Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
1.
Burgess, S. D., Bowring, S. & Shen, S.-Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).
Article Google Scholar
2.
Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500 (2009).
Article Google Scholar
3.
Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).
Article Google Scholar
4.
Saunders, A. D. Two LIPs and two Earth-system crises: the impact of the North Atlantic igneous province and the Siberian Traps on the Earth-surface carbon cycle. Geol. Mag. 153, 201–222 (2016).
Article Google Scholar
5.
Cui, Y. & Kump, L. R. Global warming and the end-Permian extinction event: proxy and modeling perspectives. Earth Sci. Rev. 149, 5–22 (2015).
Article Google Scholar
6.
Sun, Y. et al. Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366–370 (2012).
Article Google Scholar
7.
Brand, U. et al. The end-Permian mass extinction: a rapid volcanic CO2 and CH4-climatic catastrophe. Chem. Geol. 323, 121–144 (2012).
Article Google Scholar
8.
Winguth, A. M. E., Shields, C. A. & Winguth, C. Transition into a hothouse world at the Permian–Triassic boundary—a model study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 316–327 (2015).
Article Google Scholar
9.
Garbelli, C. et al. Neotethys seawater chemistry and temperature at the dawn of the end-Permian mass extinction. Gondwana Res. 35, 272–272 (2016).
Article Google Scholar
10.
Wang, W. et al. A high-resolution middle to late Permian paleotemperature curve reconstructed using oxygen isotopes of well-preserved brachiopod shells. Earth Planet. Sci. Lett. 540, 116245 (2020).
Article Google Scholar
11.
Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl Acad. Sci. USA 113, 2360–2365 (2016).
Article Google Scholar
12.
Elrick, M. et al. Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology 45, 163–166 (2017).
Article Google Scholar
13.
Zhang, F. F. et al. Congruent Permian–Triassic δ238U records at Panthalassic and Tethyan sites: confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology 46, 327–330 (2018).
Article Google Scholar
14.
Korte, C. et al. Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. Int. J. Earth Sci. 93, 565–581 (2004).
Google Scholar
15.
Grice, K. et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).
Article Google Scholar
16.
Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010).
Article Google Scholar
17.
Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232 (2015).
Article Google Scholar
18.
Garbelli, C., Angiolini, L. & Shen, S.-Z. Biomineralization and global change: a new perspective for understanding the end-Permian extinction. Geology 45, 19–22 (2017).
Article Google Scholar
19.
Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551–1554 (2009).
Article Google Scholar
20.
Rae, J. W. B. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).
Article Google Scholar
21.
Gutjahr, M. et al. Very larger release of mostly volcanic carbon during the Palaeocene–Eocene thermal maximum. Nature 548, 573–577 (2017).
Article Google Scholar
22.
Henehan, M. et al. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc. Natl Acad. Sci. USA 116, 22500–22504 (2019).
Article Google Scholar
23.
Müller, T. et al. Ocean acidification during the early Toarcian extinction event: Evidence from boron isotopes in brachiopods. Geology https://doi.org/10.1130/G47781.1 (2020).
24.
Posenato, R. Survival patterns of microbenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 150–167 (2019).
Article Google Scholar
25.
Wallmann, K. et al. Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw. Nat. Geosci. 12, 456–462 (2019).
Article Google Scholar
26.
Retallack, G. J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287–290 (2001).
Article Google Scholar
27.
Goddéris, Y. et al. Causal or casual link between the rise of nannoplankton calcification and a tectonically-driven massive decrease in Late Triassic atmospheric CO2? Earth Planet. Sci. Lett. 267, 247–255 (2008).
Article Google Scholar
28.
McElwain, J. C., Wagner, P. J. & Hesselbo, S. P. Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greenland. Science 324, 1554–1556 (2009).
Article Google Scholar
29.
Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S. & Damste, J. S. S. Molecular fossils from phytoplankton reveal secular (p_{{rm{CO}}_2}) trend over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).
30.
Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).
Article Google Scholar
31.
Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).
Article Google Scholar
32.
Algeo, T. J. et al. Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes. Glob. Planet. Change 105, 52–67 (2013).
Article Google Scholar
33.
Saitoh, M. et al. Nitrogen isotope chemostratigraphy across the Permian–Triassic boundary at Chaotian, Sichuan, South China. J. Asian Earth Sci. 93, 113–128 (2014).
Article Google Scholar
34.
Sun, Y. D. et al. Ammonium ocean following the end-Permian mass extinction. Earth Planet. Sci. Lett. 518, 211–222 (2019).
Article Google Scholar
35.
Shen, J. et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth Sci. Rev. 149, 136–162 (2015).
Article Google Scholar
36.
Canfield, D. E. Models of oxic respiration, denitrification and sulfate reduction in zones of coastal upwelling. Geochim. Cosmochim. Acta 70, 5753–5765 (2006).
Article Google Scholar
37.
Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).
Article Google Scholar
38.
Zeebe, R. & Westbroek, P. A simple model for the CaCO3 saturation state of the ocean: The ‘Strangelove’, the ‘Neritan’, and the ‘Cretan’ Ocean. Geochem. Geophys. Geosyst. 4, 1104 (2003).
Article Google Scholar
39.
Vollstaedt, H. et al. The Phanerozoic δ88/86Sr record of seawater: new constraints on past changes in oceanic carbonate fluxes. Geochim. Cosmochim. Acta 128, 249–265 (2014).
Article Google Scholar
40.
Silva-Tamayo, J. C. et al. Global perturbation of the marine calcium cycle during the Permian–Triassic transition. Geol. Soc. Am. Bull. 130, 1323–1338 (2018).
Article Google Scholar
41.
Woods, A. Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features. Earth Sci. Rev. 137, 6–18 (2014).
Article Google Scholar
42.
Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
Article Google Scholar
43.
Song, H. J., Wignall, P. B., Tong, J. N. & Yin, H. F. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).
Article Google Scholar
44.
Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat. Geosci. 4, 693–697 (2011).
Article Google Scholar
45.
Martindale, R. C., Foster, W. J. & Velledits, F. The survival, recovery, and diversification of Metazoan reef ecosystems following the end-Permian mass extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 100–115 (2019).
Article Google Scholar
46.
Reynard, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob. Change Biol. 9, 1660–1668 (2003).
Article Google Scholar
47.
Beatty, T. W., Zonneveld, J.-P. & Henderson, C. M. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for shallow-marine habitable zone. Geology 36, 771–774 (2008).
Article Google Scholar
48.
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
Article Google Scholar
49.
Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
Article Google Scholar
50.
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oxygen content during the past five decades. Nature 542, 335–339 (2017).
Article Google Scholar
51.
Posenato, R. Marine biotic events in the Lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geol. J. 45, 195–215 (2010).
Article Google Scholar
52.
Broglio Loriga, C., Neri, C., Pasini, M. & Posenato, R. in Permian and Permian–Triassic Boundary in the South-Alpine segment of the western Tethys, and Additional Reports (ed. Cassinis, G.) 5–44 (Societa Geologica Italiana, 1988).
53.
Posenato, R. The athyridoids of the transitional beds between Bellerophon and Werfen formations (uppermost Permian, Southern Alps, Italy). Riv. Ital. Paleontol. Soc. 1071, 197–226 (2001).
Google Scholar
54.
Kearsey, T., Twichett, R. J., Price, G. D. & Grimes, S. T. Isotope excursion and palaeotemperature estimates from the Permian/Triassic boundary in the Southern Alps (Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 29–40 (2009).
Article Google Scholar
55.
Muttoni, G. et al. Opening of the neo-Tethys ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14, 17–48 (2009).
Google Scholar
56.
Reichow, M. K. et al. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 9–20 (2009).
Article Google Scholar
57.
Brand, U., Logan, A., Hiller, N. & Richardson, J. Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography. Chem. Geol. 198, 305–334 (2003).
Article Google Scholar
58.
Rollion-Bard, C. et al. Assessing the biomineralisation processes in the shell layers of modern brachiopods from oxygen isotopic composition and elemental ratios: implications for their use as paleoenvironmental proxies. Chem. Geol. 524, 49–66 (2019).
Article Google Scholar
59.
Jurikova, H. et al. Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction. Geochim. Cosmochim. Acta 248, 370–386 (2019).
Article Google Scholar
60.
Jurikova, H. et al. Incorporation of minor and trace elements into cultured brachiopods: implications for proxy application with new insights from a biomineralisation model. Geochim. Cosmochim. Acta 286, 418–440 (2020).
Article Google Scholar
61.
Jurikova, H. et al. Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem. Geol. 513, 143–152 (2019).
Article Google Scholar
62.
Kasemann, S. A., Schmidt, D. N., Bijima, J. & Foster, G. L. In situ boron isotope analyses in marine carbonates and its application for foraminifera and palaeo-pH. Chem. Geol. 260, 138–147 (2009).
Article Google Scholar
63.
Lemarchand, D., Gaillardet, J., Lewin, É. & Allègre, C. J. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408, 951–954 (2000).
Article Google Scholar
64.
Joachimski, M. M., Simon, L., van Geldern, R. & Lécuyer, C. Boron isotope geochemistry of Paleozoic brachiopod calcite: implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic. Geochim. Cosmochim. Acta 69, 4035–4044 (2005).
Article Google Scholar
65.
Klochko, K., Kaufman, A. J., Wengsheng, Y., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006).
Article Google Scholar
66.
Lécuyer, C., Grandjean, P., Reynard, B., Albarède, F. & Telouk, P. 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem. Geol. 186, 45–55 (2002).
Article Google Scholar
67.
Ridgwell, A. A mid Mesozoic revolution in the regulation of ocean chemistry. Mar. Chem. 217, 339–357 (2005).
Google Scholar
68.
Penman, D. E., Hönisch, B., Rasbury, E. T., Hemming, N. G. & Spero, H. J. Boron, carbon, and oxygen isotopic composition of brachiopod shells: intra-shell variability, controls, and potential as a paleo-pH recorder. Chem. Geol. 340, 32–39 (2013).
Article Google Scholar
69.
Garbelli, C., Angiolini, L., Brand, U. & Jadoul, F. Brachiopod fabric, classes and biogeochemistry: implications for the reconstruction and interpretation of seawater carbon-isotope curves and records. Chem. Geol. 371, 60–67 (2014).
Article Google Scholar
70.
Khiel, J. T. & Shields, C. A. Climate simulations of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005).
Article Google Scholar
71.
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086–1088 (2001).
Article Google Scholar
72.
Berner, R. A. & Kothavala, Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).
Article Google Scholar
73.
Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Godderis, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).
Article Google Scholar
74.
Wallmann, K., Schneider, B. & Sarnthein, M. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric (p_{{rm{CO}}_2}) and seawater composition over the last 130,000 years. Clim. Past 12, 339–375 (2016).
Article Google Scholar
75.
Berner, R. A. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994).
Article Google Scholar More
