Food–energy–water implications of negative emissions technologies in a +1.5 °C future
1.
Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).
2.
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).
3.
IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).
4.
Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Change 8, 296–299 (2018).
CAS Google Scholar
5.
Fawcett, A. A. et al. Can Paris pledges avert severe climate change? Science 350, 1168–1169 (2015).
CAS Google Scholar
6.
Emissions Gap Report 2019 (UNEP, 2019).
7.
Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
Google Scholar
8.
Lawrence, B. M. G. & Schäfer, S. Promises and perils of the Paris Agreement. Science 364, 829–830 (2019).
CAS Google Scholar
9.
Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–184 (2016).
CAS Google Scholar
10.
NRC Negative Emissions Technologies and Reliable Sequestration (National Academies of Sciences, Engineering, and Medicine, 2018).
11.
NRC Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (National Research Council, 2015).
12.
Minx, J. C. et al. Negative emissions—part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).
Google Scholar
13.
Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).
Google Scholar
14.
Nemet, G. F. et al. Negative emissions—part 3: innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).
Google Scholar
15.
Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).
Google Scholar
16.
Fuhrman, J., McJeon, H., Doney, S. C., Shobe, W. & Clarens, A. F. From zero to hero?: Why integrated assessment modeling of negative emissions technologies is hard and how we can do better. Front. Clim. 1, 11 (2019).
Google Scholar
17.
Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).
CAS Google Scholar
18.
Calvin, K. et al. Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Clim. Change 123, 691–704 (2014).
Google Scholar
19.
Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).
CAS Google Scholar
20.
Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).
CAS Google Scholar
21.
Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282 (2014).
Google Scholar
22.
Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).
CAS Google Scholar
23.
Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).
CAS Google Scholar
24.
Direct Air Capture of CO 2with Chemicals: a Technology Assessment for the APS Panel on Public Affairs (American Physical Society, 2011).
25.
Carbon engineering’s large-scale direct air capture breakthrough. Carbon Engineering (7 June 2018); https://carbonengineering.com/news-updates/climate-change-breakthrough/
26.
Simon, E. The Swiss company hoping to capture 1% of global CO2 emissions by 2025. Carbon Brief (22 June 2017); https://www.carbonbrief.org/swiss-company-hoping-capture-1-global-co2-emissions-2025
27.
Peters, A. Can we suck enough CO2 from the air to save the climate? Global Thermostat (22 December 2017); https://globalthermostat.com/2017/12/global-thermostat-news-fastcompany-com-published-122217/
28.
Chevron, occidental invest in CO2 removal technology. Reuters (9 January 2019); https://www.reuters.com/article/us-carbonengineering-investment/chevron-occidental-invest-in-co2-removal-technology-idUSKCN1P312R
29.
ExxonMobil and Global Thermostat to advance breakthrough atmospheric carbon capture technology. Business Wire (27 June 2019); https://www.businesswire.com/news/home/20190627005137/en/ExxonMobil-Global-Thermostat-Advance-Breakthrough-Atmospheric-Carbon
30.
Marcucci, A., Kypreos, S. & Panos, E. The road to achieving the long-term Paris targets: energy transition and the role of direct air capture. Climatic Change 144, 181–193 (2017).
Google Scholar
31.
Strefler, J. et al. Between Scylla and Charybdis: delayed mitigation narrows the passage between large-scale CDR and high costs. Environ. Res. Lett. 13, 044015 (2018).
Google Scholar
32.
Chen, C. & Tavoni, M. Direct air capture of CO2 and climate stabilization: a model based assessment. Climatic Change 118, 59–72 (2013).
CAS Google Scholar
33.
Holz, C., Siegel, L. S., Johnston, E., Jones, A. P. & Sterman, J. Ratcheting ambition to limit warming to 1.5 °C—trade-offs between emission reductions and carbon dioxide removal. Environ. Res. Lett. 13, 64028 (2018).
Google Scholar
34.
Keith, D. W., Ha-Duong, M. & Stolaroff, J. K. Climate strategy with CO2 capture from the air. Climatic Change 74, 17–45 (2006).
CAS Google Scholar
35.
Honegger, M. & Reiner, D. The political economy of negative emissions technologies: consequences for international policy design. Clim. Policy 18, 306–321 (2018).
Google Scholar
36.
Bednar, J., Obersteiner, M. & Wagner, F. On the financial viability of negative emissions. Nat. Commun. 10, 1783 (2019).
Google Scholar
37.
Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2013).
Google Scholar
38.
Fricko, O. et al. Energy sector water use implications of a 2 °C climate policy. Environ. Res. Lett. 11, 034011 (2016).
Google Scholar
39.
Calvin, K. et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).
CAS Google Scholar
40.
BP Statistical Review of World Energy (BP, 2019).
41.
New map of worldwide croplands supports food and water security. Global food security-support analysis data at 30 m. USGS (14 November 2017); https://www.usgs.gov/news/new-map-worldwide-croplands-supports-food-and-water-security
42.
Huppmann, D. et al. IAMC 1.5 °C scenario explorer and data. IIASA https://doi.org/10.22022/SR15/08-2018.15429 (2018)
43.
Hoff, H. et al. Greening the global water system. J. Hydrol. 384, 177–186 (2010).
Google Scholar
44.
Fajardy, M. & Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 1389–1426 (2017).
CAS Google Scholar
45.
Ng, T. L., Eheart, J. W., Cai, X. & Miguez, F. Modeling miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ. Sci. Technol. 44, 7138–7144 (2010).
CAS Google Scholar
46.
Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).
CAS Google Scholar
47.
Arnell, N. W., Lowe, J. A., Challinor, A. J. & Osborn, T. J. Global and regional impacts of climate change at different levels of global temperature increase. Climatic Change 155, 377–391 (2019).
Google Scholar
48.
Calvin, K. et al. Global market and economic welfare implications of changes in agricultural yields due to climate change. Clim. Change Econ. 11, 2050005 (2020).
Google Scholar
49.
Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).
CAS Google Scholar
50.
Snyder, A., Calvin, K., Phillips, M. & Ruane, A. A crop yield change emulator for use in GCAM and similar models: Persephone v1.0. Geosci. Model Dev. 12, 1319–1350 (2019).
Google Scholar
51.
McLaren, D. & Markusson, N. The co-evolution of technological promises, modelling, policies and climate change targets. Nat. Clim. Change 10, 392–397 (2020).
Google Scholar
52.
Alvarez, R. A. et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188 (2018).
CAS Google Scholar
53.
Chu, E., Anguelovski, I. & Carmin, J. A. Inclusive approaches to urban climate adaptation planning and implementation in the Global South. Clim. Policy 16, 372–392 (2016).
Google Scholar
54.
Füssel, H. M. How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: a comprehensive indicator-based assessment. Glob. Environ. Change 20, 597–611 (2010).
Google Scholar
55.
Fuhrman, J. Replication Data for “Food Energy Water Tradeoffs of Negative Emissions Technologies in a + 1.5C Future” v1 (University of Virginia Dataverse, 2020); https://doi.org/10.18130/V3/JKJAOG
56.
Peters, G. P. et al. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change 10, 3–6 (2020).
Google Scholar
57.
Mauna Loa CO 2Annual Mean Data (NOAA Global Monitoring Laboratory, 2019); https://www.esrl.noaa.gov/gmd/ccgg/trends/
58.
Global Average Near Surface Temperatures Relative to the Pre-Industrial Period (European Environment Agency, 2019; https://www.eea.europa.eu/data-and-maps/daviz/global-average-air-temperature-anomalies-5#tab-dashboard-02
59.
Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).
Google Scholar
60.
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Google Scholar
61.
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
Google Scholar
62.
Zeman, F. Energy and material balance of CO2 capture from ambient air. Environ. Sci. Technol. 41, 7558–7563 (2007).
CAS Google Scholar
63.
Stolaroff, J. K., Keith, D. W. & Lowry, G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ. Sci. Technol. 42, 2728–2735 (2008).
CAS Google Scholar
64.
Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).
CAS Google Scholar
65.
Net Zero Technical Report 282, Fig. 10.2 (Committee on Climate Change, 2019).
66.
Mazzotti, M., Baciocchi, R., Desmond, M. J. & Socolow, R. H. Direct air capture of CO2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air–liquid contactor. Climatic Change 118, 119–135 (2013).
CAS Google Scholar
67.
GCAM v5.2 Documentation: GCAM Energy System (JGCRI, 2020).
68.
GCAM v5.2 Documentation: Table of Contents (JGCRI, 2019). https://jgcri.github.io/gcam-doc/toc.html More