More stories

  • in

    Smaller climatic niche shifts in invasive than non-invasive alien ant species

    1.
    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 1–9 (2016).
    2.
    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).
    CAS  PubMed  Article  Google Scholar 

    3.
    Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).
    ADS  PubMed  Article  Google Scholar 

    4.
    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).
    PubMed  Article  Google Scholar 

    5.
    Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).
    Article  Google Scholar 

    6.
    Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 13, 947–958 (2010).
    PubMed  Google Scholar 

    7.
    Enserink, M. Biological invaders sweep in. Science 285, 1834–1836 (1999).
    CAS  Article  Google Scholar 

    8.
    Hulme, P. E. Phenotypic plasticity and plant invasions: is it all Jack? Funct. Ecol. 22, 3–7 (2008).
    Article  Google Scholar 

    9.
    Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310 (2002).
    Article  Google Scholar 

    10.
    Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14, 419–431 (2011).
    PubMed  Article  Google Scholar 

    11.
    Bazin, É., Mathé-Hubert, H., Facon, B., Carlier, J. & Ravigné, V. The effect of mating system on invasiveness: Some genetic load may be advantageous when invading new environments. Biol. Invasion. 16, 875–886 (2014).
    Article  Google Scholar 

    12.
    Zheng, Y. et al. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors. Sci. Rep. 5, 1–8 (2015).
    Google Scholar 

    13.
    Callaway, R. M. & Aschehoug, E. T. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290, 521–523 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).
    PubMed  Article  Google Scholar 

    15.
    Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010).
    Article  Google Scholar 

    16.
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).
    Article  Google Scholar 

    18.
    Hölldobler, Bert, E. O. W. The Ants. (Havard University Press, 1990).

    19.
    Meurisse, N., Rassati, D., Hurley, B. P., Brockerhoff, E. G. & Haack, R. A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 92, 13–27 (2018).
    Article  Google Scholar 

    20.
    Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).
    Article  Google Scholar 

    21.
    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).
    Article  Google Scholar 

    22.
    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).

    23.
    Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
    PubMed  Article  Google Scholar 

    25.
    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Rouget, M. et al. Invasion debt-quantifying future biological invasions. Divers. Distrib. 22, 445–456 (2016).
    Article  Google Scholar 

    27.
    Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional Areas. Biodivers. Inform. 2, 0–10 (2005).
    Article  Google Scholar 

    28.
    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).
    Article  Google Scholar 

    29.
    Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 163, 170–176 (2002).
    Article  Google Scholar 

    30.
    Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).
    Article  Google Scholar 

    31.
    Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B Biol. Sci. 277, 1789–1797 (2010).
    Article  Google Scholar 

    32.
    Torres, U. et al. Using niche conservatism information to prioritize hotspots of invasion by non-native freshwater invertebrates in New Zealand. Divers. Distrib. 24, 1802–1815 (2018).
    Article  Google Scholar 

    33.
    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).
    Article  Google Scholar 

    34.
    Godefroid, M., Rasplus, J. Y. & Rossi, J. P. Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus. Ecography 39, 1197–1209 (2016).
    Article  Google Scholar 

    35.
    Bujan, J., Roeder, K. A., Yanoviak, S. P. & Kaspari, M. Seasonal plasticity of thermal tolerance in ants. Ecology 101, 1–6 (2020).
    Article  Google Scholar 

    36.
    Bujan, J. & Kaspari, M. Nutrition modifies critical thermal maximum of a dominant canopy ant. J. Insect Physiol. 102, 1–6 (2017).
    CAS  PubMed  Article  Google Scholar 

    37.
    Alexander, J. M. & Edwards, P. J. Limits to the niche and range margins of alien species. Oikos 119, 1377–1386 (2010).
    Article  Google Scholar 

    38.
    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).
    PubMed  Article  Google Scholar 

    39.
    Tingley, R., Vallinoto, M., Sequeira, F. & Kearney, M. R. Realized niche shift during a global biological invasion. Proc. Natl Acad. Sci. USA 111, 10233–10238 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Medley, K. A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob. Ecol. Biogeogr. 19, 122–133 (2010).
    Article  Google Scholar 

    41.
    Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Angetter, L. S., Lotters, S. & Rodder, D. Climate niche shift in invasive species: the case of the brown anole. Biol. J. Linn. Soc. 104, 943–954 (2011).
    Article  Google Scholar 

    43.
    Colautti, R. I. & Lau, J. A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24, 1999–2017 (2015).
    PubMed  Article  Google Scholar 

    44.
    Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).
    PubMed  Article  Google Scholar 

    45.
    Srivastava, V., Lafond, V. & Griess, V. C. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev. 14, 1–13 (2019).

    46.
    Pili, A. N., Tingley, R., Sy, E. Y., Diesmos, M. L. L. & Diesmos, A. C. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci. Rep. 10, 1–18 (2020).
    Article  CAS  Google Scholar 

    47.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Kirchhof, S. et al. Thermoregulatory behavior and high thermal preference buffer impact of climate change in a Namib Desert lizard. Ecosphere 8, e02033 (2017).

    49.
    Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).
    PubMed  Article  Google Scholar 

    50.
    Chapman, D. S., Scalone, R., Štefanić, E. & Bullock, J. M. Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology 98, 1671–1680 (2017).
    PubMed  Article  Google Scholar 

    51.
    Janicki, J., Narula, N., Ziegler, M., Guénard, B. & Economo, E. P. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecol. Inform. 32, 185–193 (2016).
    Article  Google Scholar 

    52.
    Guénard, B., Weiser, M. D., Gómez, K., Narula, N. & Economo, E. P. The Global Ant Biodiversity Informatics (GABI) database: Synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecological N. 24, 83–89 (2017).
    Google Scholar 

    53.
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).
    Article  Google Scholar 

    54.
    Pagad, S., Genovesi, P., Carnevali, L., Scalera, R. & Clout, M. IUCN SSC invasive species specialist group: Invasive alien species information management supporting practitioners, policy makers and decision takers. Manag. Biol. Invasion. 6, 127–135 (2015).
    Article  Google Scholar 

    55.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    56.
    Dray, S. & Dufour, A.-B. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    57.
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
    Article  Google Scholar 

    58.
    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
    Article  Google Scholar 

    59.
    Schoener, T. W. The Anolis Lizards of Bimini: resource partitioning in a complex fauna were invaded by anoline lizards. Ecol. Soc. Am. 49, 704–726 (1968).
    Google Scholar 

    60.
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
    PubMed  Article  Google Scholar 

    61.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    62.
    Bates, O. K., Ollier, S. & Bertelsmeier, C. Smaller climatic niche shifts in invasive than non-invasive alien ant species. GitHub. https://doi.org/10.5281/zenodo.4041296 (2020).

    63.
    Team, R. C. R.: A Language and Environment for Statistical Computing. (2019). More

  • in

    Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation

    1.
    Trathan, P. N. & Hill, S. L. in Biology and Ecology of Antarctic krill (ed. Siegel, V.) 321–350 (Springer, 2016).
    2.
    Atkinson, A. et al. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Pt. 1. 56, 727–740 (2009).
    Article  Google Scholar 

    3.
    Bar-On, Y. N., Philips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  Article  Google Scholar 

    4.
    Atkinson, A. et al. Sardine cycles, krill declines, and locust plagues: revisiting ‘wasp-waist’ food webs. Trends Ecol. Evol. 29, 309–316 (2014).
    Article  Google Scholar 

    5.
    Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).
    CAS  Article  Google Scholar 

    6.
    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish. Fish 11, 203–209 (2010).
    Article  Google Scholar 

    7.
    Schmidt, K. et al. Zooplankton gut passage mobilizes lithogenic iron for ocean productivity. Curr. Biol. 26, 2667–2673 (2016).
    CAS  Article  Google Scholar 

    8.
    Nicol, S. & Foster, J. in Biology and Ecology of Antarctic krill 387–421 (Springer, 2016).

    9.
    Kawaguchi, S & Nicol, S. in Fisheries and Aquaculture Vol. 9. (eds Lovrich, G. & Thiel, M.) 137–158, https://doi.org/10.1093/oso/9780190865627.003.0006. (Oxford University Press, 2020).

    10.
    Turner, J. & Overland, J. Contrasting climate change in the two polar regions. Polar Res. 26, 146–164 (2009).
    Article  Google Scholar 

    11.
    Rogers, A. D. et al. Antarctic futures: an assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the southern ocean. Annul Rev. Mar. Sci 12, 87–120 (2019).
    Article  Google Scholar 

    12.
    Kawaguchi, S., Nicol, S. & Press, A. J. Direct effects of climate change on the Antarctic krill fishery. Fisheries Manag. Ecol. 16, 424–427 (2009).
    Article  Google Scholar 

    13.
    Trathan, P. N. et al. Krill biomass in the Atlantic. Nature 367, 201–202 (1995).
    Article  Google Scholar 

    14.
    Constable, A. J. & de la Mare, W. K. A generalised yield model for evaluating the yield and the long-term status of fish stocks under conditions of uncertainty. CCAMLR Sci. 3, 31–54 (1996).
    Google Scholar 

    15.
    Hill, S. L. et al. Is current management of the Antarctic krill fishery in the Atlantic sector of the Southern Ocean precautionary? CCAMLR Sci. 23, 31–51 (2016).
    Google Scholar 

    16.
    Hewitt, R. P. et al. Options for allocating the precautionary catch limit of krill among small-scale management units in the Scotia Sea. CCAMLR Sci 11, 81–97 (2004).
    Google Scholar 

    17.
    Watters, G. M., Hill, S. L., Hinke, J. T., Matthews, J. & Reid, K. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model. Ecol. Appl. 23, 710–725 (2013).
    CAS  Article  Google Scholar 

    18.
    Trathan, P. N. et al. Managing fishery development in sensitive ecosystems: identifying penguin habitat use to direct management in Antarctica. Ecosphere 9, e02392 (2018).
    Article  Google Scholar 

    19.
    Watters, G. M., Hinke, J. T. & Reiss, C. Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator-prey interaction lead to erroneous conclusions about precaution. Sci. Rep. 10, 2314 (2020).
    CAS  Article  Google Scholar 

    20.
    Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).
    Article  Google Scholar 

    21.
    Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588 (2014).
    Article  Google Scholar 

    22.
    Brierley, A. S. & Reid, K. Krill and the diversity of science and society: An introduction to the Third International Symposium on Krill. J. Crust. Biol. 38, 651–655 (2018).
    Google Scholar 

    23.
    Report of the Thirty-Sixth Meeting of the Scientific Committee of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR, Hobart, Australia, 2017).

    24.
    SC-CCAMLR Report of the thirty-eight Meeting of the Scientific Committee, of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR Hobart, Australia, 2019).

    25.
    Spiridonov, V. Spatial and temporal variability in reproductive timing of Antarctic krill (Euphausia superba Dana). Polar Biol. 15, 161–174 (1995).
    Article  Google Scholar 

    26.
    Siegel, V. Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol. 29, 1–22 (2005).
    Article  Google Scholar 

    27.
    Schmidt, K., Atkinson, A., Venables, H. & Pond, D. W. Early spawning of Antarctic krill in the Scotia Sea is fueled by ‘superfluous’ feeding on non-ice associated phytoplankton blooms. Deep Sea Res. II 59, 159–172 (2012).
    Article  Google Scholar 

    28.
    Ross, R. B. & Quetin, L. B. Energetic cost to develop to the first feeding stage of Euphausia superba Dana and the effect of delays in food availability. J. Exp. Mar. Biol. Ecol. 133, 103–127 (1989).
    Article  Google Scholar 

    29.
    Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol 1, 1853–1861 (2017).
    Article  Google Scholar 

    30.
    Brierley, A. S., Demer, D. A., Hewitt, R. P. & Watkins, J. L. Concordance of inter-annual fluctuations in densities of krill around South Georgia and Elephant Islands: biological evidence of same year teleconnections across the Scotia Sea. Mar. Biol. 134, 675–681 (1999).
    Article  Google Scholar 

    31.
    Reiss, C. S. in Biology and Ecology of Antarctic krill 101–144 (Springer, 2016).

    32.
    Quetin, L. B., Ross, R. M., Fritsen, C. H. & Vernet, M. Ecological responses of Antarctic krill to environmental variability: can we predict the future? Ant. Sci. 19, 253–266 (2007).
    Article  Google Scholar 

    33.
    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).
    CAS  Article  Google Scholar 

    34.
    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centered food web. Phil. Trans. R. Soc. B 362, 113–148 (2007).
    CAS  Article  Google Scholar 

    35.
    Kinzey, D. et al. Selectivity and two biomass measures in an age-based assessment of Antarctic krill (Euphausia superba). Fish. Res. 168, 72–84 (2015).
    Article  Google Scholar 

    36.
    Siegel, V. & Loeb, V. et al. Recruitment of Antarctic krill (Euphausia superba) and possible causes for its variability. Mar. Ecol. Prog. Ser. 123, 45–56 (1995).
    Article  Google Scholar 

    37.
    Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Oceanogr. 134, 93–122 (2015).
    Article  Google Scholar 

    38.
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).
    Article  Google Scholar 

    39.
    Thorpe, S. E., Tarling, G. A. & Murphy, E. J. Circumpolar patterns in Antarctic krill larval recruitment: an environmentally driven model. Mar. Ecol. Prog. Ser. 613, 77–96 (2019).
    Article  Google Scholar 

    40.
    Ryabov, A. B. et al. Competition-induced starvation drives large-scale population cycles in Antarctic krill. Nat. Ecol. Evol 1, 1–8 (2017).
    Article  Google Scholar 

    41.
    Makarov, R. R. & Menshenina, L. L. On the distribution of euphausiid larvae in the Antarctic waters. Okeanologija Akademija Nauk SSSR. Okeanograficeskaja Komissija, Moskva 29, 825–831 (1989).
    Google Scholar 

    42.
    Perry, F. A. et al. Habitat partitioning in Antarctic krill: spawning hotspots and nursery areas. PLoS ONE 14, e0219325 (2019).
    CAS  Article  Google Scholar 

    43.
    Siegel, V & Watkins, J. N. in Biology and Ecology of Antarctic krill 21–100 (Springer, 2016).

    44.
    Hofmann, E. E. & Hüsrevoğlu, Y. S. A circumpolar modelling study of habitat control of Antarctic krill (Euphausia superba) reproductive success. Deep-Sea Res II 50, 3121–3142 (2003).
    Article  Google Scholar 

    45.
    King, M. Fisheries Biology, Assessment and Management 341 (Fishing News Books, Blackwell Science, Oxford, 1995).

    46.
    Rombolá, E. R. et al. Variability of euphausiid larvae densities during the 2011, 2012, and 2014 summer seasons in the Atlantic sector of the Antarctic. Polar Sci. 19, 86–93 (2019).
    Article  Google Scholar 

    47.
    Conroy, J. A., Reiss, C. S., Gleiber, M. R. & Steinberg, D. K. Linking Antarctic krill larval supply and recruitment along the Antarctic Peninsula. Integr. Comp. Biol. https://doi.org/10.1093/icb/icaa111 (2020).
    Article  Google Scholar 

    48.
    Siegel, V. et al. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. I 77, 63–74 (2013).
    Article  Google Scholar 

    49.
    Lumpkin, R. & Centurioni, L. Global Drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys. NOAA National Centers for Environmental Information. Dataset. https://doi.org/10.25921/7ntx-z961 (2019)

    50.
    Siegel, V. in Antarctic Ocean and Resources Variability 219–230 (Springer, 1988).

    51.
    Trathan, P. N. et al. Spatial variability of Antarctic krill in relation to mesoscale hydrography. Mar. Ecol. Prog. Ser. 98, 61–71 (1993).
    Article  Google Scholar 

    52.
    Jazdzewski, K. et al. Biological and populational studies on krill near South Shetland Islands, Scotia Sea and South Georgia in the summer 1976. Polskie Archiwum Hydrobiologii 25, 607–631 (1978).
    Google Scholar 

    53.
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).
    CAS  Article  Google Scholar 

    54.
    Piñones, A. et al. Modeling the remote and local connectivity of Antarctic krill populations along the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 481, 69–92 (2013).
    Article  Google Scholar 

    55.
    Taki, K., Hayashi, T. & Naganobu, M. Characteristics of seasonal variation in diurnal vertical migration and aggregation of Antarctic krill (Euphausia superba) in the Scotia Sea, using Japanese fishery data. CCAMLR Sci. 12, 163–172 (2005).
    Google Scholar 

    56.
    Barlow, K. E. et al. Are penguins and seals in competition for Antarctic krill at South Georgia? Mar. Biol. 140, 205–213 (2002).
    Article  Google Scholar 

    57.
    Reid, K., Trathan, P. N., Croxall, J. P. & Hill, H. J. Krill caught by predators and nets: differences between species and techniques. Mar. Ecol. Prog. Ser. 140, 13–20 (1996).
    Article  Google Scholar 

    58.
    Jackson, J. A. et al. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc. Roy. Soc. B-Biol. Sci 281, 20133222 (2014).
    Article  Google Scholar 

    59.
    Herr, H. et al. Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey. Polar Biol. 39, 799–818 (2016).
    Article  Google Scholar 

    60.
    Viquerat, S. & Herr, H. Mid-summer abundance estimates of fin whales Balaenoptera physalus around the South Orkney Islands and Elephant Island. ESR 32, 515–524 (2017).
    Article  Google Scholar 

    61.
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator form historical exploitation. Roy. Soc. Open Sci 6, 190368 (2019).
    Article  Google Scholar 

    62.
    Reid, K. et al. Widening the net: spatio-temporal variability in the krill population structure across the Scotia Sea. Deep-Sea Res. II 51, 1275–1287 (2004).
    Article  Google Scholar 

    63.
    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).
    CAS  Article  Google Scholar 

    64.
    Hill, S. L., Trathan, P. H. & Agnew, D. J. The risk to fishery performance associated with spatially resolved management of Antarctic krill (Euphausia superba) harvesting. ICES J. Mar. Sci 66, 2148–2154 (2009).
    Article  Google Scholar 

    65.
    Tarling, G. A., Ward, P. & Thorpe, S. E. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming. Global Change Biol. https://doi.org/10.1111/gcb.13834 (2017).

    66.
    Stammerjohn, S. S., Massom, R. A., Rind, D. & Martinson, D. G. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, L06501 (2012).
    Article  Google Scholar 

    67.
    Henley, S. F. et al. Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2019.03.003 (2019).

    68.
    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature. 535, 411–415 (2016).
    CAS  Article  Google Scholar 

    69.
    Swart, N. C. & Fyfe, J. C. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Letters 39, L16711 (2012).
    Article  Google Scholar 

    70.
    Datwyler, C. et al. Teleconnection stationality, variability and trends of the Southern Annular Mode (SAM) during the last millennium. Clim. Dyn. 51, 2321–2339 (2017).
    Article  Google Scholar 

    71.
    Stammerjohn, S. E. et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 113, C03S90 (2008).
    Article  Google Scholar 

    72.
    SC-CCAMLR Report of the twenty-ninth Meeting of the Scientific Committee, of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR Hobart, Australia, 2010).

    73.
    Cox, M. J. et al. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crust. Biol. 38, 656–661 (2018).
    Google Scholar 

    74.
    Loeb, V. et al. Effects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).
    CAS  Article  Google Scholar 

    75.
    Trivelpiece, W. Z. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc. Natl Acad. Sci. USA 108, 7625–7628 (2011).
    CAS  Article  Google Scholar 

    76.
    Huang, T. et al. Relative changes in krill abundanceiInferred from Antarctic Fur Seal. PLoS ONE 6, e27331 (2011).
    CAS  Article  Google Scholar 

    77.
    Atkinson, A., Siegel, V., Pakhomov, E. A. & Rothery, P. Long term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).
    CAS  Article  Google Scholar 

    78.
    Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).
    CAS  Article  Google Scholar 

    79.
    McMahon, K. W. et al. Divergent trophic responses of sympatric penguin species to historic anthropogenic exploitation and recent climate change. Proc. Natl Acad Sci. USA 116, 25721–25727 (2019).
    CAS  Article  Google Scholar 

    80.
    Hill, S. L., Atkinson, A., Pakhomov, E. A. & Siegel, V. Evidence for a decline in the population density of Antarctic krill Euphausia superba Dana 1850, still stands: A comment on Cox et al. J. Crust. Biol 39, 316–322 (2019).
    Article  Google Scholar 

    81.
    Cox, M. J. et al. Clarifying trends in the density of Antarctic krill Euphausia superba Dana, 1850 in the South Atlantic. A response to Hill et al. J. Crust. Biol. 39, 323–327 (2019).
    Article  Google Scholar 

    82.
    Hill, S. L. et al. Reference points for predators will progress ecosystem‐based management of fisheries. Fish. Fish. 21, 368–378 (2020).
    Article  Google Scholar 

    83.
    Fuentes, V. et al. Glacial melting: an overlooked threat to Antarctic krill. Sci. Reps 6, 27234 (2016).
    CAS  Article  Google Scholar 

    84.
    Flores et al. The response of Antarctic krill to climate change: Implications for management and research priorities. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
    Article  Google Scholar 

    85.
    Ross, R. M. et al. Palmer LTER: Patterns of distribution of five dominant zooplankton species in the epipelagic zone west of the Antarctic Peninsula, 1993–2004. Deep Sea Res. II 55, 2086–2105 (2008).
    Article  Google Scholar 

    86.
    Loeb, V. J. et al. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Ant. Sci. 21, 135–148 (2009).
    Article  Google Scholar 

    87.
    Beaugrand, G. & Kirby, R. R. How do marine pelagic species respond to climate change? Theories and observations. Annu. Rev. Mar. Sci. 10, 169–197 (2018).
    Article  Google Scholar 

    88.
    Tarling, G. A. & Thorpe, S. E. Oceanic swarms of Antarctic krill perform satiation sinking. Proc. R. Soc. B 284, 20172015 (2017).
    Article  CAS  Google Scholar 

    89.
    Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell Quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).
    CAS  Article  Google Scholar 

    90.
    Piñones, A. & Fedorov, A. V. Projected changes of Antarctic krill habitat by the end of the 21st century. Geophys. Res. Lett. 43, 8580–8589 (2016).
    Article  Google Scholar 

    91.
    Murphy, E. J. et al. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Reps 7, 6963 (2017).
    Article  CAS  Google Scholar 

    92.
    Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).
    Article  Google Scholar 

    93.
    Kawaguchi, S. et al. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Change 3, 343–347 (2013).
    Article  CAS  Google Scholar 

    94.
    Kawaguchi, S. & Nicol, S. Learning about Antarctic krill from the fishery. Ant. Sci. 19, 219–230 (2007).
    Article  Google Scholar 

    95.
    Warner, A. J., Hays, G. C. & Hays, G. Sampling by the Continuous Plankton Recorder survey. Prog. Oceanogr. 34, 237–256 (1994).
    Article  Google Scholar 

    96.
    Petersen, W. FerryBox systems: State-of-the-art in Europe and future development. J. Mar. Syst. 140 A, 4–12 (2014).
    Article  Google Scholar 

    97.
    Brierley, A. S. et al. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol. Oceanogr.: Methods 4, 18–29 (2006).
    Article  Google Scholar 

    98.
    Guihen, D. et al. An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: the distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea. Limnol. Oceanogr.: Methods 12, 373–389 (2014).
    Article  Google Scholar 

    99.
    Meinig, C. et al. Public private partnerships to advance regional ocean observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci. 6, 448 (2019).
    Article  Google Scholar 

    100.
    Park, Y. H. & Durand, I. Altimetry-derived Antarctic circumpolar current fronts. SEANOE. https://doi.org/10.17882/59800 (2019).

    101.
    Park, Y.-H. et al. Observations of the Antarctic Circumpolar Current over the Udintsev Fracture Zone, the narrowest choke point in the Southern Ocean. J. Geophys. Res.: Oceans. 124 https://doi.org/10.1029/2019JC015024 (2019)

    102.
    Ikeda, T. Development of the larvae of the Antarctic krill (Euphausia superba Dana) observed in the laboratory. J. Exp. Mar. Biol. Ecol. 75, 107–117 (1984).
    Article  Google Scholar 

    103.
    Tarling, G. A. et al. Growth and shrinkage in Antarctic krill Euphausia superba is sex-dependent. Mar. Ecol. Prog. Ser. 547, 61–78 (2016).
    Article  Google Scholar 

    104.
    Guinet, C. et al. Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags. Earth Syst. Sci. Data 5, 15–29 (2013).
    Article  Google Scholar 

    105.
    Thiebot, J-B et al. Jellyfish and other gelata as food for four penguin species—insights from predator-borne videos. Front. Ecol. Environ. https://doi.org/10.1002/fee.1529 (2017).

    106.
    Watanabe, Y. Y. & Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc Natl Acad. Sci. USA 10, 2199–2204 (2013).
    Article  Google Scholar  More

  • in

    Heterogeneous leaves of predominant trees species enhance decomposition and nutrient release in the riparian zone of the Three Gorges Reservoir

    1.
    Fu, B. et al. Three Gorges Project: efforts and challenges for the environment. Prog. Phys. Geog. 34, 741–754 (2010).
    Article  Google Scholar 
    2.
    Yuan, X. et al. The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities. Environ. Sci. Pollut. R. 20, 7092–7102 (2013).
    Article  Google Scholar 

    3.
    Xu, X., Tan, Y. & Yang, G. Environmental impact assessments of the Three Gorges Project in China: issues and interventions. Earth Sci. Rev. 124, 115–125 (2013).
    ADS  Article  Google Scholar 

    4.
    Zhang, Q. & Lou, Z. The environmental changes and mitigation actions in the Three Gorges Reservoir region China. Environ. Sci. Policy 14, 1132–1138 (2011).
    Article  Google Scholar 

    5.
    Huang, Y. et al. Nutrient estimation by HJ-1 satellite imagery of Xiangxi Bay, Three Gorges Reservoir China. Environ. Earth Sci. 75, 633 (2016).
    Article  CAS  Google Scholar 

    6.
    Willison, J. H. M., Li, R. & Yuan, X. Conservation and ecofriendly utilization of wetlands associated with the Three Gorges Reservoir. Environ. Sci. Pollut. R. 20, 6907–6916 (2013).
    Article  Google Scholar 

    7.
    Liu, L., Liu, D., Johnson, D. M., Yi, Z. & Huang, Y. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management. Water Res. 46, 2121–2130 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Ren, C., Wang, L., Zheng, B., Qian, J. & Ton, H. Ten-year change of total phosphorous pollution in the Min River, an upstream tributary of the Three Gorges Reservoir. Environ. Earth Sci. 75, 1015 (2016).
    Article  CAS  Google Scholar 

    9.
    Li, C., Zhong, Z., Geng, Y. & Schneider, R. Comparative studies on physiological and biochemical adaptation of Taxodium distichum and Taxodium ascendens seedlings to different soil water regimes. Plant Soil. 329, 481–494 (2010).
    CAS  Article  Google Scholar 

    10.
    Schoonover, J. E., Williard, K. W., Zaczek, J. J., Mangun, J. C. & Carver, A. D. Agricultural sedmient reduction by giant cane and forests riparian buffers. Water Air Soil Poll. 169, 303–315 (2006).
    ADS  CAS  Article  Google Scholar 

    11.
    Wang, C., Li, C., Wei, H., Xie, Y. & Han, W. Effects of long-term periodic submergence on photosynthesis and growth of Taxodium distichum and Taxodium ascendens saplings in the hydro-fluctuation zone of the Three Gorges Reservoir of China. PLoS ONE 11, e162867 (2016).
    Google Scholar 

    12.
    Yang, F., Wang, Y. & Chan, Z. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir. PLoS ONE 9, e108725 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Ye, C., Cheng, X., Zhang, Y., Wang, Z. & Zhang, Q. Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir China. Ecol. Eng. 38, 37–44 (2012).
    Article  Google Scholar 

    14.
    Capon, S. J. et al. Riparian ecosystems in the 21st century: hotspots for climate change adaptation?. Ecosystems 16, 359–381 (2013).
    Article  Google Scholar 

    15.
    Gregory, S. V., Swanson, F. J., McKee, W. A. & Cummins, K. W. An ecosystem perspective of riparian zones. Bioscience 41, 540–551 (1991).
    Article  Google Scholar 

    16.
    Zhang, M. et al. Leaf litter traits predominantly control litter decomposition in streams worldwide. Glob. Ecol. Biogeogr. 28, 1469–1486 (2019).
    Article  Google Scholar 

    17.
    Ferreira, V., Encalada, A. C. & Graça, M. A. S. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw. Sci. 31, 945–962 (2012).
    Article  Google Scholar 

    18.
    Jabiol, J. & Chauvet, E. Fungi are involved in the effects of litter mixtures on consumption by shredders. Freshw. Biol. 57, 1667–1677 (2012).
    Article  Google Scholar 

    19.
    Yang, Z., Liu, D., Ji, D. & Xiao, S. Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay. Sci. China Technol. Sci. 53, 1114–1125 (2010).
    ADS  CAS  Article  Google Scholar 

    20.
    Berglund, S. L. & Ågren, G. I. When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121, 1112–1120 (2012).
    Article  Google Scholar 

    21.
    De Marco, A., Meola, A., Maisto, G., Giordano, M. & Virzo De Santo, A. Non-additive effects of litter mixtures on decomposition of leaf litters in a Mediterranean maquis. Plant Soil 344, 305–317 (2011).
    CAS  Article  Google Scholar 

    22.
    Gartner, T. B. & Cardon, Z. G. Decomposition dynamics in mixed-species leaf litter. Oikos 104, 230–246 (2004).
    Article  Google Scholar 

    23.
    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).
    PubMed  Article  Google Scholar 

    24.
    Schimel, J. P. & Hättenschwiler, S. Nitrogen transfer between decomposing leaves of different N status. Soil Biol. Biochem. 39, 1428–1436 (2007).
    CAS  Article  Google Scholar 

    25.
    Lecerf, A. et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92, 160–169 (2011).
    Article  Google Scholar 

    26.
    Wu, D., Li, T. & Wan, S. Time and litter species composition affect litter-mixing effects on decomposition rates. Plant Soil. 371, 355–366 (2013).
    CAS  Article  Google Scholar 

    27.
    Swan, C. M., Healey, B. & Richardson, D. C. The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf litter in an urban stream. Ecoscience 15, 27–35 (2008).
    Article  Google Scholar 

    28.
    Leroy, C. J. & Marks, J. C. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw. Biol. 51, 605–617 (2006).
    Article  Google Scholar 

    29.
    Xie, Y., Xie, Y., Hu, C., Chen, X. & Li, F. Interaction between litter quality and simulated water depth on decomposition of two emergent macrophytes. J. Limnol. 75, 36–43 (2015).
    Google Scholar 

    30.
    Sun, Z., Mou, X. & Liu, J. S. Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang Plain of China. Environ. Earth Sci. 66, 2235–2246 (2012).
    Article  Google Scholar 

    31.
    Wang, C., Xie, Y., Ren, Q. & Li, C. Leaf decomposition and nutrient release of three tree species in the hydro-fluctuation zone of the Three Gorges Dam Reservoir China. Environ. Sci. Pollut. R. 25, 23261–23275 (2018).
    CAS  Article  Google Scholar 

    32.
    Xiao, L., Zhu, B., Nsenga Kumvimba, M. & Jiang, S. Plant soaking decomposition as well as nitrogen and phosphorous release in the water-level fluctuation zone of the Three Gorges Reservoir. Sci. Total Environ. 592, 527–534 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Bray, S. R., Kitajima, K. & Mack, M. C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol. Biochem. 49, 30–37 (2012).
    CAS  Article  Google Scholar 

    35.
    Graça, M. A. S. et al. A conceptual model of litter breakdown in low order streams. Int. Rev. Hydrobiol. 100, 1–12 (2015).
    Article  CAS  Google Scholar 

    36.
    Lecerf, A., Risnoveanu, G., Popescu, C., Gessner, M. O. & Chauvet, E. Decomposition of diverse litter mixtures in streams. Ecology 88, 219–227 (2007).
    Article  Google Scholar 

    37.
    Martínez, A., Larrañaga, A., Pérez, J., Descals, E. & Pozo, J. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiol. Ecol. 87, 257–267 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    38.
    Kelley, R. H. & Jack, J. D. Leaf litter decomposition in an ephemeral karst lake (Chaney Lake, Kentucky, U.S.A). Hydrobiologia 482, 41–47 (2002).
    Article  Google Scholar 

    39.
    Austin, A. T. & Vitousek, P. M. Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. J. Ecol. 88, 138–139 (2000).
    Article  Google Scholar 

    40.
    Taylor, A. R., Schröter, D., Pflug, A. & Wolters, V. Response of different decomposer communities to the manipulation of moisture availability: potential effects of changing precipitation patterns. Glob. Change Biol. 10, 1313–1324 (2004).
    ADS  Article  Google Scholar 

    41.
    Xie, Y., Xie, Y., Xiao, H., Chen, X. & Li, F. Controls on litter decomposition of emergent macrophyte in dongting lake wetlands. Ecosystems 20, 1383–1389 (2017).
    CAS  Article  Google Scholar 

    42.
    Fernandes, I., Seena, S., Pascoal, C. & Cássio, F. Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshw. Biol. 59, 2390–2399 (2014).
    CAS  Article  Google Scholar 

    43.
    Ferreira, V. & Chauvet, E. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob. Change Biol. 17, 551–564 (2011).
    ADS  Article  Google Scholar 

    44.
    Liu, C. et al. Mixing litter from deciduous and evergreen trees enhances decomposition in a subtropical karst forest in southwestern China. Soil Biol. Biochem. 101, 44–54 (2016).
    Article  CAS  Google Scholar 

    45.
    Wu, F. et al. Admixture of alder (Alnus formosana) litter can improve the decomposition of eucalyptus (Eucalyptus grandis) litter. Soil Biol. Biochem. 73, 115–121 (2014).
    CAS  Article  Google Scholar 

    46.
    Kominoski, J. S. et al. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a Detritus-based stream. Ecology 88, 1167–1176 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Sanpera-Calbet, I. S. I. S., Lecerf, A. & Chauvet, E. Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshw. Biol. 54, 1671–1682 (2009).
    Article  Google Scholar 

    48.
    Ostrofsky, M. L. A comment on the use of exponential decay models to test nonadditive processing hypotheses in multispecies mixtures of litter. J. N. Am. Benthol. Soc. 26, 23–27 (2007).
    Article  Google Scholar 

    49.
    Zanne, A. E. et al. A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates. J. Ecol. 103, 1421–1431 (2015).
    CAS  Article  Google Scholar 

    50.
    Hieber, M. & Gessner, M. O. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83, 1026–1038 (2002).
    Article  Google Scholar 

    51.
    Schindler, M. H. & Gessner, M. O. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90, 1641–1649 (2009).
    PubMed  Article  Google Scholar 

    52.
    Gessner, M. O. & Chauvet, E. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75, 1807–1817 (1994).
    Article  Google Scholar 

    53.
    Sommaruga, R., Crosa, D. & Mazzeo, N. Study on the Decomposition of Pistia stratiotes L. (Araceae) in Cisne Reservoir, Uruguay. Hydrobiologia 78, 263–272 (1993).
    CAS  Google Scholar 

    54.
    Fraser, L. H., Carty, S. M. & Steer, D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour. Technol. 94, 185–192 (2004).
    CAS  PubMed  Article  Google Scholar 

    55.
    Ball, B. A., Bradford, M. A. & Hunter, M. D. Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems 12, 87–100 (2009).
    CAS  Article  Google Scholar 

    56.
    Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2), 322–331 (1963).
    Article  Google Scholar  More

  • in

    Why Borneo’s trees are the loftiest on Earth

    A researcher scales the 100.8-metre tree named Menara in northern Borneo. The rarity of strong winds in the region has helped its rainforest to reach great heights. Credit: A. Shenkin et al./Front. For. Glob. Change (CC BY 4.0)

    Ecology
    15 October 2020

    Scientists find that strong winds constrain tropical forest height, but island’s gentle breezes allow trees to stretch tall.

    Relatively gentle winds on Borneo could explain why the island hosts the world’s tallest tropical forest — including the tallest known tree in the tropics, the 100-metre giant named Menara.
    Last year, an international team described Menara, a yellow meranti (Shorea faguetiana) growing in a research plot in Malaysian Borneo. Now, a team composed of many of the same scientists and led by Tobias Jackson at the University of Oxford, UK, has used laser scanning to create a 3D model of several dozen trees in the plot and to measure their heights.
    The researchers also placed strain gauges on the trees’ trunks to assess how much they bend in the wind, and modelled how much stress they could sustain. The results suggest that in tropical forests, the strongest winds put a limit on tree growth.
    Large conifers in temperate forests, such as California’s coastal redwoods (Sequoia sempervirens), can grow even taller than Menara, but they are probably limited by factors other than wind speeds, because they have much thicker trunks, Jackson says. More

  • in

    First use of artificial canopy bridge by the world’s most critically endangered primate the Hainan gibbon Nomascus hainanus

    1.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5, 18–32. https://doi.org/10.1002/ajp.23076 (1991).
    Article  Google Scholar 
    2.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).
    Article  Google Scholar 

    3.
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10. https://doi.org/10.1126/sciadv.1500052 (2015).
    Article  Google Scholar 

    4.
    Alamgir, M. et al. High-risk infrastructure projects pose imminent threats to forests in Indonesian Borneo. Sci. Rep. 9(140), 1–10. https://doi.org/10.1038/s41598-018-36594-8 (2019).
    CAS  Article  Google Scholar 

    5.
    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, 1–10. https://doi.org/10.1126/sciadv.aax8574 (2020).
    Article  Google Scholar 

    6.
    Onderdonk, D. A. & Chapman, C. A. Coping with forest fragmentation: the primates of Kibale National Park, Uganda. Int. J. Primatol. 21, 587–611. https://doi.org/10.1023/A:1005509119693 (2000).
    Article  Google Scholar 

    7.
    Das, J., Biswas, J., Bhattacherjee, P. C. & Rao, S. S. Canopy bridges: an effective conservation tactic for supporting gibbon populations in forest fragments. Gibbons 1, 467–475. https://doi.org/10.1007/978-0-387-88604-6 (2009).
    Article  Google Scholar 

    8.
    Taylor, A. C., Walker, F. M., Goldingay, R. L., Ball, T. & van der Ree, R. Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal. PLoS ONE 6, 1–9. https://doi.org/10.1371/journal.pone.0026651 (2011).
    CAS  Article  Google Scholar 

    9.
    Sarma, K., Kumar, A., MuraliKrishna, C., Tripathi, O. P. & Gajurel, P. R. Ground feeding observations on corn (Zea mays) by eastern hoolock gibbon (Hoolock leuconedys). Curr. Sci. 104, 587–589 (2013).
    Google Scholar 

    10.
    Chapman, C. A. et al. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534. https://doi.org/10.1002/ajpa.20477 (2006).
    Article  PubMed  Google Scholar 

    11.
    Donaldson, A. & Cunneyworth, P. Case study: canopy bridges for primate conservation. Handb. Road Ecol. 1, 341–343. https://doi.org/10.1002/9781118568170.ch41 (2015).
    Article  Google Scholar 

    12.
    Hernández-pérez, E. Rope bridges: a strategy for enhancing habitat connectivity of the Black Howler Monkey (Alouatta pigra). Neotrop. Primates 22, 94–96 (2015).
    Google Scholar 

    13.
    Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J. & Deichmann, J. L. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals. Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-04112-x (2017).
    CAS  Article  Google Scholar 

    14.
    Ni, Q. et al. Microhabitat use of the western black-crested gibbon inhabiting an isolated forest fragment in southern Yunnan, China: implications for conservation of an endangered species. Primates 59, 45–54. https://doi.org/10.1007/s10329-017-0634-7 (2018).
    Article  PubMed  Google Scholar 

    15.
    Al-Razi, H., Maria, M. & Muzaffar, S. Mortality of primates due to roads and power lines in two forest patches in Bangladesh. Zoologia 36, 1–6. https://doi.org/10.3897/zoologia.36.e33540 (2019).
    Article  Google Scholar 

    16.
    Birot, H., Campera, M., Imron, M. A. & Nekaris, K. A. I. Artificial canopy bridges improve connectivity in fragmented landscapes: the case of Javan slow lorises in an agroforest environment. Am. J. Primatol. 82, 1–10. https://doi.org/10.1002/ajp.23076 (2020).
    Article  Google Scholar 

    17.
    Forman, R. T. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207 (1998).
    Article  Google Scholar 

    18.
    Sarma, K. & Kumar, A. The day range and home range of the Eastern Hoolock Gibbon Hoolock leuconedys (Mammalia: Primates: Hylobatidae) in lower dibang valley district in Arunachal Pradesh India. J. Threat. Taxa 8, 8641–8651. https://doi.org/10.11609/jott.2739.8.4.8641-8651 (2016).
    Article  Google Scholar 

    19.
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. https://doi.org/10.1126/sciadv.1600946 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Balbuena, D., Alonso, A., Panta, M., Garcia, A. & Gregory, T. Mitigating tropical forest fragmentation with natural and semi-artificial canopy bridges. Diversity https://doi.org/10.3390/d11040066 (2019).
    Article  Google Scholar 

    21.
    Valladares-Padua, C. B., Junior, L. C. & Padua, S. A pole bridge to avoid primates road kils. Neotrop. Primates 3, 13 (1995).
    Google Scholar 

    22.
    Weston, N., Goosem, M., Marsh, H., Cohen, M. & Wilson, R. Using canopy bridges to link habitat for arboreal mammals: successful trials in the Wet Tropics of Queensland. Aust. Mammal. 33, 93–105. https://doi.org/10.1071/AM11003 (2011).
    Article  Google Scholar 

    23.
    Gregory, T. et al. Methods to establish canopy bridges to increase natural connectivity in linear infrastructure development. Soc. Pet. Eng. J. https://doi.org/10.2118/165598-MS (2013).
    Article  Google Scholar 

    24.
    Teixeira, F. Z., Printes, R. C., Fagundes, J. C. G., Alonso, A. C. & Kindel, A. Canopy bridges as road overpasses for wildlife in urban fragmented landscapes. Biota Neotrop. 13, 117–123. https://doi.org/10.1590/S1676-06032013000100013 (2013).
    Article  Google Scholar 

    25.
    Yokochi, K. & Bencini, R. A remarkably quick habituation and high use of a rope bridge by an endangered marsupial, the western ringtail possum. Nat. Conserv. 11, 79–94. https://doi.org/10.3897/natureconservation.11.4385 (2015).
    Article  Google Scholar 

    26.
    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the Mammals of the World Vol. 3 (Lynx Edicions, Barcelona, 2013).
    Google Scholar 

    27.
    Wilson, D. E. & Lacher, T. E. Handbook of the Mammals of the World Vol. 6 (Lynx Edicions, Barcelona, 2016).
    Google Scholar 

    28.
    Ancrenaz, M. Orang-utan Bridges in Lower Kinabatangan: Field surveys between Abai and Batu Puteh. https://www.arcusfoundation.org/wp%E2%80%90content/uploads/2010/01/Kinabatangan%E2%80%90Orangutan%E2%80%90Rope%E2%80%90Bridges%E2%80%90Ancrenaz%E2%80%902010.pdf (2010).

    29.
    Goossens, B. & Ambu, L. N. Sabah wildlife department and 10 years of research: Towards a better conservation of Sabah’s wildlife. J. Oil Palm Environ. 3, 38–51. https://doi.org/10.5366/jope.2012.05 (2012).
    Article  Google Scholar 

    30.
    Kumar, A., Devi, A., Gupta, A. K. & Sarma, K. Population, behavioural ecology and conservation of Hoolock Gibbon in Northeast India. Rare Anim. India 1, 242–266 (2013).
    Google Scholar 

    31.
    Yap, J. L., Ruppert, N. & Rosely, N. F. N. Activities, habitat use and diet of wild Dusky Langurs, Trachypithecus obscurus in different habitat types in Penang, Malaysia. J. Sustain. Sci. Manag. 14, 71–85 (2019).
    Google Scholar 

    32.
    Arjun Oli. Banke National Park builds canopy bridge to reduce wild animal road accidents. myRepublica https://myrepublica.nagariknetwork.com/news/banke-national-park-builds-canopy-bridge-to-reduce-wild-animal-road-accidents (2019).

    33.
    Lekshmi Priya S. Kerala Sanctuary builds ‘canopy bridges’, saves animals from road hits!. The Better India https://www.thebetterindia.com/185838/kerala-forest-department-chinnar-wildlife-sanctuary-canopy-bridges-india (2019).

    34.
    Chivers, D. J. Malayan Forest Primates: Ten Years’ Study in Tropical Rain Forest (Plenum Press, New York, 1982).
    Google Scholar 

    35.
    Cheyne, S. M., Thompson, C. J. H. & Chivers, D. J. Travel adaptations of Bornean Agile Gibbons Hylobates albibarbis (Primates: Hylobatidae) in a degraded secondary forest, Indonesia. J. Threat. Taxa 5, 3963–3968. https://doi.org/10.11609/JoTT.o3361.3963-8 (2013).
    Article  Google Scholar 

    36.
    Campbell, C. O., Cheyne, S. M. & Rawson, B. M. Best practice guidelines for the rehabilitation and translocation of gibbons. IUCN SSC Primate Spec. Group https://doi.org/10.2305/IUCN.CH.2015.SSC-OP.51.en (2015).
    Article  Google Scholar 

    37.
    Saralamba, C. & Menpreeda, W. Increasing connectivity through artificial canopy bridge for the gibbons: a case study on the activity budget. Abstract for The 87th Annual Meeting of the American Association of Physical Anthropologists, Austin (Texas) (2018).

    38.
    Chan, B. P. L., Fellowes, J. R., Geissmann, T., & Jianfeng, Z. Hainan Gibbon Status Survey and Conservation Action Plan: VERSION I (Last Updated November 2005). Kadoorie Farm & Botanic Garden Technical Report No.3 (2005).

    39.
    Chan, B. P. L. Hainan gibbon Nomascus hainanus (Thomas, 1892). In Primates in Peril: The World’s 25 Most Endangered Primates 2014–2016. (eds Schwitzer, C., et al.). IUCN SSC Primate Spec. Gr. (PSG), Int. Primatol. Soc. (IPS), Conserv. Int. (CI), Bristol Zool. Soc. Arlington, VA. 67–69 (2015).

    40.
    Chan, B. P. L., Lo, Y. F. P. & Mo, Y. New hope for the Hainan gibbon: formation of a new group outside its known range. Oryx 54, 296. https://doi.org/10.1017/S0030605320000083 (2020).
    Article  Google Scholar 

    41.
    Zeng, X. et al. Hainan Gibbon Conservation Action Plan 2016–2020. https://www.gibbons.asia/wp-content/uploads/2017/03/Hainan-Gibbon-Action-Plan-2016-2020.pdf (2016).

    42.
    Zheng, Y., Cai, Q., Cheng, S. & Li, X. Characteristics on intensity and precipitation of super typhoon Rammasun (1409) and reason why it rapidly intensified offshore. Torrential Rain Disast. 33, 333–341 (2014).
    Google Scholar 

    43.
    Chivers, D. J. The Siamang in Malaya. A Field Study of a Primate in Tropical Rainforest. Karger (1974).

    44.
    Cristóbal-Azkarate, J. & Arroyo-Rodríguez, V. Diet and Activity Pattern of Howler Monkeys (Alouatta palliata) in Los Tuxtlas, Mexico: effects of Habitat Fragmentation and Implications for Conservation. Am. J. Primatol. 69, 1013–1029. https://doi.org/10.1002/ajp.20420 (2007).
    Article  PubMed  Google Scholar 

    45.
    Arroyo-Rodríguez, V. & Mandujano, S. Conceptualization and measurement of habitat fragmentation from the primates’ perspective. Int. J. Primatol. 30, 497–514 (2009).
    Article  Google Scholar 

    46.
    Fan, P., Scott, M. B., Fei, H. & Ma, C. Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Integr. Zool. 8, 356–364. https://doi.org/10.1111/j.1749-4877.2012.00300.x (2013).
    Article  PubMed  Google Scholar 

    47.
    Mass, V. et al. Lemur bridges provide crossing structures over roads within a forested mining concession near moramanga, toamasina province, Madagascar. Conserv. Evid. 8, 11–18 (2011).
    Google Scholar 

    48.
    Naresh Mitra. Guwahati: Natural bridge reunites hoolock gibbons after 100 years. Times of India https://timesofindia.indiatimes.com/city/guwahati/natural-bridge-reunites-hoolock-gibbons-after-100-years/articleshow/69998213.cms (2019).

    49.
    Fleagle, J. G. Locomotion and posture. In Malayan Forest Primates: Ten Years’ Study in Tropical Rain Forest (ed. Chivers, D. J.) 191–207 (Plenum Press, New York, 1980).
    Google Scholar  More

  • in

    New 3D measurements of large redwood trees for biomass and structure

    1.
    Van Pelt, R., Sillett, S. C., Kruse, W. A., Freund, J. A. & Kramer, R. D. Emergent crowns and light-use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests. For. Ecol.Manag. 375, 279–308 (2016).
    Article  Google Scholar 
    2.
    Fujimori, T. Stem biomass and structure of a mature sequoia sempervirens stand on the Pacific Coast of Northern California. J. Jpn. For. Soc. 59(12), 435–441 (1977).
    Google Scholar 

    3.
    Busing, R. T. & Fujimori, T. Biomass, production and woody detritus in an old coast redwood (Sequoia sempervirens) forest. Plant Ecol. 177, 177–188 (2005).
    Article  Google Scholar 

    4.
    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428(6985), 851 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Carder, A. C. Forest Giants of the World, Past and Present (Fitzhenry & Whiteside, Markham, 1995).
    Google Scholar 

    6.
    Harrison, J. G., Forister, M. L., Parchman, T. L. & Koch, G. W. Vertical stratification of the foliar fungal community in the world’s tallest trees. Am. J. Bot. 103(12), 2087–2095 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Sillett, S. C. et al. Increasing wood production through old age in tall trees. For. Ecol. Manag. 259, 976–994 (2010).
    Article  Google Scholar 

    8.
    Sillett, S. C. et al. Allometric equations for Sequoia sempervirens in forests of different ages. For. Ecol. Manag. 433, 349–363 (2019).
    Article  Google Scholar 

    9.
    Kizha, A. R. & Han, H.-S. Predicting aboveground biomass in second growth coast redwood: Comparing localized with generic allometric models. Forests 7, 96 (2016).
    Article  Google Scholar 

    10.
    Parks, W.H. Redwood log characteristics: Sapwood thickness, bark thickness and log taper. Report number 1.20121. California Redwood Association, San Francisco (1952).

    11.
    Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Nat. Acad. Sci. 106(28), 11635–11640 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Slik, J. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeog. 22(12), 1261–1271 (2013).
    Article  Google Scholar 

    13.
    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92(3), 1434–1458 (2016).
    PubMed  Article  Google Scholar 

    14.
    Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368(6487), 165–168 (2020).
    ADS  PubMed  Article  CAS  Google Scholar 

    15.
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1), 87–99 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20(10), 3177–3190 (2014).
    ADS  Article  Google Scholar 

    17.
    Burt, A. et al. Assessment of bias in pan-tropical biomass predictions. Front. For. Glob. Change Trop. For.https://doi.org/10.3389/ffgc.2020.00012 (2020).
    Article  Google Scholar 

    18.
    Sillett, S. C., Van Pelt, R., Kramer, R. D., Caroll, A. L. & Koch, G. W. Biomass and growth potential of Eucalyptus regnans up to 100 m tall. For. Ecol. Manag. 348, 78–91 (2015).
    Article  Google Scholar 

    19.
    Sillett, S. C. et al. How do tree structure and old age affect growth potential of California redwoods?. Ecol. Monog. 85(2), 181–212 (2015).
    Article  Google Scholar 

    20.
    Kramer, R. D., Sillett, S. C. & Van Pelt, R. Quantifying aboveground components of Picea sitchensis for allometric comparisons among tall conifers in North American rainforests. For. Ecol. Manag. 430, 59–77 (2018).
    Article  Google Scholar 

    21.
    Niklas, K. J. Influence of tissue density-specific mechanical properties on the scaling of plant height. Ann. Bot. 72, 173–179 (1993).
    Article  Google Scholar 

    22.
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Luxford, R. F. & Markwardt, L. J. The strength and related properties of redwood. USDA Tech. Bull. 305, 20 (1932).
    Google Scholar 

    24.
    Wilson, P. L., Funck, W. J. & Avery, R. B. Fuelwood characteristics of northwestern conifers and hardwoods. Res. Bull. 60, 42 (1987).
    Google Scholar 

    25.
    Miles, P. D. & Smith, B. Specific gravity and other properties of wood and bark for 156 tree species found in North America. Res. Note NRS-38. Newtown Square, PA: U.S. (2009), Department of Agriculture, Forest Service, Northern Research Station, p. 35.

    26.
    Clark, D. B. & Kellner, J. R. Tropical forest biomass estimation and the fallacy of misplaced concreteness. J. Veg. Sci. 23(6), 1191–1196 (2012).
    Article  Google Scholar 

    27.
    Momo, S. T. et al. Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data. For. Ecol. Manag. 424, 519–528 (2018).
    Article  Google Scholar 

    28.
    Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J. & Hérault, B. Biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8(9), 1163–1167 (2017).
    Article  Google Scholar 

    29.
    Chave, L. et al. Ground data are vital for remote sensing missions. In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 863–880 (2019).

    30.
    Duncanson, L. et al. The importance of global land product validation: Towards a standardized protocol for aboveground biomass. In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space. (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 979–999 (2019).

    31.
    Disney, M. I. Terrestrial LiDAR: A 3D revolution in how we look at trees. New Phytol. 222(4), 1736–1741 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Disney, M. I. et al. Weighing trees with lasers: Advances, challenges and opportunities. R. Soc. Interface Focus 8, 2. https://doi.org/10.1098/rsfs.2017.0048 (2018).
    Article  Google Scholar 

    33.
    Calders, K. et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 6(2), 198–208 (2015).
    Article  Google Scholar 

    34.
    Gonzalez de Tanago, J. et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9(2), 223–234 (2018).
    Article  Google Scholar 

    35.
    Momo Takoudjou, S. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9(4), 905–916 (2018).
    Article  Google Scholar 

    36.
    Stovall, A. E., Anderson-Teixeira, K. J. & Shugart, H. H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecol. Manag. 427, 217–229 (2018).
    Article  Google Scholar 

    37.
    Disney, M. I., Burt, A., Calders, K., Schaaf, C. & Stovall, A. Innovations in ground and airborne technologies as reference and for training and validation: Terrestrial laser scanning (TLS). In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space. (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 937–958 (2019).

    38.
    Lau, A. et al. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees 32, 1219–1231 (2018).
    CAS  Article  Google Scholar 

    39.
    Shenkin, A. et al. The world’s tallest tropical tree in three dimensions. Front. For. Glob. Change.https://doi.org/10.3389/ffgc.2019.00032 (2019).
    Article  Google Scholar 

    40.
    Verbeeck, H. et al. Time for a plant structural economics spectrum. Front. For. Glob. Change. 2, 43. https://doi.org/10.3389/ffgc.2019.00043 (2019).
    Article  Google Scholar 

    41.
    Duncanson, L. et al. Implications of allometric model selection for county-level biomass mapping. Carbon Balance Manag. 12(1), 18 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).
    Article  Google Scholar 

    43.
    Enquist, B. J. Universal scaling in tree and vascular plant allometry: Toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22, 1045–1064 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Niklas, K. J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171, 27–40 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hunter, M. O., Keller, M., Victoria, D. & Morton, D. C. Tree height and tropical forest biomass estimation. Biogeosciences 10(12), 8385–8399 (2013).
    ADS  Article  Google Scholar 

    46.
    Wilkes, P. et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Rem. Sens. Environ. 196, 140–153 (2017).
    ADS  Article  Google Scholar 

    47.
    Burt, A., Disney, M. I. & Calders, K. Extracting individual trees from lidar point clouds using treeseg. Methods Ecol. Evol. 10(3), 438–445 (2018).
    Google Scholar 

    48.
    Douhovnikoff, V. & Dodd, R. S. Clonal spread in second growth stands of coast redwood, sequoia sempervirens. In: Standiford, R. B. et al., technical editors. Proceedings of the Redwood Region Forest Science Symposium 2007: What Does the Future Hold? Gen. Tech. Rep. PSW-GTR-194. Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture. Vol 194, 65–72 (2007).

    49.
    Raumonen, P. et al. Comprehensive quantitative tree models from terrestrial laser scanner data. Remote Sens. 5(2), 491–520. https://doi.org/10.3390/rs5020491 (2013).
    ADS  Article  Google Scholar 

    50.
    Olofsson, K., Holmgren, J. & Olsson, H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sens. 6(5), 4323–4344 (2014).
    ADS  Article  Google Scholar 

    51.
    Bellock, K. E. Alphashape Python toolbox, v 1.0.1. https://pypi.org/project/alphashape/ (2019).

    52.
    Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49(1), 12–35 (2003).
    Google Scholar 

    53.
    Chojnacky, D. C., Heath, L. S. & Jenkins, J. C. Updated generalized biomass equations for North American tree species. Forestry 87(1), 129–151 (2014).
    Article  Google Scholar  More

  • in

    A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea

    1.
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).
    ADS  Article  Google Scholar 
    2.
    Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. T. Roy. Soc B 360, 339–357 (2005).
    CAS  Article  Google Scholar 

    3.
    Wiemers, M. et al. An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). ZooKeys 811, 9–45 (2018).
    Article  Google Scholar 

    4.
    Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 19, 1623–1636 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Wiemers, M., Chazot, N., Wheat, C., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 897–124 (2020).
    Article  Google Scholar 

    6.
    Kudrna, O. et al. Distribution Atlas of Butterflies In Europe (Gesellschaft für Schmetterlingsschutz e.V., 2011).

    7.
    Settele J. et al. Climatic Risk Atlas Of European Butterflies. BioRisk 1 (Pensoft Publishers, 2008).

    8.
    Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).
    Article  Google Scholar 

    9.
    Balletto, E. & Kudrna, O. Some aspects of the conservation of butterflies in Italy, with recommendations for a future strategy (Lepidoptera, Hesperiidae and Papilionoidea). Boll. Soc. Entomol. Ital. 117, 39–59 (1985).
    Google Scholar 

    10.
    Schweiger, O., Harpke, A., Wiemers, M. & Settele, J. CLIMBER: Climatic niche characteristics of the butterflies in Europe. ZooKeys 367, 65–84 (2014).
    Article  Google Scholar 

    11.
    Kotiaho, J. S., Kaitala, V., Komonen, A. & Päivinen, J. Predicting the risk of extinction from shared ecological characteristics. P. Natl. Acad. Sci. USA 102, 1963–1967 (2005).
    ADS  CAS  Article  Google Scholar 

    12.
    Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).
    Article  Google Scholar 

    13.
    Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. & WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv. 21, 439–450 (2017).
    Article  Google Scholar 

    14.
    Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).
    ADS  Article  Google Scholar 

    15.
    Woodcock, B. A. et al. Identifying time lags in the restoration of grassland butterfly communities: A multi-site assessment. Biol. Conserv. 155, 50–58 (2012).
    Article  Google Scholar 

    16.
    Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92, 1005–1012 (2011).
    PubMed  Article  Google Scholar 

    17.
    Schweiger, O. et al. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob. Ecol. Biogeogr. 21, 88–99 (2012).
    Article  Google Scholar 

    18.
    Fric, Z. F., Rindoš, M. & Konvička, M. Phenology responses of temperate butterflies to latitude depend on ecological traits. Ecol. Lets. 23, 172–180 (2020).
    Article  Google Scholar 

    19.
    Shreeve, T. G., Dennis, R. L. H., Roy, D. B. & Moss, D. An ecological classification of British butterflies: ecological attributes and biotope occupancy. J. Insect Conserv 5, 145–161 (2001).
    Article  Google Scholar 

    20.
    Pavlikova, A. & Konvička, M. An ecological classification of Central European macromoths: habitat associations and conservation status returned from life history attributes. J. Insect Conserv. 16, 187–206 (2012).
    Article  Google Scholar 

    21.
    Eskildsen, A. et al. Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers. Distrib. 21, 792–802 (2015).
    Article  Google Scholar 

    22.
    Bonelli, S., Cerrato, C., Loglisci, N. & Balletto, E. Population extinctions in the Italian diurnal Lepidoptera: an analysis of possible causes. J. Insect Conserv. 15, 879–890 (2011).
    Article  Google Scholar 

    23.
    Middleton-Welling, J., Wade, R. A., Dennis, R. L. H., Dapporto, L. & Shreeve, T. G. Optimising trait and source selection for explaining occurrence and abundance changes: A case study using British butterflies. Funct. Ecol. 32, 1609–1619 (2018).
    Article  Google Scholar 

    24.
    Middleton-Welling, J. et al. Trait data of European and Maghreb butterflies. Dryad Digital Repository https://doi.org/10.5061/dryad.6m905qfx6 (2020).

    25.
    Dennis, R. L. H., Shreeve, T. G. & Van Dyck, H. Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers. Conserv. 15, 1943–1966 (2006).
    Article  Google Scholar 

    26.
    Dennis, R. L. H. A Resource-Based Habitat View For Conservation: Butterflies In The British Landscape (John Wiley & Sons, 2010).

    27.
    Balletto, E., Barbero, F., Bonelli, S., Casacci, L. P., & Dapporto, L. Butterflies (Lepidoptera: Papilionoidea) Vol. I (Calderini, Verona, In Press).

    28.
    Beneš, J. et al. Butterflies Of The Czech Republic: Distribution and Conservation I & II (SOM, 2002).

    29.
    Bink, F. A. Ecologische Atlas Van De Dagvlinders An Noordwest-Europa (Schuyt & Co., 1992).

    30.
    Dapporto, L. & Casnati, O. Le Farfalle dell’Arcipelago Toscano (Parco Nazionale Arcipelago Toscano, 2008).

    31.
    Dennis, R. L. H. A Resource-based Habitat View For Conservation: Butterflies In The British Landscape (John Wiley & Sons, 2010).

    32.
    Fernández-Rubio, F. Guía De Mariposas Diurnas De La Península Ibérica, Baleares, Canarias, Azores y Madeira (Pirámide, 1991).

    33.
    García-Barros, E., Munguira, M. L., Stefanescu, C. & Vives, A. Fauna Iberica, Lepidoptera: Papilionoidea. Vol. 37 (Museo Nacional de Ciencias Naturales, CSIC, 2013).

    34.
    Henriksen, H. J. & Kreutzer, I. B. The Butterflies Of Scandinavia In Nature (Skandinavisk Bogforlag, 1982).

    35.
    Hesselbarth, G., Van Oorschot, H. & Wagener, S. Die Tagfalter Der Türkei: Unter Berücksichtigung Der Angrenzenden Länder. Bd. 2. Spezieller Teil: Nymphalidae. Fundortverzeichnis, Sammlerverzeichnis, Literaturverzeichnis, Indices (Wagener, 1995).

    36.
    Higgins, L. G. & Riley, N. D. A Field Guide To The Butterflies Of Britain And Europe 3rd Edn (Collins, 1980)

    37.
    Kudrna, O. A Revision Of The Genus Hipparchia (Classey, 1977).

    38.
    Lafranchis T. Butterflies Of Europe: New Field Guide And Key (Diatheo, 2004).

    39.
    Lafranchis, T. & Geniez, P. Les Papillons De Jour De France, Belgique Et Luxembourg Et Leurs Chenilles (Biotope Editions, 2000)

    40.
    Layberry, R. A., Hall, P. W. & Lafontaine, J. D. The Butterflies Of Canada (University of Toronto Press, 1998).

    41.
    LSPN. Les Papillons De Jour Et Leurs Biotopes (Pro Natura, 1987).

    42.
    Luquet, G. C. & Demerges, D. Papilions De L’annexe IV De La Directive 92/43/CEE. Papilio hospiton (Ministère de L’écologie Du Développement Et De L’Aménagement Durables, 2007).

    43.
    Maravalhas, E. As Borboletas De Portugal / The Butterflies of Portugal. (Apollo Books, 2003).

    44.
    Munguira, M. L., Barea-Azcón, J. M., Castro, S., Olivares, J. & Miteva, S. Species Recovery Plan For The Zullichi’s Blue (Agriades zullichi) (Butterfly Conservation Europe, 2015).

    45.
    Munguira, M. L., Castro, S, Barea-Azcón, J. M., Olivares, J. & Miteva, S. Species Recovery Plan For The Sierra Nevada Blue Polyommatus (Plebicula) golgus (Butterfly Conservation Europe, 2015).

    46.
    Munguira, M. L., Barea-Azcón, J. M, Castro,S., Olivares, J. & Miteva, S. Species Recovery Plan For the Andalusian Anomalous Blue (Polyommatus violetae) (Butterfly Conservation Europe, 2015).

    47.
    Munguira, M. L., Olivares, J,, Castro, S., Barea-Azcón, J. M., Romo, H. & Miteva, S. Species Recovery Plan For The Spanish Greenish Black-tip (Euchloe bazae) (Butterfly Conservation Europe, 2015).

    48.
    Muñoz Sariot, M. G., Biología Y Ecología De Los Licénidos eEspañoles. (Muñoz Sariot, 2011).

    49.
    Newland, D., Still, R., Swash, A. & Tomlinson, D. Britain’s Butterflies: A Field Guide To The Butterflies Of Britain And Ireland – Fuly Revised And Updated 3rd Edn (Princeton University Press, 2015).

    50.
    Pamperis, L. N. The Butterflies Of Greece (Bastas-Plessas Graphic Arts, 1997).

    51.
    Paolucci, P. Butterflies And Burnets Of The Alps And Their Larvae, Pupae and Cocoons (WBA-Books, 2013).

    52.
    Settele, J. et al. Climatic Risk Atlas Of European Butterflies (Pensoft, 2008).

    53.
    Settele, J., Steiner, R., Reinhardt, R., Feldmann, R. & Hermann, G. Schmetterlinge: Die Tagfalter Deutschlands (Ulmer, 2015)

    54.
    Thompson, R. & Nelson, B. The Butterflies And Moths Of Northern Ireland (Blackstaff Press, 2006).

    55.
    Tolman, T. & Lewington, R. Collins Butterfly Guide: The Most Complete Guide To The Butterflies Of Britain and Europe (Collins, 2008).

    56.
    Tshikolovets, V. V. Butterflies of Europe & The Mediterranean Area. (Tshikolovets Publications, 2011).

    57.
    Tutin, T. et al. Flora Europaea; Vol. 1–5 (Cambridge University Press, 1964-1980).

    58.
    Gilbert, F. & Zalat, S. Butterflies Of Egypt: Atlas, Red Data Listing And Conservation (BioMAP, 2007).

    59.
    Korshunov, Y. & Gorbunov, P. Dnevnye Bbabochki Aziatskoi Chasti Rossii. Spravochnik. [Butterflies of the Asian part of Russia. A handbook in Russian] (Ural University Press, 1995).

    60.
    F. Die Tagfalter Mitteleuropas – Östlicher Teil, Bestimmung – Biotope Und Bionomie – Verbreitung – Gefährdung (Self-published, 2004).

    61.
    Nekrutenko, Y. P. The Butterflies Of The Caucasus. Keys To Their Identification. Papilionidae, Pieridae, Satyridae, Danaidae (Dumka, 1990).

    62.
    Baytas A. A Field Guide To The Butterflies Of Turkey. (NTV, 2007).

    63.
    Aguiar, A. M. F., Wakeham-Dawson, A. & Jesus, J. G. F. The life cycle of the little known and endangered endemic Madeiran Brimstone Butterfly Gonepteryx maderensis Felder, 1862 (Pieridae). Nota Lep. 32, 145–157 (2009).
    Google Scholar 

    64.
    Aussem, B. & Hesselbarth, G. Die Praeimaginalstadien von Pseudochazara cingovskii (Gross, 1973) (Satyridae). Nota Lep. 3, 17–23 (1980).
    Google Scholar 

    65.
    Back, W. Die Praimaginalstadien von Euchloe charlonia (Donzel, 1842) im Vergleich tu Euchioe penia (FREYER, 1852) und Euchloe transcaspica ssp. amseli (Gross & Ebert, 1975). Atalanta 22, 357–363 (1991).
    Google Scholar 

    66.
    Bartonova, A., Benes, J. & Konvička, M. Generalist-specialist continuum and life history traits of Central European butterflies (Lepidoptera) – are we missing a part of the picture? Eur. J. Entomol. 111, 543–553 (2014).
    Article  Google Scholar 

    67.
    Bitzer, R. J. & Shaw, K. C. Territorial behavior of Nymphalis antiopa and Polygonia comma (Nymphalidae). J. Lepid. Soc. 37, 1–13 (1983).
    Google Scholar 

    68.
    Bonelli, S., Barbero, F., Casacci, L. P. & Balletto, E. Habitat preferences of Papilio alexanor Esper [1800]: implications for habitat management in the Italian Maritime Alps. Zoosystema 37, 169–177 (2015).
    Article  Google Scholar 

    69.
    Camerini, G., Groppali, R. & Minerbi, T. Observations on the ecology of the endangered butterfly Zerynthia cassandra in a protected area of Northern Italy. J. Insect Conser. 22, 41–49 (2018).
    Article  Google Scholar 

    70.
    Celik, T. Adult demography, spatial distribution and movements of Zerynthia polyxena (Lepidoptera: Papilionidae) in a dense network of permanent habitats. Eur. J. Entomol. 109, 217–227 (2013).
    Article  Google Scholar 

    71.
    Cho, Y., Choi, D. S., Han, Y. G. & Nam, S. H. Conservation of Hipparchia autonoe (Esper) (Lepidoptera: Nymphalidae), Natural Monument in South Korea. Entomol. Res. 41, 269–274 (2011).
    Article  Google Scholar 

    72.
    Corbera, G., Escrivà, À. & Corbera, J. Hilltopping de les Papallones diürnes al turó d’Onofre Arnau (Mataró, Maresme). L’Atzavarza 20, 59–68 (2011).
    Google Scholar 

    73.
    Courtney, S. Notes on the biology of Zegris eupheme (Pieridae). J. Lepid. Soc. 36, 132–135 (1982).
    Google Scholar 

    74.
    Dennis, R. L. H. & Shreeve, T. G. Does the Marbled White butterfly Melanargia galathea (L.) (Papilionoidea: Satyrinae) behave like a white’? Antenna 28, 139–194 (2004).
    Google Scholar 

    75.
    Dincă, V., Cuvelier, S., Zakharov, E. V., Hebert, P. D. & Vila, R. Biogeography, ecology and conservation of Erebia oeme (Hübner) in the Carpathians (Lepidoptera: Nymphalidae: Satyrinae). Ann. Soc. Entomol. Fr. 46, 486–498 (2010).
    Article  Google Scholar 

    76.
    Dincă, V., Kolev, Z. & Verovnik, R. The distribution, ecology and conservation status of the Spinose Skipper Muschampia cribrellum (Eversmann, 1841) at the western limit of its range in Europe (Hesperiidae). Nota Lep. 33, 39–57 (2010).
    Google Scholar 

    77.
    Diringer, Y. Chronique d’élevage 3: L’élevage des coridon espagnols: Polyommatus (Lysandra) albicans (HERRICH-SCHÄFFER, 1852) et Polyommatus (Lysandra) caelestissima (VERITY, 1921) (Lepidoptera: Lycanidae). Lépidoptères 19, 50–59 (2010).
    Google Scholar 

    78.
    Eichel, S. & Fartmann, T. Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J. Insect Conserv. 12, 677–688 (2008).
    Article  Google Scholar 

    79.
    Fiedler, K. European and North West African Lycaenidae (Lepidoptera) and their associations with ants. J. Res. Lepid. 28, 239–257 (1991).
    Google Scholar 

    80.
    Fric, Z. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lep. 23, 2–25 (2000).
    Google Scholar 

    81.
    Friedrich, E. Zur Biologie von Limenitis populi L. (Lep., Nymphalidae). Entomol. Z. 81, 266–269 (1971).
    Google Scholar 

    82.
    García-Barros, E. Comparative data on the adult biology, ecology and behaviour of species belonging to the genera Hipparchia, Chazara and Kanetisa in central Spain (Nymphalidae: Satyrinae). Nota Lep. 23, 119–140 (2000).
    Google Scholar 

    83.
    García-Villanueva, V., Moreno Tamaurejo, J. A., Vazquez Prado, F. M., Nieto Manzano, M. A. & Novoa Pérez, J. M. Melitaea aetherie (Hübner [6]) en la provincia de Badajoz: nuevos datos sobre su biología y distribución (Lepidoptera: Nymphalidae). Bol. Soc. Entomol. Aragonesa 42, 279–288 (2008).
    Google Scholar 

    84.
    Gascoigne-Pees, M., Trew, D., Pateman, J. & Verovnik, R. The distribution, life cycle, ecology and present status of Leptidea morsei (Fenton 1882) in Slovenia with additional observations from Romania (Lepidoptera: Pieridae). Nachr. Entomol. Ver. Apollo N. F. 29, 113–121 (2008).
    Google Scholar 

    85.
    Gascoigne-Pees, M., Verovnik, R., Wiskin, C. & Luckens, C. & Đurić, M. Notes on the lifecycle of Melitaea arduinna (Esper, 1783) (“Freyer’s Fritillary”) (Lepidoptera: Nymphalidae) with further records from SE Serbia. Nachr. Entomol. Ver. Apollo, N. F. 33, 9–14 (2012).
    Google Scholar 

    86.
    Gascoigne-Pees, M., Verovnik, R., Franeta, F. & Popović, M. The lifecycle and ecology of Pseudochazara amymone (Brown, 1976), (Lepidoptera: Nymphalidae, Satyrinae). Nachr. Entomol. Ver. Apollo, N. F. 35, 129–138 (2014).
    Google Scholar 

    87.
    Gascoigne-Pees, M., Wiskin, C., Đurić, M. & Trew, D. The lifecycle of Nymphalis vaualbum ([Denis & Schiffermüller], 1775) in Serbia including new records and a review of its present status in Europe (Lepidoptera: Nymphalidae. Nachr. Entomol. Ver. Apollo, N. F. 35, 77–96 (2014).
    Google Scholar 

    88.
    Grill, A., Schtickzelle, N., Cleary, D. F., Neve, G. & Menken, S. B. Ecological differentiation between the Sardinian endemic Maniola nurag and the pan-European M. jurtina. Biol. J. Linn. Soc. 89, 561–574 (2006).
    Article  Google Scholar 

    89.
    Hernández-Roldán, J. L., Vicente, J. C., Vila, R. & Munguira, M. L. Natural history and immature stage morphology of Spialia Swinhoe, 1912 in the Iberian Peninsula (Lepidoptera, Hesperiidae). Nota Lep. 41, 1–22 (2018).
    Google Scholar 

    90.
    Hernández-Roldán, J. L., Munguira, M. L. & Martin, J. Ecology of a relict population of the vulnerable butterfly Pyrgus sidae on the Iberian Peninsula (Lepidoptera: Hesperiidae). Eur. J. Entomol. 106, 611–618 (2009).
    Article  Google Scholar 

    91.
    John, E. & Parker, R. Dispersal of Hipparchia cypriensis (Holik, 1949) (Lep.: Satyridae) in Cyprus, with notes on its ecology and life-history. Ent. Gaz. 53, 3–18 (2002).
    Google Scholar 

    92.
    John, E., Gascoigne-Pees, M. & Larsen, T. B. Ypthima asterope (Klug, 1832) (Lepidoptera: Nymphalidae, Satyrinae): its biogeography, lifecycle, ecology and present status in Cyprus, with additional notes from Rhodes and the eastern Mediterranean. Ent. Gaz. 61, 1–22 (2010).
    Google Scholar 

    93.
    Jutzeler, D. Okologie und erste Stände des italienischen Schachbrettes Melanargia arge (Sulzer, 1776) (Lepidoptera: Satyridae). Nota Lep. 16, 213–232 (1994).
    Google Scholar 

    94.
    Jutzeler, D. & Grillo, N. Une visite a l’ile de Vulcano (dans les iles Eoliennes, Sicile) pour Hipparchia leighebi (Kudrna, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 119–126 (1995).
    Google Scholar 

    95.
    Jutzeler, D. & De Bros, E. Observations dans la nature et élevage de Pseudochazara hippolyte williamsi (Romei, 1927) et Erebia hiapania (Butler, 1868) de la Sierra Nevada (Andalousie, Espagne méridionale) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 173–181 (1995).
    Google Scholar 

    96.
    Jutzeler, D., Biermann, H. & De Bros, E. Élevage de Coenonympha corinna elbana (Staudinger, 1901) du Monte Argentario (Toscane, Italie) avec explication géologique de l’aire de répartition du complexe corinna (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 332–347 (1996).
    Google Scholar 

    97.
    Jutzeler, D. & de Bros, E. D. Écologie, élevage et statut taxinomique de Coenonympha corinna trettaui (GROSS, 1970) de l’Isola di Capraia (Toscane, Italie) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 70–78 (1997).
    Google Scholar 

    98.
    Jutzeler, D. et al. Study on the biology, morphology and etiology of Hipparchia sbordonii Kudrna, 1984 from Isola di Ponza (Latium, Italy) and Hipparchia neapolitana (Stauder, 1921) from the Monte Faito (Campanie, Italy) and data on the biology of Hipparchia leighebi (Kudrna, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 105–132 (1997).
    Google Scholar 

    99.
    Jutzeler, D., Biermann, H., Grillo, N. & Volpe, G. On the taxonomical status of Hipparchia blachieri (Fruhstorfer, 1908) from Sicilia (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 17, 69–83 (1999).
    Google Scholar 

    100.
    Jutzeler, D., Embacher, G., Hesselbarth, G., Malicky, M., Stangelmaier, G. & Cameron-Curry, V. Breeding experiments with Erebia claudina (Borkhausen, 1779) from the Radstaedter Tauern (Salzburg, Austria) (Lepidoptera: Nymphalidae, Satyrinae. Linn. Belg. 17, 11–21 (1999).
    Google Scholar 

    101.
    Jutzeler, D., Russel, P. & Volpe, G. Nouveaux points de vue sur la position taxonomique des cinq populations insulaires du complexe d’ Hipparchia wyssii Christ (1889) se basant sur la connaissance de leurs états pré-imaginaux (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 20, 9–44 (2007).
    Google Scholar 

    102.
    Kleckova, I., Konvička, M. & Klecka, J. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. J. Therm. Biol. 41, 50–58 (2014).
    PubMed  Article  Google Scholar 

    103.
    Koestler, W. The preimaginal stages of Hipparchia mersina Staudinger, 1871 – biology, ecology, phenology and breeding Lepidoptera Nymphalidae. Entomol. Z. 1152, 85–90 (2005).
    Google Scholar 

    104.
    Kolev, Z. New data on the taxonomic status and distribution of Polyommatus andronicus Coutsis & Ghavalas, 1995 (Lycaenidae). Nota Lep. 28, 35–48 (2005).
    Google Scholar 

    105.
    Konvička, M., Nedved, O. & Fric, Z. Early-spring floods decrease the survival of hibernating larvae of a wetland-inhabiting population of Neptis rivularis (Lepidoptera: Nymphalidae). Acta Zool. Acad. Sci. Hungar. 48, 79–88 (2002).
    Google Scholar 

    106.
    Kuras, T., Beneš, J. & Konvička, M. Behaviour and within-habitat distribution of adult Erebia sudetica sudetica, endemic of the Hrubý Jeseník Mts., Czech Republic (Nymphalidae, Satyrinae). Nota Lep. 24, 69–83 (2001).
    Google Scholar 

    107.
    Lafranchis, T. Biologie, écologie et répartition de Carcharodus orientalis (Reverdin, 1913) en Grèce. Comparaison avec Carcharodus flocciferus (Zeller, 1847) (Lepidoptera, Hesperiidae). Linn. Belg. 19, 140-146 (2003).

    108.
    Leigheb, G., Jutzeler, D. & Cameron Curry, V. The breeding of Pseudophilotes barbagiae De Prins & Van Der Poorten, 1970, an endemic species of the Gennargentu massif, Sardinia, Italy (Lepidoptera: Lycaenidae). Linn. Belg. 17, 239–246 (2000).
    Google Scholar 

    109.
    Lopez-Villalta, J. S. Ecological trends in endemic Mediterranean butterflies. Bull. Insectol. 63, 161–170 (2010).
    Google Scholar 

    110.
    Leigheb, G. & Cameron-Curry, V. Observations on the biology and distribution of Pseudophilotes barbagiae (Lycaenidae, Polyommatini). Nota Lep. 21, 66–73 (1998).
    Google Scholar 

    111.
    Leigheb, G., Jutzeler, D. & Cameron Curry, V. The breeding of Pseudophilotes barbagiae De Prins & Van Der Poorten, 1970, an endemic species of the Gennargentu massif, Sardinia, Italy (Lepidoptera: Lycaenidae). Linn. Belg. 17, 239–246 (2000).
    Google Scholar 

    112.
    Manino, Z., Leigheb, G., Cameron-Curry, P. & Cameron-Curry, V. Descrizione degli stadi preimarginali di Agrodiaetus humedasae Toso & Balletto, 1976 (Lepidoptera, Lycaenidae). Boll. Mus. Reg. Sci. Nat. Torino 5, 97–101 (1987).
    Google Scholar 

    113.
    Möllenbeck, V., Hermann, G. & Fartmann, T. Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J. Insect Conser. 13, 77–87 (2009).
    Article  Google Scholar 

    114.
    Nardelli, U., Olivares, J. & Jutzeler, D. Etudes sur l’ecologie et le developpement de Melanargia ines (Hoffmannsegg, 1804) en Andalousie et comparaison avec les especes les plus proches (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 183–191 (1998).
    Google Scholar 

    115.
    Ômura, H. & Honda, K. Feeding responses of adult butterflies, Nymphalis xanthomelas, Kaniska canace and Vanessa indica, to components in tree sap and rotting fruits: synergistic effects of ethanol and acetic acid on sugar responsiveness. J. Insect Physiol. 49, 1031–1038 (2003).
    PubMed  Article  CAS  Google Scholar 

    116.
    Özden, Ö. & Hodgson, D. J. Butterflies (Lepidoptera) highlight the ecological value of shrubland and grassland mosaics in Cypriot garrigue ecosystems. Eur. J. Entomol. 108, 43–437 (2011).
    Article  Google Scholar 

    117.
    Page, R. J. C. Perching and patrolling continuum at favoured hilltop sites on a ridge: A mate location strategy by the Purple Emperor butterfly Apatura iris. Entomol. Rec. J. Var. 22, 61–70 (2010).
    Google Scholar 

    118.
    Pennekamp, F., Monteiro, E. & Schmitt, T. The larval ecology of the butterfly Euphydryas desfontainii (Lepidoptera: Nymphalidae) in SW-Portugal: food plant quantity and quality as main predictors of habitat quality. J. Insect Conserv. 17, 195–206 (2013).
    Article  Google Scholar 

    119.
    Pinzari, M. A comparative analysis of mating recognition signals in graylings: Hipparchia statilinus vs. H. semele (Lepidoptera: Nymphalidae, Satyrinae). J. Insect Behav. 22, 227–244 (2009).
    Article  Google Scholar 

    120.
    Pinzari, M. & Sbordoni, V. Species and mate recognition in two sympatric Grayling butterflies: Hipparchia fagi and H. hermione genava (Lepidoptera). Ethol. Ecol. Evol. 25, 28–51 (2013).
    Article  Google Scholar 

    121.
    Pittaway, A. R. et al. Papilio saharae Oberthür, 1879, specifically distinct from Papilio machaon Linnaeus, 1758 (Lepidoptera: Papilionidae). Ent. Gaz. 45, 223–249 (1994).
    Google Scholar 

    122.
    Polcyn, D. M. & Chappell, M. A. Analysis of heat transfer in Vanessa butterflies: effects of wing position and orientation to wind and light. Physiol. Zool. 59, 706–716 (1986).
    Article  Google Scholar 

    123.
    Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim. Ecol. 82, 275–285 (2013).
    PubMed  Article  Google Scholar 

    124.
    Rutowski, R. L. Variation of eye size in butterflies: inter-and intraspecific patterns. J. Zool. 252, 187–195 (2000).
    Article  Google Scholar 

    125.
    Sariot, M. M. Ciclo biológico, morfología de los estadios preimaginales y nuevos datos sobre la distribución de Borbo borbonica zelleri (Lederer, 1855) (Lepidoptera: Hesperiidae) en la provincia de Cádiz, Españ. Rev. Gaditana Entomol. 4, 137–158 (2013).
    Google Scholar 

    126.
    Scott, J. A. Population biology and adult behavior of the circumpolar butterfly, Parnassius phoebus F. (Papilionidae). Insect Syst. Evol. 4, iii–168 (1974).

    127.
    Schurian, K. Beobachtungen zur Biologie und Ökologie von Azanus ubaldus (Cramer, 1782) auf den Kanarischen Inseln (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo, N.F. 37, 41–46 (2016).
    Google Scholar 

    128.
    Slamova, I., Klecka, J. & Konvička, M. Diurnal behavior and habitat preferences of Erebia aethiops, an aberrant lowland species of a mountain butterfly clade. J. Insect Behav. 24, 230–246 (2011).
    Article  Google Scholar 

    129.
    Slancarova, J., Garcia-Pereira, P., Fric, Z. F., Romo, H. & Garcia-Barros, E. Butterflies in Portuguese ‘montados’: relationships between climate, land use and life-history traits. J. Insect Conserv. 19, 823–836 (2015).
    Article  Google Scholar 

    130.
    Slancarova, J. et al. Co-occurrence of three Aristolochia-feeding Papilionids (Archon apollinus, Zerynthia polyxena and Zerynthia cerisyi) in Greek Thrace. J. Nat. Hist. 49, 1825–1848 (2015).
    Article  Google Scholar 

    131.
    Stefanescu, C., Pintureau, B., Tschorsnig, H. P. & Pujade-Villar, J. The parasitoid complex of the butterfly Iphiclides podalirius feisthamelii (Lepidoptera: Papilionidae) in north-east Spain. J. Nat. Hist. 7, 379–396 (2003).
    Article  Google Scholar 

    132.
    Stuhldreher, G. & Fartmann, T. Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur. J. Entomol. 112, 493–499 (2015).
    Article  Google Scholar 

    133.
    Szentirmai, I. et al. Habitat use and population biology of the Danube Clouded Yellow butterfly Colias myrmidone (Lepidoptera: Pieridae) in Romania. J. Insect Conserv. 18, 417–425 (2014).
    Article  Google Scholar 

    134.
    Templado, J. Datos biológicos sobre Melitaea deione (Geyer) (Lep., Nymphalidae). Bol. Estac. Cent.l Ecol. 5, 97–102 (1976).
    Google Scholar 

    135.
    Toso, G. G. & Balletto, E. Una nuova specie del genere Agrodiaetus Hübn. (Lepidoptera, Lycaenidae). Annali Mus. Civico Storia Nat. G. Doria 81, 124–130 (1977).
    Google Scholar 

    136.
    Tóth, J. P. & Varga, Z. Morphometric study on the genitalia of sibling species Melitaea phoebe and M. telona (Lepidoptera: Nymphalidae). Acta Zool. Hung. 56, 273–282 (2010).
    Google Scholar 

    137.
    Tvrtkovic, N., Mihoci, I. & Sasic, M. Colias caucasica balcanica Rebel, 1901 (Pieridae) in Croatia-the most western distribution point. Natura Croatica 20, 375–385 (2011).
    Google Scholar 

    138.
    Väisänen, R., Kuussaari, M., Nieminen, M. & Somerma, P. Biology and conservation of Pseudophilotes baton in Finland (Lepidoptera, Lycaenidae). Ann. Zool. Fenn. 31, 145–156 (1994).
    Google Scholar 

    139.
    Verovnik, R. et al. Conserving Europe’s Most Endangered Butterfly: the Macedonian Grayling (Pseudochazara cingovskii). J. Insect Conserv. 17, 941–947 (2013).
    Article  Google Scholar 

    140.
    Verovnik, R., Franeta, F., Popović, M. & Gascoigne-Pees, M. The discovery of Polyommatus aroaniensis (Brown, 1976) in Bosnia and Herzegovina (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo, N.F. 36, 177–180 (2015).
    Google Scholar 

    141.
    Vieira, V. Lepidopteran fauna from the Sal Island, Cape Verde (Insecta: Lepidoptera). SHILAP-Rev. Lepidopt. 6, 243–252 (2008).
    Google Scholar 

    142.
    Vila, R. Comparative analysis and taxonomic use of the morphology of imma-ture stages and natural history traits in European species of Pyrgus Hübner (Lepidoptera: Hesperiidae, Pyrginae). Zootaxa 347, 1–71 (2012).
    Google Scholar 

    143.
    Vovlas, A., Balletto, E., Altini, E., Clemente, D. & Bonelli, S. Mobility and oviposition site-selection in Zerynthia cassandra (Lepidoptera, Papilionidae): implications for its conservation. J. Insect Conserv. 18, 87–597 (2014).
    Article  Google Scholar 

    144.
    Wahlberg, N. The life history and ecology of Melitaea diamina (Nymphalidae) in Finland. Nota Lep. 20, 70–81 (1997).
    Google Scholar 

    145.
    Wahlberg, N. Comparative descriptions of the immature stages and ecology of five Finnish Melitaeine butterfly species (Lepidoptera: Nymphalidae). Entomol. Fennica 11, 167–174 (2000).
    Article  Google Scholar 

    146.
    Wahlberg, N. On the status of the scarce fritillary Euphydryas maturna (Lepidoptera: Nymphalidae) in Finland. Entomol. Fennica 12, 244–250 (2001).
    Google Scholar 

    147.
    Wiemers, M. The butterflies of the Canary Islands. A survey on their distribution, biology and ecology (Lepidoptera: Papilionoidea and Hesperioidea). Linn. Belg. 15, 63–84 (1995).
    Google Scholar 

    148.
    Franeta, F., Kogovšek, N. & Verovnik, R. On the presence of Pontia chloridice (Lepidoptera: Pieridae) in the Republic of Macedonia. Phegea 40, 17–20 (2012).
    Google Scholar 

    149.
    Franeta, F. & Đurić, M. On the distribution of Colias caucasica balcanica Rebel, 1901, with two new records for Serbia (Lepidoptera: Pieridae. Nachr. Entomol. Ver. Apollo, N.F. 32, 31–37 (2011).
    Google Scholar 

    150.
    Coutsis, J. Revision of the Turanana endymion species-group (Lycaenidae). Nota Lep. 27, 251–272 (2005).
    Google Scholar 

    151.
    Acosta Fernández, B. Una nueva subespecie de Euchloe belemia (Esper, [1800]) de la isla de Gran Canaria, Islas Canarias, España (Lepidoptera: Pieridae). SHILAP-Rev. Lepidopt. 36, 173–182 (2008).
    Google Scholar 

    152.
    Brown, J. & Coutsis, J. G. Two newly discovered Lycaenid butterflies (Lepidoptera: Lycaenidae) from Greece, with notes on allied species. Entomol. Gaz. 29, 201–213 (1978).
    Google Scholar 

    153.
    Brown, J. On the status of a little known Satyrid butterfly from Greece. Entomol. Rec. J. Var. 92, 280–281 (1980).
    Google Scholar 

    154.
    De Prins, W. & Van der Poorten, D. Een nieuwe Pseudochazara-soort voor de wetenschap uit Noordoost-Griekenland (Lepidoptera, Satyridae). Phegea 10, 7–21 (1981).
    Google Scholar 

    155.
    De Prins, W. & Van der Poorten, D. Overzicht van het genus Pseudophilotes in Europa en Noord-Afrika, met beschrijving van een soort uit Sardinie, nieuw voor de wetenschap (Lepidoptera, Lycaenidae). Phegea 10, 61–76 (1982).
    Google Scholar 

    156.
    Higgins, L. G. Hipparchia (Pseudotergumia) wyssii Christoph, with descriptions of two new subspecies. Entomol. 100, 169–171 (1967).
    Google Scholar 

    157.
    Kolev, Z. Polyommatus dantchenkoi (Lukhtanov & Wiemers, 2003) tentatively identified as new to Europe, with a description of a new taxon from the Balkan Peninsula (Lycaenidae). Nota Lep. 28, 25–34 (2005).
    Google Scholar 

    158.
    Manil, L. Découverte de Hipparchia (Pseudotergumia) wyssii Christ dans l’île de La Palma (Canaries) et description d’une nouvelle sous-espèce: Hipparchia wyssii tilosi nova spp. (Lepidoptera Satyridae). Linn. Belg. 9, 359–366 (1984).
    Google Scholar 

    159.
    Olivier, A. & Coutsis, J. G. A revision of the superspecies Hipparchia azorina and of the Hipparchia aristaeus group (Nymphalidae: Satyrinae). Nota Lep. 20, 150–292 (1997).
    Google Scholar 

    160.
    Olivier, A. Taxonomy and geographical variation of Satyrium ledereri (Boisduval, 1848) with the description of a new subspecies from the Greek island of Sámos. Phegea 17, 1–25 (1989).
    Google Scholar 

    161.
    Smith, D. A. S. & Owen, D. F. Inter-island variation in the butterfly Hipparchia (Pseudotergumia) wyssii (Christ, 1889) (Lepidoptera, Satyrinae) in the Canary Islands. Nota Lep. 17, 175–200 (1995).
    Google Scholar 

    162.
    Thomson, G. Maniola chia – a new Satyrid from the Greek island of Chios (Lepidoptera: Nymphalidae: Satyrinae). Phegea 15, 13–22 (1987).
    Google Scholar 

    163.
    Thomson, G. Maniola halicarnassus – a new Satyrid from south-western Turkey (Lepidoptera: Nymphalidae: Satyrinae). Phegea 18, 149–155 (1990).
    Google Scholar 

    164.
    Scalercio, S. et al. How long is 3km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J. Anim. Ecol., https://doi.org/10.1111/1365-2656.13196 (2020).

    165.
    Cini, A. et al. Host plant selection and differential survival on two Aristolochia L. species in an insular population of Zerynthia cassandra. J Insect Conserv 23, 239–246 (2019).
    Article  Google Scholar 

    166.
    Hernández‐Roldán, J. L. et al. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol Ecol. 25, 4267–4284 (2016).
    PubMed  Article  Google Scholar 

    167.
    Dennis, R. L. H., Hardy, P. B. & Dapporto, L. Nestedness in island faunas: novel insights into island biogeography through butterfly community profiles of colonization ability and migration capacity. J Biogeogr 39, 1412–1426 (2012).
    Article  Google Scholar 

    168.
    Sekar, S. A meta analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174–184 (2012).
    PubMed  Article  Google Scholar 

    169.
    Kuussaari, M., Saarinen, M., Korpela, E. L., Pöyry, J. & Hyvönen, T. Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecol. Evol. 4, 3800–381 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    170.
    García-Barros, E. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol. J. Linn. Soc. 70, 251–284 (2000).
    Article  Google Scholar 

    171.
    Wiklund, C. & Kaitala, A. Sexual selection for large male size in a polyandrous butterfly: the effect of body size on male versus female reproductive success in Pieris napi. Behav. Ecol. 6, 6–13 (1995).
    Article  Google Scholar 

    172.
    Peters, R. H. The Ecological Implications Of Body Size. (Cambridge University Press, 1983).

    173.
    Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290 (2007).
    Article  Google Scholar 

    174.
    Betzholtz, P. E., Pettersson, L. B., Ryrholm, N. & Franzén, M. With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc. Roy. Soc. B 280, 20122305 (2013).
    Article  Google Scholar 

    175.
    Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species? Ecology 96, 1473–147 (2015).
    Article  Google Scholar 

    176.
    Chevenne, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long‐term ecological data. Freshwater Biol. 31, 295–309 (1994).
    Article  Google Scholar 

    177.
    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).
    Article  Google Scholar 

    178.
    Stekhoven, D. J. & Bühlmann, P. Missforest – non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).
    CAS  PubMed  Article  Google Scholar  More

  • in

    The genetic diversity and differentiation of mussels with complex life cycles and relations to host fish migratory traits and densities

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–9013 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Dudaniec, R. Y. & Tesson, S. V. M. Applying landscape genetics to the microbial world. Mol. Ecol. 25, 3266–3275 (2016).
    PubMed  Article  Google Scholar 

    3.
    Froufe, E. et al. Phylogeny, phylogeography, and evolution in the Mediterranean region: News from a freshwater mussel (Potomida, Unionida). Mol. Phyl. Evol. 100, 322–332 (2016).
    Article  Google Scholar 

    4.
    Simmons, L., Mathieson, M. T., Lamont, R. W. & Shapcott, A. Genetic diversity of endangered orchid Phaius australis across a fragmented Australian landscape. Conserv. Genet. 19, 451–465 (2018).
    CAS  Article  Google Scholar 

    5.
    Chong, J. P. & Roe, K. J. A comparison of genetic diversity and population structure of the endangered scaleshell mussel (Leptodea leptodon), the fragile papershell (Leptodea fragilis) and their host-fish the freshwater drum (Aplodinotus grunniens). Conserv. Genet. 19(2), 425–437 (2018).
    Article  Google Scholar 

    6.
    Berg, D. J., Christian, A. D. & Guttman, S. I. Population genetic structure of three freshwater mussel (Unionidae) species within a small stream system: significant variation at local spatial scales. Freshw. Biol. 52, 1427–1439 (2007).
    Article  Google Scholar 

    7.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Elderkin, C. L., Christian, A. D., Vaughn, C. C., Metcalfe-Smith, J. L. & Berg, D. J. Population genetics of the freshwater mussel, Amblema plicata (Say 1817) (Bivalvia: Unionidae): evidence of high dispersal and post-glacial colonization. Conserv. Genet. 8, 355–372 (2007).
    CAS  Article  Google Scholar 

    9.
    Mazé-Guilmo, E., Blanchet, S., McCoy, K. D. & Loot, G. Host dispersal as the driver of parasite genetic structure: a paradigm lost?. Ecol. Lett. 19, 336–347 (2016).
    PubMed  Article  Google Scholar 

    10.
    Karlsson, S., Larsen, B. M. & Hindar, K. Host-dependent genetic variation in freshwater pearl mussel (Margaritifera margaritifera L.). Hydrobiologia 735, 179–190 (2014).
    Article  Google Scholar 

    11.
    Östergren, J. & Nilsson, J. Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.). Ecol. Freshw. Fish 21, 119–133 (2012).
    Article  Google Scholar 

    12.
    Hendry, A. P. et al. Evolutionary principles and their practical application. Evol. Appl. 4, 159–183 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Strayer, D. L. et al. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54, 429–439 (2004).
    Article  Google Scholar 

    14.
    Geist, J. et al. Genetic structure of Irish freshwater pearl mussels (Margaritifera margaritifera and Margaritifera durrovensis): Validity of subspecies, roles of host fish, and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 923–933 (2018).
    Article  Google Scholar 

    15.
    Arvidsson, B. L., Karlsson, J. & Österling, M. E. Recruitment of the threatened mussel Margaritifera margaritifera in relation to mussel population size, mussel density and host density. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 526–532 (2012).
    Article  Google Scholar 

    16.
    Young, M. & Williams, J. The reproductive biology of the freshwater pearl mussel Margaritifera margaritifera (Linn.) in Scotland 1 Field studies. Arch. Hydrobiol. 99, 405–422 (1984).
    Google Scholar 

    17.
    Hastie, L. C. & Young, M. R. Freshwater pearl mussel (Margaritifera margaritifera) glochidiosis in wild and farmed salmonid stocks in Scotland. Hydrobiologia 445, 109–119 (2001).
    Article  Google Scholar 

    18.
    Salonen, J. K. et al. Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) differ in their suitability as hosts for the endangered freshwater pearl mussel (Margaritifera margaritifera) in northern Fennoscandian rivers. Freshw. Biol. 62, 1346–1358 (2017).
    Article  Google Scholar 

    19.
    Österling, E. M. & Söderberg, H. Sea-trout habitat fragmentation affects threatened freshwater pearl mussel. Biol. Conserv. 186, 197–203 (2015).
    Article  Google Scholar 

    20.
    Taeubert, E. & Geist, J. The relationship between the freshwater pearl mussel (Margaritifera margaritifera) and its hosts. Biol. Bull. 44, 67–73 (2017).
    Article  Google Scholar 

    21.
    Stoeckle, B. C. et al. Strong genetic differentiation and low genetic diversity of the freshwater pearl mussel (Margaritifera margaritifera L.) in the southwestern European distribution range. Conserv. Genet. 18, 147–157 (2017).
    Article  Google Scholar 

    22.
    Mathias, P. T., Hoffman, J. R., Wilson, C. C. & Zanatta, D. T. Signature of postglacial colonization on contemporary genetic structure and diversity of Quadrula quadrula (Bivalvia: Unionidae). Hydrobiologia 810, 207–225 (2018).
    CAS  Article  Google Scholar 

    23.
    implications for conservation and management. Geist, J. & Kuehn, R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations. Mol. Ecol. 14, 425–439 (2005).
    Google Scholar 

    24.
    Wacker, S., Larsen, B. M., Karlsson, S. & Hindar, K. Host specificity drives genetic structure in a freshwater mussel. Sci. Reports 9, 10409 (2019).
    ADS  Google Scholar 

    25.
    Geist, J. & Kuehn, R. Host-parasite interactions in oligotrophic stream ecosystems: The roles of life history strategy and ecological niche. Mol. Ecol. 17, 997–1008 (2008).
    PubMed  Article  Google Scholar 

    26.
    Naimo, T. J., Damschen, E. D., Rada, R. G. & Monroe, E. M. Nonlethal evaluation of the physiological health of unionid mussels: methods for biopsy and glycogen analysis. J. North Am. Benth. Soc. 17, 121–128 (1998).
    Article  Google Scholar 

    27.
    Geist, J., Rottmann, O., Schroder, W. & Kuhn, R. Development of microsatellite markers for the endangered freshwater pearl mussel Margaritifera margaritifera L. (Bivalvia : Unionoidea). Mol. Ecol. Notes3, 444–446 (2003).

    28.
    Raymond, M. & Rousset, F. An exact test for population differentiation. Evolution 49, 1280–1283 (1995).
    PubMed  Article  Google Scholar 

    29.
    Raymond, M. & Rousset, F. GENEPOP (version 1.2)—population genetics software for exact tests and ecumenicism. J Heredity 86, 248–249 (1995).
    Article  Google Scholar 

    30.
    Van Oosterhout, C., Hutchinson, W. F., Wilis, D. P. M. & Shipley, P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    31.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    32.
    Goudet, J. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Heredity 86, 485–486 (1995).
    Article  Google Scholar 

    33.
    Takezaki, N., Nei, M. & Tamura, K. POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Mol. Biol. Evol. 27, 747–752 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    36.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).
    Article  Google Scholar 

    37.
    Jombart, T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  Article  Google Scholar 

    38.
    Jombart, T. & Ahmed, I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).
    Article  Google Scholar 

    40.
    Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Nat. Acad. Sci. USA 91, 3166–3170 (1994).
    ADS  PubMed  Article  Google Scholar 

    41.
    Piry, S., Luikart, G. & Cornuet, J.-M. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Heredity 90, 502–503 (1999).
    Article  Google Scholar 

    42.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    43.
    Moritz, C., Lavery, S. & Slade, R. Using allele frequency and phylogeny to define units for conservation and management. Am. Fish. Soc. Symp. 17, 249–262 (1995).
    Google Scholar 

    44.
    Zanatta, D. T. et al. High genetic diversity and low differentiation in North American Margaritifera margaritifera (Bivalvia: Unionida: Margaritiferidae). Biol. J. Linn. Soc. 123, 850–863 (2018).
    Article  Google Scholar 

    45.
    Geist, J., Söderberg, H., Karlberg, A. & Kuehn, R. Drainage-independent genetic structure and high genetic diversity of endangered freshwater pearl mussels (Margaritifera margaritifera) in northern Europe. Conserv. Gen. 11, 1339–1350 (2010).
    Article  Google Scholar 

    46.
    Cortey, M., Vera, M., Pla, C. & Garcia-Marin, J.-L. Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biol. J. Linn. Soc. 97, 904–917 (2009).
    Article  Google Scholar 

    47.
    Schwalb, A. N., Garvie, M. & Ackerman, J. D. Dispersion of freshwater mussel larvae in a lowland river. Limnol. Oceanogr. 55, 628–638 (2010).
    ADS  Article  Google Scholar 

    48.
    Schwalb, A. N., Cottenie, K., Poos, M. S. & Ackerman, J. D. Dispersal limitation of unionid mussels and implications for their conservation. Freshw. Biol. 56, 1509–1518 (2011).
    Article  Google Scholar 

    49.
    Terui, A. et al. Dispersal of larvae of Margaritifera laevis by its host fish. Freshw. Sci. 33, 112–123 (2014).
    Article  Google Scholar 

    50.
    Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol 10(6), 1500–1508 (1996).
    Article  Google Scholar 

    51.
    Leimu, R., Mutikainen, P., Koricheva, J. & Fischer, M. How general are positive relationships between plant population size, fitness and genetic variation?. J. Ecol. 94(5), 942–952 (2006).
    Article  Google Scholar 

    52.
    Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biol. Rev. 92, 572–607 (2017).
    PubMed  Article  Google Scholar 

    53.
    Gum, B., Lange, M. & Geist, J. A critical reflection on the success of rearing and culturing juvenile freshwater mussels with a focus on the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 743–751 (2011).
    Article  Google Scholar 

    54.
    Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of conservation genetics and ecology. Hydrobiologia 644, 69–88 (2010).
    Article  Google Scholar 

    55.
    Schneider, L. D., Anders Nilsson, P., Höjesjö, J. & Österling, E. M. Local adaptation studies and conservation: parasite–host interactions between the endangered freshwater mussel Unio crassus and its host fish. Aquat. Conserv. Mar. Freshwater Ecosyst. 27, 1261–1269 (2017).
    Article  Google Scholar 

    56.
    Taeubert, J.-E., Denic, M., Gum, B., Lange, M. & Geist, J. Suitability of different salmonid strains as hosts for the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 728–734 (2010).
    Article  Google Scholar 

    57.
    Österling, M. E. & Larsen, B. M. Impact of origin and condition of host fish (Salmo trutta) on parasitic larvae of Margaritifera margaritifera. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 564–570 (2013).
    Article  Google Scholar  More