More stories

  • in

    Merging science and systems thinking to make materials more sustainable

    For Professor Elsa Olivetti, tackling a problem as large and complex as climate change requires not only lab research but also understanding the systems of production that power the global economy.

    Her career path reflects a quest to investigate materials at scales ranging from the microscopic to the mass-manufactured.

    “I’ve always known what questions I wanted to ask, and then set out to build the tools to help me ask those questions,” says Olivetti, the Jerry McAfee Professor in Engineering.

    Olivetti, who earned tenure in 2022 and was recently appointed associate dean of engineering, has sought to equip students with similar skills, whether in the classroom, in her lab group, or through the interdisciplinary programs she leads at MIT. Those efforts have earned her accolades including the Bose Award for Excellence in Teaching, a MacVicar Faculty Fellowship in 2021, and the McDonald Award for Excellence in Mentoring and Advising in 2023.

    “I think to make real progress in sustainability, materials scientists need to think in interdisciplinary, systems-level ways, but at a deep technical level,” Olivetti says. “Supporting my students so that’s something that a lot more people can do is very rewarding for me.”

    Her mission to make materials more sustainable also makes Olivetti grateful [EAO1] she’s at MIT, which has a long tradition of both interdisciplinary collaboration and technical know-how.

    “MIT’s core competencies are well-positioned for bold achievements in climate and sustainability — the deep expertise on the economics side, the frontier knowledge in science, the computational creativity,” Olivetti says. “It’s a really exciting time and place where the key ingredients for progress are simmering in transformative ways.”

    Answering the call

    The moment that set Olivetti on her life’s journey began when she was 8, with a knock at her door. Her parents were in the other room, so Olivetti opened the door and met an organizer for Greenpeace, a nonprofit that works to raise awareness of environmental issues.

    “I had a chat with that guy and got hooked on environmental concerns,” Olivetti says. “I still remember that conversation.”

    The interaction changed the way Olivetti thought about her place in the world, and her new perspective manifested itself in some unique ways. Her elementary school science fair projects became elaborate pursuits of environmental solutions involving burying various items in the backyard to test for biodegradability. There was also an awkward attempt at natural pesticide development, which lead to a worm hatching in her bedroom.

    As an undergraduate at the University of Virginia, Olivetti gravitated toward classes in environmentalism and materials science.

    “There was a link between materials science and a broader, systems way of framing design for environment, and that just clicked for me in terms of the way I wanted to think about environmental problems — from the atom to the system,” Olivetti recalls.

    That interest led Olivetti to MIT for a PhD in 2001, where she studied the feasibility of new materials for lithium-ion batteries.

    “I really wanted to be thinking of things at a systems level, but I wanted to ground that in lab-based research,” Olivetti says. “I wanted an experiential experience in grad school, and that’s why I chose MIT’s program.”

    Whether it was her undergraduate studies, her PhD, or her ensuing postdoc work at MIT, Olivetti sought to learn new skills to continue bridging the gap between materials science and environmental systems thinking.

    “I think of it as, ‘Here’s how I can build up the ways I ask questions,’” Olivetti explains. “How do we design these materials while thinking about their implications as early as possible?”

    Since joining MIT’s faculty in 2014, Olivetti has developed computational models to measure the cost and environmental impact of new materials, explored ways to adopt more sustainable and circular supply chains, and evaluated potential materials limitations as lithium-ion battery production is scaled. That work helps companies increase their use of greener, recyclable materials and more sustainably dispose of waste.

    Olivetti believes the wide scope of her research gives the students in her lab a more holistic understanding of the life cycle of materials.

    “When the group started, each student was working on a different aspect of the problem — like on the natural language processing pipeline, or on recycling technology assessment, or beneficial use of waste — and now each student can link each of those pieces in their research,” Olivetti explains.

    Beyond her research, Olivetti also co-directs the MIT Climate and Sustainability Consortium, which has established a set of eight areas of sustainability that it organizes coalitions around. Each coalition involves technical leaders at companies and researchers at MIT that work together to accelerate the impact of MIT’s research by helping companies adopt innovative and more sustainable technologies.

    “Climate change mitigation and resilience is such a complex problem, and at MIT we have practice in working together across disciplines on many challenges,” Olivetti says. “It’s been exciting to lean on that culture and unlock ways to move forward more effectively.”

    Bridging divides

    Today, Olivetti tries to maximize the impact of her and her students’ research in materials industrial ecology by maintaining close ties to applications. In her research, this means working directly with aluminum companies to design alloys that could incorporate more scrap material or with nongovernmental organizations to incorporate agricultural residues in building products. In the classroom, that means bringing in people from companies to explain how they think about concepts like heat exchange or fluid flow in their products.

    “I enjoy trying to ground what students are learning in the classroom with what’s happening in the world,” Olivetti explains.

    Exposing students to industry is also a great way to help them think about their own careers. In her research lab, she’s started using the last 30 minutes of meetings to host talks from people working in national labs, startups, and larger companies to show students what they can do after their PhDs. The talks are similar to the Industry Seminar series Olivetti started that pairs undergraduate students with people working in areas like 3D printing, environmental consulting, and manufacturing.

    “It’s about helping students learn what they’re excited about,” Olivetti says.

    Whether in the classroom, lab, or at events held by organizations like MCSC, Olivetti believes collaboration is humanity’s most potent tool to combat climate change.

    “I just really enjoy building links between people,” Olivetti says. “Learning about people and meeting them where they are is a way that one can create effective links. It’s about creating the right playgrounds for people to think and learn.” More

  • in

    A civil discourse on climate change

    A new MIT initiative designed to encourage open dialogue on campus kicked off with a conversation focused on how to address challenges related to climate change.

    “Climate Change: Existential Threat or Bump in the Road” featured Steve Koonin, theoretical physicist and former U.S. undersecretary for science during the Obama administration, and Kerry Emanuel, professor emeritus of atmospheric science at MIT. A crowd of roughly 130 students, staff, and faculty gathered in an MIT lecture hall for the discussion on Tuesday, Oct. 24. 

    “The bump is strongly favored,” Koonin said when the talk began, referring to his contention that climate change was a “bump in the road” rather than an existential threat. After proposing a future in which we could potentially expect continued growth in America’s gross domestic product despite transportation and infrastructure challenges related to climate change, he concluded that investments in nuclear energy and capacity increases related to storing wind- and solar-generated energy could help mitigate climate-related phenomena. 

    Emanuel, while mostly agreeing with Koonin’s assessment of climate challenges and potential solutions, cautioned against underselling the threat of human-aided climate change.

    “Humanity’s adaptation to climate stability hasn’t prepared us to effectively manage massive increases in temperature and associated effects,” he argued. “We’re poorly adapted to less-frequent events like those we’re observing now.”

    Decarbonization, Emanuel noted, can help mitigate global conflicts related to fossil fuel usage. “Carbonization kills between 8 and 9 million people annually,” he said.

    The conversation on climate change is one of several planned on campus this academic year. The speaker series is one part of “Civil Discourse in the Classroom and Beyond,” an initiative being led by MIT philosophers Alex Byrne and Brad Skow. The two-year project is meant to encourage the open exchange of ideas inside and outside college and university classrooms. 

    The speaker series pairs external thought leaders with MIT faculty to encourage the interrogation and debate of all kinds of ideas.

    Finding common ground

    At the talk on climate change, both Koonin and Emanuel recommended a slow and steady approach to mitigation efforts, reminding attendees that, for example, developing nations can’t afford to take a developed world approach to climate change. 

    “These people have immediate needs to meet,” Koonin reminded the audience, “which can include fossil fuel use.”

    Both Koonin and Emanuel recommended a series of steps to assist with both climate change mitigation and effective messaging:

    Sustain and improve climate science — continue to investigate and report findings.
    Improve climate communications for non-experts — tell an easy-to-understand and cohesive story.
    Focus on reliability and affordability before mitigation — don’t undertake massive efforts that may disrupt existing energy transmission infrastructure.
    Adopt a “graceful” approach to decarbonization — consider impacts as broadly as possible.
    Don’t constrain energy supply in the developing world.
    Increase focus on developing and delivering alternative responses  — consider the potential ability to scale power generation, and delivery methods like nuclear energy.
    Mitigating climate risk requires political will, careful consideration, and an improved technical approach to energy policy, both concluded.

    “We have to learn to deal rationally with climate risk in a polarized society,” Koonin offered.

    The audience asked both speakers questions about impacts on nonhuman species (“We don’t know but we should,” both shared); nuclear fusion (“There isn’t enough tritium to effectively scale the widespread development of fusion-based energy; perhaps in 30 to 40 years,” Koonin suggested); and the planetary boundaries framework (“There’s good science underway in this space and I’m curious to see where it’s headed,” said Emanuel.) 

    “The event was a great success,” said Byrne, afterward. “The audience was engaged, and there was a good mix of faculty and students.”

    “One surprising thing,” Skow added, “was both Koonin and Emanuel were down on wind and solar power, [especially since] the idea that we need to transition to both is certainly in the air.”

    More conversations

    A second speaker series event, held earlier this month, was “Has Feminism Made Progress?” with Mary Harrington, author of “Feminism Against Progress,” and Anne McCants, MIT professor of history. An additional discussion planned for spring 2024 will cover the public health response to Covid-19.

    Discussions from the speaker series will appear as special episodes on “The Good Fight,” a podcast hosted by Johns Hopkins University political scientist Yascha Mounk.

    The Civil Discourse project is made possible due, in part, to funding from the Arthur Vining Davis Foundations and a collaboration between the MIT History Section and Concourse, a program featuring an integrated, cross-disciplinary approach to investigating some of humanity’s most interesting questions.

    The Civil Discourse initiative includes two components: the speaker series open to the MIT community, and seminars where students can discuss freedom of expression and develop skills for successfully engaging in civil discourse. More

  • in

    Dennis Whyte steps down as director of the Plasma Science and Fusion Center

    Dennis Whyte, who spearheaded the development of the world’s most powerful fusion electromagnet and grew the MIT Plasma Science and Fusion Center’s research volume by more than 50 percent, has announced he will be stepping down as the center’s director at the end of the year in order to devote his full attention to teaching, engaging in cutting-edge fusion research, and pursuing entrepreneurial activities at the PSFC.

    “The reason I came to MIT as a faculty member in ’06 was because of the PSFC and the very special place it held and still holds in fusion,” says Whyte, the Hitachi America Professor of Engineering in the Department of Nuclear Science and Engineering. When he was appointed director of the PSFC in 2015, Whyte saw it as an opportunity to realize even more of the PSFC’s potential: “After 10 years I think we’ve seen that dream come to life. Research and entrepreneurship are stronger than ever.”

    Whyte’s passion has always been for fusion — the process by which light elements combine to form heavier ones, releasing massive amounts of energy. One hundred years ago fusion was solely the provenance of astronomers’ speculation; through the efforts of generations of scientists and engineers, fusion now holds the potential to offer humanity an entirely new source of clean, abundant energy — and Whyte has been at the forefront of that effort.

    “Fusion’s challenges require interdisciplinary work, so it’s always fresh, and you get these unexpected intersections that can have wild outcomes. As an inherently curious person, fusion is perfect for me.”

    Whyte’s enthusiasm is legendary, especially when it comes to teaching. The effects of that enthusiasm are easy to see: At the start of his tenure, only a handful of students chose to pursue plasma physics and fusion science. Since then, the number of students has ballooned, and this year nearly 100 students from six departments are working with 15 faculty members.

    Of the growth, Whyte says, “It’s not just that we have more students; it’s that they’re working on more diverse topics, and their passion to make fusion a reality is the best part of the PSFC. Seeing full seminars and classes is fundamentally why I’m here.”

    Even as he managed the directorship and pursued his own scholarly work, Whyte remained active in the classroom and continued advising students. Zach Hartwig, a former student who is now a PSFC researcher and MIT faculty member himself, recalled his first meeting with Whyte as an incoming PhD student: “I had to choose between several projects and advisors and meeting Dennis made my decision easy. He catapulted out of his chair and started sketching his vision for a new fusion diagnostic that many people thought was crazy. His passion and eagerness to tackle only the most difficult problems in the field was immediately tangible.”

    For the past 13 years Whyte has offered a fusion technology design class that has generated several key breakthroughs, including liquid immersion blankets essential for converting fusion energy to heat, inside launch radio frequency systems used to stabilize fusing plasmas, and high-temperature superconducting electromagnets that have opened the door to the possibility of fusion devices that are not only smaller, but also more powerful and efficient.

    In fact, the potential of these electromagnets was significant enough that Whyte, an MIT postdoc, and three of Whyte’s former students (Hartwig among them) spun out a private fusion company to fully realize the magnets’ capabilities. Commonwealth Fusion Systems (CFS) both launched and signed a cooperative research agreement with the PSFC in 2018, and the founders’ vision parlayed into significant external investment, allowing a coalition of CFS and PSFC researchers to refine and develop the electromagnets first conceived in Whyte’s class.

    Three years later, after a historic day of testing, the magnet produced a field strength of 20 tesla, making it the most powerful fusion superconducting electromagnet in the world. According to Whyte, “The success of the TFMC magnet is an encapsulation of everything PSFC. It would’ve been impossible for a single investigator, or a lone spin-out, but we brought together all these disciplines in a team that could execute innovatively and incredibly quickly. We shortened the timescale not just for this project, but for fusion as a whole.”

    CFS remains an important collaborator, accounting for approximately 20 percent of the PSFC’s current research portfolio. While Whyte has no financial stake in the company, he remains a principal investigator on CFS’s SPARC project, a proof-of-concept fusion device predicted to produce more energy than it consumes, ready in 2025. SPARC is the lead-up to ARC, CFS’s commercially scalable fusion power plant planned to arrive in the early 2030s.

    The collaboration between CFS and MIT followed a blueprint that had been piloted more than a decade prior, when the Italian energy company Eni S.p.A signed on as a founding member of the MIT Energy Initiative to develop low-carbon technologies. After many years of successfully working in tandem with MITEI to advance renewable energy research, in 2018 Eni made a significant investment in a young CFS to assist in realizing commercial fusion power, which in turn indirectly funded PSFC research; Eni also collaborated directly with the PSFC to create the Laboratory for Innovative Fusion Technologies, which remains active.

    Whyte believes that “thoughtful and meaningful collaboration with the energy industry can make a difference with research and climate change. Industry engagement is very relevant — it changed both of us. Now Eni has fusion in their portfolio.” The arrangement is a demonstration of how public-private collaborations can accelerate the progress of fusion science, and ultimately the arrival of fusion power.

    Whyte’s move to diversify collaborators, leverage the PSFC’s strength as a multidisciplinary hub, and expand research volume was essential to the center’s survival and growth. Early in his tenure, a shift in funding priorities necessitated the shutdown of Alcator C-Mod, the fusion research device in operation at the PSFC for 23 years — though not before C-Mod set the world record for plasma pressure on its last day of operation. Through this transition, Whyte and the members of his leadership team were able to keep the PSFC whole.

    One alumnus was a particular source of inspiration to Whyte during that time: “Reinier [Beeuwkes] said to me, ‘what you’re doing doesn’t just matter to students and MIT, it matters to the world.’ That was so meaningful, and his words really sustained me when I was feeling major doubt.” In 2022 Beeuwkes won the MIT Alumni Better World Service Award for his support of fusion and the PSFC. Since 2018, sponsored research at the PSFC has more than doubled, as have the number of personnel.

    Whyte’s determination to build and maintain a strong community is a prevailing feature of his leadership. Matt Fulton, who started at the PSFC in 1987 and is now director of operations, says of Whyte, “You want a leader like Dennis on your worst days. We were staring down disaster and he had a plan to hold the PSFC together, and somehow it worked. The research was important, but the people have always been more important to him. We’re so lucky to have him.”

    The Office of the Vice President for Research is launching a search for the PSFC’s next leader. Should the search extend beyond the end of the year, an interim director will be appointed.  

    “As MIT works to magnify its impact in the areas of climate and sustainability, Dennis has built the PSFC into an extraordinary resource for the Institute to draw upon,” says Maria T. Zuber, MIT’s vice president for research. “His leadership has positioned MIT on the leading edge of fusion research and the emerging commercial fusion industry, and while the nature of his contributions will change, … the value he brings to the MIT community will remain clear. As Dennis steps down as director, the PSFC is ascendant.”  More

  • in

    Celebrating Kendall Square’s past and shaping its future

    Kendall Square’s community took a deep dive into the history and future of the region at the Kendall Square Association’s 15th annual meeting on Oct. 19.

    It’s no secret that Kendall Square, located in Cambridge, Massachusetts, moves fast. The event, titled “Looking Back, Looking Ahead,” gave community members a chance to pause and reflect on how far the region has come and to discuss efforts to shape where it’s going next.

    “The impact of the last 15 years of working together with a purposeful commitment to make the world a better place was on display this evening,” KSA Executive Director Beth O’Neill Maloney told the audience toward the end of the evening. “It also shows how Kendall Square can continue contributing to the world.”

    The gathering took place at the Microsoft NERD Center on Memorial Drive, on a floor that also featured music from the Kendall Square Orchestra and, judging by the piles of empty trays at the end of the night, an exceedingly popular selection of food from Kendall Square restaurants. Attendees came from across Cambridge’s prolific innovation ecosystem — not just entrepreneurs and life science workers but also high school and college students, restaurant and retail shop owners, workers at local cleantech and robotics companies, and leaders of nonprofits.

    KSA itself is a nonprofit made up of over 150 organizations across Kendall Square, from major companies to universities like MIT to research organizations like the Broad Institute of MIT and Harvard and the independent shops and restaurants that give Kendall Square its distinct character.

    The night’s programming included talks about recent funding achievements in the region, a panel discussion on the implications of artificial intelligence, and a highly entertaining, whirlwind history lesson led by Daniel Berger-Jones of Cambridge Historical Tours.

    “Our vision for the state is to be the best, and Kendall really represents that,” said Yvonne Hao, Massachusetts secretary of economic development. “When I went to DC to talk to folks about why Massachusetts should win some of these grants, they said, ‘You already have Kendall, that’s what we’re trying to get the whole country to be like!’”

    Hao started her talk by noting her personal connection to Kendall Square. She moved to Cambridge with her family in 2010 and has watched the neighborhood transform, with her kids frequenting the old and new restaurants and shops around town.

    The crux of Hao’s talk was to remind attendees they had more to celebrate than KSA’s anniversary. Massachusetts was recently named the recipient of two major federal grants that will fuel the state’s innovation work. One of those grants, from the Advanced Research Projects Agency for Health (ARPA-H), designated the state an “Investor Catalyst Hub” to accelerate innovation around health care. The other, which came through the federal CHIPS and Science Act, will allow the state to establish the Northeast Microelectronics Coalition Hub to advance microelectronics jobs, workforce training opportunities, and investment in the region’s advanced manufacturing.

    Hao recalled making the pitch for the grants, which could collectively amount to hundreds of millions of dollars in funding over time.

    “The pitch happened in Kendall Square because Kendall highlights everything magical about Massachusetts — we have our universities, MIT, we have our research institutions, nonprofits, small businesses, and great community members,” Hao said. “We were hoping for good weather because we wanted to walk with government officials, because when you walk around Kendall, you see the art, you see the coffee shops, you see the people bumping into each other and talking, and you see why it’s so important that this one square mile of geography become the hub they were looking for.”

    Hao is also part of work to put together the state’s newest economic development plan. She said the group’s tier one priorities are transportation and housing, but listed a number of other areas where she hopes Massachusetts can improve.

    “We can be an amazing, strong economy that’s mission-driven and innovation-driven with all kinds of jobs for all kinds of people, and at the same time an awesome community that loves each other and has great food and small businesses and looks out for each other, that looks diverse just like this room,” Hao said. “That’s the story we want to tell.”

    After the historical tour and the debut of a video explaining the origins of the KSA, attendees fast-forwarded into the future with a panel discussion on the impact and implications of generative AI.

    “I think the paradigm shift we’re seeing with generative AI is going to be as transformative as the internet, perhaps even more so because the pace of adoption is much faster now,” said Microsoft’s Soundar Srinivasan.

    The panel also featured Jennat Jounaidi, a student at Cambridge Rindge and Latin School and member of Innovators for Purpose, a nonprofit that seeks to empower young people from historically marginalized groups to become innovators.

    “I’m interested to see how generative AI shapes my upbringing as well as the lives of future generations, and I think it’s a pivotal moment to decide how we can best develop and incorporate AI into all of our lives,” Jounaidi said.

    Panelists noted that today’s concerns around AI are important, such as its potential to perpetuate inequality and amplify misinformation. But they also discussed the technology’s potential to drive advances in areas like sustainability and health care.

    “I came to Kendall Square to do my PhD in AI at MIT back when the internet was called the ARPA-Net… so a while ago,” said Jeremy Wertheimer SM ’89, PhD ’96. “One of the dreams I had back then was to create a program to read all biology papers. We’re not quite there yet, but I think we’re on the cusp, and it’s very exciting.

    Above all else, the panelists characterized AI as an opportunity. Despite all that’s been accomplished in Kendall Square to date, the prevailing feeling at the event was excitement for the future.

    “Generative AI is giving us chance to stop working in siloes,” Jounaidi said. “Many people in this room go back to their companies and think about corporate responsibility, and I want to expand that to creating shared value in companies by seeking out the community and the people here. I think that’s important, and I’m excited to see what comes next.” More

  • in

    “Move-in day is kind of like our Superbowl”

    The academic year has officially begun at MIT, and the halls are once again filled with the energy and excitement that only students can bring. But MIT’s campus does not come to life automatically.

    The flurry of activity happening around campus this week was preceded by a lot of hard work by thousands of staff members committed to getting the school year off to a seamless start.

    “Getting MIT ready to welcome new and returning students is a real team effort, and much of the work goes on over the summer or behind the scenes when many students are away from campus,” says Suzy Nelson, vice chancellor and dean for student life. “I’m grateful to all of the staff members in the Division of Student Life and across the Institute whose dedication to their job and exceptional efforts help to make the MIT experience so special from the moment students arrive on campus.”

    Describing all of those efforts would require a book-length article, but here we highlight a few examples of the behind-the-scenes work that ushers in the new academic year.

    Housing and Residential Services

    One might think the team responsible for housing at MIT gets a break in June and July when undergraduates leave for the summer. But the housing team stays busy year-round. Summer months offer openings for renovations, planning, and events like summer programs and conferences (some of which provide housing). In fact, team members say the planning alone is nearly a year-round job.

    “We start planning for students coming back in May because first-year students are confirming attendance and starting to indicate their preferences for where they want to live, and housing works really closely with student leaders in each of the undergrad residences because our student leaders are very involved with room assignments,” explains Rich Hilton, associate dean and director for residential services and operations. “On the graduate side, grads typically move in Aug. 1, and departing grad students move out at the end of July, or sometimes earlier, so in those early summer months there’s a lot of transitioning happening.”

    Of course, move-in day for undergraduates and the subsequent Welcome Week are an important time for the Housing and Residential Services team to help the MIT community’s newest members settle in.

    “Move-in day is kind of like our Superbowl,” Hilton says. “All the summer projects we work on are to prepare and maintain the residence halls for new and returning students to be living in the residence halls. The ramp-up involves making sure the residences are refreshed and ready, and the welcome efforts include providing moving bins, materials, and moving assistance. For students who have never been to campus before, residential staff are often the first people they meet, so we want to put a really good impression out there. We pull out all the stops to make sure that welcome efforts are top-notch.”

    Hilton says the atmosphere is always special on move in day.

    “The students are a wonderful motivation,” Hilton says. “It’s great seeing the new students come in with their families. Students are coming from all corners of the world, from different backgrounds, and more often than not the parents are just beaming with pride, so being able to greet them and even reassure them if needed is really rewarding.”

    In all, MIT Housing and Residential Services employs more than 200 people focused on assignments, maintenance, cleaning, residential security, and more, to make living on campus as enjoyable as possible.

    “Housing truly is 24/7, 365,” Hilton says. “Our team members are on campus keeping our residents safe and happy and serving them 24 hours a day. They’re here rain or shine, and it’s nice to keep them in mind.”

    Dining

    MIT Dining works with students to offer healthy, affordable, and culturally meaningful food in environments that promote social connections, sustainability, and innovation. The department oversees nine different third-party contractors to provide services across 20+ locations — and MIT’s own dining staff consists of just two people: Director of Campus Dining Mark Hayes and Assistant Director of Dining Operations Heather Ryall.

    Typical summer months provide an opportunity for the small team to look at food trends, work with dieticians and food allergy specialists, review menus, and explore ways to improve operations. This summer was even busier thanks to renovations at the Stratton Student Center and Maseeh Hall and the introduction of new food stations in CommonWealth Kitchen and at Forbes Café.

    In August, MIT Dining makes sure it has established open lines of communication with new student leaders and other groups around campus

    “We interact with a lot of student groups this time of year,” Hayes says. “It’s exciting to start with a new group of students and get feedback, collaborating and sharing ideas. It reminds us of what we’re here for: students. If things are working, that’s great! If they’re not working, let’s collaborate and figure out what can we do better — let’s make it a pset [problem set]. What are we not doing that we should be? I’ve been lucky in that students at MIT are really engaged.”

    “August is when everyone wants to get together and make sure we’re starting off on the right foot,” Hayes says. “That two-way flow of information is what it’s all about, and it’s really strong here.”

    Some dining locations stay open through the summer to support grad students, faculty and staff, but residential dining halls shut down. By August, some international students and athletes begin moving back to campus. Then Welcome Week begins for first-year students. Then pretty much everyone else returns over Labor Day Weekend.

    “In a way, you go from almost zero to 100,” Hayes says.

    This academic year, DSL will undertake a thorough review of the residence hall dining program, gathering student and community input on enhancements. This follows a similar review of campus retail dining operations completed in December 2022.

    Student Support and Wellbeing

    The Student Support and Wellbeing team, co-led by Associate Dean and Senior Director Jimmy Doan, offers a slate of resources to make it easy for students to seek help if they need it, and to encourage students to take care of themselves throughout their time at MIT. The team also coordinates with faculty, staff, and student groups across the Institute to foster an environment where students’ sense of belonging and well-being is prioritized.

    Ahead of the new school year, team members have been sharing with faculty best practices for fostering student well-being in the classroom and labs, including presenting workshops to new faculty members to inform them of resources to use when they’re concerned about students.

    They have also been connecting with student leaders so they can help their peers prioritize well-being. “Come early August, we’re facilitating a lot of trainings and gearing up for new student orientation programs.” Doan says. “We’re working with a lot of student leaders this time of year. We know students learn as much from each other as they do from us.”

    New student orientation offers a chance to provide a week’s worth of programming to incoming first-year students. In one of those sessions, Dear Future Me, older students share their perspectives on prioritizing well-being and accessing support at MIT.

    “We try to normalize students getting help at MIT when they need it,” Doan says. “Starting from day one of orientation we tell them getting help is for everybody.”

    One office where nearly 80 percent of undergraduate students seek out help before they graduate is Student Support Services, more commonly known as “S3” or “S-Cubed.” The staff in S3 are preparing for the start of the year by revamping their virtual drop-in hours for students, which students can access from the S3 website.

    “We want the ways that students reach out for help to be as accessible as possible,” Doan says. More

  • in

    MIT engineering students take on the heat of Miami

    Think back to the last time you had to wait for a bus. How miserable were you? If you were in Boston, your experience might have included punishing wind and icy sleet — or, more recently, a punch of pollen straight to the sinuses. But in Florida’s Miami-Dade County, where the effects of climate change are both drastic and intensifying, commuters have to contend with an entirely different set of challenges: blistering temperatures and scorching humidity, making long stints waiting in the sun nearly unbearable.

    One of Miami’s most urgent transportation needs is shared by car-clogged Boston: coaxing citizens to use the municipal bus network, rather than the emissions-heavy individual vehicles currently contributing to climate change. But buses can be a tough sell in a sunny city where humidity hovers between 60 and 80 percent year-round. 

    Enter MIT’s Department of Electrical Engineering and Computer Science (EECS) and the MIT Priscilla King Gray (PKG) Public Service Center. The result of close collaboration between the two organizations, class 6.900 (Engineering For Impact) challenges EECS students to apply their engineering savvy to real-world problems beyond the MIT campus.

    This spring semester, the real-world problem was heat. 

    Miami-Dade County Department of Transportation and Public Works Chief Innovation Officer Carlos Cruz-Casas explains: “We often talk about the city we want to live in, about how the proper mix of public transportation, on-demand transit, and other mobility solutions, such as e-bikes and e-scooters, could help our community live a car-light life. However, none of this will be achievable if the riders are not comfortable when doing so.” 

    “When people think of South Florida and climate change, they often think of sea level rise,” says Juan Felipe Visser, deputy director of equity and engagement within the Office of the Mayor in Miami-Dade. “But heat really is the silent killer. So the focus of this class, on heat at bus stops, is very apt.” With little tree cover to give relief at some of the hottest stops, Miami-Dade commuters cluster in tiny patches of shade behind bus stops, sometimes giving up when the heat becomes unbearable. 

    A more conventional electrical engineering course might use temperature monitoring as an abstract example, building sample monitors in isolation and grading them as a merely academic exercise. But Professor Joel Volman, EECS faculty head of electrical engineering, and Joe Steinmeyer, senior lecturer in EECS, had something more impactful in mind.

    “Miami-Dade has a large population of people who are living in poverty, undocumented, or who are otherwise marginalized,” says Voldman. “Waiting, sometimes for a very long time, in scorching heat for the bus is just one aspect of how a city population can be underserved, but by measuring patterns in how many people are waiting for a bus, how long they wait, and in what conditions, we can begin to see where services are not keeping up with demand.”

    Only after that gap is quantified can the work of city and transportation planners begin, Cruz-Casas explains: “We needed to quantify the time riders are exposed to extreme heat and prioritize improvements, including on-time performance improvements, increasing service frequency, or looking to enhance the tree canopy near the bus stop.” 

    Quantifying that time — and the subjective experience of the wait — proved tricky, however. With over 7,500 bus stops along 101 bus routes, Miami-Dade’s transportation network presents a considerable data-collection challenge. A network of physical temperature monitors could be useful, but only if it were carefully calibrated to meet the budgetary, environmental, privacy, and implementation requirements of the city. But how do you work with city officials — not to mention all of bus-riding Miami — from over 2,000 miles away? 

    This is where the PKG Center comes in. “We are a hub and a connector and facilitator of best practices,” explains Jill Bassett, associate dean and director of the center, who worked with Voldman and Steinmeyer to find a municipal partner organization for the course. “We bring knowledge of current pedagogy around community-engaged learning, which includes: help with framing a partnership that centers community-identified concerns and is mutually beneficial; identifying and learning from a community partner; talking through ways to build in opportunities for student learners to reflect on power dynamics, reciprocity, systems thinking, long-term planning, continuity, ethics, all the types of things that come up with this kind of shared project.”

    Through a series of brainstorming conversations, Bassett helped Voldman and Steinmeyer structure a well-defined project plan, as Cruz-Casas weighed in on the county’s needed technical specifications (including affordability, privacy protection, and implementability).

    “This course brings together a lot of subject area experts,” says Voldman. “We brought in guest lecturers, including Abby Berenson from the Sloan Leadership Center, to talk about working in teams; engineers from BOSE to talk about product design, certification, and environmental resistance; the co-founder and head of engineering from MIT spinout Butlr to talk about their low-power occupancy sensor; Tony Hu from MIT IDM [Integrated Design and Management] to talk about industrial design; and Katrina LaCurts from EECS to talk about communications and networking.”

    With the support of two generous donations and a gift of software from Altium, 6.900 developed into a hands-on exercise in hardware/software product development with a tangible goal in sight: build a better bus monitor.

    The challenges involved in this undertaking became apparent as soon as the 6.900 students began designing their monitors. “The most challenging requirement to meet was that the monitor be able to count how many people were waiting — and for how long they’d been standing there — while still maintaining privacy,” says Fabian Velazquez ’23 a recent EECS graduate. The task was complicated by commuters’ natural tendency to stand where the shade goes — whether beneath a tree or awning or snaking against a nearby wall in a line — rather than directly next to the bus sign or inside the bus shelter. “Accurately measuring people count with a camera — the most straightforward choice — is already quite difficult since you have to incorporate machine learning to identify which objects in frame are people. Maintaining privacy added an extra layer of constraint … since there is no guarantee the collected data wouldn’t be vulnerable.”

    As the groups weighed various privacy-preserving options, including lidar, radar, and thermal imaging, the class realized that Wi-Fi “sniffers,” which count the number of Wi-Fi enabled signals in the immediate area, were their best option to count waiting passengers. “We were all excited and ready for this amazing, answer-to-all-our-problems radar sensor to count people,” says Velasquez. “That component was extremely complex, however, and the complexity would have ultimately made my team use a lot of time and resources to integrate with our system. We also had a short time-to-market for this system we developed. We made the trade-off of complexity for robustness.” 

    The weather also posed its own set of challenges. “Environmental conditions were big factors on the structure and design of our devices,” says Yong Yan (Crystal) Liang, a rising junior majoring in EECS. “We incorporated humidity and temperature sensors into our data to show the weather at individual stops. Additionally, we also considered how our enclosure may be affected by extreme heat or potential hurricanes.”

    The heat variable proved problematic in multiple ways. “People detection was especially difficult, for in the Miami heat, thermal cameras may not be able to distinguish human body temperature from the surrounding air temperature, and the glare of the sun off of other surfaces in the area makes most forms of imaging very buggy,” says Katherine Mohr ’23. “My team had considered using mmWave sensors to get around these constraints, but we found the processing to be too difficult, and (like the rest of the class), we decided to only move forward with Wi-Fi/BLE [Bluetooth Low Energy] sniffers.”

    The most valuable component of the new class may well have been the students’ exposure to real-world hardware/software engineering product development, where limitations on time and budget always exist, and where client requests must be carefully considered.  “Having an actual client to work with forced us to learn how to turn their wants into more specific technical specifications,” says Mohr. “We chose deliverables each week to complete by Friday, prioritizing tasks which would get us to a minimum viable product, as well as tasks that would require extra manufacturing time, like designing the printed-circuit board and enclosure.”

    Play video

    Joel Voldman, who co-designed 6.900 (Engineering For Impact) with Joe Steinmeyer and MIT’s Priscilla King Gray (PKG) Public Service Center, describes how the course allowed students help develop systems for the public good. Voldman is the winner of the 2023 Teaching with Digital Technology Award, which is co-sponsored by MIT Open Learning and the Office of the Vice Chancellor. Video: MIT Open Learning

    Crystal Liang counted her conversations with city representatives as among her most valuable 6.900 experiences. “We generated a lot of questions and were able to communicate with the community leaders of this project from Miami-Dade, who made time to answer all of them and gave us ideas from the goals they were trying to achieve,” she reports. “This project gave me a new perspective on problem-solving because it taught me to see things from the community members’ point of view.” Some of those community leaders, including Marta Viciedo, co-founder of Transit Alliance Miami, joined the class’s final session on May 16 to review the students’ proposed solutions. 

    The students’ thoughtful approach paid off when it was time to present the heat monitors to the class’s client. In a group conference call with Miami-Dade officials toward the end of the semester, the student teams shared their findings and the prototypes they’d created, along with videos of the devices at work. Juan Felipe Visser was among those in attendance. “This is a lot of work,” he told the students following their presentation. “So first of all, thank you for doing that, and for presenting to us. I love the concept. I took the bus this morning, as I do every morning, and was battered by the sun and the heat. So I personally appreciated the focus.” 

    Cruz-Casas agreed: “I am pleasantly surprised by the diverse approach the students are taking. We presented a challenge, and they have responded to it and managed to think beyond the problem at hand. I’m very optimistic about how the outcomes of this project will have a long-lasting impact for our community. At a minimum, I’m thinking that the more awareness we raise about this topic, the more opportunities we have to have the brightest minds seeking for a solution.”

    The creators of 6.900 agree, and hope that their class helps more MIT engineers to broaden their perspective on the meaning and application of their work. 

    “We are really excited about students applying their skills within a real-world, complex environment that will impact real people,” says Bassett. “We are excited that they are learning that it’s not just the design of technology that matters, but that climate; environment and built environment; and issues around socioeconomics, race, and equity, all come into play. There are layers and layers to the creation and deployment of technology in a demographically diverse multilingual community that is at the epicenter of climate change.” More

  • in

    Paula Hammond wins faculty’s Killian Award for 2023-24

    Paula Hammond, a leading innovator in nanotechnology and head of MIT’s Department of Chemical Engineering, has been named the recipient of the 2023-2024 James R. Killian Jr. Faculty Achievement Award.

    Hammond, an MIT Institute Professor, was honored for her work designing novel polymers and nanomaterials, which have extensive applications in fields including medicine and energy.

    “Professor Hammond is a pioneer in nanotechnology research, with a program that spans from basic science to translational research in medicine and energy. She has introduced new approaches for the design and development of complex drug delivery systems for cancer treatment and non-invasive imaging,” according to the award citation, which was read at the May 17 faculty meeting by Laura Kiessling, the chair of the Killian Award Selection Committee and the Novartis Professor of Chemistry at MIT.

    Established in 1971 to honor MIT’s 10th president, James Killian, the Killian Award recognizes extraordinary professional achievements by an MIT faculty member.

    “I’ve been to past Killian Award lectures, and I’ve always thought these were the ultimate achievers at MIT in terms of their work and their science,” Hammond says. “I am incredibly honored and overwhelmed to be considered even close to a part of that group.”

    Hammond, who earned her bachelor’s degree from MIT in 1984, worked as an engineer before returning to the Institute four years later to earn a PhD, which she received in 1993. After two years as a postdoc at Harvard University, she returned to MIT again as a faculty member in 1995.

    “In a world where it isn’t always cool to be heavy into your science and your work, MIT was a place where I felt like I could just be completely myself, and that was an amazing thing,” she says.

    Since joining the faculty, Hammond has pioneered techniques for creating thin polymer films and other materials using layer-by-layer assembly. This approach can be used to build polymers with highly controlled architectures by alternately exposing a surface to positively and negatively charged particles.

    Hammond’s lab uses this technique to design materials for many different applications, including drug delivery, regenerative medicine, noninvasive imaging, and battery technology.

    Her accomplishments include designing nanoparticles that can zoom in on tumors and release their cargo when they associate with cancer cells. She has also developed nanoparticles and thin polymer films that can carry multiple drugs to a specific site and release the drugs in a controlled or staggered fashion. In recent years, much of that work has focused on potential treatments and diagnostics for ovarian cancer.

    “We’ve really had a focus on ovarian cancer over the past several years. My hope is that our work will move us in the direction of understanding how we can treat ovarian cancer, and, in collaboration with my colleagues, how we can detect it more effectively,” says Hammond, who is a member of MIT’s Koch Institute for Integrative Cancer Research.

    The award committee also cited Hammond’s record of service, both to MIT and the national scientific community. She currently serves on the President’s Council of Advisors on Science and Technology, and she is a former member of the U.S. Secretary of Energy Scientific Advisory Board. At MIT, Hammond chaired the Initiative on Faculty Race and Diversity, and co-chaired the Academic and Professional Relationships Working Group and the Implementation Team of the MIT response to the National Academies’ report entitled “Sexual Harassment of Women.”

    Among her many honors, Hammond is one of only 25 scientists who have been elected to the National Academies of Engineering, Sciences, and Medicine.

    Hammond has also been recognized for her dedication to teaching and mentoring. As a reflection of her excellence in those areas, Hammond was awarded the Irwin Sizer Award for Significant Improvements to MIT Education, the Henry Hill Lecturer Award in 2002, and the Junior Bose Faculty Award in 2000. She also co-chaired the recent Ad Hoc Committee on Faculty Advising and Mentoring, and has been selected as a “Committed to Caring” honoree for her work mentoring students and postdocs in her research group.

    “The Selection Committee is delighted to have this opportunity to honor Professor Paula Hammond, not only for her tremendous professional achievements and contributions, but also for her genuine warmth and humanity, her thoughtfulness and effective leadership, and her empathy and ethics. She is someone worth emulating. Indeed, simply put, she is the best of us,” the award committee wrote in its citation. More

  • in

    Solve at MIT 2023: Collaboration and climate efforts are at the forefront of social impact

    “The scale, complexity, the global nature of the problems we’re dealing with are so big that no single institution, industry, or country can deal with them alone,” MIT President Sally Kornbluth stated in her first remarks to the Solve community.

    Over 300 social impact leaders from around the world convened on MIT’s campus for Solve at MIT 2023 to celebrate the 2022 Solver class and to discuss some of the world’s greatest challenges and how we can tackle them with innovation, entrepreneurship, and technology.

    These challenges can be complicated and may even feel insurmountable, but Solve at MIT leaves us with the hope, tools, and connections needed to find solutions together.

    Hala Hanna, executive director of MIT Solve, shared what keeps her inspired and at the front line of social impact: “Optimism isn’t about looking away from the issues but looking right at them, believing we can create the solutions and putting in the work. So, anytime I need a dose of optimism, I look to the innovators we work with,” Hanna shared during the opening plenary, Unlocking our Collective Potential.

    Over the course of three days, more than 300 individuals from around the world convened to celebrate the 2022 Solver class, create partnerships that lead to progress, and address solutions to pressing world issues in real-time.

    Every technologist, philanthropist, investor, and innovator present at Solve at MIT left with their own takeaway, but three main themes seemed to underscore the overall discussions.

    Technology and innovation are as neutral as the makers

    Having bias is a natural part of what makes us human. However, being aware of our predispositions is necessary to transform our lived experiences into actionable solutions for others to benefit from. 

    We’ve largely learned that bias can be both unavoidable and applied almost instantly. Sangbae Kim, director of the Biomimetic Robotics Laboratory and professor of mechanical engineering at MIT, proved this through robotics demonstrations where attendees almost unanimously were more impressed with a back-flipping MIT robot compared to one walking in circles. As it turns out, it took one individual three days to program a robot to do a flip and over two weeks for a full team to program one to walk. “We judge through the knowledge and bias we have based on our lived experiences,” Kim pointed out.

    Bias and lived experiences don’t have to be bad things. The solutions we create based on our own lives are what matter. 

    2022 Solver Atif Javed, co-founder and executive director of Tarjimly, began translating for his grandmother as a child and learned about the struggles that come with being a refugee. This led him to develop a humanitarian language-translation application, which connects volunteer translators with immigrants, refugees, nongovernmental organizations (NGOs), and more, on demand. 

    Vanessa Castañeda Gill, 2022 Solver and co-founder and CEO of Social Cipher, transformed her personal experience with ADHD and autism to develop Ava, a video game empowering neuro-divergent youth and facilitating social-emotional learning.

    For Kelsey Wirth, co-founder and chair of Mothers Out Front, the experience of motherhood and the shared concerns for the well-being of children are what unite her with other moms. 

    Whitney Wolf Herd, founder and CEO of Bumble, shared that as a leader in technology and a person who witnessed toxic online spaces, she sees it as her responsibility to spearhead change. 

    During the plenary, “Bringing us Together or Tearing us Apart?” Wolf Herd asked, “What if we could use technology to be a force for positivity?” She shared her vision for equality and respect to be part of the next digital wave. She also called for technology leaders to join her to ensure “guardrails and ground rules” are in place to make sure this goal becomes a reality.

    Social innovation must be intersectional and intergenerational

    During Solve at MIT, industry leaders across sectors, cultures, ages, and expertise banded together to address pressing issues and to form relationships with innovators looking for support in real time.

    Adam Bly, founder and CEO of System Inc., discussed the interconnected nature of all things and why his organization is on a mission to show the links, “We’re seeing rising complexity in the systems that make up life on earth, and it impacts us individually and globally. The way we organize the information and data we need to make decisions about those systems [is highly] siloed and highly fragmented, and it impairs our ability to make decisions in the most systemic, holistic, rational way.”

    President and CEO of the National Resources Defense Council Manish Bapna shared his advocacy for cross-sector work: “Part of what I’ve seen really proliferate and expand in a good way over the past 10 to 15 years are collaborations involving startups in the private sector, governments, and NGOs. No single stakeholder or organization can solve the problem, but by coming together, they bring different perspectives and skills in ways that can create the innovation we need to see.”

    For a long time, STEM (science, technology, engineering, and math) were seen as the subjects that would resolve our complex issues, but as it turns out, art also holds a tremendous amount of power to transcend identity, borders, status, and concerns, to connect us all and aid us in global unity. Artists Beatie Wolfe, Norhan Bayomi, Aida Murad, and Nneka Jones showed us how to bring healing and awareness to topics like social and environmental injustice through their music, embroidery, and painting.

    The 2023 Solv[ED] Innovators, all age 24 or under, have solutions that are improving communication for individuals with hearing loss, transforming plastic waste into sustainable furniture, and protecting the Black birthing community, among other incredible feats.

    Kami Dar, co-founder and CEO of Uniti Networks, summarizes the value of interconnected problem-solving: “My favorite SDG [sustainable development goal] is SDG number 17— the power of partnership. Look for the adjacent problem-solvers and make sure we are not reinventing the wheel.”

    Relationships and the environment connect us all

    Solve is working to address global challenges on an ongoing basis connected to climate, economic prosperity, health, and learning. Many of these focus areas bleed into one another, but social justice and climate action served as a backdrop for many global issues addressed during Solve at MIT.

    “When we started addressing climate change, we saw it primarily as technical issues to bring down emissions … There’s inequality, there’s poverty, there are social tensions that are rising … We are not going to address climate change without addressing the social tensions that are embedded,” said Lewis Akenji, managing director of the Hot or Cool Institute. Akenji sees food, mobility, and housing as the most impactful areas to focus solutions on first.

    During the “Ensuring a Just Transition to Net Zero” plenary, Heather Clancy, vice president and editorial director at Greenbiz, asked panelists what lessons they have learned from their work. Janelle Knox Hayes, ​​professor of economic geography and planning at MIT, shared that listening to communities, especially front-line and Indigenous communities, is needed before deploying solutions to the energy crisis. “Climate work has this sense of urgency, like it rapidly has to be done … to do really engaged environmental justice work, we have to slow down and realize even before we begin, we need a long period of time to plan. But before we even do that, we have to rebuild relationships and trust and reciprocity … [This] will lead to better and longer-lasting solutions.”

    Hina Baloch, executive director and global head of climate change and sustainability strategy and communication at General Motors, asked Chéri Smith, founder of Indigenous Energy Initiative, to share her perspective on energy sovereignty as it relates to Indigenous communities. Smith shared, “Tribes can’t be sovereign if they’re relying on outside sources for their energy. We were founded to support the self-determination of tribes to revamp their energy systems and rebuild, construct, and maintain them themselves.”

    Smith shared an example of human and tribal-centered innovation in the making. Through the Biden administration’s national electronic vehicle (EV) initiative, Indigenous Energy Initiative and Native Sun Community Power Development will collaborate and create an inter-tribal EV charging network. “The last time we built out an electric grid, it deliberately skipped over tribal country. This time, we want to make sure that we not only have a seat at the table, but that we build out the tables and invite everyone to them,” said Smith.

    Solve at MIT led to meaningful discussions about climate change, intersectional and accessible innovation, and the power that human connection has to unite everyone. Entrepreneurship and social change are the paths forward. And although the challenges ahead of us can be daunting, with community, collaboration, and a healthy dose of bravery, global challenges will continue to be solved by agile impact entrepreneurs all around the world. 

    As Adrianne Haslet, a professional ballroom dancer and Boston Marathon bombing survivor, reminded attendees, “What will get you to the finish line is nothing compared to what got you to the start line.” More