery, E. J. P. Comparison of bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20, 248–254 (2003).
    CAS  PubMed  Article  Google Scholar 

    94.
    Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES Science Gateway. Evol. Bioinforma. 11, EBO.S21501 (2015).
    Article  Google Scholar 

    95.
    Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).
    PubMed  Article  Google Scholar 

    96.
    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    97.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Smith, M. E., Singer, B. & Carroll, A. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geol. Soc. Am. Bull. 115, 549–565 (2003).
    ADS  CAS  Article  Google Scholar 

    99.
    de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1–63 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    100.
    Scudder, S. H. Fossil butterflies. Mem. Am. Assoc. Adv. Sci. 1, 1–99 (1875).
    Google Scholar 

    101.
    Rasnitsyn, A. P. & Zherikhin, V. V. in History of Insects 437–446 (Kluwer Academic Publishers, 2002).

    102.
    Rebel, H. Doritites bosniaskii. Sitzungsberichte der akademie der wissenschaften. Mathematischen-Naturwissenschaftliche classe. Abt. 1 Mineral. Biol. Erdkd. 1, 734–741 (1898).
    Google Scholar 

    103.
    Carpenter, F. Treatise on Invertebrate Paleontology: Arthropoda 4. Superclass Hexapoda (Geological Society of America, 1992).

    104.
    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).
    Article  Google Scholar 

    105.
    Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Toussaint, E. F. A. & Condamine, F. L. To what extent do new fossil discoveries change our understanding of clade evolution? A cautionary tale from burying beetles (Coleoptera: Nicrophorus). Biol. J. Linn. Soc. 117, 686–704 (2016).
    Article  Google Scholar 

    107.
    Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778 (2008).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    108.
    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
    CAS  PubMed  Article  Google Scholar 

    109.
    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).
    PubMed  Article  Google Scholar 

    110.
    Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    111.
    Igarashi, S. The classification of the Papilionidae mainly based on the morphology of their immature stages. Lepid. Sci. 34, 41–96 (1984).
    Google Scholar 

    112.
    Collins, N. M. & Morris, M. Threatened Swallowtail Butterflies of the World: the IUCN Red Data Book (IUCN, 1985).

    113.
    Tyler, H. A., Brown, K. S. & Wilson, K. H. Swallowtail Butterflies of the Americas: A Study in Biological Dynamics, Ecological Diversity, Biosystematics, and Conservation (Scientific Publishers, 1994).

    114.
    Ree, R. H., Moore, B. R., Webb, C. O. & Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    115.
    Massoni, J., Couvreur, T. L. & Sauquet, H. Five major shifts of diversification through the long evolutionary history of Magnoliidae (Angiosperms). BMC Evol. Biol. 15, 49 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    116.
    Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).
    Article  Google Scholar 

    117.
    Miller, J. T., Murphy, D. J., Ho, S. Y. W., Cantrill, D. J. & Seigler, D. Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Aust. J. Bot. 61, 436–445 (2013).
    Article  Google Scholar 

    118.
    Michalak, I., Zhang, L.-B. & Renner, S. S. Trans-Atlantic, trans-Pacific and trans-Indian Ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. J. Biogeogr. 37, 1214–1226 (2010).
    Article  Google Scholar 

    119.
    Wu, S.-D. et al. Evolution of asian interior arid-zone biota: Evidence from the diversification of asian Zygophyllum (Zygophyllaceae). PLoS ONE 10, e0138697 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    120.
    Chase, M. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
    Article  Google Scholar 

    121.
    Christenhusz, M. J. M., Vorontsova, M. S., Fay, M. F. & Chase, M. W. Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Bot. J. Linn. Soc. 178, 501–528 (2015).
    Article  Google Scholar 

    122.
    Gonzáles, F., Rudall, P. J. & Furness, C. A. Microsporogenesis and systematics of Aristolochiaceae. Bot. J. Linn. Soc. 137, 221–242 (2001).
    Article  Google Scholar 

    123.
    González, F. & Rudall, P. The questionable affinities of Lactoris: evidence from branching pattern, inflorescence morphology, and stipule development. Am. J. Bot. 88, 2143–2150 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    124.
    Isnard, S. et al. Growth form evolution in Piperales and its relevance for understanding angiosperm diversification: An integrative approach combining plant architecture, anatomy, and biomechanics. Int. J. Plant Sci. 173, 610–639 (2012).
    Article  Google Scholar 

    125.
    Wagner, S. T. et al. Major trends in stem anatomy and growth forms in the perianth-bearing Piperales, with special focus on Aristolochia. Ann. Bot. 113, 1139–1154 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    126.
    Nickrent, D. L. et al. Molecular data place Hydnoraceae with Aristolochiaceae. Am. J. Bot. 89, 1809–1817 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    127.
    Kelly, L. M. & González, F. Phylogenetic relationships in Aristolochiaceae. Syst. Bot. 28, 236–249 (2003).
    Google Scholar 

    128.
    Naumann, J. et al. Single-copy nuclear genes place haustorial Hydnoraceae within piperales and reveal a cretaceous origin of multiple parasitic angiosperm lineages. PLoS ONE 8, e79204 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    129.
    Salomo, K. et al. The emergence of earliest angiosperms may be earlier than fossil evidence indicates. Syst. Bot. 42, 607–619 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    130.
    Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).
    Article  Google Scholar 

    131.
    Naumann, J. et al. Detecting and characterizing the highly divergent plastid genome of the nonphotosynthetic parasitic plant Hydnora visseri (Hydnoraceae). Genome Biol. Evol. 8, 345–363 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    132.
    Jost, M., Naumann, J., Rocamundi, N., Cocucci, A. A. & Wanke, S. The first plastid genome of the Holoparasitic genus Prosopanche (Hydnoraceae). Plants 9, 306 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    133.
    Zavada, M. S. & Benson, J. M. First fossil evidence for the primitive angiosperm family Lactoricidae. Am. J. Bot. 74, 1590–1594 (1987).
    Article  Google Scholar 

    134.
    Gamerro, J. C. & Barreda, V. New fossil record of Lactoridaceae in southern South America: a palaeobiogeographical approach. Bot. J. Linn. Soc. 158, 41–50 (2008).
    Article  Google Scholar 

    135.
    Smith, S. Y. & Stockey, R. A. Establishing a fossil record for the perianthless Piperales: Saururus tuckerae sp. nov. (Saururaceae) from the Middle Eocene Princeton Chert. Am. J. Bot. 94, 1642–1657 (2007).
    PubMed  Article  Google Scholar 

    136.
    Massoni, J., Doyle, J. & Sauquet, H. Fossil calibration of Magnoliidae, an ancient lineage of angiosperms. Palaeontol. Electron. 18, 1–25 (2015).
    Google Scholar 

    137.
    Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 36, 2324–2337 (2009).
    Article  Google Scholar 

    138.
    Beeravolu, C. R. & Condamine, F. L. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. bioRxiv https://doi.org/10.1101/038695 (2016).

    139.
    Scotese, C. R. A continental drift flipbook. J. Geol. 112, 729–741 (2004).
    ADS  Article  Google Scholar 

    140.
    Blakey, R. C. Gondwana paleogeography from assembly to breakup—a 500 m.y. odyssey. Geol. Soc. Am. Spec. Pap. 441, 1–28 (2008).
    Google Scholar 

    141.
    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
    ADS  Article  Google Scholar 

    142.
    Chacón, J. & Renner, S. S. Assessing model sensitivity in ancestral area reconstruction using Lagrange: a case study using the Colchicaceae family. J. Biogeogr. 41, 1414–1427 (2014).
    Article  Google Scholar 

    143.
    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    144.
    FitzJohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    145.
    Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    146.
    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    147.
    Höhna, S. et al. A Bayesian approach for estimating branch-specific speciation and extinction rates. bioRxiv https://doi.org/10.1101/555805 (2019).

    148.
    May, M. R., Höhna, S. & Moore, B. R. A Bayesian approach for detecting the impact of mass-extinction events on molecular phylogenies when rates of lineage diversification may vary. Methods Ecol. Evol. 7, 947–959 (2016).
    Article  Google Scholar 

    149.
    Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    150.
    Rabosky, D. L. Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60, 1152–1164 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    151.
    FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
    Article  Google Scholar 

    152.
    Scriber, J. M. in Chemical Ecology of Insects (eds Bell, W. J. & Cardé, R. T.) 159–202 (Springer US, 1984).

    153.
    Davis, M. P., Midford, P. E. & Maddison, W. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification. BMC Evol. Biol. 13, 38 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    154.
    Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    155.
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    156.
    Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).
    Article  Google Scholar 

    157.
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    158.
    Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    159.
    Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
    Article  Google Scholar 

    160.
    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    161.
    Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    162.
    Höhna, S., May, M. R. & Moore, B. R. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. Bioinformatics 32, 789–791 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    163.
    Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    164.
    Partha, R. et al. Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. eLife 6, e25884 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    165.
    Wu, J., Yonezawa, T. & Kishino, H. Rates of molecular evolution suggest natural history of life history traits and a Post-K-Pg nocturnal bottleneck of placentals. Curr. Biol. 27, 3025–3033 (2017).
    CAS  PubMed  Article  Google Scholar 

    166.
    Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    167.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    168.
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    169.
    Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    170.
    Simion, P. et al. A software tool ‘CroCo’ detects pervasive cross-species contamination in next generation sequencing data. BMC Biol. 16, 28 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    171.
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    172.
    Di Franco, A., Poujol, R., Baurain, D. & Philippe, H. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evol. Biol. 19, 21 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    173.
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    174.
    Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    175.
    Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).
    CAS  PubMed  Article  Google Scholar 

    176.
    Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).
    CAS  PubMed  Article  Google Scholar 

    177.
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  Article  PubMed  Google Scholar 

    178.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    179.
    Bauer, D. F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67, 687–690 (1972).
    MATH  Article  Google Scholar 

    180.
    Diekmann, Y. & Pereira-Leal, J. B. Gene tree affects inference of sites under selection by the branch-site test of positive selection. Evol. Bioinforma. 11, 11–17 (2015).
    Article  Google Scholar 

    181.
    Mallick, S., Gnerre, S., Muller, P. & Reich, D. The difficulty of avoiding false positives in genome scans for natural selection. Genome Res. 19, 922–933 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    182.
    Fletcher, W. & Yang, Z. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol. Biol. Evol. 27, 2257–2267 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    183.
    Jordan, G. & Goldman, N. The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol. Biol. Evol. 29, 1125–1139 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    184.
    Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10, 285–311 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    185.
    Galtier, N. & Duret, L. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet. 23, 273–277 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    186.
    Ratnakumar, A. et al. Detecting positive selection within genomes: the problem of biased gene conversion. Philos. Trans. R. Soc. Ser. B 365, 2571–2580 (2010).
    CAS  Article  Google Scholar 

    187.
    Guéguen, L. et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Mol. Biol. Evol. 30, 1745–1750 (2013).
    PubMed  Article  CAS  Google Scholar 

    188.
    Wickham, H. & Grolemund, G. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data (O’Reilly Media, Inc., Canada, 2016).

    189.
    Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2.’ CRAN Repos. 2, R2 (2016).

    190.
    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
    CAS  PubMed  Article  Google Scholar 

    191.
    Redelings, B. Erasing errors due to alignment ambiguity when estimating positive selection. Mol. Biol. Evol. 31, 1979–1993 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    192.
    Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).
    CAS  Article  PubMed  Google Scholar 

    193.
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    194.
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Variation in size and shape of toxin glands among cane toads from native-range and invasive populations

    1.
    Caro, T. M. Antipredator Defenses in Birds and Mammals (University of Chicago Press, 2005).
    2.
    Emlen, D. J. The evolution of animal weapons. Annu. Rev. Ecol. Evol. Syst. 39, 387–413 (2008).
    Article  Google Scholar 

    3.
    Toledo, L. F., Sazima, I. & Haddad, C. F. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).
    Article  Google Scholar 

    4.
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).
    Article  Google Scholar 

    5.
    Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305–314 (2011).
    ADS  PubMed  Article  Google Scholar 

    6.
    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2011).
    Article  Google Scholar 

    7.
    Longson, C. G. & Joss, J. M. P. Optimal toxicity in animals: Predicting the optimal level of chemical defences. Funct. Ecol. 20, 731–735 (2006).
    Article  Google Scholar 

    8.
    Relyea, R. A. Predators come and predators go: The reversibility of predator-induced traits. Ecology 84, 1840–1848 (2003).
    Article  Google Scholar 

    9.
    Tollrian, R. & Harvell, D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, 1999).

    10.
    Daly, D., Higginson, A. D., Chen, D., Ruxton, G. D. & Speed, M. P. Density-dependent investment in costly anti-predator defenses: An explanation for the weak survival benefit of group living. Ecol. Lett. 15, 576–583 (2012).
    PubMed  Article  Google Scholar 

    11.
    Kosmala, G., Brown, G. P. & Shine, R. Thin-skinned invaders: Geographic variation in the structure of the skin among populations of cane toads (Rhinella marina). Biol. J. Linn. Soc. 131, 611–621 (2020).
    Article  Google Scholar 

    12.
    Duellman, W. E. & Trueb, L. Biology of Amphibians (McGraw-Hill, 1994).

    13.
    Wells, K. The Ecology and Behavior of Amphibians (University of Chicago Press, 2007).

    14.
    König, E., Bininda-Emonds, O. R. P. & Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 63, 96–117 (2014).
    PubMed  Article  CAS  Google Scholar 

    15.
    Hettyey, A., Tóth, Z. & Van Buskirk, J. Inducible chemical defences in animals. Oikos 123, 1025–1028 (2014).
    Article  Google Scholar 

    16.
    Blennerhasset, R., Bell-Anderson, K., Shine, R. & Brown, G. P. The cost of chemical defence: The impact of toxin depletion on growth and behaviour of cane toads (Rhinella marina). Proc. R. Soc. B. 286, 20190867 (2019).
    Article  CAS  Google Scholar 

    17.
    Chen, W., Hudson, C. M., DeVore, J. L. & Shine, R. Sex and weaponry: The distribution of toxin-storage glands on the bodies of male and female cane toads (Rhinella marina). Ecol. Evol. 7, 8950–8957 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    O’Donohoe, M. A. et al. Diversity and evolution of the parotoid macrogland in true toads (Anura: Bufonidae). Zool. J. Linn. Soc. 187, 453–478 (2019).
    Article  Google Scholar 

    19.
    Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 85, 253–291 (2010).
    PubMed  Article  Google Scholar 

    20.
    Ujvari, B. et al. Isolation breeds naivety: island living robs Australian varanid lizards of toad-toxin immunity via four-base-pair mutation. Evolution 67, 289–294 (2013).
    PubMed  Article  Google Scholar 

    21.
    Pearcy, A. Selective feeding in Keelback snakes Tropidonophis mairii in an Australian wetland. Aust. Zool. 35, 843–845 (2011).
    Article  Google Scholar 

    22.
    Llewelyn, J. et al. Behavioural responses of an Australian colubrid snake (Dendrelaphis punctulatus) to a novel toxic prey item (the Cane Toad Rhinella marina). Biol. Invasions 20, 2507–2516 (2018).
    Article  Google Scholar 

    23.
    van Bocxlaer, I. et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327, 679–682 (2010).
    ADS  PubMed  Article  CAS  Google Scholar 

    24.
    Hudson, C. M., Vidal-García, M., Murray, T. G. & Shine, R. The accelerating anuran: evolution of locomotor performance in cane toads (Rhinella marina, Bufonidae) at an invasion front. Proc. R. Soc. B 287, 20201964 (2020).
    PubMed  Article  Google Scholar 

    25.
    Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane toads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Ward-Fear, G., Pearson, D. J., Brown, G. P. & Shine, R. Ecological immunization: in situ training of free-ranging predatory lizards reduces their vulnerability to invasive toxic prey. Biol. Lett. 12, 20150863 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Crossland, M. R., Brown, G. P., Anstis, M., Shilton, C. & Shine, R. Mass mortality of native anuran tadpoles in tropical Australia due to the invasive cane toad (Bufo marinus). Biol. Conserv. 141, 2387–2394 (2008).
    Article  Google Scholar 

    28.
    Hayes, R. A., Crossland, M. R., Hagman, M., Capon, R. J. & Shine, R. Ontogenetic variation in the chemical defences of cane toads (Bufo marinus): Toxin profiles and effects on predators. J. Chem. Ecol. 35, 391–399 (2009).
    CAS  PubMed  Article  Google Scholar 

    29.
    Hagman, M., Hayes, R. A., Capon, R. J. & Shine, R. Alarm cues experienced by cane toad tadpoles affect post-metamorphic morphology and chemical defences. Funct. Ecol. 23, 126–132 (2009).
    Article  Google Scholar 

    30.
    Üveges, B. et al. Age-and environment-dependent changes in chemical defences of larval and post-metamorphic toads. BMC Evol. Biol. 17, 137 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Üveges, B. et al. Chemical defense of toad tadpoles under risk by four predator species. Ecol. Evol. 9, 6287–6299 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Bókony, V., Üveges, B., Verebélyi, V., Ujhegyi, N. & Móricz, Á. M. Toads phenotypically adjust their chemical defences to anthropogenic habitat change. Sci. Rep. 9, 3163 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Hettyey, A. et al. Predator-induced changes in the chemical defence of a vertebrate. J. Anim. Ecol. 88, 1925–1935 (2019).
    PubMed  Article  Google Scholar 

    34.
    Hudson, C. M, Brown, G. P., Stuart, K. & Shine, R. Sexual and geographic divergence in head widths of invasive cane toads, Rhinella marina (Anura: Bufonidae) is driven by both rapid evolution and plasticity. Biol. J. Linn. Soc. 124, 188–199 (2018).

    35.
    Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Hudson, C. M., McCurry, M. R., Lundgren, P., McHenry, C. R. & Shine, R. Constructing an invasion machine: The rapid evolution of a dispersal-enhancing phenotype during the cane toad invasion of Australia. PLoS ONE 11, e0156950 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hudson, C. M., Brown, G. P. & Shine, R. It is lonely at the front: Contrasting evolutionary trajectories in male and female invaders. R. Soc. Open Sci. 3, 160687 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Brown, G., Kelehear, C. & Shine, R. The early toad gets the worm: Cane toads at an invasion front benefit from higher prey availability. J. Anim. Ecol. 82, 854–862 (2013).
    PubMed  Article  Google Scholar 

    39.
    Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than time. Proc. Natl Acad. Sci. USA 108, 5708–5711 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Phillips, B. & Shine, R. The morphology, and hence impact, of an invasive species (the cane toad, Bufo marinus) changes with time since colonization. Anim. Conserv. 8, 407–413 (2005).
    Article  Google Scholar 

    41.
    Roff, D. A. Comparing sire and dam estimates of heritability: Jackknife and likelihood approaches. Heredity 100, 32–38 (2008).
    CAS  PubMed  Article  Google Scholar 

    42.
    Kliber, A. & Eckert, C. G. Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59, 1900–1913 (2005).
    CAS  PubMed  Google Scholar 

    43.
    Shine, R. Cane Toad Wars (University of California Press, 2018).

    44.
    Toledo, R. C. & Jared, C. Cutaneous adaptations to water balance in amphibians. Comp. Biochem. Physiol. A 105, 593–608 (1993).
    Article  Google Scholar 

    45.
    Kosmala, G., Brown, G. P., Shine, R. & Christian, K. Skin resistance to water gain and loss has changed in cane toads (Rhinella marina) during their Australian invasion. Ecol. Evol. 10, 13071–13079 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Crossland, M. R. & Shine, R. Cues for cannibalism: Cane toad tadpoles use chemical signals to locate and consume conspecific eggs. Oikos 120, 327–332 (2011).
    Article  Google Scholar 

    47.
    DeVore, J. L., Crossland, M. & Shine, R. Tradeoffs affect the adaptive value of plasticity: Stronger cannibal-induced defenses incur greater costs in toad larvae. Ecol. Monogr. https://doi.org/10.1002/ecm.1426 (2020).
    Article  Google Scholar 

    48.
    Greenlees, M. J. & Shine, R. Impacts of eggs and tadpoles of the invasive cane toad (Bufo marinus) on aquatic predators in tropical Australia. Austral Ecol. 36, 53–58 (2011).
    Article  Google Scholar 

    49.
    Somaweera, R., Crossland, M. R. & Shine, R. Assessing the potential impact of invasive cane toads on a commercial freshwater fishery in tropical Australia. Wildl. Res. 38, 380–385 (2011).
    Article  Google Scholar 

    50.
    Cao, Y., Cui, K., Pan, H., Wu, J. & Wang, L. The impact of multiple climatic and geographic factors on the chemical defences of Asian toads (Bufo gargarizans Cantor). Sci. Rep. 9, 17236 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Hague, M. T. J., Stokes, A. N., Feldman, C. R., Brodie, E. D. Jr. & Brodie, E. D. III. The geographic mosaic of arms race coevolution is closely matched to prey population structure. Evol. Lett. 4, 317–332 (2020).

    52.
    Jared, C. et al. Parotoid macroglands in toad (Rhinella jimi): Their structure and functioning in passive defence. Toxicon 54, 197–207 (2009).
    CAS  PubMed  Article  Google Scholar 

    53.
    Toledo, R. C. & Jared, C. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. A 111, 1–29 (1995).
    ADS  Article  Google Scholar 

    54.
    Maciel, N. M. et al. Composition of indolealkylamines of Bufo rubescens cutaneous secretions compared to six other Brazilian bufonids with phylogenetic implications. Comp. Biochem. Physiol. B 134, 641–649 (2003).
    PubMed  Article  CAS  Google Scholar 

    55.
    Sciani, J. M., Angeli, C. B., Antoniazzi, M. M., Jared, C. & Pimenta, D. C. Differences and similarities among parotoid macrogland secretions in South American toads: A preliminary biochemical delineation. Sci. World J. 2013, 937407 (2013).
    Article  CAS  Google Scholar 

    56.
    Habermehl, G. Venomous Animals and Their Toxins (Springer-Verlag, 1981).

    57.
    Garrett, C. M. & Boyer, D. M. Bufo marinus (cane toad) predation. Herpetol. Rev. 24, 148 (1993).
    Google Scholar 

    58.
    Pineau, X. & Romanoff, C. Envenomation of domestic carnivores. Rec. Méd. Vét. 171, 182–192 (1995).
    Google Scholar 

    59.
    Sakate, M. & Lucas de Oliveira, P. C. Toad envenoming in dogs: effects and treatment. J. Venom. Anim. Toxins 6, 52–62 (2000).

    60.
    Slade, R. W. & Moritz, C. Phylogeography of Bufo marinus from its natural and introduced ranges. Proc. R. Soc. B 265, 769–777 (1998).
    CAS  PubMed  Article  Google Scholar 

    61.
    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B 274, 1413–1419 (2007).
    PubMed  Article  Google Scholar 

    62.
    Urban, M., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, 134–148 (2008).
    Article  Google Scholar 

    63.
    Nullet, D., Juvik, J. O. & Wall, A. A Hawaiian mountain climate cross-section. Clim. Res. 5, 131–137 (1995).
    Article  Google Scholar 

    64.
    Kelehear, C. & Shine, R. Non-reproductive male cane toads (Rhinella marina) withhold sex-identifying information from their rivals. Biol. Lett. 15, 2019046 (2019).
    Article  Google Scholar 

    65.
    Shine, R., Everitt, C., Woods, D. & Pearson, D. J. An evaluation of methods used to cull invasive cane toads in tropical Australia. J. Pest Sci. 91, 1081–1091 (2018).
    Article  Google Scholar 

    66.
    Phillips, B. L. et al. Parasites and pathogens lag behind their host during periods of host range-advance. Ecology 91, 872–881 (2010).
    PubMed  Article  Google Scholar 

    67.
    Hudson, C. M., Brown, G. P. & Shine, R. Effects of toe-clipping on growth, body condition, and locomotion of cane toads (Rhinella marina). Copeia 105, 257–260 (2017).
    Article  Google Scholar 

    68.
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
    PubMed  Article  Google Scholar  More

  • in

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)

    1.
    Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (World Resources Institute, Washington, DC, 2005). http://www.millenniumassessment.org/documents/document.354.aspx.pdf (accessed 22 April 2020).
    2.
    Willis, K. & Birks, H. What is natural? The need for a long-term perspective. Science 314(5803), 1261–1266. https://doi.org/10.1126/science.1122667 (2006).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Birks, H. J. B. et al. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228, 1–25. https://doi.org/10.1016/j.revpalbo.2015.12.011 (2016).
    Article  Google Scholar 

    4.
    Li, K., Liao, M., Ni, J., Liu, X. & Wang, Y. Treeline composition and biodiversity change on the southeastern Tibetan Plateau during the past millennium, inferred from a high-resolution alpine pollen record. Quat. Sci. Rev. 206, 44–55. https://doi.org/10.1016/j.quascirev.2018.12.029 (2019).
    ADS  Article  Google Scholar 

    5.
    Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957. https://doi.org/10.1016/j.tree.2018.09.003 (2018).
    Article  PubMed  Google Scholar 

    6.
    Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P. & Ramana Murthy, M. V. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 18, 389–411. https://doi.org/10.1007/s11157-019-09501-4 (2019).
    CAS  Article  Google Scholar 

    7.
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).
    CAS  Article  Google Scholar 

    8.
    Kress, W. J. & Erickson, D. L. DNA barcodes: Genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. USA 105, 2761–2762. https://doi.org/10.1073/pnas.0800476105 (2008).
    ADS  Article  PubMed  Google Scholar 

    9.
    CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 106, 12794–12797. https://doi.org/10.1073/pnas.0905845106 (2009).
    Article  Google Scholar 

    10.
    China Plant BOL Group. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646. https://doi.org/10.1073/pnas.1104551108 (2011).
    ADS  Article  Google Scholar 

    11.
    Li, X. W. et al. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. 90, 157–166. https://doi.org/10.1111/brv.12104 (2015).
    Article  Google Scholar 

    12.
    Fior, S. et al. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions. New Phytol. 198, 579–592. https://doi.org/10.1111/nph.12163 (2013).
    Article  PubMed  Google Scholar 

    13.
    Staats, M. et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 408, 4615–4630. https://doi.org/10.1007/s00216-016-9595-8 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14. https://doi.org/10.1093/nar/gkl938 (2007).
    CAS  Article  Google Scholar 

    15.
    Kraaijeveld, K. et al. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol. Ecol. Resour. 15, 8–16. https://doi.org/10.1111/1755-0998.12288 (2015).
    CAS  Article  PubMed  Google Scholar 

    16.
    Leontidou, K. et al. DNA metabarcoding of airborne pollen: New protocols for improved taxonomic identification of environmental samples. Aerobiologia 34, 63–74. https://doi.org/10.1007/s10453-017-9497-z (2018).
    Article  Google Scholar 

    17.
    Parducci, L. et al. Ancient plant DNA in lake sediments. New Phytol. 214, 924–942 (2017).
    CAS  Article  Google Scholar 

    18.
    Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 1–21 (2019).
    CAS  Article  Google Scholar 

    19.
    Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13, 1–19. https://doi.org/10.1371/journal.pone.0205575 (2018).
    CAS  Article  Google Scholar 

    20.
    Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647–3655 (2012).
    CAS  Article  Google Scholar 

    21.
    Parducci, L. et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00189 (2019).
    Article  Google Scholar 

    22.
    Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, 1–23. https://doi.org/10.1371/journal.pone.0195403 (2018).
    CAS  Article  Google Scholar 

    23.
    Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114. https://doi.org/10.1126/science.1141758 (2007).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Willerslev, E. et al. Diverse plant and animal genetic records from holocene and pleistocene sediments. Science 300, 791–795 (2003).
    ADS  CAS  Article  Google Scholar 

    25.
    Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51. https://doi.org/10.1038/nature12921 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    26.
    Zimmermann, H. et al. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosciences 14, 575–596. https://doi.org/10.5194/bg-14-575-2017 (2017).
    ADS  CAS  Article  Google Scholar 

    27.
    Alaeddini, R. Forensic implications of PCR inhibition—A review. Forensic Sci. Int. Genet. 6, 297–305. https://doi.org/10.1016/j.fsigen.2011.08.006 (2012).
    CAS  Article  PubMed  Google Scholar 

    28.
    Haeberli, W. & Alean, J. Temperature and accumulation of high altitude firn in the alps. Ann. Glaciol. 6, 161–163. https://doi.org/10.3189/1985AoG6-1-161-163 (1985).
    ADS  Article  Google Scholar 

    29.
    Bennett, K. D. & Buck, C. E. Interpretation of lake sediment accumulation rates. Holocene 26, 1092–1102. https://doi.org/10.1177/0959683616632880 (2016).
    ADS  Article  Google Scholar 

    30.
    Festi, D. et al. A novel pollen-based method to detect seasonality in ice cores: A case study from the Ortles glacier, South Tyrol, Italy. J. Glaciol. 61, 815–824. https://doi.org/10.3189/2015JoG14J236 (2015).
    ADS  Article  Google Scholar 

    31.
    Nakazawa, F. Application of pollen analysis to dating of ice cores from lower-latitude glaciers. J. Geophys. Res. 109, 168–170. https://doi.org/10.1029/2004JF000125 (2004).
    Article  Google Scholar 

    32.
    Nakazawa, F. et al. Dating of seasonal snow/firn accumulation layers using pollen analysis. J. Glaciol. 51, 483–490. https://doi.org/10.3189/172756505781829179 (2005).
    ADS  Article  Google Scholar 

    33.
    Nakazawa, F. et al. Establishing the timing of chemical deposition events on Belukha Glacier, Altai Mountains, Russia, using Pollen analysis. Arctic Antarct. Alp. Res. 43, 66–72. https://doi.org/10.1657/1938-4246-43.1.66 (2011).
    Article  Google Scholar 

    34.
    Nakazawa, F., Konya, K., Kadota, T. & Ohata, T. Reconstruction of the depositional environment upstream of Potanin Glacier, Mongolian Altai, from pollen analysis. Environ. Res. Lett. 7, 035402. https://doi.org/10.1088/1748-9326/7/3/035402 (2012).
    ADS  Article  Google Scholar 

    35.
    Santibañez, P. et al. Glacier mass balance interpreted from biological analysis of firn cores in the Chilean lake district. J. Glaciol. 54, 452–462. https://doi.org/10.3189/002214308785837101 (2008).
    ADS  Article  Google Scholar 

    36.
    Uetake, J. et al. Biological ice-core analysis of Sofiyskiy glacier in the Russian Altai. Ann. Glaciol. 43, 70–78. https://doi.org/10.3189/172756406781811925 (2006).
    ADS  CAS  Article  Google Scholar 

    37.
    Andreev, A. A., Nikolaev, V. I., Boi’sheiyanov, D. Y. & Petrov, V. N. Pollen and isotope investigations of an ice core from Vavilov ice cap, October revolution island, Severnaya Zemlya archipelago, Russia. Geogr. Phys. Quat. 51, 379–389. https://doi.org/10.7202/033137ar (1997).
    Article  Google Scholar 

    38.
    Liu, K. B., Reese, C. A. & Thompson, L. G. A potential pollen proxy for ENSO derived from the Sajama ice core. Geophys. Res. Lett. 34, 1–5. https://doi.org/10.1029/2006GL029018 (2007).
    Article  Google Scholar 

    39.
    Reese, C. A., Liu, K. B. & Thompson, L. G. An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia. Ann. Glaciol. 54, 183–190. https://doi.org/10.3189/2013AoG63A375 (2013).
    ADS  CAS  Article  Google Scholar 

    40.
    Papina, T. et al. Biological proxies recorded in a Belukha ice core, Russian Altai. Clim. Past 9, 2399–2411. https://doi.org/10.5194/cp-9-2399-2013 (2013).
    Article  Google Scholar 

    41.
    Winkler, S. et al. An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erdkunde 64, 97–118. https://doi.org/10.3112/erdkunde.2010.02.01 (2010).
    Article  Google Scholar 

    42.
    Citterio, M. et al. The fluctuations of Italian glaciers during the last century: A contribution to knowledge about alpine glacier changes. Geogr. Ann. Ser. A Phys. Geogr. 89, 167–184. https://doi.org/10.1111/j.1468-0459.2007.00316.x (2007).
    Article  Google Scholar 

    43.
    Knoll, C. & Kerschner, H. A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data. Ann. Glaciol. 50, 46–52. https://doi.org/10.3189/172756410790595903 (2009).
    ADS  Article  Google Scholar 

    44.
    Diolaiuti, G., Bocchiola, D., D’agata, C. & Smiraglia, C. Evidence of climate change impact upon glaciers’ recession within the Italian Alps: The case of Lombardy glaciers. Theor. Appl. Climatol. 109, 429–445. https://doi.org/10.1007/s00704-012-0589-y (2012).
    ADS  Article  Google Scholar 

    45.
    IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, R.K. Pachauri and L.A. Meyer) 151 (IPCC, Geneva, 2014).

    46.
    Maggi, V. et al. Variability of anthropogenic and natural compounds in high altitude-high accumulation alpine glaciers. Hydrobiologia 562, 43–56. https://doi.org/10.1007/s10750-005-1804-y (2006).
    CAS  Article  Google Scholar 

    47.
    Gabrielli, P. et al. Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum. Cryosphere 10, 2779–2797. https://doi.org/10.5194/tc-10-2779-2016 (2016).
    ADS  Article  Google Scholar 

    48.
    Bohleber, P. et al. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Clim. Past 14, 21–37. https://doi.org/10.5194/cp-14-21-2018 (2018).
    Article  Google Scholar 

    49.
    Rizzi, C., Finizio, A., Maggi, V. & Villa, S. Spatial–temporal analysis and risk characterisation of pesticides in Alpine glacial streams. Environ. Pollut. 248, 659–666. https://doi.org/10.1016/j.envpol.2019.02.067 (2019).
    CAS  Article  PubMed  Google Scholar 

    50.
    Garzonio, R. et al. Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains. J. Glaciol. 64, 12–26. https://doi.org/10.1017/jog.2017.75 (2018).
    ADS  Article  Google Scholar 

    51.
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59. https://doi.org/10.1038/nmeth.2276 (2013).
    CAS  Article  PubMed  Google Scholar 

    52.
    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226. https://doi.org/10.1002/ece3.2186 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895. https://doi.org/10.1111/mec.14350 (2017).
    Article  PubMed  Google Scholar 

    54.
    Soons, M. B. & Ozinga, W. A. How important is long-distance seed dispersal for the regional survival of plant species?. Divers. Distrib. 11, 165–172. https://doi.org/10.1111/j.1366-9516.2005.00148.x (2005).
    Article  Google Scholar 

    55.
    Lyscov, V. N. & Moshkovsky, Y. S. DNA cryolysis. Biochim. Biophys. Acta 190, 101–110 (1969).
    CAS  Article  Google Scholar 

    56.
    Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 45, 219–235 (2009).
    CAS  Article  Google Scholar 

    57.
    Lindahl, T. & Nyberg, B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610–3618 (1972).
    CAS  Article  Google Scholar 

    58.
    Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).
    Article  Google Scholar 

    59.
    Bortenschlager, S. Aspects of pollen morphology in the Cupressaceae. Grana 29, 129–137 (1990).
    Article  Google Scholar 

    60.
    Kurmann, M. H. Pollen morphology and ultrastructure in the Cupressaceae. Acta Bot. Gall. 141, 141–147 (1994).
    Article  Google Scholar 

    61.
    Chichiriccò, G. & Pacini, E. Cupressus arizonica pollen wall zonation and in vitro hydration. Plant Syst. Evol. 270, 231–242 (2008).
    Article  Google Scholar 

    62.
    Moran, T., Marshall, S. J. & Sharp, M. J. Isotope thermometry in melt-affected ice cores. J. Geophys. Res. Earth Surf. 116, 1–10. https://doi.org/10.1029/2010JF001738 (2011).
    CAS  Article  Google Scholar 

    63.
    Baroni, C., Armiraglio, S., Gentili, R. & Carton, A. Landform-vegetation units for investigating the dynamics and geomorphologic evolution of alpine composite debris cones (Valle dell’Avio, Adamello Group, Italy). Geomorphology 84, 59–79 (2007).
    ADS  Article  Google Scholar 

    64.
    Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847. https://doi.org/10.1111/j.1365-294X.2012.05550.x (2012).
    CAS  Article  PubMed  Google Scholar 

    65.
    Celesti-Grapow, L. et al. (eds) Flora vascolare alloctona e invasiva delle regioni d’Italia (Casa Editrice Università La Sapienza, Roma, 2010).
    Google Scholar 

    66.
    Wu, P.-C., Su, H.-J., Lung, S.-C.C., Chen, M.-J. & Lin, W.-P. Pollen of Broussonetia papyrifera: An emerging aeroallergen associated with allergic illness in Taiwan. Sci. Total Environ. 657, 804–810. https://doi.org/10.1016/j.scitotenv.2018.11.324 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    67.
    Kelly, R. P. et al. Genetic and manual survey methods yield different and complementary views of an ecosystem. Front. Mar. Sci. 3, 1–11. https://doi.org/10.3389/fmars.2016.00283 (2017).
    Article  Google Scholar 

    68.
    Baksay, S. et al. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 10, 4202. https://doi.org/10.1038/s41598-020-61198-6 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Picotti, S., Francese, R., Giorgi, M., Pettenati, F. & Carcione, J. M. Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. J. Glaciol. 63, 229–248. https://doi.org/10.1017/jog.2016.135 (2017).
    ADS  Article  Google Scholar 

    70.
    Smiraglia, C. et al. The evolution of the Italian glaciers from the previous data base to the new Italian inventory. Preliminary considerations and results. Geogr. Fis. e Din. Quat. 38, 79–87. https://doi.org/10.4461/GFDQ.2015.38.08 (2015).
    Article  Google Scholar 

    71.
    Comitato Glaciologico Italiano & Consiglio Nazionale delle Ricerche. Catasto dei ghiacciai italiani. Anno geofisico 1957–1958. Volume III—Ghiacciai della Lombardia e dell’Ortles-Cevedale. (Comitato Glaciologico Italiano, Torino, 1961).

    72.
    Marson, L. Sui ghiacciai dell’Adamello – Presanella (alto bacino del Sarca – Mincio). Boll. Soc. Geogr. It. 7, 546–568 (1906).
    Google Scholar 

    73.
    Servizio Glaciologico Lombardo. Ghiacciai in Lombardia (Edizioni Bolis, Bergamo, 1992).
    Google Scholar 

    74.
    Payer, J. Originalkarte der Adamello-Presanella Alpen, scala di 1:56.000. In Pajer J. – Die Adamello-Presanella Alpen nach den Forschungen und Aufnahmen, Petermanns Geogr. Mitt. Erganzungs-Hefte, 11 (17) (Gotha, 1865).

    75.
    Bombarda, R. Il cuore Bianco. Guida ai ghiacciai del Trentino (Edizioni Arca, 1996).

    76.
    Baroni, C., Carton, A. & Casarotto, C. I ghiacciai dell’Adamello. In: Itinerari Glaciologici sulle montagne italiane (ed. Comitato Glaciologico Italiano) Vol. 3 (Società Geologica Italiana, Roma, 2017).

    77.
    Bertoni, E. & Casarotto, C. Estensione dei ghiacciai trentini dalla fine della Piccola Età glaciale a oggi. Rilevamento sul terreno, digitalizzazione GIS e analisi. (2015). Progetto finanziato dal Servizio sviluppo sostenibile e aree protette della PAT (rif. prot. n. P001/0640691/29-2014-16 dd. 2/12/2014) (accessed on 27 April 2020). http://www.climatrentino.it/binary/pat_climaticamente/osservatorio_trentino_clima/2014_Estensione_dei_ghiacciai_dalla_fine_della_Piccola_Et_Glaciale_a_oggi_MUSE_.1462456788.pdf.

    78.
    Abeni, F. et al. Hydrogen and oxygen stable isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage. PLoS ONE 10(5), e0127391. https://doi.org/10.1371/journal.pone.0127391 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    79.
    Bocchiola, D., Bombelli, G. M., Camin, F. & Ossi, P. M. Field study of mass balance, and hydrology of the West Khangri Nup Glacier (Khumbu, Everest). Water 12(2), 433. https://doi.org/10.3390/w12020433 (2020).
    Article  Google Scholar 

    80.
    Erdtman, G. The acetolysis method, A revised description. Svensk Bot. Tidskr. 54, 561–569 (1960).
    Google Scholar 

    81.
    Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Wiley, London, 1989).
    Google Scholar 

    82.
    Bucher, E., Kofler, V., Vorwohl, G. & Zieger, E. Lo spettro pollinico dei mieli dell’Alto Adige (Laboratorio Biologico, Agenzia Provinciale per l’Ambiente, Laives, Bolzano. 2004).

    83.
    Albanese, D. et al. MICCA: Aa complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).
    CAS  Article  Google Scholar  More

  • in

    Biological performance and oviposition preference of tomato pinworm Tuta absoluta when offered a range of Solanaceous host plants

    1.
    di Castri, F. History of biological invasions with emphasis on the Old World. In Biological invasions: a global perspective, (ed. Drake J., di Castri, F., Groves, R., Kruger, F., Mooney, H. A., Rejmanek, M., Williamson, M.) 1–30 (Wiley, New York, 1989).
    2.
    Reeve, E. Domestication of Plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley (ed. Zohary, D. & Hopf, M.) (Clarendon Press, Oxford, 1994).

    3.
    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
    Article  Google Scholar 

    4.
    Worner, S. P. & Gevrey, M. Modelling global insect pest species assemblages to determine risk of invasion. J. Appl. Ecol. 43, 858–867 (2006).
    Article  Google Scholar 

    5.
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).
    Article  Google Scholar 

    6.
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
    Article  Google Scholar 

    7.
    Sridhar, V., Chakravarthy, A. K. & Asokan, R. New record of the invasive South American tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India. Pest. Manag. Hort. 20, 148–154 (2014).
    Google Scholar 

    8.
    Galdino, T. V. S. et al. Is the performance of a specialist herbivore affected by female choices and the adaptability of the offspring?. PLoS ONE 10, 1–18 (2015).
    Article  CAS  Google Scholar 

    9.
    Campos, M. R., Biondi, A., Adiga, A., Guedes, R. N. C. & Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 90, 787–796 (2017).
    Article  Google Scholar 

    10.
    Cherif, A. & François, V. A review of Tuta absoluta (Lepidoptera: Gelechiidae) host plants and their impact on management strategies. Biotechnol. Agron. Soc. Environ. 23 (4) (2019).

    11.
    Picanço, M. C., Bacci, L., Crespo, A. L. B., Miranda, M. M. M. & Martins, J. C. Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agric. For. Entomol. 9, 327–335 (2007).
    Article  Google Scholar 

    12.
    Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread, and Management of the Invasive South American Tomato Pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guedes, R. N. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. https://doi.org/10.1007/s10340-019-01086-9 (2019).
    Article  Google Scholar 

    14.
    Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2019).
    Article  Google Scholar 

    15.
    Luna, M. G. et al. Biological control of Tuta absoluta in Argentina and Italy: evaluation of indigenous insects as natural enemies. EPPO Bulletin 42, 260–267 (2012).
    ADS  Article  Google Scholar 

    16.
    Bacci, L. et al. Natural mortality factors influencing the tomato leafminer Tuta absoluta in open-field tomato crops in South America. Pest Manage. Sci. https://doi.org/10.1002/ps.5173 (2019).
    Article  Google Scholar 

    17.
    Megido, R. C., Brostaux, Y., Haubruge, E. & Verheggen, F. J. Propensity of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), to develop on four potato plant varieties. Am. Potato J. 90, 255–260 (2013).
    Article  Google Scholar 

    18.
    Sylla, S., Brévault, T., Monticelli, L. S., Diarra, K. & Desneux, N. Geographic variation of host preference by the invasive tomato leaf miner Tuta absoluta: implications for host range expansion. J. Pest Sci. https://doi.org/10.1007/s10340-019-01094-9 (2019).
    Article  Google Scholar 

    19.
    Vargas, H. C. Observaciones sobre la biologıa y enemigos naturales de la polilla del tomate, Gnorimoschema absoluta (Meyrick) (Lepidoptera: Gelechiidae). Idesia 1, 75–110 (1970).
    Google Scholar 

    20.
    Gilardón, E., Pocovi, M., Hernández, C., Collavino, G. & Olsen, A. Papel da 2-tridecanona e dos tricomas glandulares tipo VI na resistência do tomateiro a Tuta absoluta. Pesqui. Agropecu. Bras. 36, 929–933 (2001).
    Article  Google Scholar 

    21.
    Pereyra, P. C. & Sánchez, N. E. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35, 671–676 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Moreira, L. A. et al. Antibiosis of eight Lycopersicon genotypes to Tuta absoluta (Lepidoptera: Gelechiidae). Rer. Ceres 56, 283–287 (2009).
    Google Scholar 

    23.
    Negi, S., Sharma, P. L., Sharma, K. C. & Verma, S. C. Effect of host plants on developmental and population parameters of invasive leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Phytoparasitica 46, 213–221 (2018).
    Article  Google Scholar 

    24.
    Satishchandra, K. N., Chakravarthy, A. K., Özgökçe, M. S. & Atlihan, R. Population growth potential of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato, potato, and eggplant. J. Appl. Entomol. 143, 518–526 (2019).
    Article  Google Scholar 

    25.
    Younes, A. A., Zohdy, N. Z. M., Abulfadl, H. A. & Fathy, R. Life table parameters of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), on three solanaceous host plants. Afr. Entomol. 27, 461–467 (2019).
    Article  Google Scholar 

    26.
    Cherif, A., Attia-Barhoumi, S., Mansour, R., Zappalà, L. & Grissa-Lebdi, K. Elucidating key biological parameters of Tuta absoluta on different host plants and under various temperature and relative humidity regimes. Entomol. Gen. https://doi.org/10.1127/entomologia/2019/0685 (2019).
    Article  Google Scholar 

    27.
    Knapp, S. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J. Exp. Bot. 53, 2001–2022 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Silva, G. A. et al. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manage. Sci. 67, 913–920 (2011).
    ADS  CAS  Article  Google Scholar 

    29.
    Southwood, T. R. E. & Hendersen, P. A. Ecological Methods (ed. Southwood, T. R. E. & Hendersen, P. A.) (Blackwell Science, 2000).

    30.
    Maia, H. N., Luiz, A. A. J. & Campanhola, C. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J. Econ. Entomol. 93, 511–518 (2000).
    Article  Google Scholar 

    31.
    Paré, P. W. & Tumlinson, J. H. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121, 325–332 (1999).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Feeny, P., Stadler, E., Ahman, I. & Carter, M. Effects of plant odor on oviposition by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). J. Insect. Behav. 2, 803–827 (1989).
    Article  Google Scholar 

    33.
    Proffit, M. et al. Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J. Chem. Ecol. 37, 565–574 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Friedman, M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 1054, 143–155 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Antônio, A. D. C., Silva, D. J. H. D., Picanço, M. C., Santos, N. T. & Fernandes, M. E. S. Tomato plant inheritance of antixenotic resistance to tomato leafminer. Pesqui. Agropecu. Bras. 46, 74–80 (2011).
    Article  Google Scholar 

    36.
    Miranda, M. M. M., Picanço, M., Zanuncio, J. C. & Guedes, R. N. C. Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci. Technol. 8, 597–606 (1998).
    Article  Google Scholar 

    37.
    Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Krainacker, D. A., Carey, J. R. & Vargas, R. I. Effect of larval host on life history traits on the Mediterranean fruit fly Ceratitis capitata. Oecologia 73, 583–590 (1987).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Razmjou, J., Naseri, B. & Hemati, S. A. Comparative performance of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on various host plants. J. Pest. Sci. 87, 29–37 (2014).
    Article  Google Scholar 

    40.
    Calvo, D. & Molina, J. M. Fecundity-body size relationship and other reproductive aspects of Streblote panda (Lepidoptera: Lasiocampidae). Ann. Entomol. Soc. Am. 98, 191–196 (2005).
    Article  Google Scholar 

    41.
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2000).
    Article  Google Scholar 

    42.
    Boggs, C. L. & Freeman, K. D. Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144, 353–361 (2005).
    ADS  PubMed  Article  Google Scholar 

    43.
    Tammaru, T., Esperk, T. & Castellanos, I. No evidence for costs of being large in females of Orgyia spp. (Lepidoptera, Lymantriidae): larger is always better. Oecologia 133, 430–438 (2002).
    ADS  PubMed  Article  Google Scholar 

    44.
    Calvo, D. & Molina, J. M. Utilization of blueberry by the lappet moth Streblote panda Hübner (Lepidoptera: Lasiocampidae): survival, development and larval performance. J. Econ. Entomol. 97, 957–963 (2004).
    CAS  PubMed  Article  Google Scholar 

    45.
    Kanle Satishchandra, N., Chakravarthy, A. K., Özgökçe, M. S. & Atlihan, R. Population growth potential of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato, potato, and eggplant. J. Appl. Entomol. 143, 518–526 (2019).
    Article  Google Scholar 

    46.
    Gotelli, N. J. A primer of ecology (ed. Gotelli, N. J.) (Sinauer Associates Incorporated Press, 1995).

    47.
    Birch, L. The intrinsic rate of natural increase of an insect population. J. Econ. Entomol. 17, 15–26 (1948).
    Google Scholar 

    48.
    Lage, J., Skovmand, B. & Andersen, S. B. Characterization of greenbug (Homoptera: Aphididae) resistance in synthetic hexaploid wheats. J. Econ. Entomol. 96, 1922–1928 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Smith, C. M. Plant Resistance to Arthropods: Molecular and Conventional Approaches (ed. Smith, C. M.) (Springer, Berlin, 2005).

    50.
    Fathi, S. A. A., Bozorg-Amirkalaee, M. & Sarfaraz, R. M. Preference and performance of Plutella xylostella (L.) (Lepidoptera: Plutellidae) on canola cultivars. J. Pest Sci. 84, 41–47 (2011).
    Article  Google Scholar 

    51.
    Thomazini, A. P. B. W., Vendramim, J. D., Brunherotto, R. & Lopes, M. T. Efeito de genótipos de tomateiro sobre a biologia e oviposição de Tuta absoluta (Meyrick) (Lep.: Gelechiidae). Neotrop. Entomol. 30, 283–288 (2001).
    Article  Google Scholar 

    52.
    Boiça Junior, A. L., Bottega, D. B., Lourenção, A. L. & Rodrigues, N. E. L. Não preferência para oviposição e alimentação por Tuta absoluta (Meyrick) em genótipos de tomateiro. Arq. Inst. Biol. 79, 541–548 (2012).
    Article  Google Scholar 

    53.
    Erdogan, P. & Babaroglu, N. E. Life table of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J. Agric. Facul. Gaziosmanpasa Univ. 31, 80–89 (2014).
    Google Scholar 

    54.
    Malakar, R. & Tingey, W. M. Glandular trichomes of Solanum berthaultii and its hybrids with potato deter oviposition and impair growth of potato tuber moth. Entomol. Exp. Appl. 94, 249–257 (2000).
    Article  Google Scholar 

    55.
    Horgan, F. G., Quiring, D. T., Lagnaoui, A., Salas, A. R. & Pelletier, Y. Periderm and cortex based resistance to tuber feeding Phthorimaea operculella in two wild potato species. Entomol. Exp. Appl. 125, 249–258 (2007).
    Article  Google Scholar 

    56.
    Mackauer, M. Genetic problems in the production of biological control agents. Annu. Rev. Entomol. 21, 369–385 (1976).
    Article  Google Scholar 

    57.
    Spielman, D. & Brook, B. W. Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA 101, 15261–15264 (2000).
    ADS  Article  CAS  Google Scholar 

    58.
    Urbaneja, A., Vercher, R., Navarro, V., García Marí, F. & Porcuna, J. L. La polilla del tomate, Tuta absoluta. Phytoma 194, 16–23 (2007).
    Google Scholar 

    59.
    Campos, R. G. Control químico del “minador de hojas y tallos de la papa” (Scrobipalpula absoluta Meyrick) en el valle del Cañete. Rev. Peru Entomol. 19, 102–106 (1976).
    Google Scholar 

    60.
    Garzia, T. G. Physalis peruviana L. (Solanaceae), a host plant of Tuta absoluta in Italy. IOBC/WPRS Bull 49, 231–232 (2009).

    61.
    Bawin, T., Dujeu, D., De Backer, L., Francis, F. & Verheggen, F. J. Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species. Can. Entomol. 148, 434–442 (2016).
    Article  Google Scholar  More

  • in

    Group size and aquatic vegetation modulates male preferences for female shoals in wild zebrafish, Danio rerio

    Ethics statement
    The study complied with the existing rules and guidelines outlined by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India, the Institutional Animal Ethics Committee’s (IAEC) and guidelines of Indian Institute of Science Education and Research (IISER) Kolkata. All experimental protocols followed here have been approved by the Institutional Animal Ethics Committee’s (IAEC) and guidelines of Indian Institute of Science Education and Research (IISER) Kolkata, Government of India. No animals were euthanized or sacrificed during any part of the study, and behavioral observations were conducted without any chemical treatment on the individuals. At the end of the experiments, all fish were returned to stock tanks and continued to be maintained in the laboratory.
    Procuring subject animals and maintenance
    We used wild-caught zebrafish (from Howrah district, West Bengal, India), bought from a commercial supplier. The fish were maintained in the laboratory in mixed-sex groups of approximately 60 individuals in well-aerated holding tanks (60 × 30 × 30 cm) filled with filtered water. The lighting in the laboratory was maintained at 14 hL:10 hD to mimic the natural LD cycle in zebrafish. They were fed commercially purchased freeze-dried blood worms once a day alternating with brine shrimp Artemia. The holding tanks were provided with standard corner filters for circulation. They were maintained in the laboratory for six months before experiments were conducted to ensure they were all adults and were reproductively mature. Holding room temperature was maintained between 23 and 25 °C.
    Experimental setup
    The experiments were conducted in a square glass arena (83 × 83 cm), with a half-diagonal of the square from the center that approximated ten fish standard body lengths (i.e. 40 cm, assuming one body length of adult zebrafish to be about 4 cm) (Fig. 1). Each corner of the arena was provided with a square chamber (of sides 10 cm) built from transparent mesh (using synthetic fish nets) for housing the females. This design allowed for the stimuli females to be localized in the patches and not escape into the arena while simultaneously ensuring that the test males can have visuo-chemical communication with the females. The center of the arena was provided with a removable chamber (with holes) for acclimation of the males prior to the trial.
    Figure 1

    Diagrammatic representation of the arena for the density experimental set-up. The central chamber (indicated by a circle) represents the area where the test males were released and the corner square chamber (separated by transparent mesh) contained females of varying density. The distance of each patch from the central chamber was 40 cm.

    Full size image

    Three sets of experiments were performed to test their association preferences under (1) only varying female densities (2) increasing female and vegetation densities and (3) increasing female densities with decreasing vegetation.
    Association preference experiment with varying female densities
    For this experiment, each small chamber within the arena housed two (low number), four (medium number), eight (high number) or no (blank) females. These chambers represented patches of varying female numbers. The position of the female-containing chambers, as well as the composition of females within each patch, was randomized between trials. A total of 20 males were tested for their association preferences. Details on the data collected are provided in Supplementary File S1.
    Association preference experiment with vegetation
    For this experiment, the female-housing chambers (patches) were provided with vegetation (using artificial plants) of varying density (Fig. 2). Each subject fish was tested under two experimental settings. In E1, the number of females was proportional to the density of associated vegetation cover. We used four different densities of females, each associated with different densities of plants
    1.
    one female + no plants (no vegetation—N)

    2.
    two females + two plants (low vegetation—L)

    3.
    four females + three plants (moderate vegetation—M) and

    4.
    eight females + five plants (high vegetation—H).

    Figure 2

    Diagrammatic representation of the arena the vegetation experimental set-up. The central chamber (indicated by a circle) represents the area where the test males were released and the corner square chambers (separated by transparent mesh) contained females of varying density and each patch was associated with variable number of plastic plants representing vegetation cover.

    Full size image

    For E2, we interchanged in the vegetation cover for the two and eight female patches. The patch composition in E2 set were as follows
    1.
    one female + no plants (no vegetation—N)

    2.
    two females + eight plants (high vegetation—H)

    3.
    four females + three plants (moderate vegetation—M) and

    4.
    eight females + two plants (low vegetation—L).

    All test males were tested in E1 and E2 on consecutive days in no particular order. Details on the data collected are provided in Supplementary Files S2 and S3.
    Experimental protocol
    For the experiment involving association preferences with only varying female numbers a total of 20 males were tested, while 24 males were tested for experiments on the association preferences in varying female numbers combined with vegetation density gradients (E1 and E2 experiments). The experiments were performed two months’ apart to ensure the fish do not retain any memory from the first experiment, and thus they could be treated as two independent sets. We isolated subject males of comparable sizes and kept them in individual isolation in 500 ml jars for four days prior to experiments as that allowed us to keep track of individual fish and also stimulated mate-seeking behavior21,22. They were fed freeze-dried blood worms every day at constantly maintained feeding times. The gravid females that were used for the experiment as stimuli for association were isolated (about 22 females) in a small holding tank (30 × 20 × 20 cm) with a feeding regimen similar to the test males. Before the start of each trial, we introduced the females into each chamber (patch) randomly (according to the experimental setup described above) and left them there for 15 min. for acclimation. A single male individual was then gently introduced into the central cylindrical chamber (with a hand-net), open at both ends (made of transparent plastic and provided with holes). After a five-minute acclimation period, the chamber was slowly removed to allow the male to swim freely in the arena and video recording was commenced. Video recordings were done using a camera (Sony DCR-PJ5, Sony DCR-SX22) placed perpendicularly above the arena. The test fish (males and females) were fed only after the end of experimental trials, on each day of experiments. At the end of the trials, the fish were returned to their holding tanks. No subject male fish were tested more than once per experimental setup and trial. The females used for the patches, were housed together (but separate from their male counterparts) in a smaller tank. Before the trials the females were picked randomly and assigned into each patch. During the experiment, the position of females being used was randomized between trials from patch to patch, to avoid the possibility of bias among the subject males for any particular females in the patches.
    We recorded the behavior of each test fish for 10 min. All videos were analyzed using the software BORIS23. A single visit to any of the patch was denoted when the male approaches within 6 cm (1.5 times their average body length) of the patch. We collected data on three parameters: total number of visits to each patch, the total amount of time spent in each patch and the mean time spent per visit within each patch. The same overall protocol was followed for all sets of experiments.
    Statistical analyses
    We noted the total number of visits to each patch, the total duration of time spent in each patch and mean time spent per visit per patch for the entire ten minutes duration of video recording for each test male. We calculated preference index (I) the total number of visits (I_visit) and total time spent (I_time) for each patch as proportion of the total visits made to all four patches24.

    I_visit for patch A = No. of visit to patch A/(visit to patch A + visit to patch B + visit to patch C + visit to patch D).

    I_time for patch A = time spent in patch A/(time spent in patch A + time spent in patch B + time spent in patch C + time spent in patch D).

    All statistical analyses were performed in R studio (version 1.1.463)25. We developed generalized linear mixed models (GLMMs) using package glmmTMB (version 0.2.3)26 with ‘fish’ as the random factor and ‘Patches’ as the fixed factor, with four levels representing the four choices for the test (male) fish. Preference for total number of visits (I_visit) as well as total time spent (I_time) were found to fit beta distribution with values ranging between 0 and 1. For data fitting, we added 0.0001 to every value, to remove zeroes. Relevelled models were used to compare the parameters between the four patches. Link = logit was used under beta family to construct the GLMM models.
    For analyzing the data for the second and third experiments involving varying female densities along with vegetation densities (E1 and E2), we followed a similar procedure of constructing a GLMM followed by post hoc tests. GLMM models were constructed with a single independent variable, “patch”, that had four levels, designated as H (high vegetation density), M (moderate vegetation density), L (low vegetation density) and N (no vegetation). More