More stories

  • in

    The preference of Trichopria drosophilae for pupae of Drosophila suzukii is independent of host size

    1.
    DiGiacomo, G., Hadrich, J., Hutchison, W. D., Peterson, H. & Rogers, M. Economic impact of spotted wing drosophila (Diptera: Drosophilidae) yield loss on Minnesota Raspberry farms: A grower survey. J. Integr. Pest Manag. 10, https://doi.org/10.1093/jipm/pmz006 (2019).
    2.
    Farnsworth, D. et al. Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. Pest Manag. Sci. 73, 1083–1090. https://doi.org/10.1002/ps.4497 (2017).
    CAS  Article  PubMed  Google Scholar 

    3.
    Cini, A., Ioriatti, C. & Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65, 149–160 (2012).
    Google Scholar 

    4.
    Okada, T. Systematic Study of Drosophilidae and Allied Families of Japan. 95–106 (Gihodo Co. Ltd., 1956).

    5.
    Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. 2, G1–G7. https://doi.org/10.1603/Ipm10010 (2011).
    Article  Google Scholar 

    6.
    Kanzawa, T. Studies on Drosophila suzukii mats. J. Plant Proteom. 23, 66–70, 127–132, 183–191 (1939).

    7.
    Bolda, M. P. & Goodhue, R. E. Spotted wing Drosophila: Potential economic impact of a newly established pest. Agric. Resour. Econ. Updates Univ. Calif. Giannini Found. 13, 5–8, https://doi.org/10.1016/j.jff.2015.04.027 (2010).

    8.
    Schetelig, M. F. et al. Environmentally sustainable pest control options for Drosophila suzukii. J. Appl. Entomol. 142, 3–17. https://doi.org/10.1111/jen.12469 (2017).
    Article  Google Scholar 

    9.
    Lee, J. C. et al. Biological control of spotted-wing Drosophila (Diptera: Drosophilidae)—Current and pending tactics. J. Integr. Pest Manag. 10, https://doi.org/10.1093/jipm/pmz012 (2019).

    10.
    Fleury, F., Gibert, P., Ris, N. & Allemand, R. Chapter 1 Ecology and life history evolution of frugivorous Drosophila parasitoids. 70, 3–44, https://doi.org/10.1016/s0065-308x(09)70001-6 (2009).

    11.
    Daane, K. M. et al. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J. Pest Sci. 89, 823–835. https://doi.org/10.1007/s10340-016-0740-0 (2016).
    ADS  Article  Google Scholar 

    12.
    Girod, P. et al. The parasitoid complex of D. suzukii and other fruit feeding Drosophila species in Asia. Sci. Rep. 8, 11839, https://doi.org/10.1038/s41598-018-29555-8 (2018).

    13.
    Girod, P. et al. Host specificity of Asian parasitoids for potential classical biological control of Drosophila suzukii. J. Pest. Sci. 2004(91), 1241–1250. https://doi.org/10.1007/s10340-018-1003-z (2018).
    Article  Google Scholar 

    14.
    Matsuura, A., Mitsui, H. & Kimura, M. T. A preliminary study on distributions and oviposition sites of Drosophila suzukii (Diptera: Drosophilidae) and its parasitoids on wild cherry tree in Tokyo, central Japan. Appl. Entomol. Zool. 53, 47–53. https://doi.org/10.1007/s13355-017-0527-7 (2018).
    Article  Google Scholar 

    15.
    Wang, X. G., Nance, A. H., Jones, J. M. L., Hoelmer, K. A. & Daane, K. M. Aspects of the biology and reproductive strategy of two Asian larval parasitoids evaluated for classical biological control of Drosophila suzukii. Biol. Control 121, 58–65. https://doi.org/10.1016/j.biocontrol.2018.02.010 (2018).
    Article  Google Scholar 

    16.
    Abram, P. K. et al. New records of Leptopilina, Ganaspis, and Asobara species associated with Drosophila suzukii in North America, including detections of L. japonica and G. brasiliensis. J. Hymenoptera Res. 78, 1–17, https://doi.org/10.3897/jhr.78.55026 (2020).

    17.
    Puppato, S., Grassi, A., Pedrazzoli, F., De Cristofaro, A. & Ioriatti, C. First report of Leptopilina japonica in Europe. Insects 11, https://doi.org/10.3390/insects11090611 (2020).

    18.
    Kacsoh, B. Z. & Schlenke, T. A. High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One 7, e34721, https://doi.org/10.1371/journal.pone.0034721 (2012).

    19.
    Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005 (2012).
    Article  Google Scholar 

    20.
    Nagaraja, H. in Biological Control of Insect Pests Using Egg Parasitoids (eds S. Sithanantham, Chandish R. Ballal, S. K. Jalali, & N. Bakthavatsalam) Chapter 8, 175–189 (Springer, 2013).

    21.
    Rossi Stacconi, M. V., Grassi, A., Ioriatti, C. & Anfora, G. Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. BioControl 64, 9–19, https://doi.org/10.1007/s10526-018-09914-0 (2018).

    22.
    Rossi-Stacconi, M. V. et al. Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: Useful clues for control strategies. J. Pest Sci. 89, 689–700. https://doi.org/10.1007/s10340-016-0753-8 (2016).
    Article  Google Scholar 

    23.
    Mazzetto, F. et al. Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J. Pest Sci. 89, 837–850. https://doi.org/10.1007/s10340-016-0746-7 (2016).
    Article  Google Scholar 

    24.
    Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol. Control 96, 64–71. https://doi.org/10.1016/j.biocontrol.2016.02.004 (2016).
    Article  Google Scholar 

    25.
    Kacar, G., Wang, X. G., Biondi, A. & Daane, K. M. Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE 12, e0183525. https://doi.org/10.1371/journal.pone.0183525 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Zhu, C. J., Li, J., Wang, H., Zhang, M. & Hu, H. Y. Demographic potential of the pupal parasitoid Trichopria drosophilae (Hymenoptera: Diapriidae) reared on Drosophila suzukii (Diptera: Drosophilidae). J. Asia-Pac. Entomol. 20, 747–751. https://doi.org/10.1016/j.aspen.2017.04.008 (2017).
    Article  Google Scholar 

    27.
    Kruitwagen, A., Beukeboom, L. W. & Wertheim, B. Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example. Evol. Appl. 11, 1473–1497. https://doi.org/10.1111/eva.12648 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Rossi Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol. Control 117, 188–196, https://doi.org/10.1016/j.biocontrol.2017.11.013 (2018).

    29.
    Wolf, S., Boycheva-Woltering, S., Romeis, J. & Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 93, 627–638. https://doi.org/10.1007/s10340-019-01180-y (2019).
    Article  Google Scholar 

    30.
    Wang, X. G. et al. Thermal performance of two indigenous pupal parasitoids attacking the invasive Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 47, 764–772. https://doi.org/10.1093/ee/nvy053 (2018).
    Article  PubMed  Google Scholar 

    31.
    Rossi Stacconi, M. V. et al. Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biol. Control 112, 20–27, https://doi.org/10.1016/j.biocontrol.2017.06.003 (2017).

    32.
    Colombari, F., Tonina, L., Battisti, A. & Mori, N. Performance of Trichopria drosophilae (Hymenoptera: Diapriidae), a generalist parasitoid of Drosophila suzukii (Diptera: Drosophilidae), at low temperature. J. Insect Sci. 20, https://doi.org/10.1093/jisesa/ieaa039 (2020).

    33.
    Carton, Y., Bouletreau, M., Alphen, J. J. M. V. & Lenteren, J. C. V. in The Genetics and Biology of Drosophila Vol. 3 (eds M. Ashburner, H.L. Carson, & J.N. Thompson) Chap. 39, 348–394 (Academic Press, 1986).

    34.
    Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. Biocontrol 61, 387–397. https://doi.org/10.1007/s10526-016-9720-9 (2016).
    CAS  Article  Google Scholar 

    35.
    Boycheva Woltering, S., Romeis, J. & Collatz, J. Influence of the rearing host on biological parameters of Trichopria drosophilae, a potential biological control agent of Drosophila suzukii. Insects 10, https://doi.org/10.3390/insects10060183 (2019).

    36.
    Yi, C. et al. Life history and host preference of Trichopria drosophilae from Southern China, one of the effective pupal parasitoids on the Drosophila species. Insects 11, https://doi.org/10.3390/insects11020103 (2020).

    37.
    Lynch, Z. R., Schlenke, T. A. & de Roode, J. C. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup. J. Evol. Biol. 29, 1016–1029. https://doi.org/10.1111/jeb.12842 (2016).
    CAS  Article  PubMed  Google Scholar 

    38.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Otto, M. & Mackauer, M. The developmental strategy of an idiobiont ectoparasitoid, Dendrocerus carpenteri : Influence of variations in host quality on offspring growth and fitness. Oecologia 117, 353–364. https://doi.org/10.1007/s004420050668 (1998).
    ADS  Article  PubMed  Google Scholar 

    40.
    Friard, O., Gamba, M. & Fitzjohn, R. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330. https://doi.org/10.1111/2041-210x.12584 (2016).
    Article  Google Scholar 

    41.
    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    42.
    R: A Language and Environment for Statistical Computing (R, Vienna, 2008).

    43.
    Steidle, J. L. M. & van Loon, J. J. A. in Chemoecology of Insect Eggs and Egg Deposition (eds Monika Hilker & Torsten Meiners) 291–317 (Blackwell, 2003).

    44.
    Romani, R., Isidoro, N., Bin, F. & Vinson, S. B. Host recognition in the pupal parasitoid Trichopria drosophilae: A morpho-functional approach. Entomol. Exp. Appl. 105, 119–128. https://doi.org/10.1046/j.1570-7458.2002.01040.x (2002).
    CAS  Article  Google Scholar 

    45.
    Ballman, E. S., Collins, J. A. & Drummond, F. A. Pupation behavior and predation on Drosophila suzukii (Diptera: Drosophilidae) pupae in maine wild blueberry fields. J. Econ. Entomol. 110, 2308–2317. https://doi.org/10.1093/jee/tox233 (2017).
    Article  PubMed  Google Scholar 

    46.
    Carton, Y. Biologie de pimpla instigator (Ichneumonidae: Pimplinae). Entomol. Exp. Appl. 17, 265–278. https://doi.org/10.1111/j.1570-7458.1974.tb00344.x (1974).
    Article  Google Scholar 

    47.
    Vinson, S. B. Host selection by insect parasitoids. Annu. Rev. Entomol. 21, 109–133. https://doi.org/10.1146/annurev.en.21.010176.000545 (1976).
    Article  Google Scholar 

    48.
    Poyet, M. et al. Resistance of Drosophila suzukii to the larval parasitoids Leptopilina heterotoma and Asobara japonica is related to haemocyte load. Physiol. Entomol. 38, 45–53. https://doi.org/10.1111/phen.12002 (2013).
    Article  Google Scholar 

    49.
    Honti, V., Csordas, G., Kurucz, E., Markus, R. & Ando, I. The cell-mediated immunity of Drosophila melanogaster: Hemocyte lineages, immune compartments, microanatomy and regulation. Dev. Comp. Immunol. 42, 47–56. https://doi.org/10.1016/j.dci.2013.06.005 (2014).
    CAS  Article  PubMed  Google Scholar 

    50.
    Iacovone, A., Ris, N., Poirie, M. & Gatti, J. L. Time-course analysis of Drosophila suzukii interaction with endoparasitoid wasps evidences a delayed encapsulation response compared to D. melanogaster. PLoS One 13, e0201573, https://doi.org/10.1371/journal.pone.0201573 (2018).

    51.
    Bozler, J., Kacsoh, B. Z. & Bosco, G. Maternal priming of offspring immune system in Drosophila. G3 (Bethesda) 10, 165–175, https://doi.org/10.1534/g3.119.400852 (2020).

    52.
    Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T. & van den Assem, J. Sex ratio evolution in a variable environment. Nature 289, 27–33, https://doi.org/10.1038/289027a0 (1981).

    53.
    Sandlan, K. Sex-ratio regulation in Coccygomimus-Turionella Linnaeus (Hymenoptera, Ichneumonidae) and its ecological implications. Ecol. Entomol. 4, 365–378. https://doi.org/10.1111/j.1365-2311.1979.tb00596.x (1979).
    Article  Google Scholar 

    54.
    King, B. H. Offspring sex-ratios in parasitoid wasps. Q. Rev. Biol. 62, 367–396. https://doi.org/10.1086/415618 (1987).
    Article  Google Scholar  More

  • in

    Nematode epibionts on skin of the Florida manatee, Trichechus manatus latirostris

    1.
    Cobb, N. A. Nematodes and their relationships.Yearbook Dept. Agric. 1914, 457–490 (Dept. Agric, Washington DC, 1914).
    2.
    Blaxter, M. Nematodes: The worm and its relatives. PLoS Biol. 9, 4 (2011).
    Article  Google Scholar 

    3.
    Kiontke, K. & Fitch, D. H. A. Nematodes. Curr. Biol. 23, 19 (2013).
    Article  Google Scholar 

    4.
    Sommer, R. J. Pristionchus pacificus. In A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) (Brill, Netherlands, 2015).
    Google Scholar 

    5.
    Beck, C. & Forrester, D. J. Helminths of the Florida manatee, Trichechus manatus latirostris, with a discussion and summary of the parasites of Sirenians. J. Parasitol. 74, 628–637. https://doi.org/10.2307/3282182 (1988).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fürst von Lieven, A., Uni, S., Ueda, K., Barbuto, M. & Bain, O. Cutidiplogaster manati n. gen., n. sp. (Nematoda: Diplogastridae) from skin lesions of a West Indian manatee (Sirenia) from the Okinawa Churaumi Aquarium. Nematology. 13, 51–59. https://doi.org/10.1163/138855410X500082 (2011).
    Article  Google Scholar 

    7.
    Bledsoe, E. L. et al. A comparison of biofouling communities associated with free-ranging and captive Florida manatees (Trichechus manatus latirostris). Mar. Mammal. Sci. 22, 997–1003. https://doi.org/10.1111/j.1748-7692.2006.00053.x (2006).
    Article  Google Scholar 

    8.
    Kanzaki, N. & Giblin-Davis, R. M. Diplogastrid systematics and phylogeny. In Nematology Monographs & Perspectives 11: Pristionchus pacificus—A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) 43–76 (Brill, Amsterdam, 2015).
    Google Scholar 

    9.
    Abolafia, J. Order Rhabditida: suborder Rhabditina. In Freshwater Nematodes: Ecology and Taxonomy (eds Abebe, E. et al.) 696–721 (CABI Publishing, Wallingford, 2006).
    Google Scholar 

    10.
    Kanzaki, N., Ragsdale, E. J. & Giblin-Davis, R. M. Revision of the paraphyletic genus Koerneria Meyl, 1960 and resurrection of two other genera of Diplogastridae (Nematoda). ZooKeys. 442, 17–30. https://doi.org/10.3897/zookeys.442.7459 (2014).
    Article  Google Scholar 

    11.
    Romeyn, K., Bouwman, L. A. & Admiraal, W. Ecology and cultivation of the herbivorous brackish-water nematode Eudiplogaster pararmatus. Mar. Ecol. Prog. Ser. 12, 145–153 (1983).
    ADS  Article  Google Scholar 

    12.
    Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R. & Manzoor, M. Nematodes associated with palm and sugarcane weevils in South Florida with description of Acrostichus floridensis n. sp. Nematology. 19, 515–531. https://doi.org/10.1163/15685411-00003065 (2017).
    Article  Google Scholar 

    13.
    Troccoli, A., Oreste, M., Tarasco, E., Fanelli, E. & De Luca, F. Mononchoides macrospiculum n. sp. (Nematoda: Neodiplogaster) and Teratorhabditis synpapillata Sudhaus, 1985 (Nematoda: Rhabditidae): Nematode associates of Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) in Italy. Nematology 17, 953–966. https://doi.org/10.1163/15685411-00002916 (2015).
    Article  Google Scholar 

    14.
    Steel, H. et al. Mononchoides composticola n. sp. (Nematoda: Diplogastridae) associated with composting processes: Morphological, molecular and autecological characterization. Nematology 13, 347–363. https://doi.org/10.1163/138855410X523023 (2011).
    Article  Google Scholar 

    15.
    Susoy, V. et al. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci. Adv. 2, e1501031. https://doi.org/10.1126/sciadv.1501031 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Mayer, W. E., Herrmann, M. & Sommer, R. J. Molecular phylogeny of beetle associated diplogastrid nematodes suggests host switching rather than nematode-beetle coevolution. BMC Evol. Biol. 9, 212. https://doi.org/10.1186/1471-2148-9-212 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Sudhaus, W. & Fürst von Lieven, A. A phylogenetic classification and catalogue of the Diplogastridae (Secernentea, Nematoda). J. Nematode Morph. Syst. 6, 43–90 (2003).
    Google Scholar 

    18.
    Halvorsen, K. M. & Keith, E. O. Immunosuppression cascade in the Florida manatee (Trichechus manatus latirostris). Aquat. Mamm. 34, 412–419. https://doi.org/10.1578/AM.34.4.2008.412 (2008).
    Article  Google Scholar 

    19.
    Palopoli, M. F. et al. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages. Proc. Natl. Acad. Sci. USA 112, 15958–15963. https://doi.org/10.1073/pnas.1512609112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    20.
    Ingels, J., Valdes, Y. & Pontes, L. P. Meiofauna life on loggerhead sea turtles-diversely structured abundance and biodiversity hotspots that challenge the meiofauna paradox. Diversity. 12(5), 203 (2020).
    Article  Google Scholar 

    21.
    Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R., Wood, L. A. & Kaufman, P. E. Sudhausia floridensis n. sp. (Diplogastridae) isolated from Onthophagus tuberculifrons (Scarabaeidae) from Florida, USA. Nematology. 19, 575–586. https://doi.org/10.1163/15685411-00003071 (2017).
    Article  Google Scholar 

    22.
    Giblin-Davis, R. M. et al. Stomatal ultrastructure, molecular phylogeny, and description of Parasitodiplogaster laevigata n. sp. (Nematoda: Diplogastridae), a parasite of fig wasps. J. Nematol. 38, 137–149 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Kanzaki, N., Giblin-Davis, R. M., Ye, W., Herre, E. A. & Center, B. J. Parasitodiplogaster species associated with Pharmacosycea figs in Panama. Nematology. 16, 607–619. https://doi.org/10.1163/15685411-00002791 (2014).
    Article  Google Scholar 

    24.
    Shih, P.-Y. et al. Newly identified nematodes from Mono Lake exhibit extreme arsenic resistance. Curr. Biol. 29, 3339–3344. https://doi.org/10.1016/j.cub.2019.08.024 (2019).
    CAS  Article  PubMed  Google Scholar 

    25.
    Bonde, R. K. et al. Biomedical health assessments of the Florida manatee in Crystal River—Providing opportunities for training during the capture, handling, and processing of this endangered aquatic mammal. J. Mar. Anim. Ecol. 5, 17–28 (2012).
    Google Scholar 

    26.
    Yoder, M. et al. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8, 367–376. https://doi.org/10.1163/156854106778493448 (2006).
    CAS  Article  Google Scholar 

    27.
    Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N. & Kanzaki, N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology 99, 1365–1369. https://doi.org/10.1094/PHYTO-99-12-1365 (2009).
    CAS  Article  PubMed  Google Scholar 

    28.
    Tanaka, R., Kikuchi, T., Aikawa, T. & Kanzaki, N. Simple and quick methods for nematode DNA preparation. Appl. Entomol. Zool. 47, 291–294. https://doi.org/10.1007/s13355-012-0115-9 (2012).
    CAS  Article  Google Scholar 

    29.
    Ye, W., Giblin-Davis, R. M., Braasch, H., Morris, K. & Thomas, W. K. Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 43, 1185–1197. https://doi.org/10.1016/j.ympev.2007.02.006 (2007).
    CAS  Article  PubMed  Google Scholar 

    30.
    Holterman, M. et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23, 1792–1800. https://doi.org/10.1093/molbev/msl044 (2006).
    CAS  Article  PubMed  Google Scholar 

    31.
    Slos, D., Couvreur, M. & Bert, W. Hidden diversity in mushrooms explored: A new nematode species, Neodiplogaster unguispiculata sp. n. (Rhabditida, Diplogastridae), with a key to the species of Neodiplogaster. Zool. Anz. 276, 71–85. https://doi.org/10.1016/j.jcz.2018.07.004 (2018).
    Article  Google Scholar 

    32.
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. https://doi.org/10.1093/nar/gkf436 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28. https://doi.org/10.1093/nar/gkt389 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
    CAS  Article  Google Scholar 

    36.
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large modelspace. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Kanzaki, N., Ekino, T., Ide, T., Masuya, H. & Degawa, Y. Three new species of parasitaphelenchids, Parasitaphelenchus frontalis n. sp., P. costati n. sp., and Bursaphelenchus hirsutae n. sp. (Nematoda: Aphelenchoididae), isolated from bark beetles from Japan. Nematology 20, 957–1005. https://doi.org/10.1163/15685411-00003189 (2018).
    Article  Google Scholar  More

  • in

    Quality of Pinus sp. pellets with kraft lignin and starch addition

    The fines content of the pellets, agglutinated with wheat starch and kraft lignin (both at 4%), was 125 higher and 75% lower than in the control, respectively (Table 1). The fines generation of the pellets in all treatments was lower than 1% (0.03 to 0.27%) and, therefore, they met the marketing standard EN 14961-232.
    Table 1 Fine content (%), hardness (%), bulk density (g m−3), apparent density (g m−3) by gravimetric method and apparent density (g m−3) by X-ray densitometry of Pinus wood pellets produced with different percentages of the additives (A) corn and wheat and kraft lignin and in the control.
    Full size table

    The lower values of the fines content of the pellets produced with kraft lignin are possibly due to the densification process of the pellet matrix with higher contents of this additive, generating pellets with better bonding characteristics between the particles and, consequently, less fines. In addition, lignin has a cementing action between the cells9 during the pressing process, and high temperature causes this compound to reach the glass transition stage, ensuring a strong bond between the particles8,33. Pellets with lower fines production during handling and transport should be preferred commercially34. The fines content increases with the moisture level of the material, causing cracks to exhaust gases, mainly water vapor, and, consequently, reducing their mechanical resistance during handling35. On the other hand, the low moisture content makes biomass compaction difficult, due to the water’s characteristic of helping the heat transfer and promoting lignin plasticization as a natural biomass binder36. The moisture content between 8 and 12% in the dry basis is ideal for reducing fines generation to within the European standard EN 14961-232.
    The hardness of the pellets was similar with the different percentages of corn starch, but it was higher with wheat starch (Table 1). The hardness increased by 22% when the percentage of kraft lignin reached 5%, in relation to the control. The hardness of the pellets with 3 and 5% of corn starch and 4% of kraft lignin was similar to the control.
    The similar hardness of the pellets with the different percentages of wheat starch confirms studies that binders can reduce the mechanical properties of pellets at a higher moisture content, because water takes the place of hydrogen bonds, affecting cohesion between the particles37. Higher hardness affects pellet length, because the higher the hardness, the greater the breaking strength after contact with the pelletizing press knife15. In addition, pellets with lower hardness have points for water ingress, increasing the moisture content and consequently the breaking point and causing higher fine generation38. The higher hardness of pellets produced with 5% kraft lignin is possibly due to the decrease of their hygroscopic equilibrium moisture, due to the hydrophobic character of this compound. The kraft lignin residue is a compound of C–C and C–O–C phenylpropane units with low water relationship39. In addition, the constant pressing temperature of 120 °C plasticizes kraft lignin as an adhesive, increasing particle contact and reducing expansion due to lower hygroscopicity, consequently increasing hardness40. Kraft lignin, as an additive, facilitates the use of this residue and confers better properties to pellets by increasing their mechanical strength13,14,15.
    The bulk density of pellets with 1% corn or wheat starches and 3% kraft lignin was higher than other mixtures (Table 1). The bulk density of kraft lignin pellets was higher than those with corn or wheat starch. The bulk density of pellets with 1% corn starch and 5% kraft lignin was lower than those with 3% lignin, which were denser than those with only wood (control).
    The higher bulk density values for 3% kraft lignin pellets may be associated with a higher amount of lignin in the mixture (wood + additive), which plasticizes more efficiently, generating a smooth and uniform texture in the pellets and improving their density. The pelletizing matrix temperature influences the durability and bulk density of pellets36, as lignin is a natural wood binder and requires temperatures above the glass transition (75–100 °C) to produce bonding between the particles. Temperatures above 90 °C improve pellet characteristics, and require lower compaction pressure at increasing compaction matrix temperatures4,41. The lower density values of wheat starch pellets may be due to the high moisture content of the steam generated during the high temperatures in the compaction process (120 °C), causing micro-cracks in the pellet structure and reducing its density35. Starch acts as a lubricating agent in the pelletizing process, facilitating the flow of raw material through the pelletizing matrix36. The bulk density of the pellets was greater than the minimum required by the European Marketing Standard EN 14961-232, equal to or greater than 0.60 g cm−3 in all treatments. This highlights the potential use of additives in pelletizing, which should be at most 2% relative to the dry mass of primary raw material.
    The apparent density of pellets varied in a fashion similar to that of bulk density (Table 1), with no effect from the type and amount of additive added to the particles mass, comparing the three different additives and considering the same proportion used, except for pellets produced with 3% wheat starch, with lower apparent density. The apparent density of pellets produced with 1 and 2% corn starch and 1, 3, 4 and 5% kraft lignin was higher, and the other treatments were similar to the control (Table 1). Lignin and corn starch promoted better connection between particles, favoring biomass compaction and increasing pellet density.
    The variation in the apparent density of the pellets, similar to that of bulk density between 1.15 g m−3 (3% wheat) and 1.23 g m−3 (3% lignin), is possibly due to the wheat starch gelatinization process starting at lower temperatures (± 70 °C) than that of corn starch (± 85 °C)42. This leads to the starch adhering to the pellet feeder system wall, reducing the proportion of additive that reaches the pelletizing matrix and consequently diminishing the unit density of the pellet. The higher apparent density of pellets produced with 1 and 2% corn starch and 1, 3, 4 and 5% kraft lignin is due to the lower rate of return of the pelletizing process and the higher molecular weight of the additives, influencing the pellet density7,36. Bulk density and apparent density determine pellet storage and transport conditions, and are directly related to energy density in those with 1 and 2% corn starch and 1, 3, 4 and 5% lignin, with higher density and a higher amount of energy per volume unit43.
    The apparent density of the pellets produced with additives and evaluated by X-ray densitometry ranged from 1.00 to 1.31 g m−3 in their longitudinal axis (Table 1), with the lowest value for pellets produced with 1% wheat starch, and the highest value with 1% corn starch.
    The lower apparent density values of wheat starch pellets can be associated with the presence of cracks (empty spaces), directly related to the susceptibility to rupture2. Low density peaks indicate small cracks that are attributed to a moisture content of the mixture or particle sizes inadequate for pelletizing4, affecting the physical properties of biomass densification44. The average apparent density of pellets is within the range established by the German standard DIN 51731, from 1.00 to 1.40 g m−345.
    Pellet density varied in longitudinal density profiles, with one uniform and one irregular pattern (Fig. 1). The apparent density variation of pellets produced without additives along the longitudinal axis (coefficient of variation of 5.29%) was higher. On the other hand, the apparent density variation of the profile (coefficient of variation of 4.19%) with additives was lower, showing greater cohesion between the particles and the additives. X-ray densitometry showed pellet density variations for all additives and in the control.
    Figure 1

    Longitudinal variation of pellet density with different proportions of the additives kraft lignin and corn and wheat starch.

    Full size image

    Uniform or irregular density patterns according to longitudinal pellet density profiles are due to variations in pellet internal density, which can be attributed to factors such as additive molecular weight, particle size, and temperature and pressure during pelletization46,47,48. Cracks are common in compacted material during pelletizing4,6, and can be attributed to inadequate pellet moisture content or particle sizes. The density of biomass varies with the moisture content44 and with the temperature strengthening the adhesion between the particles. Density profiles can explain the performance of pellets, whose cracks and high density variability affect their durability and final quality, since reductions in density are associated with cracks and, consequently, pellet breakage or rupture points, which can generate fines5. The apparent density of the pellets by gravimetric and X-ray densitometry, similar between treatments with additives, confirm that this technique, commonly used to evaluate the apparent density of materials and easier to apply than other methodologies, can be used to evaluate the quality of the pellets. Variations in the apparent density and longitudinal density profile obtained with the gravimetric and X-ray densitometry demonstrate that factors such as moisture, binder type, pressure and particle size interfere with the pelletizing process, causing variations in the material’s internal structure46,47. In addition, this technique accesses different parts of the pellet and therefore identifies point variations in the product density as reported for the 2% wheat starch pellet.
    In conclusion, the additives reduced the fines content and increased the hardness and density of the pellets. Therefore, they have the potential to produce pellets with greater resistance to the transport, storage and handling processes. Apparent density along the longitudinal axis of the pellets without starch was higher. The apparent density of pellets containing starch increased the cohesion between the particles and reduced the density variation as shown by their densitometric profiles. More

  • in

    Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird

    1.
    Norris, D. R. Carry-over effects and habitat quality in migratory populations. Oikos 109(1), 178–186 (2005).
    Article  Google Scholar 
    2.
    Ockendon, N., Leech, D. & Pearce-Higgins, J. W. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carryover effects from wintering grounds. Biol. Lett. 9(6). https://doi.org/10.1098/rsbl.2013.0669 (2013).

    3.
    Lehikoinen, A., Kilpi, M. & Öst, M. Winter climate affects subsequent breeding success of common eiders. Glob. Change Biol. 12(7), 1355–1365 (2006).
    ADS  Article  Google Scholar 

    4.
    Bearhop, S., Hilton, G. M., Votier, S. C. & Waldron, S. Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Biol. Lett. 271. https://doi.org/10.1098/rsbl.2003.0129 (2004).

    5.
    Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143(4), 698–722 (1994).
    Article  Google Scholar 

    6.
    Morrison, C. A., Alves, J. A., Gunnarsson, T. G., Þórisson, B. & Gill, J. A. Why do earlier-arriving migratory birds have better breeding success? Ecol. Evol. 9(15), 8856–8864 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Gill, J. A. et al. The buffer effect and large-scale population regulation in migratory birds. Nature 412, 436–438 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Finch, T., Pearce-Higgins, J. W., Leech, D. I. & Evans, K. L. Carry-over effects from passage regions are more important than breeding climate in determining the breeding phenology and performance of three avian migrants of conservation concern. Biodivers. Conserv. 23, 2427–2444 (2014).
    Article  Google Scholar 

    9.
    Legagneux, P., Fast, P. L. F., Gauthier, G. & Bêty, J. Manipulating individual state during migration provides evidence for carry-over effects modulated by environmental conditions. Proc. R. Soc. B. 279, 876–883 (2012).
    PubMed  Article  Google Scholar 

    10.
    Newton, I. The Migration Ecology of Birds (Academic Press, London, 2008).
    Google Scholar 

    11.
    Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett., 11(1). https://doi.org/10.1098/rsbl.2014.0944 (2015).

    12.
    Bregnballe, T., Frederiksen, M. & Gregersen, J. Effects of distance to wintering area on arrival date and breeding performance in Great Cormorants Phalacrocorax carbo. Ardea. 94(3), 619–630 (2006).
    Google Scholar 

    13.
    Hötker, H. Arrival of Pied Avocets Recurvirostra avosetta at the breeding site: effects of winter quarters and consequences for reproductive success. Ardea. 90(3), 379–387 (2002).
    Google Scholar 

    14.
    Lundberg, P. The evolution of partial migration in birds. Trends Ecol. Evol. 3(7), 172–175 (1988).
    CAS  PubMed  Article  Google Scholar 

    15.
    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. Partial migration: An introduction. Oikos 120(12), 1761–1763 (2011).
    Article  Google Scholar 

    16.
    Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).
    PubMed  Article  Google Scholar 

    17.
    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B. 278, 2848–2856 (2011).
    CAS  PubMed  Article  Google Scholar 

    18.
    Griswold, C. K., Taylor, C. M. & Norris, D. R. The evolution of migration in a seasonal environment. Proc. R. Soc. B. 277, 2711–2720 (2010).
    PubMed  Article  Google Scholar 

    19.
    Chapman, B. B., Brönmark, C., Nilsson, J-Å. & Hansson, L-A. The ecology and evolution of partial migration. Oikos. 120(12), 1764–1775 (2011).
    Article  Google Scholar 

    20.
    Kokko, H. Directions in modelling partial migration: How adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos 120(12), 1826–1837 (2011).
    Article  Google Scholar 

    21.
    Newton, I. Population limitation in migrants. Ibis. 146(2), 197–226 (2004).
    Article  Google Scholar 

    22.
    Robinson, R. A. et al. Travelling through a warming world: Climate change and migratory species. Endanger. Species Res. 7(2), 87–99 (2009).
    ADS  Article  Google Scholar 

    23.
    IPCC. Summary for Policymakers in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Stocker, T.F. et al.) (Cambridge University Press, 2013).

    24.
    Berthold, P. Genetic basis and evolutionary aspects of bird migration. Adv. Study Behav. 33, 175–229 (2003).
    Article  Google Scholar 

    25.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.S.A. 105(42), 16195–16200 (2008).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    de Zoeten, T. & Pulido, F. How migratory populations become resident. Proc. R. Soc. B, 287, 20193011. https://doi.org/10.1098/rspb.2019.3011 (2020).

    27.
    Negro, J. J., de la Riva, M. & Bustamante, J. Patterns of winter distribution and abundance of Lesser Kestrel (Falco naumanni) in Spain. J. Raptor Res. 25, 30–35 (1991).
    Google Scholar 

    28.
    Anderson, A. M., Novak, S. J., Smith, J. F., Steenhof, K. & Heath, J. Nesting phenology, mate choice, and genetic divergence within a partially migratory population of American Kestrels. Auk. 133(1), 99–109 (2016).
    Article  Google Scholar 

    29.
    Lok, T., Veldhoen, L., Overdijk, O., Tinbergen, J. M. & Piersma, T. An age-dependent fitness cost of migration? Old trans-Saharan migrating spoonbills breed later than those staying in Europe, and late breeders have lower recruitment. J. Anim. Ecol. 86(5), 998–1009 (2017).
    PubMed  Article  Google Scholar 

    30.
    Catry, I. et al. Individual variation in migratory movements and winter behaviour of Iberian Lesser Kestrels Falco naumanni revealed by geolocators. Ibis. 153(1), 154–164 (2011).
    Article  Google Scholar 

    31.
    Rodríguez, C., Tapia, L., Kieny, F. & Bustamante, J. Temporal changes in lesser kestrel (Falco naumanni) diet during the breeding season in southern Spain. J. Raptor Res. 44(2), 120–128 (2010).
    Article  Google Scholar 

    32.
    Grist, H. et al. Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. J. Anim. Ecol. 86(5), 1010–1021 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Morganti, M., Ambrosini, R. & Sarà, M. Different trends of neighboring populations of Lesser Kestrel: effects of climate and other environmental conditions. Popul. Ecol. 61(3), 300–314 (2019).
    Article  Google Scholar 

    34.
    Hegemann, A., Marra, P. P. & Tieleman, B. I. Causes and consequences of partial migration in a passerine bird. Am. Nat. 186(4), 531–546 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Palacín, C., Alonso, J. C., Martín, C. A. & Alonso, J. A. Changes in bird-migration patterns associated with human-induced mortality. Conserv. Biol. 31(1), 106–115 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS One 10(7). https://doi.org/10.1371/journal.pone.0132312 (2015).

    37.
    Wilson, S., LaDeau, S. L., Tøttrup, A. P. & Marra, P. P. Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird. Ecology 92(9), 1789–1798 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Pilard, P., Lelong, V., Sonko, A. & Riols, C. Suivi et conservation du dortoir de rapaces insectivores (faucon crécerellette Falco naumanni et elanion naucler Chelictinia riocourii) de l’Ile de Kousmar (Kaolack/Sénégal). Alauda. 79(4), 295–312 (2011).
    Google Scholar 

    39.
    Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. & Afanasyev, V. Geolocators map the wintering grounds of threatened lesser kestrels in Africa. Divers. Distrib. 15(6), 1010–1016 (2009).
    Article  Google Scholar 

    40.
    Norris, D. R. & Taylor, C. M. Predicting the consequences of carry-over effects for migratory populations. Biol. Lett. 2(1). https://doi.org/10.1098/rsbl.2005.0397 (2006).

    41.
    Marra, P. P. et al. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. B. 282, 20150624. https://doi.org/10.1098/rspb.2015.0624 (2015).
    Article  Google Scholar 

    42.
    Negro, J. J. Falco naumanni Lesser Kestrel. BWP Update. 1, 49–56 (1997).
    Google Scholar 

    43.
    Bustamante, J. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Bio. Conserv. 80(2), 153–160 (1997).
    Article  Google Scholar 

    44.
    Lepley, M., Brun, L., Foucart, A. & Pilard, P. Régime et comportement alimentaires du faucon crécerellette Falco naumanni en crau en période de reproduction et post-reproduction. Alauda. 68(3), 177–184 (2000).
    Google Scholar 

    45.
    Donázar, J. A., Negro, J. J. & Hiraldo, F. Functional analysis of mate-feeding in the Lesser Kestrel Falco naumanni. Ornis Scand. 23, 190–194 (1992).
    Article  Google Scholar 

    46.
    Braziotis, S. et al. Patterns of postnatal growth in a small falcon, the lesser kestrel Falco naumanni (Fleischer, 1818) (Aves: Falconidae). Eur. Zool. J. 84(1), 277–285 (2017).
    Article  Google Scholar 

    47.
    Donázar, J. A., Negro, J. J. & Hiraldo, F. A note on the adoption of alien young by lesser kestrels Falco naumanni. Ardea. 77, 443–444 (1991).
    Google Scholar 

    48.
    Rakhimberdiev, E. et al. Comparing inferences of solar geolocation data against high-precision GPS data: Annual movements of a double-tagged black-tailed godwit. J. Avian Biol. 47(4), 589–596 (2016).
    Article  Google Scholar 

    49.
    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J Anim. Ecol. 89, 221–236 (2020).
    PubMed  Article  Google Scholar 

    50.
    Forsman, D. The Raptors of Europe and the Middle East: A Handbook of Field Identification (Christopher Helm, London, 2006).
    Google Scholar 

    51.
    Bounas, A. Premigratory moult in the lesser kestrel Falco naumanni. Avocetta. 43, 49–54 (2019).
    Google Scholar 

    52.
    Gilbert, N. Movement and Foraging Ecology of Partially Migrant Birds in a Changing World (University of East Anglia, Norwich, 2015).
    Google Scholar 

    53.
    Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere. 3, 44. https://doi.org/10.1890/ES12-00018.1 (2012).
    Article  Google Scholar 

    54.
    Tella, J. L. & Forero, M. G. Farmland habitat selection of wintering lesser kestrels in a Spanish pseudosteppe: implications for conservation strategies. Biodivers. Conserv. 9, 433–441 (2000).
    Article  Google Scholar 

    55.
    Piersma, T. & Davidson, N. Confusions of mass and size. Auk 108, 441–444 (1991).
    Google Scholar 

    56.
    Wood, A. S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4’. in R Package Version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).

    57.
    Bates, D., Machler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67. https://doi.org/10.18637/jss.v067.i01 (2015).

    58.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50(3), 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar 

    59.
    Rousset, F. & Ferdy, J. B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37(8), 781–790 (2014).
    Article  Google Scholar 

    60.
    Shmueli, G. A useful distribution for fitting discrete data: Revival of the Conway–Maxwell–Poisson distribution. J. R. Stat. Soc. Ser. C App. Stat. 54, 127–142 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    61.
    Lynch, H. J., Thorson, J. T. & Shelton, A. O. Dealing with under- and over-dispersed count data in life history, spatial, and community ecology. Ecology 95(11), 3173–3180 (2014).
    Article  Google Scholar 

    62.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    63.
    Bartoń, K. MuMIn: Multi-model inference. in R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).

    64.
    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96(9), 2370–2382 (2015).
    PubMed  Article  Google Scholar 

    65.
    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, http://www.r-project.org, 2018).

    66.
    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land. Process. DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
    Article  Google Scholar 

    67.
    Büttner, G. CORINE land cover and land cover change products. in Land Use and Cover Mapping in Europe. (eds. Manakos, I. & Braun, M.) 55–74 (Springer, 2014).

    68.
    Franco, A. M. A., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).
    Article  Google Scholar  More

  • in

    Myopic reallocation of extraction improves collective outcomes in networked common-pool resource games

    Myopic reallocation improves collective wealth
    Beginning from some initial extraction state, agents within a networked population of multiple common-pool resources play an iterated game in which they observe current resource conditions at each round, and incrementally shift their extraction efforts from lower-quality sources toward higher-quality sources in order to maximize their payoffs in the following round (Eq. 3). Agents’ extraction efforts are thus redirected away from over-exploited sources toward less-exploited sources so that the system approaches a steady state in which all sources equally share the burden of over-extraction. In the process, some sources increase in quality, while others are further degraded; nonetheless, the overall result of these reallocations is a net increase in collective wealth.
    To show this, we consider an arbitrary initial extraction state, in which the population’s collective extraction effort is (Q=Nlangle overrightarrow{q}rangle). In this state, the initial collective payoff extracted by the population is ({F}_{0}={sum }_{sin mathbf{S}}overrightarrow{q}(s)cdot b(s)) (where we ignore cost terms, since these remain constant under reallocation), and so the population’s collective wealth per unit extraction effort is

    $$frac{{F}_{0}}{Q}=frac{sum_{sin mathbf{S}}overrightarrow{q}(s)cdot left[alpha -beta (s)overleftarrow{q}(s)right]}{sum_{sin mathbf{S}}overrightarrow{q}(s)}=alpha -frac{langle beta {overrightarrow{q}}^{2}rangle }{langle overrightarrow{q}rangle }.$$
    (4)

    Under reallocation dynamics (Eq. 3), this total extraction (Q) is conserved, and the system will approach a steady state in which all sources share a common quality value

    $${b}_{f}=alpha -frac{langle overrightarrow{q}rangle }{langle {beta }^{-1}rangle }.$$
    (5)

    The population’s collective wealth approaches the steady-state value

    $${F}_{f}={sum }_{sin mathbf{S}}left[overrightarrow{q}(s)cdot {b}_{f}right]=Q{b}_{f}.$$
    (6)

    Collective wealth is increased (or at least conserved) if ({F}_{0}le {F}_{f}), or equivalently, if (frac{{F}_{0}}{Q}le {b}_{f}). Using Eqs. 4 and 5, this condition reduces to

    $$langle overrightarrow{q}{rangle }^{2}le langle beta {overleftarrow{q}}^{2}rangle langle {beta }^{-1}rangle .$$
    (7)

    The validity of this inequality is guaranteed by the Cauchy–Schwarz inequality29, (langle XY{rangle }^{2}le langle {X}^{2}rangle langle {Y}^{2}rangle) for random variables (X) and (Y), with the identifications (X=sqrt{beta (s)}overrightarrow{q}(s)) and (Y=sqrt{beta (s{)}^{-1}}). Furthermore, equality occurs if and only if the quantity (beta left(sright)overrightarrow{q}left(sright)) shares the same value for all sources, that is, when initial conditions are already steady states where all sources share a common quality value. Reallocation dynamics thus increase collective wealth for any initial condition where sources vary from one another in quality (see Section S2.1 of the Supplementary Information). This includes Nash equilibrium initial conditions, upon which we will now focus our attention.
    CPR degree heterogeneity leads to greater improvements in efficiency under myopic reallocation
    In the unique Nash equilibrium state of a given network26, each agent sets its extraction at each source to the point beyond which further extraction would increase its costs more than it would increase its payoffs, given that all other agents are doing the same. In this state, no agent can increase its payoffs by unilaterally adjusting its extraction levels while other agents hold their extraction levels constant. However, when all agents simultaneously adapt their extraction levels according to the reallocation update rule (Eq. 3), under which each increase in extraction at one source is matched by an equal decrease at another source, then higher payoffs can be achieved. To quantify the extent to which reallocation alone can help alleviate the “tragedy of the commons” represented by Nash equilibrium, we now apply reallocation dynamics to Nash equilibrium initial conditions on a variety of network types, and compare the population’s collective wealth values before and after reallocation.
    When network-structured populations of rational individuals extract benefits from multiple linearly-degrading CPRs, the burdens of over-exploitation tend to fall upon sources in a degree-dependent manner. Myopic reallocation tends to shift these burdens among sources of different degrees, and to distribute the resulting increases in collective wealth among individuals of different degree classes. In order to understand how these reallocations shift extraction pressure and agent payoffs among nodes of different degrees, we use a heterogeneous mean-field approach to derive estimates for these shifts. Under this perspective, the conditions defining Nash equilibrium ((frac{partial f(a)}{partial q(a,s)}=0)) lead us to estimate the expected values for extraction pressure on degree-(n) sources, (langle overrightarrow{q}{rangle }_{n}), by solving a linear system defined by

    $$langle overrightarrow{q}{rangle }_{n}=frac{1}{{beta }_{n}}left[frac{n}{n+1}right]left[alpha -sum_{m=1}^{{m}_{mathrm{max}}}{P}_{mathbf{A}}left(mright)frac{m}{langle mrangle }cdot left(frac{gamma m}{[gamma mlangle {beta }^{-1}{rangle }_{m}+1]}left[alpha langle {beta }^{-1}{rangle }_{m}-sum_{{n}^{^{prime}}=1}^{{n}_{mathrm{max}}}{P}_{mathbf{S}}({n}^{^{prime}})frac{{n}^{^{prime}}}{langle nrangle }cdot langle overrightarrow{q}{rangle }_{{n}^{^{prime}}}right]right)right],$$
    (8)

    with one such condition for each unique source degree (nin {1,dots , {n}_{mathrm{max}}}) represented in the network, where brackets subscripted by agent degree (m) indicate expected values (langle x{rangle }_{m}={sum }_{n=1}^{{n}_{mathrm{max}}}{P}_{mathbf{S}}left(nright)frac{n}{langle nrangle }cdot {x}_{n}) and we have assumed no degree-degree correlations (see the Supplementary Information Section S3 for details). Solving this system numerically (here we use Python 3.7.3 with SciPy 1.2.130) for each of the 9 network types under consideration by inserting the corresponding ensemble degree distributions ({P}_{mathbf{A}}left(mright)) and ({P}_{mathbf{S}}left(nright)) (Fig. 1), we use the resulting values of (langle overrightarrow{q}{rangle }_{n}) to compute the expected total extraction by a degree-m agent (langle overleftarrow{q}{rangle }_{m}) at equilbrium as

    $$langle overleftarrow{q}{rangle }_{m}=left(frac{m}{mgamma langle {beta }^{-1}{rangle }_{m}+1}right)left[alpha langle {beta }^{-1}{rangle }_{m}-left(sum_{n=1}^{{n}_{mathrm{max}}}{P}_{mathbf{S}}left(nright)frac{n}{langle nrangle }cdot langle overrightarrow{q}{rangle }_{n}right)right],$$
    (9)

    from which (langle q{rangle }_{m,n}), the expected equilibrium extraction by a degree-(m) agent from a degree-(n) source, can be computed using the Nash equilbrium condition:

    $$langle q{rangle }_{m,n}=frac{alpha }{{beta }_{n}}-langle overrightarrow{q}{rangle }_{n}-frac{upgamma }{{beta }_{n}}langle overleftarrow{q}{rangle }_{m}.$$
    (10)

    These values are then used to compute the corresponding estimated collective wealth (i.e. the sum of all agent payoffs, (F=sum_{ain mathbf{A}}f(a))) and wealth equality (as quantified by Gini index (G)) attained at Nash equilibrium, as well as the subsequent shifts that are brought by myopic reallocation dynamics toward steady states. These values are shown in Fig. 2 for a range of values of the cost parameter (gamma), which quantifies the influence of diminishing marginal utility. The expected changes in extraction pressure for sources of different degrees, as well as the changes in agent fitness expected for agents of each degree class, are illustrated for each network type for cost-free extraction ((gamma =0)) in Fig. 3, and similarly for a representative case of costly extraction ((gamma =0.2)) in Fig. 4. The estimates presented here correspond to a uniform capacity scenario where all CPRs degrade in proportion to the total amount of extraction exerted upon their users. However, we find that qualitatively similar results also hold for a degree-proportional capacity scenario in which sources degrade in proportion to the total extraction per user that they receive (see Section S4 in the Supplementary Information).
    Figure 2

    Estimates of (a) Ratio of total collective wealth of equilibrium (“Eq”) states relative to efficient (“Ef”) states, ({F}_{mathrm{Eq}}/{F}_{mathrm{Ef}}); (b) increase in efficiency from equilibrium to steady states (“SS”), (({F}_{mathrm{SS}}-{F}_{mathrm{Eq}})/{F}_{mathrm{Ef}}); (c) Gini index of equilibrium states ({G}_{mathrm{Eq}}); and (d) decrease in Gini index from equilibrium to steady states, (({G}_{mathrm{Eq}}-{G}_{mathrm{SS}})), all as functions of cost parameter (gamma). Results shown correspond to a uniform capacity scenario with (alpha =beta =1).

    Full size image

    Figure 3

    Estimated shifts in extraction patterns due to reallocation dynamics from Nash equilibrium (“Eq”) to steady states (“SS”) under cost-free extraction: (a) Change in total extraction pressure (Delta langle overrightarrow{q}{rangle }_{n}=langle overrightarrow{q}{rangle }_{n,mathrm{SS}}-langle overrightarrow{q}{rangle }_{n,mathrm{Eq}}), as a function of source degree (n); and (b) change in expected agent fitness, (Delta langle f{rangle }_{m}=langle f{rangle }_{m,mathrm{SS}}-langle f{rangle }_{m,mathrm{Eq}}) as a function of agent degree (m). Results shown correspond to a uniform capacity scenario with (alpha =beta =1) and (gamma =0). Note that results for all network types sharing a common source degree distribution type (“D”, “N”, or “PL”) are overlapping.

    Full size image

    Figure 4

    Estimated shifts in extraction patterns due to reallocation dynamics from Nash equilibrium (“Eq”) to steady states (“SS”) under costly extraction: (a) Change in total extraction pressure (Delta langle overrightarrow{q}{rangle }_{n}=langle overrightarrow{q}{rangle }_{n,mathrm{SS}}-langle overrightarrow{q}{rangle }_{n,mathrm{Eq}}), as a function of source degree (n); and (b) change in expected agent fitness, (Delta langle f{rangle }_{m}=langle f{rangle }_{m,mathrm{SS}}-langle f{rangle }_{m,mathrm{Eq}}) as a function of agent degree (m). Results shown correspond to a uniform capacity scenario with (alpha =beta =1) and (gamma =0.2).

    Full size image

    In Nash equilibrium states of the uniform capacity scenario, sources with fewer users (i.e. lower degree) experience lower extraction pressure. Since all networks under comparison here share an equal number of edges, networks having greater heterogeneity among source degrees—and thus a greater abundance of low-degree sources—suffer less over-exploitation overall, and so tend to operate more efficiently at equilibrium (Fig. 2). As agents then shift their extraction away from over-burdened, lower-quality sources toward higher-quality sources, these systems approach steady states where their multiple CPR sources all share a uniform quality value. In this way, steady states of reallocation dynamics qualitatively resemble Pareto efficient extraction states, which are characterized by uniform quality among all CPR sources (though, unlike these steady states, optimal efficiency also requires uniform extraction levels among all agents regardless of degree; see Section S3.2 in the Supplementary Information). The resulting shifts in efficiency (Fig. 2b), source extraction pressure (Figs. 3a and 4a), and agent payoffs (Figs. 3b and 4b) are more pronounced for networks having greater heterogeneity among CPR source degrees due to the greater initial discrepancies among source quality values that these networks support at Nash equilibrium. When simulations of reallocation dynamics from equilbrium are performed on individual networks (see Section S6 in the Supplementary Information), then the shifts in extraction pressure and agent payoffs observed are often more exaggerated than those estimated here. Since the heterogeneous mean-field perspective treats all sources of a common degree as a single class, it does not distinguish higher-order differences among nodes that share the same degree. As a result, the model predicts no shifts under reallocation dynamics for networks in which all sources share a common degree, i.e. delta-function (“D”) source degree distributions, for example. However, on actual networks of this type, reallocation dynamics nonetheless do increase collective wealth by equalizing differences in quality among sources.
    When extraction is costly ((gamma >0)), agent degree heterogeneity also plays a secondary role to source degree heterogeneity in determining equilibrium efficiency and the effects of reallocation dynamics (Figs. 2 and 4). Diminishing marginal utility motivates agents to moderate their overall extraction levels; all sources affiliated with any given agent will be affected by its tendency to reduce extraction, and the extent of this reduction will depend in turn on each source’s degree, the degrees of its other users, and so on. Higher agent degree heterogeneity is thus predicted to slightly increase equilibrium efficiency due to the presence of higher-degree agents that reduce their extraction per source by larger amounts than do lower-degree agents. While the overall gains in collective wealth expected to be achieved by way of reallocations are thus slightly reduced by the presence of these higher-degree agents, greater agent degree heterogeneity is also associated with faster times of convergence toward steady states, since high-degree agents are able to simultaneously shift efforts directly between a large number of sources, and so to more rapidly equalize source quality values (see Section S5.1 in the Supplementary Information).
    Myopic reallocation from Nash equilibrium reduces wealth inequality
    Since reallocation dynamics increase collective wealth, many—if not all—agents will attain improved payoffs under reallocation dynamics from suboptimal states like Nash equilibrium. We now turn our attention to how these increases in collective wealth are distributed throughout a population with respect to agent degree. Under the heterogeneous mean-field approach, we estimate that the shift in expected payoffs due to reallocations from Nash equilibrium are given by

    $$Delta langle f{rangle }_{m}=mleft[left(frac{1}{langle nrangle }left[langle frac{n{b}_{n}}{{beta }_{n}}rangle {b}_{f}-langle frac{n{b}_{n}^{2}}{{beta }_{n}}rangle right]right)-upgamma langle overleftarrow{q}{rangle }_{m}left(frac{1}{langle nrangle }left[langle frac{n}{{beta }_{n}}rangle -langle frac{n{b}_{n}^{2}}{{beta }_{n}}rangle right]right)right],$$
    (11)

    where ({b}_{n}=alpha -{beta }_{n}langle overrightarrow{q}{rangle }_{n}) (see Section S3.1.3 in the Supplementary Information). When extraction is cost-free ((gamma =0)), the increased payoffs brought about by reallocation dynamics are expected to affect each edge in a uniform way, on average, and thus tend to be shared among agents of all degree classes in proportion to their degree (m). This is reflected in the linear increase of expected agent payoff with respect to degree (Fig. 3b), and also in the lack of change in the expected Gini index predicted for all network types under cost-free ((gamma =0)) extraction (Fig. 2d). However, when extraction is costly ((gamma >0)) and diminishing marginal utility acts to disincentivize increased extraction for higher-degree agents, the overall efficiency (Fig. 2a) and equality (Fig. 2c) of equilibrium states are increased from those observed under cost-free extraction. In these cases, reallocation dynamics also tend to increase the equality of the population’s wealth distribution, as reflected in the decreasing—and eventually negative—shifts in payoffs expected for agents of increasingly high degree (Fig. 4b), and also in the expected reductions in Gini index (Fig. 2d), caused by reallocation dynamics. This occurs because diminishing marginal utility motivates high-degree agents to exert less overall extraction effort per source at Nash equilibrium than do lower-degree agents. In the steady states subsequently reached under reallocation dynamics, all sources share a uniform quality value; each agent’s total extracted benefits then becomes strictly proportional to the overall magnitude of its extraction effort. Higher-degree agents end up receiving a smaller payoff per source than do their lower-degree counterparts in steady states. As Eq. (11) suggests, agents with higher initial extraction levels (langle overleftarrow{q}{rangle }_{m}) will experience a lower (and possibly even negative) shift in payoff per source (Delta langle f{rangle }_{m}/m) as a result of reallocations. This levelling-out of degree-based payoff inequities has its most pronounced effects at intermediate levels of the cost parameter (here, for values of (gamma approx .35), as shown in Fig. 2d). In simulations performed on specific networks, we find that reallocation dynamics lead not only to increased collective wealth, but also to increased equality, even on networks with homogeneous, “delta-function” (“D”) source degree distributions, although the heterogeneous mean-field approach predicts no such shift. Networks of other types similarly tend to undergo greater increases in equality than those predicted here due to higher-order types of heterogeneity not captured by the model (see Section S6 in the Supplementary Information). More

  • in

    Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching

    1.
    Sullivan, D. Composting biosolids into high quality agricultural product. BioCycle 51, 39–40 (2010).
    Google Scholar 
    2.
    Wang, X., Chen, T., Ge, Y. & Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 160, 554–558 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Borjesson, G. & Katterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 112, 369–385 (2018).
    Article  Google Scholar 

    4.
    Kelly, J. J., Favila, E., Hundal, L. S. & Marlin, J. C. Assessment of soil microbial communities in surface applied mixtures of Illinois River sediments and biosolids. Appl. Soil Ecol. 36, 176–183 (2007).
    Article  Google Scholar 

    5.
    Kelly, J. J., Polocht, K., Grancharova, T. & Hundal, L. S. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl. Environ. Microbiol. 77, 6551–6558 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Nakatani, A. S. et al. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biol. Biochem. 43, 106–114 (2011).
    CAS  Article  Google Scholar 

    7.
    Wang, M. & Xue., J., Horswell, J., Kimberley, M.O. & Huang, Z. ,. Long-term biosolids application alters the composition of soil microbiakl groups and nutrient status in a pine plantation. Biol. Fert. Soils 53, 799–809 (2017).
    CAS  Article  Google Scholar 

    8.
    Zaleski, K. J., Josephson, K. L., Gerba, C. P. & Pepper, I. L. Potential regrowth and recolonization of Salmonellae and indicators in biosolids and biosolid-amended soil. Appl. Environ. Microbiol. 71, 3701–3708 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Singh, R. P. & Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358 (2008).
    CAS  Article  Google Scholar 

    10.
    Sigua, C. Recycling biosolids and lack-dredged materials to pasture-based animal agriculture: alternative nutrient sources for forage productivity and sustainability. A review. Agron. Sustain. Dev. 29, 143–160 (2009).
    CAS  Article  Google Scholar 

    11.
    McBride, M. B. Toxic metal accumulation from agricultural use of sludge—are USEPA regulations protective?. J. Environ. Qual. 24, 5–18 (1995).
    CAS  Article  Google Scholar 

    12.
    Navarro, I. et al. Environmental risk assessment of perfluoroalkyl substances and halogenated flame retardants released from biosolids-amended soils. Chemosphere 210, 147–155 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Mantovi, P., Baldoni, G. & Toderi, G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res. 39, 289–296 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Paramashivam, D. et al. Effect of pine waste and pine biochar on nitrogen mobility in biosolids. J. Environ. Qual. 45, 360–367 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Willen, A., Junestedt, C., Rodhe, L., Pell, M. & Jonsson, H. Sewage sludge as fertiliser—environmental assessment of storage and land application options. Water Sci. Technol. 75, 1034–1050 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Weaver, D. M. & Reed, A. E. G. Patterns of nutrient status and fertiliser practice on soils of the south coast of Western Australia. Agric. Ecosyst. Environ. 67, 37–53 (1998).
    Article  Google Scholar 

    17.
    Knowles, O. A., Robinson, B. H., Contangelo, A. & Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 409, 3206–3210 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. & Murphy, D. V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324 (2012).
    CAS  Article  Google Scholar 

    19.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221 (2012).
    CAS  Article  Google Scholar 

    20.
    Shanmugam, S., Abbott, L. K. & Murphy, D. V. Clay addition to lime-amended biosolids overcomes water repellence and provides nitrogen supply in an acid sandy soil. Soil Biol. Fert. Soils 50, 1047–1059 (2014).
    CAS  Article  Google Scholar 

    21.
    Paramashivam, D., Dickinson, N. M., Clough, T. J., Horswell, J. & Robinson, B. H. Potential environmental benefits from blending biosolids with other organic amendments before application to land. J. Environ. Qual. 46, 481–489 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Samara, E., Matsi, T., Zdragas, A. & Barbayiannis, N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge’s fertilization capacity. Environ. Sci. Polut. R. 26, 35387–35398 (2019).
    CAS  Article  Google Scholar 

    23.
    Djajadi, Abbott, L. K. & Hinz, C. Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma 183, 19–24 (2012).
    ADS  Article  Google Scholar 

    24.
    Ma, B., Lv, X., Cai, Y., Chang, S. X. & Dyke, M. F. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol. Biochem. 123, 45–53 (2018).
    CAS  Article  Google Scholar 

    25.
    Dilly, O., Blume, H.-P. & Munch, J. C. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319–339 (2003).
    CAS  Article  Google Scholar 

    26.
    Lehmann, J. et al. Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011).
    CAS  Article  Google Scholar 

    27.
    Liang, B. et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006).
    ADS  CAS  Article  Google Scholar 

    28.
    Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. & Condron, L. M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73–84 (2012).
    CAS  Article  Google Scholar 

    29.
    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Wang, D., Felice, M. L. & Scow, K. M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil Ecol. 152, 103570 (2020).
    Article  Google Scholar 

    32.
    Wu, H. et al. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl. Microbiol. Biotechnol. 100, 8583–8591 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Xu, H.-J. et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 48, 9391–9399 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Solaiman, Z. M., Abbott, L. K. & Murphy, D. V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phorphorus cycling. Sci. Rep.-U.K. 9, 5062 (2019).
    ADS  Article  CAS  Google Scholar 

    35.
    Cao, H. et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 135, 25–32 (2019).
    Article  Google Scholar 

    36.
    Zhang, K. et al. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fert. Soils 53, 77–87 (2017).
    CAS  Article  Google Scholar 

    37.
    Gartler, J., Robinson, B., Burton, K. & Clucas, L. Carbonaceous soil amendments to biofortify crop plants with zinc. Sci. Total Environ. 465, 308–313 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation. Soil Biol. Biochem. 26, 1221–1231 (1994).
    Article  Google Scholar 

    39.
    Wang, H., Kimberley, M. O. & Schlegelmilch, M. Biosolids-derived nitrogen mineralisation and transformation in forest soils. J. Environ. Qual. 32, 1851–1856 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Atkinson, C. J., Fitzgerald, J. & Hipps, N. Potential mechanisms for achieving agricultural benefits fromm biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010).
    CAS  Article  Google Scholar 

    41.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 13, 483–490 (2014).
    Article  Google Scholar 

    42.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Soil microbial responses to biochar varying in particle size, surface and pore properties. Pedosphere 25, 770–780 (2015).
    Article  Google Scholar 

    43.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Biochar-soil interactions in four agricultural soils. Pedosphere 25, 729–736 (2015).
    CAS  Article  Google Scholar 

    44.
    Petersen, S. O. et al. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Till Res. 72, 139–152 (2003).
    Article  Google Scholar 

    45.
    Warman, P. R. & Termeer, W. C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils. Bioresour. Technol. 96, 955–961 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Campos, T., Chear, G., Leles, P. D., Silva, M. & Santos, F. Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Amniente 26, e20180399 (2019).
    Article  Google Scholar 

    47.
    Peoples, M. et al. Factors affecting the potential contributions of N2 Fuxation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).
    CAS  Article  Google Scholar 

    48.
    Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).
    CAS  Article  Google Scholar 

    49.
    Mickan, B. S., Abbott, L. K., Stefanova, K. & Solaiman, Z. M. Interactions between biochar and mycorrhizal fungi in water-stressed agricultural soil. Mycorrhiza 26, 565–574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Hale, S. E. et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612–1619 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Zheng, J., Stewart, C. E. & Cotrufo, M. F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 41, 1361–1370 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 48, 47–50 (2012).
    CAS  Article  Google Scholar 

    53.
    Verhoeven, E. & Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agric. Ecosyst. Environ. 191, 27–38 (2014).
    CAS  Article  Google Scholar 

    54.
    Hamza, M. A. & Anderson, W. K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54, 273–282 (2003).
    Article  Google Scholar 

    55.
    Asadishad, B. et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52, 1908–1918 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Mossa, A.-W., Dickinson, M. J., West, H. M., Young, S. D. & Crout, N. M. J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 224, 16–25 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Sullivan, T. S., Stromberger, M. E. & Paschke, M. W. Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland. Soil Biol. Biochem. 38, 449–459 (2006).
    CAS  Article  Google Scholar 

    58.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Jenkins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Anton Van Leeuwenhoek 95, 319–334 (2009).
    Article  Google Scholar 

    60.
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhang, X., Liu, W., Zhang, G., Jiang, L. & Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 81, 275–281 (2015).
    CAS  Article  Google Scholar 

    62.
    Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    O’Brien, F. J. M. et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the Avon River critical zone observatory, Western Australia. Front. Microbiol. 10, 1486. https://doi.org/10.3389/fmicb.2019.01486 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Zeng, Q. C., Dong, Y. H. & An, S. S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau. China. Plos One. 11, e015289 (2016).
    Google Scholar 

    66.
    Gigliucci, F., Brambilla, G., Tozzoli, R., Michelacci, V. & Morabito, S. Comparative analysis of metagenomes of Italian top soil improvers. Environ. Res. 155, 108–115 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Mendez, M. O., Neilson, J. W. & Maier, R. M. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 74, 3899–3907 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Kim, J.-S., Dungan, R. S. & Crowley, D. Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol. Fert. Soils 44, 1003–1011 (2008).
    CAS  Article  Google Scholar 

    70.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Jenkins, S. N. et al. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem. 42, 1624–1631 (2010).
    CAS  Article  Google Scholar 

    72.
    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744–744 (2016).
    PubMed  PubMed Central  Google Scholar 

    75.
    Barton, L., Gleeson, D. B., Maccarone, L. D., Zuniga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?. Soil Biol. Biochem. 62, 28–35 (2013).
    CAS  Article  Google Scholar 

    76.
    Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).
    CAS  Article  Google Scholar 

    77.
    Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).
    CAS  Article  Google Scholar 

    78.
    Fisk, L. M., Maccarone, L. D., Barton, L. & Murphy, D. V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 88, 214–223 (2015).
    CAS  Article  Google Scholar 

    79.
    Wu, J. & Brookes, P. C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem. 37, 507–515 (2005).
    CAS  Article  Google Scholar 

    80.
    Rayment, G. & Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata Press, Melbourne, 1992).
    Google Scholar 

    81.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    82.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol. 31, 814–821 (2013).
    CAS  Article  Google Scholar 

    83.
    Mori, H. et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6, 1621–1624 (2012).
    CAS  Article  Google Scholar 

    85.
    Mickan, B. S., Abbott, L. K., Fan, J., Hart, M. M., Siddique, K. H. M., Solaiman, Z. M. & Jenkins, S. N. Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fert Soils. 54, 55–70 (2018).
    Article  Google Scholar 

    86.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan. (2010). More

  • in

    Comprehensive characterisation of Culicoides clastrieri and C. festivipennis (Diptera: Ceratopogonidae) according to morphological and morphometric characters using a multivariate approach and DNA barcode

    Molecular analyses
    Results of molecular analyses
    The sequences obtained are available in GenBank (Supplementary Information 1). Sequence alignments were 399 bp for COI and 587 bp for 28S including gaps.
    Phylogenetic analysis
    Our molecular analysis (Fig. 1) with both markers generated seven supported clusters, six of which were in agreement with the morphological determination (i.e. C. alazanicus, C. brunnicans, C. circumscriptus, C. furcillatus, C. nubeculous and C. pictipennis). However, one cluster (i.e. two species) corresponded to undistinguished C. clastrieri and C. festivipennis.
    Figure 1

    Block diagram of the study.

    Full size image

    In addition, the COI mtDNA tree shows that C. furcillatus is the sister of the “C. clastrieri/festivipennis” clade. Indeed, C. pictipennis is the sister species of C. brunnicans while C. circumscriptus is positioned between the two clades.
    Moreover, the 28S rDNA tree shows that C. pictipennis is the sister of the “C. clastrieri/festivipennis” clade. The other species are positioned in several places without a clade.
    Intra- and inter-specific comparison
    The COI Genbank sequences show little intraspecific divergence in both C. clastrieri (0.1 ± 0.1%) and C. festivipennis (1.2 ± 0.4%). The interspecific difference between C. clastrieri and in C. festivipennis is 0.7 ± 0.2%.
    Small intraspecific divergences with COI sequences were observed in our sample: C. alazanicus (1.2 ± 0.4%), C. brunnicans (0.7 ± 0.2%), C. circumscriptus (2.2 ± 0.5%), C. clastrieri (0.3 ± 0.1%), C. festivipennis (0.4 ± 0.1%), C. furcillatus (1.5 ± 0.4%), C. nubeculosus (0.2 ± 0.1%) and C. pictipennis (1.1 ± 0.3%).
    Finally, C. festivipennis and C. clastrieri—grouped in the same main clade—showed small interspecific distances (0.4 ± 0.2%); these were not identified as separate species based on DNA barcodes. We therefore decided to create a new group (C. clastrieri/festivipennis clade) based on interspecific distance. The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 16.6 ± 1.4%. Interspecific K2P values for different (Table 1) species and taxa ranged from 27.3% (between C. furcillatus and C. nubeculosus; between C. circumscriptus-and C. furcillatus) to 17.2 ± 2.1% (between C. circumscriptus and the C. clastrieri/festivipennis clade) for our samples. For the COI Genbank sequences, we observed approximatively the same proportion and the same species (Table 1). We remarked very little interspecific divergence between our sample of the C. clastrieri/festivipennis clade and the C. clastrieri/festivipennis Genbank clade (0.6 ± 0.4%).
    Table 1 Estimation of pairwise distance (± SD) of the Culicoides species for the COI domain of the mtDNA and D1D2 region of the rDNA.
    Full size table

    Analysis from 28S rDNA sequences did not show any intraspecific divergence whatever the taxa (0.000) with the exception of C. nubeculosus (0.1 ± 0.1%) and C. festivipennis/C.clastrieri (0.1 ± 0%). The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 2.1 ± 0.03%. Interspecific K2P values for different species (Table 1) and taxa ranged from 1.2% (between C. circumscriptus and C. furcillatus; C. furcillatus and C. brunnicans, the main C. clastrieri/festivipennis clade and C. furcillatus) to 5.3 ± 0.9% (between C. circumscriptus and C. nubeculosus).
    Morphometric and morphological analyses
    In all, 148 specimens identified as C. alazanicus (n = 10), C. brunnicans (n = 27), C. circumscriptus (n = 27), C. clastrieri (n = 21), C. festivipennis (n = 20), C. furcillatus (n = 14), C. nubeculosus (n = 19) and C. pictipennis (n = 20) were analysed with 11 wing landmarks/specimens (Fig. 2).
    Figure 2

    Trees obtained from nucleotide analysis of: (a) COI mtDNA; (b) 28S rDNA (with MP method) sequences of C. alazanicus, C. brunnicans, C. circumscriptus C. clastrieri, C. festivipennis, C. furcillatus, C. nubeculosus and C. pictipennis and bootstrap values are shown in nodes (1000 replicates).

    Full size image

    Principal component analyses
    Principal component analysis (PCA) was used to observe possible grouping trends.
    Firstly, we performed a first normed PCA using the “Wing landmarks” model. The first three axes accounted for 76%, 15% and 8% of the total variance, which suggests a weak structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that was unable to separate the species (Fig. 3).
    Figure 3

    Principal component analysis (PCA): percentage of variance explained for each PCA dimension and results.

    Full size image

    Secondly, we performed a first normed PCA on the “Wing morphological characters” model. The various specimens of each species are represented by a single point suggesting a close correlation of wing morphological characters. This model, without variance, is not validated and does not permit species separation.
    We studied the “Full wing (landmarks and morphological, characters)” model through a normed PCA on raw data. C. clastrieri could be clearly separated from C. festivipennis. The first five axes accounted for 40%, 25%, 12%, 10% and 5% of the total variance. The scatterplot separated unambiguously and without overlap C. clastrieri-C. festivipennis on the one hand and the six species on the other hand (Fig. 3).
    Finally, we performed a first normed PCA on the “Full model” (Morphological characters—wing, head, abdomen, legs—and wing landmarks). The first nine axes accounted for 26%, 23%, 22%, 10%, 8%., 4%, 3%, 2% and 1% of the total variance, which reveals good structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that presents the same topology as the wing morphological model (Fig. 3).
    This supports discrimination according to the species’ wing pattern. Similarly, and some body pattern characters could be used to identify Culicoides from the clastrieri/festivipennis clade better and quicker. With that objective in mind, we performed analyses on three datasets: (1) “Wing landmarks” (11 landmarks); (2) “Full wing” (38 items) and (3) the “Full model” that includes 71 items.
    Discriminant analyses
    PLS-DA and sPLS-DA models were used in order to discriminate the extremes (i.e. the most sensitive and most robust groups) using the three datasets (species, models and components) as described. The accuracy and the balanced error rate (BER) for the two models were compared and are summarised in Supplementary Information 2 and Fig. 4.
    Figure 4

    Balanced error rate (BER) choosing the number of dimensions. Performance and ncomp selection.

    Full size image

    The tuning step of the number of components to select showed that 16 components were necessary to lower the BER (Fig. 4A,B) for the “Wing landmarks” data. The AUC values with 16 components are as follows: C. alazanicus (0.97, p  More

  • in

    Past and future potential range changes in one of the last large vertebrates of the Australian continent, the emu Dromaius novaehollandiae

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl. Acad. Sci. 103, 632–636 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Latinne, A. et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. J. Biogeogr. 42, 1714–1726 (2015).
    Article  Google Scholar 

    4.
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Knick, S. T. & Rotenberry, J. T. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds. Ecology 81, 220–227 (2000).
    Article  Google Scholar 

    6.
    Enright, N. J. & Thomas, I. Pre-European fire regimes in Australian ecosystems. Geogr. Compass 2, 979–1011 (2008).
    Article  Google Scholar 

    7.
    Bowman, D. M. The impact of Aboriginal landscape burning on the Australian biota. N. Phytolog. 140, 385–410 (1998).
    Article  Google Scholar 

    8.
    Rule, S. et al. The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Gillespie, R., Brook, B. W. & Baynes, A. Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa Aust. J Palaeontol. 30, 163–186 (2006).
    Article  Google Scholar 

    10.
    Roberts, R. G. et al. New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Nat. Acad. Sci. 112, 4531–4540 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS One 3, e1745 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Bradshaw, C. J. Little left to lose: Deforestation and forest degradation in Australia since European colonization. J. Plant Ecol. 5, 109–120 (2012).
    Article  Google Scholar 

    15.
    Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. Emu 113, 168–176 (2013).
    Article  Google Scholar 

    16.
    Rogers, R. Dispersal of germinable seeds by emus in semi-arid Queensland. Emu 94, 132–134 (1994).
    Article  Google Scholar 

    17.
    Bradford, M. G. & Westcott, D. A. Consequences of Southern Cassowary (Casuarius casuarius, L) gut passage and deposition pattern on the germination of rainforest seeds. Austral. Ecol. 35, 325–333 (2010).
    Article  Google Scholar 

    18.
    Dawson, T., Read, D., Russell, E. & Herd, R. Seasonal variation in daily activity patterns, water relations and diet of emus. Emu 84, 93–102 (1984).
    Article  Google Scholar 

    19.
    Quin, B. Diet and habitat of Emus Dromaius novaehollandiae in the Grampians Ranges, south-western Victoria. Emu 96, 114–122 (1996).
    Article  Google Scholar 

    20.
    Higgins, S., Nathan, R. & Cain, M. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?. Ecology 84, 1945–1956 (2003).
    Article  Google Scholar 

    21.
    Calviño-Cancela, M., Dunn, R. R., Van Etten, E. J. & Lamont, B. Emus as non-standard seed dispersers and their potential for long-distance dispersal. Ecography 29, 632–640 (2006).
    Article  Google Scholar 

    22.
    Calviño-Cancela, M., He, T. & Lamont, B. B. Distribution of myrmecochorous species over the landscape and their potential long-distance dispersal by emus and kangaroos. Divers. Distrib. 14, 11–17 (2008).
    Article  Google Scholar 

    23.
    McGrath, R. & Bass, D. Seed dispersal by emus on the New South Wales north-east coast. Emu 99, 248–252 (1999).
    Article  Google Scholar 

    24.
    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Vidal, M. M., Pires, M. M. & Guimarães, P. R. Jr. Large vertebrates as the missing components of seed-dispersal networks. Biol. Cons. 163, 42–48 (2013).
    Article  Google Scholar 

    26.
    Ruxton, G. D. & Schaefer, H. M. The conservation physiology of seed dispersal. Philos. Trans. R. Soc. B Biol. Sci. 367, 1708–1718 (2012).
    Article  Google Scholar 

    27.
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).
    CAS  Article  Google Scholar 

    28.
    Miller, G. H. & Fogel, M. L. Calibrating δ18O in Dromaius novaehollandiae (emu) eggshell calcite as a paleo-aridity proxy for the Quaternary of Australia. Geochim. Cosmochim. Acta 193, 1–13 (2016).
    ADS  CAS  Article  Google Scholar 

    29.
    Breckwoldt, R. Wildlife in the home paddock. Nat. Conserv. Farm. 20, 20 (1983).
    Google Scholar 

    30.
    Le Souëf, D. Extinct Tasmanian Emu. Emu Austral. Ornithol. 3, 229–231 (1904).
    Article  Google Scholar 

    31.
    Thomson, V. A. et al. Genetic diversity and drivers of dwarfism in extinct island emu populations. Biol. Lett. 14, 20 (2018).
    Article  Google Scholar 

    32.
    Department of Planning, Industry and Environment (DPIE) (2002). Emu population in the New South Wales North Coast Bioregion and Port Stephens local government area. NSW Sci. Determ. 20, 20 (2018).
    Google Scholar 

    33.
    Franklin, J. Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16, 321–330 (2010).
    Article  Google Scholar 

    34.
    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Glazier, D. S. & Eckert, S. E. Competitive ability, body size and geographical range size in small mammals. J. Biogeogr. 29, 81–92 (2002).
    Article  Google Scholar 

    36.
    Gaston, K. J. How large is a species’ geographic range?. Oikos 20, 434–438 (1991).
    Article  Google Scholar 

    37.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    38.
    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Article  Google Scholar 

    39.
    Östergård, H. & Ehrlén, J. Among population variation in specialist and generalist seed predation—the importance of host plant distribution, alternative hosts and environmental variation. Oikos 111, 39–46 (2005).
    Article  Google Scholar 

    40.
    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).
    Article  Google Scholar 

    41.
    Thuiller, W., Araújo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe?. J. Biogeogr. 31, 353–361 (2004).
    Article  Google Scholar 

    42.
    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. 98, 4534–4539 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Davies, S. J. J. F., Beck, M. W. R. & Kruiskamp, J. P. Results of banding 154 emus in Western Australia. Wildl. Res. 16, 77–79 (1971).
    Article  Google Scholar 

    44.
    Pople, A., Cairns, S. & Grigg, G. Distribution and abundance of emus Dromaius novaehollandiae in relation to the environment in the South Australian pastoral zone. Emu 91, 222–229 (1991).
    Article  Google Scholar 

    45.
    Davies, S. Aspects of a study of emus in semi-arid Western Australia. Proc. Ecol. Soc. Aust. 3, 160–166 (1968).
    Google Scholar 

    46.
    Coddington, C. L. & Cockburn, A. The mating system of free-living emus. Aust. J. Zool. 43, 365–372 (1995).
    Article  Google Scholar 

    47.
    Taylor, E. L., Blache, D., Groth, D., Wetherall, J. D. & Martin, G. B. Genetic evidence for mixed parentage in nests of the emu (Dromaius novaehollandiae). Behav. Ecol. Sociobiol. 47, 359–364 (2000).
    Article  Google Scholar 

    48.
    Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius casuarius) in North Queensland, Australia. Biotropica 40, 338–343 (2008).
    Article  Google Scholar 

    49.
    Moore, L. Population ecology of the southern cassowary Casuarius casuarius johnsonii, Mission Beach north Queensland. J. Ornithol. 148, 357–366 (2007).
    Article  Google Scholar 

    50.
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).
    Article  Google Scholar 

    51.
    Grice, D., Caughley, G. & Short, J. Density and distribution of emus. Wildl. Res. 12, 69–73 (1985).
    Article  Google Scholar 

    52.
    Nield, A. P., Enright, N. J. & Ladd, P. G. Study of seed dispersal by Emu (Dromaius novaehollandiae) in the Jarrah (Eucalyptus marginata) forests of south-western Australia through satellite telemetry. Emu 115, 29–34 (2015).
    Article  Google Scholar 

    53.
    Davies, S. The food of emus. Aust. J. Ecol. 3, 411–422 (1978).
    Article  Google Scholar 

    54.
    Osborne, W. & Green, K. Seasonal changes in composition, abundance and foraging behavior of birds in the snowy mountains. Emu 92, 93–105 (1992).
    Article  Google Scholar 

    55.
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    56.
    Mackey, B. G. & Lindenmayer, D. B. Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28, 1147–1166 (2001).
    Article  Google Scholar 

    57.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Article  Google Scholar 

    58.
    Warren, M. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Thomas, C. D. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 139–145 (2000).
    CAS  Article  Google Scholar 

    60.
    Quigley, M. C., Horton, T., Hellstrom, J. C., Cupper, M. L. & Sandiford, M. Holocene climate change in arid Australia from speleothem and alluvial records. Holocene 20, 1093–1104 (2010).
    ADS  Article  Google Scholar 

    61.
    Shulmeister, J. & Lees, B. G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. Holocene 5, 10–18 (1995).
    ADS  Article  Google Scholar 

    62.
    Weber, L. C., VanDerWal, J., Schmidt, S., McDonald, W. J. & Shoo, L. P. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. J. Biogeogr. 41, 222–238 (2014).
    Article  Google Scholar 

    63.
    Avilés, J. M., Soler, J. J. & Pérez-Contreras, T. Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proc. R. Soc. Lond. B Biol. Sci. 273, 2821–2829 (2006).
    Google Scholar 

    64.
    Lahti, D. C. & Ardia, D. R. Shedding light on bird egg color: Pigment as parasol and the dark car effect. Am. Nat. 187, 547–563 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Magige, F. J., Moe, B. & Røskaft, E. The white colour of the Ostrich (Struthio camelus) egg is a trade-off between predation and overheating. J. Ornithol. 149, 323–328 (2008).
    Article  Google Scholar 

    66.
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Article  Google Scholar 

    67.
    Maloney, S. & Dawson, T. Thermoregulation in a large bird, the emu (Dromaius novaehollandiae). J. Comp. Physiol. B. 164, 464–472 (1994).
    Article  Google Scholar 

    68.
    Dawson, T., Herd, R. & Skadhauge, E. Water turnover and body water distribution during dehydration in a large arid-zone bird, the emu, Dromaius novaehollandiae. J. Comp. Physiol. 153, 235–240 (1983).
    Article  Google Scholar 

    69.
    McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).
    Article  Google Scholar 

    70.
    Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Dickman, C. R. Impact of exotic generalist predators on the native fauna of Australia. Wildl. Biol. 2, 185–195 (1996).
    Article  Google Scholar 

    72.
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Article  Google Scholar 

    73.
    Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species—climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).
    ADS  Article  Google Scholar 

    74.
    Thuiller, W. et al. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr. 12, 313–325 (2003).
    Article  Google Scholar 

    75.
    Pfennigwerth, S. “The mighty cassowary”: The discovery and demise of the King Island emu. Arch. Nat. Hist. 37, 74–90 (2010).
    Article  Google Scholar 

    76.
    Heupink, T. H., Huynen, L. & Lambert, D. M. Ancient DNA suggests Dwarf and ‘Giant’Emu are conspecific. PLoS One 6, e18728 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 7, 744–751 (2019).
    Article  Google Scholar 

    78.
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com (2020).

    79.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    PubMed  Article  Google Scholar 

    81.
    Molloy, S. W., Davis, R. A., Dunlop, J. A. & van Etten, E. Applying surrogate species presences to correct sample bias in species distribution models: A case study using the Pilbara population of the Northern Quoll. Nat. Conserv. 18, 27–46 (2017).
    Google Scholar 

    82.
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall, London, 2015).
    Google Scholar 

    83.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 25, 1965–1978 (2005).
    Article  Google Scholar 

    84.
    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramme. Remote Sens. 57, 241–262 (2003).
    ADS  Article  Google Scholar 

    85.
    Werner, M. Shuttle radar topography mission (SRTM) mission overview. Frequenz 55, 75–79 (2001).
    ADS  Article  Google Scholar 

    86.
    ESRI, ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute (2011).

    87.
    Hill, M. J., Lesslie, R., Barry, A. & Barry, S. A simple, portable, spatial multi-criteria analysis shell–MCAS-S. In MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand. 12–15 (2005).

    88.
    Australian Government Department of Agriculture, Water and the Environment (ABARES), Australian Fire Frequency (1988–2015), Australian Government. http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification (2016).

    89.
    Australian Government Department of Environmen and Energy, Australian Vegetation Attribute Manual: National Vegetation Information System, Version 6.0, Canberra (2018).

    90.
    National Aeronautics and Space Administration Socioeconomic Data and Applications Center. Gridded Population of the World v4 (2017).

    91.
    Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN). Last of the Wild Project, Version 2: Global Human Footprint Dataset (Geographic). NASA Socioeconomic Data and Applications Center (SEDAC). Columbia University. Palisades, NY (2005).

    92.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    93.
    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Article  Google Scholar 

    94.
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    95.
    Marquaridt, D. W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12, 591–612 (1970).
    Article  Google Scholar 

    96.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    97.
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).
    Article  Google Scholar 

    98.
    Anderson, R. P. & Gonzalez, I. Jr. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).
    Article  Google Scholar 

    99.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    100.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    101.
    Hegel, T. M., Cushman, S. A., Evans, J. & Huettmann, F. Spatial Complexity, Informatics, and Wildlife Conservation 273–311 (Springer, Tokoyo, 2010).
    Google Scholar 

    102.
    Pearce, J. L. & Boyce, M. S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43, 405–412 (2006).
    Article  Google Scholar 

    103.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    104.
    Otto-Bliesner, B. L. et al. Last glacial maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).
    ADS  Article  Google Scholar 

    105.
    Bi, D. et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 63, 41–64 (2012).
    Article  Google Scholar 

    106.
    Cooper, A. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Yonezawa, T. et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 27, 68–77 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
    Article  Google Scholar 

    109.
    Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. dismo: Species distribution modeling. R package v1.1-4 (2017). More