More stories

  • in

    Returning farming to city centers

    A new class is giving MIT students the opportunity to examine the historical and practical considerations of urban farming while developing a real-world understanding of its value by working alongside a local farm’s community.Course 4.182 (Resilient Urbanism: Green Commons in the City) is taught in two sections by instructors in the Program in Science, Technology, and Society and the School of Architecture and Planning, in collaboration with The Common Good Co-op in Dorchester.The first section was completed in spring 2025 and the second section is scheduled for spring 2026. The course is taught by STS professor Kate Brown, visiting lecturer Justin Brazier MArch ’24, and Kafi Dixon, lead farmer and executive director of The Common Good.“This project is a way for students to investigate the real political, financial, and socio-ecological phenomena that can help or hinder an urban farm’s success,” says Brown, the Thomas M. Siebel Distinguished Professor in History of Science. Brown teaches environmental history, the history of food production, and the history of plants and people. She describes a history of urban farming that centered sustainable practices, financial investment and stability, and lasting connections among participants. Brown says urban farms have sustained cities for decades.“Cities are great places to grow produce,” Brown asserts. “City dwellers produce lots of compostable materials.”Brazier’s research ranges from affordable housing to urban agricultural gardens, exploring topics like sustainable architecture, housing, and food security.“My work designing vacant lots as community gardens offered a link between Kafi’s work with Common Good and my interests in urban design,” Brazier says. “Urban farms offer opportunities to eliminate food deserts in underserved areas while also empowering historically marginalized communities.”Before they agreed to collaborate on the course, Dixon reached out to Brown asking for help with several challenges related to her urban farm including zoning, location, and infrastructure.“As the lead farmer and executive director of Common Good Co-op, I happened upon Kate Brown’s research and work and saw that it aligned with our cooperative model’s intentions,” Dixon says. “I reached out to Kate, and she replied, which humbled and excited me.” “Design itself is a form of communication,” Dixon adds, describing the collaborative nature of farming sustenance and development. “For many under-resourced communities, innovating requires a research-based approach.”The project is among the inaugural cohort of initiatives to receive support from the SHASS Education Innovation Fund, which is administered by the MIT Human Insight Collaborative (MITHIC).Community development, investment, and collaborationThe class’s first section paired students with community members and the City of Boston to change the farm’s zoning status and create a green space for long-term farming and community use. Students spent time at Common Good during the course, including one weekend during which they helped with weeding the garden beds for spring planting.One objective of the class is to help Common Good avoid potential pitfalls associated with gentrification. “A study in Philadelphia showed that gentrification occurs within 1,000 feet of a community garden,” Brown says. “Farms and gardens are a key part of community and public health,” Dixon continues. Students in the second section will design and build infrastructure — including a mobile chicken coop and a pavilion to protect farmers from the elements — for Common Good. The course also aims to secure a green space designation for the farm and ensure it remains an accessible community space. “We want to prevent developers from acquiring the land and displacing the community,” Brown says, avoiding past scenarios in which governments seized inhabitants’ property while offering little or no compensation.Students in the 2025 course also produced a guide on how to navigate the complex rules surrounding zoning and related development. Students in the next STS section will research the history of food sovereignty and Black feminist movements in Dorchester and Roxbury. Using that research, they will construct an exhibit focused on community activism for incorporation into the coop’s facade.Imani Bailey, a second-year master’s student in the Department of Architecture’s MArch program, was among the students in the course’s first section.“By taking this course, I felt empowered to directly engage with the community in a way no other class I have taken so far has afforded me the ability to,” she says.Bailey argues for urban farms’ value as both a financial investment and space for communal interaction, offering opportunities for engagement and the implementation of sustainable practices. “Urban farms are important in the same way a neighbor is,” she adds. “You may not necessarily need them to own your home, but a good one makes your property more valuable, sometimes financially, but most importantly in ways that cannot be assigned a monetary value.”The intersection of agriculture, community, and technologyTechnology, the course’s participants believe, can offer solutions to some of the challenges related to ensuring urban farms’ viability. “Cities like Amsterdam are redesigning themselves to improve walkability, increase the appearance of small gardens in the city, and increase green space,” Brown says. By creating spaces that center community and a collective approach to farming, it’s possible to reduce both greenhouse emissions and impacts related to climate change.Additionally, engineers, scientists, and others can partner with communities to develop solutions to transportation and public health challenges. By redesigning sewer systems, empowering microbiologists to design microbial inoculants that can break down urban food waste at the neighborhood level, and centering agriculture-related transportation in the places being served, it’s possible to sustain community support and related infrastructure.“Community is cultivated, nurtured, and grown from prolonged interaction, sharing ideas, and the creation of place through a shared sense of ownership,” Bailey argues. “Urban farms present the conditions for communities to develop.” Bailey values the course because it leaves the theoretical behind, instead focusing on practical solutions. “We seldom see our design ideas become tangible,” she says. “This class offered an opportunity to design and build for a real client in the real world.”Brazier says the course and its projects prove everyone has something to contribute and can have a voice in what happens with their neighborhoods. “Despite these communities’ distrust of some politicians, we partnered to work on solutions related to zoning,” he says, “and supported community members’ advocacy efforts.” More

  • in

    Where climate meets community

    The MIT Living Climate Futures Lab (LCFL) centers the human dimensions of climate change, bringing together expertise from across MIT to address one of the world’s biggest challenges.The LCFL has three main goals: “addressing how climate change plays out in everyday life, focusing on community-oriented partnerships, and encouraging cross-disciplinary conversations around climate change on campus,” says Chris Walley, the SHASS Dean’s Distinguished Professor of Anthropology and head of MIT’s Anthropology Section. “We think this is a crucial direction for MIT and will make a strong statement about the kind of human-centered, interdisciplinary work needed to tackle this issue.”Walley is faculty lead of LCFL, working in collaboration with a group of 19 faculty colleagues and researchers. The LCFL began to coalesce in 2022 when MIT faculty and affiliates already working with communities dealing with climate change issues organized a symposium, inviting urban farmers, place-based environmental groups, and others to MIT. Since then, the lab has consolidated the efforts of faculty and affiliates representing disciplines from across the MIT School of Humanities, Arts, and Social Sciences (SHASS) and the Institute.Amah Edoh, a cultural anthropologist and managing director of LCFL, says the lab’s collaboration with community organizations and development of experiential learning classes aims to bridge the gap that can exist between the classroom and the real world.“Sometimes we can find ourselves in a bubble where we’re only in conversation with other people from within academia or our own field of practice. There can be a disconnect between what students are learning somewhat abstractly and the ‘real world’ experience of the issues” Edoh says. “By taking up topics from the multidimensional approach that experiential learning makes possible, students learn to take complexity as a given, which can help to foster more critical thinking in them, and inform their future practice in profound ways.”Edoh points out that the effects of climate change play out in a huge array of areas: health, food security, livelihoods, housing, and governance structures, to name a few.“The Living Climate Futures Lab supports MIT researchers in developing the long-term collaborations with community partners that are essential to adequately identifying and responding to the challenges that climate change creates in everyday life,” she says.Manduhai Buyandelger, professor of anthropology and one of the participants in LCFL, developed the class 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale), which has in turn sparked related classes. The goal is “to merge technological innovation with people-centered environments.” Working closely with residents of Ulaanbaatar, Mongolia, Buyandelger and collaborator Mike Short, the Class of 1941 Professor of Nuclear Science and Engineering, helped develop a molten salt heat bank as a reusable energy source.“My work with Mike Short on energy and alternative heating in Mongolia helps to cultivate a new generation of creative and socially minded engineers who prioritize people in thinking about technical solutions,” Buyandelger says, adding, “In our course, we collaborate on creating interdisciplinary methods where we fuse anthropological methods with engineering innovations so that we can expand and deepen our approach to mitigate climate change.”

    Play video

    MIT Living Climate Futures Lab LaunchVideo: MIT Anthropology

    Iselle Barrios ’25, says 21A.S01 was her first anthropology course. She traveled to Mongolia and was able to experience firsthand all the ways in which the air pollution and heating problem was much larger and more complicated than it seemed from MIT’s Cambridge, Massachusetts, campus.“It was my first exposure to anthropological and STS critiques of science and engineering, as well as international development,” says Barrios, a chemical engineering major. “It fundamentally reshaped the way I see the role of technology and engineers in the broader social context in which they operate. It really helped me learn to think about problems in a more holistic and people-centered way.”LCFL participant Alvin Harvey, a postdoc in the MIT Media Lab’s Space Enabled Research Group and a citizen of the Navajo Nation, works to incorporate traditional knowledge in engineering and science to “support global stewardship of earth and space ecologies.””I envision the Living Climate Futures Lab as a collaborative space that can be an igniter and sustainer of relationships, especially between MIT and those whose have generational and cultural ties to land and space that is being impacted by climate change,” Harvey says. “I think everyone in our lab understands that protecting our climate future is a collective journey.”Kate Brown, the Thomas M. Siebel Distinguished Professor in History of Science, is also a participant in LCFL. Her current interest is urban food sovereignty movements, in which working-class city dwellers used waste to create “the most productive agriculture in recorded human history,” Brown says. While pursuing that work, Brown has developed relationships and worked with urban farmers in Mansfield, Ohio, as well as in Washington and Amsterdam.Brown and Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies and Chemistry, teach a class called STS.055 (Living Dangerously: Environmental Programs from 1900 to Today) that presents the environmental problems and solutions of the 20th century, and how some “solutions” created more problems over time. Brown also plans to teach a class on the history of global food production once she gets access to a small plot of land on campus for a lab site.“The Living Climate Futures Lab gives us the structure and flexibility to work with communities that are struggling to find solutions to the problems being created by the climate crisis,” says Brown.Earlier this year, the MIT Human Insight Collaborative (MITHIC) selected the Living Climate Futures Lab as its inaugural Faculty-Driven Initiative (FDI), which comes with a $500,000 seed grant.MIT Provost Anantha Chandrakasan, co-chair of MITHIC, says the LCFL exemplifies how we can confront the climate crisis by working in true partnership with the communities most affected.“By combining scientific insight with cultural understanding and lived experience, this initiative brings a deeper dimension to MIT’s climate efforts — one grounded in collaboration, empathy, and real-world impact,” says Chandrakasan.Agustín Rayo, the Kenan Sahin Dean of SHASS and co-chair of MITHIC, says the LCFL is precisely the type of interdisciplinary collaboration the FDI program was designed to support.”By bringing together expertise from across MIT, I am confident the Living Climate Futures Lab will make significant contributions in the Institute’s effort to address the climate crisis,” says Rayo.Walley said the seed grant will support a second symposium in 2026 to be co-designed with community groups, a suite of experiential learning classes, workshops, a speaker series, and other programming. Throughout this development phase, the lab will solicit donor support to build it into an ongoing MIT initiative and a leader in the response to climate change. More

  • in

    The brain power behind sustainable AI

    How can you use science to build a better gingerbread house?That was something Miranda Schwacke spent a lot of time thinking about. The MIT graduate student in the Department of Materials Science and Engineering (DMSE) is part of Kitchen Matters, a group of grad students who use food and kitchen tools to explain scientific concepts through short videos and outreach events. Past topics included why chocolate “seizes,” or becomes difficult to work with when melting (spoiler: water gets in), and how to make isomalt, the sugar glass that stunt performers jump through in action movies.Two years ago, when the group was making a video on how to build a structurally sound gingerbread house, Schwacke scoured cookbooks for a variable that would produce the most dramatic difference in the cookies.“I was reading about what determines the texture of cookies, and then tried several recipes in my kitchen until I got two gingerbread recipes that I was happy with,” Schwacke says.She focused on butter, which contains water that turns to steam at high baking temperatures, creating air pockets in cookies. Schwacke predicted that decreasing the amount of butter would yield denser gingerbread, strong enough to hold together as a house.“This hypothesis is an example of how changing the structure can influence the properties and performance of material,” Schwacke said in the eight-minute video.That same curiosity about materials properties and performance drives her research on the high energy cost of computing, especially for artificial intelligence. Schwacke develops new materials and devices for neuromorphic computing, which mimics the brain by processing and storing information in the same place. She studies electrochemical ionic synapses — tiny devices that can be “tuned” to adjust conductivity, much like neurons strengthening or weakening connections in the brain.“If you look at AI in particular — to train these really large models — that consumes a lot of energy. And if you compare that to the amount of energy that we consume as humans when we’re learning things, the brain consumes a lot less energy,” Schwacke says. “That’s what led to this idea to find more brain-inspired, energy-efficient ways of doing AI.”Her advisor, Bilge Yildiz, underscores the point: One reason the brain is so efficient is that data doesn’t need to be moved back and forth.“In the brain, the connections between our neurons, called synapses, are where we process information. Signal transmission is there. It is processed, programmed, and also stored in the same place,” says Yildiz, the Breene M. Kerr (1951) Professor in the Department of Nuclear Science and Engineering and DMSE. Schwacke’s devices aim to replicate that efficiency.Scientific rootsThe daughter of a marine biologist mom and an electrical engineer dad, Schwacke was immersed in science from a young age. Science was “always a part of how I understood the world.”“I was obsessed with dinosaurs. I wanted to be a paleontologist when I grew up,” she says. But her interests broadened. At her middle school in Charleston, South Carolina, she joined a FIRST Lego League robotics competition, building robots to complete tasks like pushing or pulling objects. “My parents, my dad especially, got very involved in the school team and helping us design and build our little robot for the competition.”Her mother, meanwhile, studied how dolphin populations are affected by pollution for the National Oceanic and Atmospheric Administration. That had a lasting impact.“That was an example of how science can be used to understand the world, and also to figure out how we can improve the world,” Schwacke says. “And that’s what I’ve always wanted to do with science.”Her interest in materials science came later, in her high school magnet program. There, she was introduced to the interdisciplinary subject, a blend of physics, chemistry, and engineering that studies the structure and properties of materials and uses that knowledge to design new ones.“I always liked that it goes from this very basic science, where we’re studying how atoms are ordering, all the way up to these solid materials that we interact with in our everyday lives — and how that gives them their properties that we can see and play with,” Schwacke says.As a senior, she participated in a research program with a thesis project on dye-sensitized solar cells, a low-cost, lightweight solar technology that uses dye molecules to absorb light and generate electricity.“What drove me was really understanding, this is how we go from light to energy that we can use — and also seeing how this could help us with having more renewable energy sources,” Schwacke says.After high school, she headed across the country to Caltech. “I wanted to try a totally new place,” she says, where she studied materials science, including nanostructured materials thousands of times thinner than a human hair. She focused on materials properties and microstructure — the tiny internal structure that governs how materials behave — which led her to electrochemical systems like batteries and fuel cells.AI energy challengeAt MIT, she continued exploring energy technologies. She met Yildiz during a Zoom meeting in her first year of graduate school, in fall 2020, when the campus was still operating under strict Covid-19 protocols. Yildiz’s lab studies how charged atoms, or ions, move through materials in technologies like fuel cells, batteries, and electrolyzers.The lab’s research into brain-inspired computing fired Schwacke’s imagination, but she was equally drawn to Yildiz’s way of talking about science.“It wasn’t based on jargon and emphasized a very basic understanding of what was going on — that ions are going here, and electrons are going here — to understand fundamentally what’s happening in the system,” Schwacke says.That mindset shaped her approach to research. Her early projects focused on the properties these devices need to work well — fast operation, low energy use, and compatibility with semiconductor technology — and on using magnesium ions instead of hydrogen, which can escape into the environment and make devices unstable.Her current project, the focus of her PhD thesis, centers on understanding how the insertion of magnesium ions into tungsten oxide, a metal oxide whose electrical properties can be precisely tuned, changes its electrical resistance. In these devices, tungsten oxide serves as a channel layer, where resistance controls signal strength, much like synapses regulate signals in the brain.“I am trying to understand exactly how these devices change the channel conductance,” Schwacke says.Schwacke’s research was recognized with a MathWorks Fellowship from the School of Engineering in 2023 and 2024. The fellowship supports graduate students who leverage tools like MATLAB or Simulink in their work; Schwacke applied MATLAB for critical data analysis and visualization.Yildiz describes Schwacke’s research as a novel step toward solving one of AI’s biggest challenges.“This is electrochemistry for brain-inspired computing,” Yildiz says. “It’s a new context for electrochemistry, but also with an energy implication, because the energy consumption of computing is unsustainably increasing. We have to find new ways of doing computing with much lower energy, and this is one way that can help us move in that direction.”Like any pioneering work, it comes with challenges, especially in bridging the concepts between electrochemistry and semiconductor physics.“Our group comes from a solid-state chemistry background, and when we started this work looking into magnesium, no one had used magnesium in these kinds of devices before,” Schwacke says. “So we were looking at the magnesium battery literature for inspiration and different materials and strategies we could use. When I started this, I wasn’t just learning the language and norms for one field — I was trying to learn it for two fields, and also translate between the two.”She also grapples with a challenge familiar to all scientists: how to make sense of messy data.“The main challenge is being able to take my data and know that I’m interpreting it in a way that’s correct, and that I understand what it actually means,” Schwacke says.She overcomes hurdles by collaborating closely with colleagues across fields, including neuroscience and electrical engineering, and sometimes by just making small changes to her experiments and watching what happens next.Community mattersSchwacke is not just active in the lab. In Kitchen Matters, she and her fellow DMSE grad students set up booths at local events like the Cambridge Science Fair and Steam It Up, an after-school program with hands-on activities for kids.“We did ‘pHun with Food’ with ‘fun’ spelled with a pH, so we had cabbage juice as a pH indicator,” Schwacke says. “We let the kids test the pH of lemon juice and vinegar and dish soap, and they had a lot of fun mixing the different liquids and seeing all the different colors.”She has also served as the social chair and treasurer for DMSE’s graduate student group, the Graduate Materials Council. As an undergraduate at Caltech, she led workshops in science and technology for Robogals, a student-run group that encourages young women to pursue careers in science, and assisted students in applying for the school’s Summer Undergraduate Research Fellowships.For Schwacke, these experiences sharpened her ability to explain science to different audiences, a skill she sees as vital whether she’s presenting at a kids’ fair or at a research conference.“I always think, where is my audience starting from, and what do I need to explain before I can get into what I’m doing so that it’ll all make sense to them?” she says.Schwacke sees the ability to communicate as central to building community, which she considers an important part of doing research. “It helps with spreading ideas. It always helps to get a new perspective on what you’re working on,” she says. “I also think it keeps us sane during our PhD.”Yildiz sees Schwacke’s community involvement as an important part of her resume. “She’s doing all these activities to motivate the broader community to do research, to be interested in science, to pursue science and technology, but that ability will help her also progress in her own research and academic endeavors.”After her PhD, Schwacke wants to take that ability to communicate with her to academia, where she’d like to inspire the next generation of scientists and engineers. Yildiz has no doubt she’ll thrive.“I think she’s a perfect fit,” Yildiz says. “She’s brilliant, but brilliance by itself is not enough. She’s persistent, resilient. You really need those on top of that.” More

  • in

    Over 1,000 MIT students inspired to work toward climate solutions

    Recently, more than 1,000 MIT students stepped into the shoes of global decision-makers by trying out En-ROADS, a simulation tool developed to test climate policies, explore solutions, and envision a cleaner and safer environmental future.MIT is committed to climate action, and this year’s new student orientation showcased that commitment. For the first time ever, incoming Leaders for Global Operations (LGO), Executive MBA, Sloan Fellow MBA, MBA, and undergraduate students all explored the capabilities of En-ROADS.“The goal is for MIT to become one of the world’s most prolific, collaborative, and interdisciplinary sources of technological, behavioral, and policy solutions for the global climate challenge over the next decade,” MIT Provost Anantha P. Chandrakasan told an audience of about 300 undergraduates from the Class of 2029. “It is something we need to do urgently, and today is your opportunity to play a role in that bold mission.”Connecting passion with science for changeIn group workshop sessions, students collaborated to create a world in which global warming stays well below 2 degrees Celsius above preindustrial levels — the goal of the 2015 Paris Agreement. Backed by the latest science, the En-ROADS simulator let them explore firsthand how policies like carbon pricing and clean energy investments affect our climate, economy, and health. Over 450 incoming MBA students even role-played as delegates at a global climate summit conference, tasked with negotiating a global agreement to address the harm caused by climate change.For first-year MBA student Allison Somuk, who played the role of President Xi Jinping of China, the workshop was not only eye-opening about climate, but also altered how she plans to approach her future work and advocacy.“Before the simulation, I didn’t have data on climate change, so I was surprised to see how close we are to catastrophic temperature increases. What surprised me most was how difficult it was to slow that trajectory. It required significant action and compromise from nearly every sector, not just a few. As someone passionate about improving maternal health care in developing nations, my view of contributing factors has broadened. I now see how maternal health may be affected by a larger system where climate policy decisions directly affect women’s health outcomes.”MIT Sloan Research Affiliate Andrew Jones, who is also executive director and co-founder of Climate Interactive and co-creator of the En-ROADS tool, presented several sessions during orientation. Looking back on the week, he found the experience personally rewarding.  “Engaging with hundreds of students, I was inspired by the powerful alignment between their passion for climate action and MIT’s increased commitment to delivering on climate goals. This is a pivotal moment for breakthroughs on our campus.”Other presenters included Jennifer Graham, MIT Sustainability Initiative senior associate director; Jason Jay, MIT Sustainability Initiative director; Krystal Noiseux, MIT Climate Pathways Project associate director; Bethany Patten, MIT Climate Policy Center executive director; and John Sterman, Jay W. Forrester Professor of Management, professor in the MIT Institute for Data, Systems, and Society, and director of the MIT System Dynamics Group.Chris Rabe, the MIT Climate Project’s Education Program director, was impressed, but not surprised, by how much students learned so quickly as they worked together to solve the problem with En-ROADS.“By integrating reflection, emotional dynamics, multi-generational perspectives, group work, and inquiry, the En-ROADS simulation provides an ideal foundation for first-year students to explore the breadth of climate and sustainability opportunities at MIT. In the process, students came to recognize the many levers and multi-solving approaches required to address the complex challenges of climate change.”Inspiring climate leadersThe En-ROADS workshops were a true team effort, made possible with the help of senior staff at MIT Sloan School of Management and the MBA program office, and members of the MIT Sloan Sustainability Initiative, Climate Pathways Project, Climate Policy Center, the Climate Project, Office of the First Year, and entire undergraduate Orientation team.“Altogether, over a thousand of the newest members of the MIT community have now had a chance to learn for themselves about the climate crisis,” says Sterman, “and what we can do to create a healthier, safer, more prosperous, and more sustainable world — and how they can get involved to bring that world into being, even as first-year undergrads and MBAs.” By the end of the workshops, the students’ spirits were buoyed. They all had successfully found ways to keep global warming to below 2 C.  When asked, “What would you love about being part of this new future you’ve created?,”  a more positive, optimistic word cloud came into view. Answers included:breathing cleaner air;giving my children a better and safer environment;my hometown would not be flooded constantly;rich marine life and protection of reefs;exciting, new clean industries;increased socioeconomic equality; andproof that we as a global community can work together to save ourselves. First-year MBA student Ruby Eisenbud sums up the sentiment many new MIT students came away with after their workshop.“Coming to Sloan, one of the questions on my mind was: How can we, as future leaders, make a positive impact related to climate change? While En-ROADS is a simulation, it felt like we experienced, in the smallest way, what it could be like to be a leader navigating the diverging interests of all stakeholders involved in mitigating the impacts of the climate crisis. While the simulation prompted us to face the difficult reality of climate change, it also reinforced my motivation to emphasize climate in my work at Sloan and beyond.” More

  • in

    Students and staff work together for MIT’s first “No Mow May”

    In recent years, some grass lawns around the country have grown a little taller in springtime thanks to No Mow May, a movement originally launched by U.K. nonprofit Plantlife in 2019 designed to raise awareness about the ecological impacts of the traditional, resource-intensive, manicured grass lawn. No Mow May encourages people to skip spring mowing to allow for grass to grow tall and provide food and shelter for beneficial creatures including bees, beetles, and other pollinators.This year, MIT took part in the practice for the first time, with portions of the Kendall/MIT Open Space, Bexley Garden, and the Tang Courtyard forgoing mowing from May 1 through June 6 to make space for local pollinators, decrease water use, and encourage new thinking about the traditional lawn. MIT’s first No Mow May was the result of championing by the Graduate Student Council Sustainability Subcommittee (GSC Sustain) and made possible by the Office of the Vice Provost for Campus Space Management and Planning. A student idea sproutsDespite being a dense urban campus, MIT has no shortage of green spaces — from pocket gardens and community-managed vegetable plots to thousands of shade trees — and interest in these spaces continues to grow. In recent years, student-led initiatives supported by Institute leadership and operational staff have transformed portions of campus by increasing the number of native pollinator plants and expanding community gardens, like the Hive Garden. With No Mow May, these efforts stepped out of the garden and into MIT’s many grassy open spaces. “The idea behind it was to raise awareness for more sustainable and earth-friendly lawn practices,” explains Gianmarco Terrones, GSC Sustain member. Those practices include reducing the burden of mowing, limiting use of fertilizers, and providing shelter and food for pollinators. “The insects that live in these spaces are incredibly important in terms of pollination, but they’re also part of the food chain for a lot of animals,” says Terrones. Research has shown that holding off on mowing in spring, even in small swaths of green space, can have an impact. The early months of spring have the lowest number of flowers in regions like New England, and providing a resource and refuge — even for a short duration — can support fragile pollinators like bees. Additionally, No Mow May aims to help people rethink their yards and practices, which are not always beneficial for local ecosystems. Signage at each No Mow site on campus highlighted information on local pollinators, the impact of the project, and questions for visitors to ask themselves. “Having an active sign there to tell people, ‘look around. How many butterflies do you see after six weeks of not mowing? Do you see more? Do you see more bees?’ can cause subtle shifts in people’s awareness of ecosystems,” says GSC Sustain member Mingrou Xie. A mowed barrier around each project also helped visitors know that areas of tall grass at No Mow sites are intentional.Campus partners bring sustainable practices to lifeTo make MIT’s No Mow May possible, GSC Sustain members worked with the Office of the Vice Provost and the Open Space Working Group, co-chaired by Vice Provost for Campus Space Management and Planning Brent Ryan and Director of Sustainability Julie Newman. The Working Group, which also includes staff from Open Space Programming, Campus Planning, and faculty in the School of Architecture and Planning, helped to identify potential No Mow locations and develop strategies for educational signage and any needed maintenance. “Massachusetts is a biodiverse state, and No Mow May provides an exciting opportunity for MIT to support that biodiversity on its own campus,” says Ryan. Students were eager for space on campus with high visibility, and the chosen locations of the Kendall/MIT Open Space, Bexley Garden, and the Tang Courtyard fit the bill. “We wanted to set an example and empower the community to feel like they can make a positive change to an environment they spend so much time in,” says Xie. For GSC Sustain, that positive change also takes the form of the Native Plant Project, which they launched in 2022 to increase the number of Massachusetts-native pollinator plants on campus — plants like swamp milkweed, zigzag goldenrod, big leaf aster, and red columbine, with which native pollinators have co-evolved. Partnering with the Open Space Working Group, GSC Sustain is currently focused on two locations for new native plant gardens — the President’s Garden and the terrace gardens at the E37 Graduate Residence. “Our short-term goal is to increase the number of native [plants] on campus, but long term we want to foster a community of students and staff interested in supporting sustainable urban gardening,” says Xie.Campus as a test bed continues to growAfter just a few weeks of growing, the campus No Mow May locations sprouted buttercups, mouse ear chickweed, and small tree saplings, highlighting the diversity waiting dormant in the average lawn. Terrones also notes other discoveries: “It’s been exciting to see how much the grass has sprung up these last few weeks. I thought the grass would all grow at the same rate, but as May has gone on the variations in grass height have become more apparent, leading to non-uniform lawns with a clearly unmanicured feel,” he says. “We hope that members of MIT noticed how these lawns have evolved over the span of a few weeks and are inspired to implement more earth-friendly lawn practices in their own homes/spaces.”No Mow May and the Native Plant Project fit into MIT’s overall focus on creating resilient ecosystems that support and protect the MIT community and the beneficial critters that call it home. MIT Grounds Services has long included native plants in the mix of what is grown on campus and native pollinator gardens, like the Hive Garden, have been developed and cared for through partnerships with students and Grounds Services in recent years. Grounds, along with consultants that design and install our campus landscape projects, strive to select plants that assist us with meeting sustainability goals, like helping with stormwater runoff and cooling. No Mow May can provide one more data point for the iterative process of choosing the best plants and practices for a unique microclimate like the MIT campus.“We are always looking for new ways to use our campus as a test bed for sustainability,” says Director of Sustainability Julie Newman. “Community-led projects like No Mow May help us to learn more about our campus and share those lessons with the larger community.”The Office of the Vice Provost, the Open Space Working Group, and GSC Sustain will plan to reconnect in the fall for a formal debrief of the project and its success. Given the positive community feedback, future possibilities of expanding or extending No Mow May will be discussed. More

  • in

    A journey of resilience, fueled by learning

    In 2021, Hilal Mohammadzai was set to begin his senior year at the American University of Afghanistan (AUAF), where he was working toward a bachelor’s degree in computer science. However, that August, the Taliban seized control of the Afghani government, and Mohammadzai’s education — along with that of thousands of other students — was put on hold. “It was an uncertain future for all of the students,” says Mohammadzai.Mohammadzai ultimately did receive his undergraduate degree from AUAF in May 2023 after months of disruption, and after transferring and studying for one semester at the American University of Bulgaria. As he was considering where to take his studies next, Mohammadzai heard about the MIT Emerging Talent Certificate in Computer and Data Science. His friend graduated from the program in early 2023 and had only positive things to say about the education, community, and network. Creating opportunities to learn data sciencePart of MIT Open Learning, Emerging Talent develops global education programs for talented individuals from challenging economic and social circumstances, equipping them with the knowledge and tools to advance their education and careers.The Certificate in Computer and Data Science is a year-long online learning program for talented learners including refugees, migrants, and first-generation low-income students from historically marginalized backgrounds and underserved communities worldwide. The curriculum incorporates computer science and data analysis coursework from MITx, professional skill building, capstone projects, mentorship and internship options, and opportunities for networking with MIT’s global community. Throughout his undergraduate coursework, Mohammadzai discovered an affinity for data visualization, and decided that he wanted to pursue a career in data science. The opportunity with the Emerging Talent program presented itself at the perfect time. Mohammadzai applied and was accepted into the 2023-24 cohort, earning a spot out of a pool of over 2,000 applicants. “I thought it would be a great opportunity to learn more data science to build up on my existing knowledge,” he says.Expanding and deepening his data science knowledgeMohammadzai’s acceptance to the Emerging Talent program came around the same time that he began an MBA program at the American University of Central Asia in Kyrgyzstan. For him, the two programs made for a perfect pairing. “When you have data science knowledge, you usually also require domain knowledge — whether it’s in business or economics — to help with interpreting data and making decisions,” he says. “Analyzing the data is one piece, but understanding how to interpret that data and make a decision usually requires domain knowledge.”Although Mohammadzai had some data science experience from his undergraduate coursework, he learned new skills and new approaches to familiar knowledge in the Emerging Talent program.“Data structures were covered at university, but I found it much more in-depth in the MIT courses,” said Mohammadzai. “I liked the way it was explained with real-life examples.” He worked with students from different backgrounds, and used Github for group projects. Mohammadzai also took advantage of personal agency and job-readiness workshops provided by the Emerging Talent team, such as how to pursue freelancing and build a mentorship network — skills that he has taken forward in life.“I found it an exceptional opportunity,” he says. “The courses, the level of education, and the quality of education that was provided by MIT was really inspiring to me.”Applying data skills to real-world situationsAfter graduating with his Certificate in Computer and Data Science, Mohammadzai began a paid internship with TomorrowNow, which was facilitated by introductions from the Emerging Talent team. Mohammadzai’s resume and experience stood out to the hiring team, and he was selected for the internship program.TomorrowNow is a climate-tech nonprofit that works with philanthropic partners, commercial markets, R&D organizations, and local climate adaptation efforts to localize and open source weather data for smallholder farmers in Africa. The organization builds public capacity and facilitates partnerships to deploy and sustain next-generation weather services for vulnerable communities facing climate change, while also enabling equitable access to these services so that African farmers can optimize scarce resources such as water and farm inputs. Leveraging philanthropy as seed capital, TomorrowNow aims to de-risk weather and climate technologies to make high-quality data and products available for the public good, ultimately incentivizing the private sector to develop products that reach last-mile communities often excluded from advancements in weather technology.For his internship, Mohammadzai worked with TomorrowNow climatologist John Corbett to understand the weather data, and ultimately learn how to analyze it to make recommendations on what information to share with customers. “We challenged Hilal to create a library of training materials leveraging his knowledge of Python and targeting utilization of meteorological data,” says Corbett. “For Hilal, the meteorological data was a new type of data and he jumped right in, working to create training materials for Python users that not only manipulated weather data, but also helped make clear patterns and challenges useful for agricultural interpretation of these data. The training tools he built helped to visualize — and quantify — agricultural meteorological thresholds and their risk and potential impact on crops.” Although he had previously worked with real-world data, working with TomorrowNow marked Mohammadzai’s first experience in the domain of climate data. This area presented a unique set of challenges and insights that broadened his perspective. It not only solidified his desire to continue on a data science path, but also sparked a new interest in working with mission-focused organizations. Both TomorrowNow and Mohammadzai would like to continue working together, but he first needs to secure a work visa.Without a visa, Mohammadzai cannot work for more than three to four hours a day, which makes securing a full-time job impossible. Back in 2021, the American University of Afghanistan filed a P-1 (priority one) asylum case for their students to seek resettlement in the United States because of the potential threat posed to them by the Taliban.Mohammadzai’s hearing was scheduled for Feb. 1, but it was postponed after the program was suspended early this year. As Mohammadzai looks to the end of his MBA program, his future feels uncertain. He has lived abroad since 2021 thanks to student visas and scholarships, but until he can secure a work visa he has limited options. He is considering pursuing a PhD program in order to keep his student visa status, while he waits on news about a more permanent option. “I just want to find a place where I can work and contribute to the community.” More

  • in

    “Each of us holds a piece of the solution”

    MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — between scientists and economists, between architects and data scientists, between policymakers and physicists, between anthropologists and engineers, and more,” MIT Vice President for Energy and Climate Evelyn Wang told an energetic crowd of faculty, students, and staff on May 6. “Each of us holds a piece of the solution — but only together can we see the whole.”Undeterred by heavy rain, approximately 300 campus community members filled the atrium in the Tina and Hamid Moghadam Building (Building 55) for a spring gathering hosted by Wang and the Climate Project at MIT. The initiative seeks to direct the full strength of MIT to address climate change, which Wang described as one of the defining challenges of this moment in history — and one of its greatest opportunities.“It calls on us to rethink how we power our world, how we build, how we live — and how we work together,” Wang said. “And there is no better place than MIT to lead this kind of bold, integrated effort. Our culture of curiosity, rigor, and relentless experimentation makes us uniquely suited to cross boundaries — to break down silos and build something new.”The Climate Project is organized around six missions, thematic areas in which MIT aims to make significant impact, ranging from decarbonizing industry to new policy approaches to designing resilient cities. The faculty leaders of these missions posed challenges to the crowd before circulating among the crowd to share their perspectives and to discuss community questions and ideas.Wang and the Climate Project team were joined by a number of research groups, startups, and MIT offices conducting relevant work today on issues related to energy and climate. For example, the MIT Office of Sustainability showcased efforts to use the MIT campus as a living laboratory; MIT spinouts such as Forma Systems, which is developing high-performance, low-carbon building systems, and Addis Energy, which envisions using the earth as a reactor to produce clean ammonia, presented their technologies; and visitors learned about current projects in MIT labs, including DebunkBot, an artificial intelligence-powered chatbot that can persuade people to shift their attitudes about conspiracies, developed by David Rand, the Erwin H. Schell Professor at the MIT Sloan School of Management.Benedetto Marelli, an associate professor in the Department of Civil and Environmental Engineering who leads the Wild Cards Mission, said the energy and enthusiasm that filled the room was inspiring — but that the individual conversations were equally valuable.“I was especially pleased to see so many students come out. I also spoke with other faculty, talked to staff from across the Institute, and met representatives of external companies interested in collaborating with MIT,” Marelli said. “You could see connections being made all around the room, which is exactly what we need as we build momentum for the Climate Project.” More

  • in

    Guardian Ag’s crop-spraying drone is replacing dangerous pilot missions

    Every year during the growing season, thousands of pilots across the country climb into small planes loaded with hundreds of pounds of pesticides and fly extremely close to the ground at upward of 140 miles an hour, unloading their cargo onto rows of corn, cotton, and soybeans.The world of agricultural aviation is as dangerous as it is vital to America’s farms. Unfortunately, fatal crashes are common. Now Guardian Ag, founded by former MIT Electronics Research Society (MITERS) makers Adam Bercu and Charles Guan ’11, is offering an alternative in the form of a large, purpose-built drone that can autonomously deliver 200-pound payloads across farms. The company’s drones feature an 18-foot spray radius, 80-inch rotors, a custom battery pack, and aerospace-grade materials designed to make crop spraying more safe, efficient, and inexpensive for farmers.“We’re trying to bring technology to American farms that are hundreds or thousands of acres, where you’re not replacing a human with a hand pump — you’re replacing a John Deere tractor or a helicopter or an airplane,” Bercu says.“With Guardian, the operator shows up about 30 minutes before they want to spray, they mix the product, path plan the field in our app, and it gives an estimate for how long the job will take,” he says. “With our fast charging, you recharge the aircraft while you fill the tank, and those two operations take about the same amount of time.”

    Play video

    From Battlebots to farmlandsAt a young age, Bercu became obsessed with building robots. Growing up in south Florida, he’d attend robotic competitions, build prototypes, and even dumpster dive for particularly hard-to-find components. At one competition, Bercu met Charles Guan, who would go on to major in mechanical engineering at MIT, and the two robot enthusiasts became lifelong friends.“When Charles came to MIT, he basically convinced me to move to Cambridge,” Bercu says. “He said, ‘You need to come up here. I found more people like us. Hackers!’”Bercu visited Cambridge, Massachusetts, and indeed fell in love with the region’s makerspaces and hacker culture. He moved soon after, and he and Guan began spending free time at spaces including the Artisans Asylum makerspace in Somerville, Massachusetts; MIT’s International Design Center; and the MIT Electronics Research Society (MITERS) makerspace. Guan held several leadership positions at MITERS, including facilities manager, treasurer, and president.“MIT offered enormous latitude to its students to be independent and creative, which was reflected in the degree of autonomy they permit student-run organizations like MITERS to have compared to other top-tier schools,” Guan says. “It was a key selling point to me when I was touring mechanical engineering labs as a junior in high school. I was well-known in the department circle for being at MITERS all the time, possibly even more than I spent on classes.”After Guan graduated, he and Bercu started a hardware consulting business and competed in the robot combat show Battlebots. Guan also began working as a design instructor in MIT’s Department of Mechanical Engineering, where he taught a section of Course 2.007 that tasked students with building go-karts.Eventually, Guan and Bercu decided to use their experience to start a drone company.“Over the course of Battlebots and building go-karts, we knew electric batteries were getting really cheap and electric vehicle supply chains were established,” Bercu explains. “People were raising money to build eVTOL [electric vertical take-off and landing] vehicles to transport people, but we knew diesel fuel still outperformed batteries over long distances. Where electric systems did outperform combustion engines was in areas where you needed peak power for short periods of time. Basically, batteries are awesome when you have a short mission.”That idea made the founders think crop spraying could be a good early application. Bercu’s family runs an aviation business, and he knew pilots who would spray crops as their second jobs.“It’s one of those high-paying but very dangerous jobs,” Bercu says. “Even in the U.S., we lose between 1 and 2 percent of all agriculture pilots each year to fatal accidents. These people are rolling the dice every time they do this: You’re flying 6 feet off the ground at 140 miles an hour with 800 gallons of pesticide in your tank.”After cobbling together spare parts from Battlebots and their consulting business, the founders built a 600-pound drone. When they finally got it to fly, they decided the time was right to launch their company, receiving crucial early guidance and their first funding from the MIT-affiliated investment firm the E14 Fund.The founders spent the next year interviewing crop dusters and farmers. They also started engaging with the Federal Aviation Administration.“There was no category for anything like this,” Bercu explains. “With the FAA, we not only got through the approval process, we helped them build the process as we went through it, because we wanted to establish some common-sense standards.”Guardian custom-built its batteries to optimize throughput and utilization rate of its drones. Depending on the farm, Bercu says his machines can unload about 1.5 to 2 tons of payload per hour.Guardian’s drones can also spray more precisely than planes, reducing the environmental impact of pesticides, which often pollute the landscapes and waterways surrounding farms.“This thing has the precision to spray the ‘Mona Lisa’ on 20 acres, but we’re not leveraging that functionality today,” Bercu says. “For the operator we want to make it very easy. The goal is to take someone who sprays with a tractor and teach them to spray with a drone in less than a week.”Scaling for farmersTo date, Guardian Ag has built eight of its aircraft, which are actively delivering payloads over California farms in trials with paying customers. The company is currently ramping up manufacturing in its 60,000-square-foot facility in Massachusetts, and Bercu says Guardian has a backlog of hundreds of millions of dollars-worth of drones.“Grower demand has been exceptional,” Bercu says. “We don’t need to educate them on the need for this. They see the big drone with the big tank and they’re in.”Bercu envisions Guardian’s drones helping with a number of other tasks like ship-to-ship logistics, delivering supplies to offshore oil rigs, mining, and other areas where helicopters and small aircraft are currently flown through difficult terrain. But for now, the company is focused on starting with agriculture.“Agriculture is such an important and foundational aspect of our country,” says Guardian Ag chief operating officer Ashley Ferguson MBA ’19. “We work with multigenerational farming families, and when we talk to them, it’s clear aerial spray has taken hold in the industry. But there’s a large shortage of pilots, especially for agriculture applications. So, it’s clear there’s a big opportunity.”Seven years since founding Guardian, Bercu remains grateful that MIT’s community opened its doors for him when he moved to Cambridge.“Without the MIT community, this company wouldn’t be possible,” Bercu says. “I was never able to go to college, but I’d love to one day apply to MIT and do my engineering undergrad or go to the Sloan School of Management. I’ll never forget MIT’s openness to me. It’s a place I hold near and dear to my heart.” More