The preference of Trichopria drosophilae for pupae of Drosophila suzukii is independent of host size
1.
DiGiacomo, G., Hadrich, J., Hutchison, W. D., Peterson, H. & Rogers, M. Economic impact of spotted wing drosophila (Diptera: Drosophilidae) yield loss on Minnesota Raspberry farms: A grower survey. J. Integr. Pest Manag. 10, https://doi.org/10.1093/jipm/pmz006 (2019).
2.
Farnsworth, D. et al. Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. Pest Manag. Sci. 73, 1083–1090. https://doi.org/10.1002/ps.4497 (2017).
CAS Article PubMed Google Scholar
3.
Cini, A., Ioriatti, C. & Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65, 149–160 (2012).
Google Scholar
4.
Okada, T. Systematic Study of Drosophilidae and Allied Families of Japan. 95–106 (Gihodo Co. Ltd., 1956).
5.
Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. 2, G1–G7. https://doi.org/10.1603/Ipm10010 (2011).
Article Google Scholar
6.
Kanzawa, T. Studies on Drosophila suzukii mats. J. Plant Proteom. 23, 66–70, 127–132, 183–191 (1939).
7.
Bolda, M. P. & Goodhue, R. E. Spotted wing Drosophila: Potential economic impact of a newly established pest. Agric. Resour. Econ. Updates Univ. Calif. Giannini Found. 13, 5–8, https://doi.org/10.1016/j.jff.2015.04.027 (2010).
8.
Schetelig, M. F. et al. Environmentally sustainable pest control options for Drosophila suzukii. J. Appl. Entomol. 142, 3–17. https://doi.org/10.1111/jen.12469 (2017).
Article Google Scholar
9.
Lee, J. C. et al. Biological control of spotted-wing Drosophila (Diptera: Drosophilidae)—Current and pending tactics. J. Integr. Pest Manag. 10, https://doi.org/10.1093/jipm/pmz012 (2019).
10.
Fleury, F., Gibert, P., Ris, N. & Allemand, R. Chapter 1 Ecology and life history evolution of frugivorous Drosophila parasitoids. 70, 3–44, https://doi.org/10.1016/s0065-308x(09)70001-6 (2009).
11.
Daane, K. M. et al. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J. Pest Sci. 89, 823–835. https://doi.org/10.1007/s10340-016-0740-0 (2016).
ADS Article Google Scholar
12.
Girod, P. et al. The parasitoid complex of D. suzukii and other fruit feeding Drosophila species in Asia. Sci. Rep. 8, 11839, https://doi.org/10.1038/s41598-018-29555-8 (2018).
13.
Girod, P. et al. Host specificity of Asian parasitoids for potential classical biological control of Drosophila suzukii. J. Pest. Sci. 2004(91), 1241–1250. https://doi.org/10.1007/s10340-018-1003-z (2018).
Article Google Scholar
14.
Matsuura, A., Mitsui, H. & Kimura, M. T. A preliminary study on distributions and oviposition sites of Drosophila suzukii (Diptera: Drosophilidae) and its parasitoids on wild cherry tree in Tokyo, central Japan. Appl. Entomol. Zool. 53, 47–53. https://doi.org/10.1007/s13355-017-0527-7 (2018).
Article Google Scholar
15.
Wang, X. G., Nance, A. H., Jones, J. M. L., Hoelmer, K. A. & Daane, K. M. Aspects of the biology and reproductive strategy of two Asian larval parasitoids evaluated for classical biological control of Drosophila suzukii. Biol. Control 121, 58–65. https://doi.org/10.1016/j.biocontrol.2018.02.010 (2018).
Article Google Scholar
16.
Abram, P. K. et al. New records of Leptopilina, Ganaspis, and Asobara species associated with Drosophila suzukii in North America, including detections of L. japonica and G. brasiliensis. J. Hymenoptera Res. 78, 1–17, https://doi.org/10.3897/jhr.78.55026 (2020).
17.
Puppato, S., Grassi, A., Pedrazzoli, F., De Cristofaro, A. & Ioriatti, C. First report of Leptopilina japonica in Europe. Insects 11, https://doi.org/10.3390/insects11090611 (2020).
18.
Kacsoh, B. Z. & Schlenke, T. A. High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One 7, e34721, https://doi.org/10.1371/journal.pone.0034721 (2012).
19.
Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005 (2012).
Article Google Scholar
20.
Nagaraja, H. in Biological Control of Insect Pests Using Egg Parasitoids (eds S. Sithanantham, Chandish R. Ballal, S. K. Jalali, & N. Bakthavatsalam) Chapter 8, 175–189 (Springer, 2013).
21.
Rossi Stacconi, M. V., Grassi, A., Ioriatti, C. & Anfora, G. Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. BioControl 64, 9–19, https://doi.org/10.1007/s10526-018-09914-0 (2018).
22.
Rossi-Stacconi, M. V. et al. Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: Useful clues for control strategies. J. Pest Sci. 89, 689–700. https://doi.org/10.1007/s10340-016-0753-8 (2016).
Article Google Scholar
23.
Mazzetto, F. et al. Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J. Pest Sci. 89, 837–850. https://doi.org/10.1007/s10340-016-0746-7 (2016).
Article Google Scholar
24.
Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol. Control 96, 64–71. https://doi.org/10.1016/j.biocontrol.2016.02.004 (2016).
Article Google Scholar
25.
Kacar, G., Wang, X. G., Biondi, A. & Daane, K. M. Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE 12, e0183525. https://doi.org/10.1371/journal.pone.0183525 (2017).
CAS Article PubMed PubMed Central Google Scholar
26.
Zhu, C. J., Li, J., Wang, H., Zhang, M. & Hu, H. Y. Demographic potential of the pupal parasitoid Trichopria drosophilae (Hymenoptera: Diapriidae) reared on Drosophila suzukii (Diptera: Drosophilidae). J. Asia-Pac. Entomol. 20, 747–751. https://doi.org/10.1016/j.aspen.2017.04.008 (2017).
Article Google Scholar
27.
Kruitwagen, A., Beukeboom, L. W. & Wertheim, B. Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example. Evol. Appl. 11, 1473–1497. https://doi.org/10.1111/eva.12648 (2018).
Article PubMed PubMed Central Google Scholar
28.
Rossi Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol. Control 117, 188–196, https://doi.org/10.1016/j.biocontrol.2017.11.013 (2018).
29.
Wolf, S., Boycheva-Woltering, S., Romeis, J. & Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 93, 627–638. https://doi.org/10.1007/s10340-019-01180-y (2019).
Article Google Scholar
30.
Wang, X. G. et al. Thermal performance of two indigenous pupal parasitoids attacking the invasive Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 47, 764–772. https://doi.org/10.1093/ee/nvy053 (2018).
Article PubMed Google Scholar
31.
Rossi Stacconi, M. V. et al. Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biol. Control 112, 20–27, https://doi.org/10.1016/j.biocontrol.2017.06.003 (2017).
32.
Colombari, F., Tonina, L., Battisti, A. & Mori, N. Performance of Trichopria drosophilae (Hymenoptera: Diapriidae), a generalist parasitoid of Drosophila suzukii (Diptera: Drosophilidae), at low temperature. J. Insect Sci. 20, https://doi.org/10.1093/jisesa/ieaa039 (2020).
33.
Carton, Y., Bouletreau, M., Alphen, J. J. M. V. & Lenteren, J. C. V. in The Genetics and Biology of Drosophila Vol. 3 (eds M. Ashburner, H.L. Carson, & J.N. Thompson) Chap. 39, 348–394 (Academic Press, 1986).
34.
Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. Biocontrol 61, 387–397. https://doi.org/10.1007/s10526-016-9720-9 (2016).
CAS Article Google Scholar
35.
Boycheva Woltering, S., Romeis, J. & Collatz, J. Influence of the rearing host on biological parameters of Trichopria drosophilae, a potential biological control agent of Drosophila suzukii. Insects 10, https://doi.org/10.3390/insects10060183 (2019).
36.
Yi, C. et al. Life history and host preference of Trichopria drosophilae from Southern China, one of the effective pupal parasitoids on the Drosophila species. Insects 11, https://doi.org/10.3390/insects11020103 (2020).
37.
Lynch, Z. R., Schlenke, T. A. & de Roode, J. C. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup. J. Evol. Biol. 29, 1016–1029. https://doi.org/10.1111/jeb.12842 (2016).
CAS Article PubMed Google Scholar
38.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
CAS Article PubMed PubMed Central Google Scholar
39.
Otto, M. & Mackauer, M. The developmental strategy of an idiobiont ectoparasitoid, Dendrocerus carpenteri : Influence of variations in host quality on offspring growth and fitness. Oecologia 117, 353–364. https://doi.org/10.1007/s004420050668 (1998).
ADS Article PubMed Google Scholar
40.
Friard, O., Gamba, M. & Fitzjohn, R. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330. https://doi.org/10.1111/2041-210x.12584 (2016).
Article Google Scholar
41.
Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Article Google Scholar
42.
R: A Language and Environment for Statistical Computing (R, Vienna, 2008).
43.
Steidle, J. L. M. & van Loon, J. J. A. in Chemoecology of Insect Eggs and Egg Deposition (eds Monika Hilker & Torsten Meiners) 291–317 (Blackwell, 2003).
44.
Romani, R., Isidoro, N., Bin, F. & Vinson, S. B. Host recognition in the pupal parasitoid Trichopria drosophilae: A morpho-functional approach. Entomol. Exp. Appl. 105, 119–128. https://doi.org/10.1046/j.1570-7458.2002.01040.x (2002).
CAS Article Google Scholar
45.
Ballman, E. S., Collins, J. A. & Drummond, F. A. Pupation behavior and predation on Drosophila suzukii (Diptera: Drosophilidae) pupae in maine wild blueberry fields. J. Econ. Entomol. 110, 2308–2317. https://doi.org/10.1093/jee/tox233 (2017).
Article PubMed Google Scholar
46.
Carton, Y. Biologie de pimpla instigator (Ichneumonidae: Pimplinae). Entomol. Exp. Appl. 17, 265–278. https://doi.org/10.1111/j.1570-7458.1974.tb00344.x (1974).
Article Google Scholar
47.
Vinson, S. B. Host selection by insect parasitoids. Annu. Rev. Entomol. 21, 109–133. https://doi.org/10.1146/annurev.en.21.010176.000545 (1976).
Article Google Scholar
48.
Poyet, M. et al. Resistance of Drosophila suzukii to the larval parasitoids Leptopilina heterotoma and Asobara japonica is related to haemocyte load. Physiol. Entomol. 38, 45–53. https://doi.org/10.1111/phen.12002 (2013).
Article Google Scholar
49.
Honti, V., Csordas, G., Kurucz, E., Markus, R. & Ando, I. The cell-mediated immunity of Drosophila melanogaster: Hemocyte lineages, immune compartments, microanatomy and regulation. Dev. Comp. Immunol. 42, 47–56. https://doi.org/10.1016/j.dci.2013.06.005 (2014).
CAS Article PubMed Google Scholar
50.
Iacovone, A., Ris, N., Poirie, M. & Gatti, J. L. Time-course analysis of Drosophila suzukii interaction with endoparasitoid wasps evidences a delayed encapsulation response compared to D. melanogaster. PLoS One 13, e0201573, https://doi.org/10.1371/journal.pone.0201573 (2018).
51.
Bozler, J., Kacsoh, B. Z. & Bosco, G. Maternal priming of offspring immune system in Drosophila. G3 (Bethesda) 10, 165–175, https://doi.org/10.1534/g3.119.400852 (2020).
52.
Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T. & van den Assem, J. Sex ratio evolution in a variable environment. Nature 289, 27–33, https://doi.org/10.1038/289027a0 (1981).
53.
Sandlan, K. Sex-ratio regulation in Coccygomimus-Turionella Linnaeus (Hymenoptera, Ichneumonidae) and its ecological implications. Ecol. Entomol. 4, 365–378. https://doi.org/10.1111/j.1365-2311.1979.tb00596.x (1979).
Article Google Scholar
54.
King, B. H. Offspring sex-ratios in parasitoid wasps. Q. Rev. Biol. 62, 367–396. https://doi.org/10.1086/415618 (1987).
Article Google Scholar More
