More stories

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Volunteer committee helps the MIT community live and work sustainably

    April 22 marks the arrival of Earth Day, which provides all of us with a good reason to think of ways to live more sustainably. For more than 20 years, the MIT Working Green Committee has helped community members do just that by encouraging the reuse and recycling of possessions.

    Made up entirely of volunteers, the committee has played an important role in promoting more sustainable operations at MIT and raising awareness of the importance of conservation.

    “We try to provide a place for people to learn how to live and work in a more environmentally friendly way,” says committee co-chair Rebecca Fowler, a senior administrative assistant in MIT’s Office of Sustainability.

    The committee hosts regular Choose to Reuse events to give MIT’s community members a chance to donate unwanted items — or find free things that just might become prized possessions. It also provides resources to help host more sustainable events, make more sustainable purchasing decisions, and learn more about recycling.

    “The recycling industry is very frustrating, so people are always asking what to do,” Fowler says. “They feel like they make the wrong decisions and just want to know how to do it. We get a lot of questions, and we’re always there to help find answers.”

    Committee members say they’ve realized devoting a little time each month to things like recycling education, and hosting events can make a big difference in reducing waste. In last month’s Choose to Reuse event, more than 100 people dropped off thousands of items including clothing, housewares, and office supplies. MIT’s always-active Reuse email lists, which the committee encourages community members to join, are another great way to pass gently used items to others who can give them new life.

    “The goal is to keep things out of landfills, and the Choose to Reuse event shows you immediate results,” says committee co-chair Gianna Hernandez-Figueroa, who is the assistant to the director at the MIT AgeLab. “It’s inspiring because people are excited to put things in the hands of someone who is going to repurpose it. It’s a circular event that’s really beautiful.”

    Choose to Reuse events are typically on the third Thursday of every other month, although the next one — the last for the spring semester — is on Monday, April 24.

    The committee is one of the only groups on campus run by support staff, whose responsibilities involve clerical duties, data processing, and library and accounting functions, among other things. It is a subcommittee of the Working Group for Support Staff.

    The committee began as the Working Group on Recycling in 2000 at a time when MIT’s recycling rate was around 11 percent. By 2006, MIT had reached a 40 percent recycling rate and received a Go Green Award from the City of Cambridge. That year the committee earned an MIT Excellence Awards for its work.

    Around 2011, the group started hosting Choose to Reuse events, which became an instant success.

    “I really believe in the gift economy, specifically in academic settings where you have a lot of international students,” Hernandez-Figueroa says. “Plus, Boston is an expensive city!”

    For a long time, the group was run by Ruth Davis, who served as MIT’s manager for recycling and materials management and retired last year. Since Davis left, others have stepped up.

    “A lot of the volunteers have been around since the first Choose to Reuse event 13 years ago,” Fowler says, adding that the committee is always looking for more volunteers. “They’re all very committed to the event and to the cause.”

    The organization is also a way for support staff to gain new skills. Fowler credits her experience working on the committee with improving her project management and website design abilities.

    “We really emphasize capacity building,” Fowler says. “If there’s a skill a volunteer would like to develop, we can explore ways to do that through the committee. That’s something I’d like to continue: finding people’s strengths and helping them build their careers.”

    Overall, Fowler says the committee aligns with MIT’s commitment to make an impact.

    The group’s long history “shows a commitment to environmentalism and sustainability and a yearning to do more beyond what is in your job responsibilities,” she says. “It really shows the commitment to volunteerism of MIT’s staff members.” More

  • in

    Podcast: Curiosity Unbounded, Episode 1 — How a free-range kid from Maine is helping green-up industrial practices

    The Curiosity Unbounded podcast is a conversation between MIT President Sally Kornbluth and newly-tenured faculty members. President Kornbluth invites us to listen in as she dives into the research happening in MIT’s labs and in the field. Along the way, she and her guests discuss pressing issues, as well as what inspires the people running at the world’s toughest challenges at one of the most innovative institutions on the planet.

    In this episode, President Kornbluth sits down with Desirée Plata, a newly tenured associate professor of civil and environmental engineering. Her work focuses on making industrial processes more environmentally friendly, and removing methane — a key factor in global warming — from the air.

    FULL TRANSCRIPT:

    Sally Kornbluth: Hello, I’m Sally Kornbluth, president of MIT, and I’m thrilled to welcome you to this MIT community podcast, Curiosity Unbounded. In my first few months at MIT, I’ve been particularly inspired by talking with members of our faculty who recently earned tenure. Like their colleagues, they are pushing the boundaries of knowledge. Their passion and brilliance, their boundless curiosity, offer a wonderful glimpse of the future of MIT.

    Today, I’m talking with Desirée Plata, associate professor of civil and environmental engineering. Desirée’s work is focused on predicting the environmental impact of  industrial processes and translating that research to real-world technologies. She describes herself as an environmental chemist. Tell me a little more about that. What led you to this work either personally or professionally?

    Desirée Plata: I guess I always loved chemistry, but before that, I was just a kid growing up in the state of Maine. I like to describe myself as a free-range kid. I ran around and talked to the neighbors and popped into the local businesses. One thing I observed in my grandparents’ town was that there were a whole lot of sick people. Not everybody, but maybe every other house. I remember being about seven or eight years old and driving home with my mom to our apartment one day and saying, “It’s got to be something everybody shares. The water, maybe something in the food or the air.” That was really my first environmental hypothesis.

    Sally: You had curiosity unbounded even when you were a child. 

    Desirée: That’s right. I spent the next several decades trying to figure it out and ultimately discovered that there was something in the water where my grandmother lived. In that time, I had earned a chemistry degree and came to MIT to do my grad work at MIT in the Woods Hole Oceanographic in environmental chemistry and chemical oceanography.

    Sally: You saw a pattern, you thought about it, and it took some time to get the tools to actually address the questions, but eventually you were there. That is great. As I understand it, you have two distinct areas of interest. One is getting methane out of the atmosphere to mitigate climate warming, and the other is making industrial processes more environmentally sound. Do you see these two as naturally connected?

    Desirée: I’ll start by saying that when I was young and thinking about this chemical contamination that I hypothesized was there in my grandmother’s neighborhood, one of the things—when I finally found out there was a Superfund site there—one of the things I discovered was that it was owned by close family friends. They were our neighbors. The decisions that they made as part of their industrial practice were just part of standard operating procedure. That’s when it clicked for me that industry is just going along, hoping to innovate to make the world a better place. When these environmental impacts occur, it’s often because they didn’t have enough information or know the right questions to ask. I was in graduate school at the time and said, “I’m at one of the most innovative places on planet Earth. I want to go knock on the doors of other labs and say, ‘What are you making and how can I help you make it better?'”

    If we all flash back to around 2008 or so, hydraulic fracturing was really taking off in this country and there was a lot of hypotheses about the number of chemicals being used in that process. It turns out that there are many hundreds of chemicals being used in the hydraulic fracturing process. My group has done an immense amount of work to study every groundwater we could get our hands on across the Appalachian region of the eastern United States, which is where a lot of this development took place and is still taking place. One of the things we discovered was that some of the biggest environmental impacts are actually not from the injected chemicals but from the released methane that’s coming into the atmosphere. Methane is growing at an exorbitant rate and is responsible for about as much warming as CO2 over the next 10 years. I started realizing that we, as engineers and scientists, would need a way to get these emissions back. To take them back from the atmosphere, if you will. To abate methane at very dilute concentrations. That’s what led to my work in methane abatement and methane mitigation.

    Sally: Interesting. Am I wrong about when we think about the impact of agriculture on the environment, that methane is a big piece of that as well?

    Desirée: You are certainly not wrong there. If you look at anthropogenic emissions or human-derived emissions, more than half are associated with agricultural practices. The cultivation of meat and dairy in particular. Cows and sheep are what are known as enteric methane formers. Part of their digestion process actually leads to the formation of methane. It’s estimated that about 28% of the global methane cycle is associated with enteric methane formers in our agricultural practices as humans. There’s another 18% that’s associated with fossil energy extraction.

    Sally: That’s really interesting. Thinking about your work then, particularly in agriculture, part of the equation has got to be how people live, what they eat, and production of methane as part of the sustainability of agriculture. The other part then seems to be how you actually, if you will, mitigate what we’ve already bought in terms of methane in the environment.

    Desirée: Yes, this is a really important topic right now.

    Sally: Tell me a little bit about, maybe in semi-lay terms, about how you think about removal of methane from the environment.

    Desirée: Recently, over 120 countries signed something called the Global Methane Pledge, which is essentially a pledge to reduce 45% of methane emissions by 2030. If you can do that, you can save about 0.5 degree centigrade warming by 2100. That’s a full third of the 1.5 degrees that politicians speak about. We can argue about whether or not that’s really the full extent of the warming we’ll see, but the point is that methane impacts near-term warming in our lifetimes. It’s one of the unique greenhouse gases that can do that.

    It’s called a short-lived climate pollutant. What that means is that it lives in the atmosphere for about 12 years before it’s removed. That means if you take it out of the atmosphere, you’re going to have a rapid reduction in the total warming of planet Earth, the total radiative forcing. Your question more specifically was about, how do we grapple with this? We’ve already omitted so much methane. How do we think about, as technologists, getting it back? It’s a really hard problem, actually. In the air in the room in front of us that we’re breathing, only two of the million molecules in front of us are methane. 417 or so are CO2. If you think direct air capture of CO2 is hard, direct air capture of methane is that much harder.

    The other thing that makes methane a challenge to abate is that activating the bonds in methane to promote its destruction or its removal is really, really tricky. It’s one of the smallest carbon-based molecules. It doesn’t have what we call “Van der Waals interactions”—there are no handles to grab onto. It’s not polar. That first destruction and that first C-H bond is what we as chemists would call “spin forbidden”. It’s hard to do and it takes a lot of energy to do that. One of the things we’ve developed in my lab is a catalyst that’s based on earth-abundant materials. There are some other groups at MIT that also work on these same types of materials. It’s able to convert methane at very low levels, down to the levels that we’re breathing in this room right now.

    Sally: That’s fascinating. do you see that as being something that will move to practical application?

    Desirée: One of the things that we’re doing to try to translate this to meaningful applications for the world is to scale the technology. We’re fortunate to have funding from several different sources, some private philanthropy groups and the United States Department of Energy. They’re helping us over the next three years try to scale this in places where it might matter most. Perhaps counterintuitive places, coal mines. Coal mines emit a lot of methane and it happens to be enriched in such a way that it releases energy. It might release enough energy to actually pay for the technology itself. Another place we’re really focused on is dairy.

    Sally: Really interesting. You mentioned at the beginning that you were at MIT, you left, you came back. I’m just wondering — I’m new to MIT and, obviously, I’m just learning it — but how do you think about the MIT community or culture in a way that is particularly helpful in advancing your work?

    Desirée: For me, I was really excited to come back to MIT because it is such an innovative place. If you’re someone who says, “I want to change the way we invent materials and processes,” it’s one of the best places you could possibly be. Because you can walk down the hall and bump into people who are making new things, new molecules, new materials, and say, “How can we incorporate the environment into our decision-making process?”

    As engineering professors, we’re guilty of teaching our students to optimize for performance and cost. They go out into their jobs, and guess what? That’s what they optimize for. We want to transition, and we’re at a point in our understanding of the earth system, that we could actually start to incorporate environmental objectives into that design process.

    Engineering professors of tomorrow should, say, optimize for performance and cost and the environment. That’s really what made me very excited to come back to MIT. Not just the great research that’s going on in every nook and corner of the Institute, but also thinking about how we might influence engineering education so that this becomes part of the fabric of how humans invent new practices and processes.

    Sally: If you look back in your past, you talked about your childhood in Maine and observing these patterns. You talked about your training and how you came to MIT and have really been, I think, thriving here. Was there a path not taken, a road not taken if you hadn’t become an environmental chemist? Was there something else you really wanted to do?

    Desirée: That’s such a great question. I have a lot of loves. I love the ocean. I love writing. I love teaching and I’m doing that, so I’m lucky there. I also love the beer business. My family’s in the beer business in Maine. I thought, as a biochemist, I would always be able to fall back on that if I needed to. My family’s not in the beer business because we’re particularly good at making beer, but because they’re interested in making businesses and creating opportunities for people. That’s been an important part of our role in the state of Maine.

    MIT really supports that side of my mind, as well. I love the entrepreneurial ecosystem that exists here. I love that when you bump into people and you have a crazy idea, instead of giving you all the reasons it won’t work, an MIT person gives you all the reasons it won’t work and then they say, “This is how we’re going to make it happen.” That’s really fun and exciting. The entrepreneurship environment that exists here is really very supportive of the translation process that has to happen to get something from the lab to the global impact that we’re looking for. That supports my mission just so much. It’s been a joy.

    Sally: That’s excellent. You weren’t actually tempted to become a yeast cell biologist in the service of beer production?

    Desirée: No, no, but I joke, “They only call me when something goes really bad.”

    Sally: That’s really funny. You experienced MIT as a student, now you’re experiencing it as a faculty member. What do you wish there was one thing about each group that the other knew?

    Desirée: I wish that, speaking with my faculty hat on, that the students knew just how much we care about them. I know that some of them do and really appreciate that. When I send an email at 3:00 in the morning, I get emails back from my colleagues at 3:00 in the morning. We work around the clock and we don’t do that for ourselves. We do that to make great sustainable systems for them and to create opportunity for them to propel themselves forward. To me, that’s one of the common unifying features of an MIT faculty member. We care really deeply about the student experience.

    As a student, I think that we’re hungry to learn. We wanted to really see the ins and outs of operation, how to run a research lab. I think sometimes faculty try to spare their students from that and maybe it’s okay to let them know just what’s going on in all those meetings that we sit through.

    Sally: That’s interesting. I think there are definitely things you find out when you become a faculty member and you’re like, “Oh, so this is what they were thinking.” With regard to the passion of the faculty about teaching, it really is remarkable here. I really think some of the strongest researchers here are so invested in teaching and you see that throughout the community.

    Desirée: It’s a labor of love for sure.

    Sally: Exactly. You talked a little bit about the passion for teaching. Were there teachers along your way that you really think impacted you and changed the direction of what you’re doing?

    Desirée: Yes, absolutely. I could name all of them. I had a kindergarten teacher who would stay after school and wait for my mom to be done work. I was raised by a single mom and her siblings and that was amazing. I had a fourth-grade teacher who helped promote me through school and taught me to love the environment. If you ask fourth graders if they saw any trash on the way to school, they’ll all say, “No.” You take them outside and give them a trash bag to fill up and it’ll be full by the end of the hour. This is something I’ve done with students in Cambridge to this day and this was many years on now. She really got me aware and thinking about environmental problems and how we might change systems.

    Sally: I think it’s really great for faculty to think about their own experiences, but also to hear people who become faculty members reflect on the great impact their own teachers had. I think the things folks are doing here are going to reverberate in their student’s minds for many, many years. It also is interesting in terms of thinking about the pipeline and when you get students interested in science. You talk about your own early years of education that really ultimately had an impact.

    It’s funny, when I became president at MIT, I got a note from my second-grade teacher. I remembered her like it was yesterday. These are people that really had an impact. It’s great that we honor teaching here at MIT and we acknowledge that this is going to have a really big impact on our student’s lives.

    Desirée: Yes, absolutely. It’s a privilege to teach these top talents. At many schools around the country, it’s just young people that have so much potential. I feel like when we walk into that classroom, we’ve got to bring inspiration with us along with the tangible, practical skills. It’s been great to see what they become.

    Sally: Tell me a little bit about what you do outside of work. When you ask faculty hobbies, sometimes I go, “Hobbies?” There must be something you spend your time on. I’m just curious.

    Desirée: We’re worried we’re going to fail this part of the Q&A. Yes. I have four children.

    Sally: You don’t need any hobbies then.

    Desirée: I know. It’s been the good graces of the academic institution. Just for those people who are out there thinking about going into academia and say, “It’s too hard. I couldn’t possibly have the work and life that I seek if I go into academia,” I don’t think that’s true anymore. I know there are a lot of women who paved the way for me, and men for that matter. I remember my PhD advisors being fully present for their children. I’ve been very fortunate to be able to do the same thing. I spend lots of time taking care of them right now. But we love being out in nature hiking, skiing, and kayaking and enjoying what the Earth gives us.

    Sally: It’s also fun to see that “aha” moment in your children when they start to learn a little bit about science and they get the idea that you really can discover things by observing closely. I don’t know if they realize they benefit from having parents who think that way, but I think that also stays with them through their lives.

    Desirée: My son is just waiting for the phone call to be able to be part of MIT’s toy design class.

    Sally: That’s fantastic.

    Desirée: As an official evaluator. Yes.

    Sally: In the last five years or so, we’ve been through the pandemic. In practical terms, how you think about your work and your life, what do you do that has improved your life? I always hate the words of “work-life balance” because they’re so intermeshed, but just for the broader community, how have you thought about that?

    Desirée: I’ve been thinking about my Zoom world and how I am still able to do quite a bit of talking to my colleagues and advancing the research mission and talking to my students that I wouldn’t have been able to do. Even pre-pandemic, it would’ve been pretty hard. We’re all really trained to interact more efficiently through these media and mechanisms. I know how to give a good talk on Zoom, for better or worse. I think that that’s been something that has been great.

    In the context of environment, I think a lot of us—this might be cliched at this point—but realize that there are things that we don’t need to get up on a plane for and perhaps we can work on the computer and interact in that way. I think that’s awesome. There’s not much that can replace real, in-person human interaction, but if it means that you can juggle a few more balls in the air and have your family feel valued and yourself feel valued while you’re also valuing your work that thing that is igniting for you, I think that’s a great outcome.

    Sally: I think that’s right. Unfortunately, though, your kids may never know the meaning of a snow day.

    Desirée: You got it.

    Sally: They may be on a remote school whenever we would’ve been home building snow forts.

    Desirée: As a Mainer, I appreciate this fully, and almost had to write a note this year. Just let them go outside.

    Sally: Exactly, exactly. As we’re wrapping up, just thinking about the future of climate work and coming back to the science, I think you’ve thought a lot about what you’re doing and impact on the climate. I’m just wondering, as you look around MIT, where you think we might have some of the greatest impact? How do you think about what some of your colleagues are doing? Because I’m starting to think a lot about what MIT’s real footprint in this area is going to be.

    Desirée: The first thing I want to say is that I think for a long time, the world’s been looking for a silver bullet climate solution. That is not how we got into this problem and it’s not how we’re going to get out of it.

    Sally: Exactly.

    Desirée: We need a thousand BBs. Fortunately, at MIT, there are many thousands of minds that all have something to contribute. I like to impose, especially on the undergraduates and the graduate researchers, our student population out there, think, “How can I bring my talents to bear on this really most pressing and important problem that’s facing our world right now?” I would say just whatever your skill is and whatever your passion is, try to find a way to marry those things together and find a way to have impact.

    The other thing I would say is that we think really differently about problems. That’s what might be needed. If you’re going to break systems, you need to come at it from a different perspective or a different angle. Encouraging people to think differently, as this community does so well, I think is going to be an enormous asset in bringing some solutions to the climate change challenge.

    Sally: Excellent. If you look back over your career, and even earlier than when you became a faculty member, what do you think the best advice is that you’ve ever been given?

    Desirée: There’s so much. I’ve been fortunate to have a lot of really great mentors. What is the best piece of advice? I think this notion of balancing work and not work. I’ve gotten two really key points of advice. One is about travel. I think that ties into this concept of COVID and whether now we can actually go remote for a lot of things. It was from an MIT professor. He said, “You know, the biggest thing you can do to protect your personal life and your life with your family is to say no and travel less. Travel eats up time on the front, in the back, and it’s your family that’s paying the price for that, so be really judicious about your choices.” That was excellent advice for me.

    Another female faculty member of mine said, “You have to prioritize your family like they are an appointment on your calendar and it’s okay when you do that.” I think those have been really helpful for me as I navigate and struggle with my own very mission-oriented self where I want to keep working and put my focus there, but know that it’s okay to maybe go for a walk and talk to real people.

    Sally: Go wild.

    Desirée: Yes, that’s right.

    Sally: This issue, actually, of saying no, not only to travel but thinking about where you really place your efforts and when there’s a finite amount of time. When I think about this—and advising junior faculty in terms of service—every faculty member is going to be asked way more things than they’re going to want to do. Yet, their service to the department, service to the Institute, is important, not only for their advancement but in how we create a community. I always advise people to say yes to the things they’re truly interested in and they’re passionate about, and there will be enough of those things.

    Desirée: I have a flowchart for when to say yes and when to say no. Having an interest is at the top of the list and then feeling like you’re going to have an impact. That’s something I think, when we do this service at MIT, we really are able to have an impact. It’s not just the oldest people in the room that get to drive the bus. They’re really listening and want to hear that perspective from everybody.

    Sally: That’s excellent. Thanks again, Desirée. I really enjoyed that conversation. To our audience, thanks again for listening to Curiosity Unbounded. I very much hope you’ll all join us again. I’m Sally Kornbluth. Stay curious. More

  • in

    Recycling plastics from research labs

    In 2019, MIT’s Environment, Health, and Safety (EHS) Office collaborated with several research labs in the Department of Biology to determine the feasibility of recycling clean lab plastics. Based on early successes with waste isolation and plastics collection, EHS collaborated with GreenLabs Recycling, a local startup, to remove and recycle lab plastics from campus. It was a huge success.

    Today, EHS spearheads the campus Lab Plastics Recycling Program, and its EHS technicians regularly gather clean lab plastics from 212 MIT labs, transferring them to GreenLabs for recycling. Since its pilot stage, the number of labs participating in the program has grown, increasing the total amount of plastic gathered and recycled. In 2020, EHS collected 170 pounds of plastic waste per week from participating labs. That increased to 250 pounds per week in 2021. In 2022, EHS collected a total of 19,000 pounds, or 280 pounds of plastic per week.

    Joanna Buchthal, a research assistant with the MIT Media Lab, indicates that, prior to joining the EHS Lab Plastics Recycling Program, “our laboratory was continuously troubled by the substantial volume of plastic waste we produced and disheartened by our inability to recycle it. We frequently addressed this issue during our group meetings and explored various ways to repurpose our waste, yet we never arrived at a viable solution.”

    The EHS program now provides a solution to labs facing similar challenges with plastics use. After pickup and removal, the plastics are shredded and sold as free stock for injection mold product manufacturing. Buchthal says, “My entire lab is delighted to recycle our used tip boxes and transform them into useful items for other labs!”

    Recently, GreenLabs presented EHS with a three-gallon bucket that local manufacturers produced from 100 percent recycled plastic gathered from MIT labs. No fillers or additives were used in its production.

    Keeping it clean

    The now-growing EHS service and operation started as a pilot. In June 2019, MIT restricted which lab-generated items could be placed in single-stream recycling. MIT’s waste vendors were no longer accepting possibly contaminated waste, such as gloves, pipette tip boxes, bottles, and other plastic waste typically generated in biological research labs. The waste vendors would audit MIT’s single-stream recycling and reject items if they observed any contamination.

    Facing these challenges, the EHS coordinator for biology, John Fucillo, and several EHS representatives from the department met with EHS staff to brainstorm potential recycling solutions. Ensuring the decontamination of the plastic and coordinating its removal in an efficient way were the primary challenges for the labs, says Fucillo, who shared his and lab members’ concerns about the amount of plastic being thrown away with Mitch Galanek, EHS associate director for the Radiation Protection Program. Galanek says, “I immediately recognized the frustration expressed by John and other lab contacts as an opportunity to collaborate.”

    In July 2019, Galanek and a team of EHS technicians began segregating and collecting clean plastic waste from several labs within the biology department. EHS provided the labs with collection containers, and its technicians managed the waste removal over a four-month period, which produced a snapshot of the volume and type of waste generated. An audit of the waste determined that approximately 80 percent of the clean plastic waste generated was empty pipette tip boxes and conical tube racks.

    Based on these data, EHS launched a lab plastics recycling pilot program in November 2019. Labs from the Department of Biology and the Koch Institute for Integrative Cancer Research were invited to participate by recycling their clean, uncontaminated pipette tip boxes and conical tube racks. In addition to providing these labs with collection boxes and plastic liners, EHS also developed an online waste collection request tool to submit plastic pickup requests. EHS also collected the waste containers once they were full.

    Assistant professor of biology Seychelle Vos joined the pilot program as soon as she started her lab in fall 2019. Vos shares that “we already use pipette tips boxes that produce minimal waste, and this program allows us to basically recycle any part of the box except for tips. Pipette boxes are a significant source of plastic waste. This program helps us to be more environmentally and climate friendly.” 

    Given the increased participation in the program, EHS technician Dave Pavone says that plastic pickup is now a “regular component of our work schedules.”

    Together, the EHS technicians, commonly known as “techs,” manage the pickup of nearly 300 plastic collection containers across campus. Normand Desrochers, one of the EHS techs, shares that each morning he plans his pickup route “to get the job done efficiently.” While weekly pickups are a growing part of their schedules, Desrochers notes that everyone has been “super appreciative in what we do for their labs. And what we do makes their job that much easier, being able to focus on their research.”

    Barbara Karampalas, a lab operations manager within the Department of Biological Engineering, is one of many to express appreciation for the program: “We have a fairly large lab with 35 researchers, so we generate a lot of plastic waste … [and] knowing how many tip boxes we were using concerned me. I really appreciate the effort EHS has made to implement this program to help us reduce our impact on the environment.” The program also “makes people in the lab more aware of the issue of plastic waste and MIT’s commitment to reduce its impact on the environment,” says Karampalas.

    Looking ahead

    MIT labs continue to enthusiastically embrace the EHS Lab Plastics Recycling Program: 112 faculty across 212 labs are currently participating in the program. While only empty pipette tip boxes and conical tube racks are currently collected, EHS is exploring which lab plastics could be manufactured into products for use in the labs and repeatedly recycled. Specifically, the EHS Office is considering whether recycled plastic could be used to produce secondary containers for collecting hazardous waste and benchtop transfer containers used for collecting medical waste. As Seychelle notes, “Most plastics cannot be recycled in the current schemes due to their use in laboratory science.”

    Says Fucillo, “Our hope is that this program can be expanded to include other products which could be recycled from the wet labs.” John MacFarlane, research engineer and EHS coordinator for civil and environmental engineering, echoes this sentiment: “With plastic recycling facing economic constraints, this effort by the Institute deserves to be promoted and, hopefully, expanded.”

    “Having more opportunities to recycle ’biologically clean’ plastics would help us have a smaller carbon footprint,” agrees Vos. “We love this program and hope it expands further!”

    MIT labs interested in participating in the EHS Lab Plastics Recycling Program can contact pipetip@mit.edu to learn more. More

  • in

    Celebrating a decade of a more sustainable MIT, with a focus on the future

    When MIT’s Office of Sustainability (MITOS) first launched in 2013, it was charged with integrating sustainability across all levels of campus by engaging the collective brainpower of students, staff, faculty, alumni, and partners. At the eighth annual Sustainability Connect, MITOS’s signature event, held nearly a decade later, the room was filled with MIT community members representing 67 different departments, labs, and centers — demonstrating the breadth of engagement across MIT.

    Held on Feb. 14 and hosting more than 100 staff, students, faculty, and researchers, the event was a forum on the future of sustainability leadership at MIT, designed to reflect on the work that had brought MIT to its present moment — focused on a net-zero future by 2026 and elimination of direct campus emissions by 2050 — and to plan forward.

    Director of Sustainability Julie Newman kicked off the day by reflecting on some of the questions that influenced the development of the MITOS framework, including: “How can MIT be a game-changing force for campus sustainability in the 21st century?” and “What are we solving for?” Newman shared that while these questions still drive the work of the office, considerations of the impact of this work have evolved. “We are becoming savvier at asking the follow-up question to these prompts,” she explained. “Are our solutions causing additional issues that we were remiss to ask, such as the impact on marginalized communities, unanticipated human health implications, and new forms of extraction?” Newman then encouraged attendees to think about these types of questions when envisioning and planning for the next decade of sustainability at MIT.

    While the event focused broadly on connecting the sustainability community at MIT, the day’s sessions tracked closely to the climate action plans that guided the office, 2015’s A Plan for Action on Climate Change and the current Fast Forward: MIT’s Climate Action Plan for the Decade. Both plans call for using the campus as a test bed, and at “A Model for Change: Field Reports from Campus as a Test Bed,” panelists Miho Mazereeuw, associate professor of architecture and urbanism, director of the Urban Risk Lab, and MITOS Faculty Fellow; Ken Strzepek, MITOS Faculty Fellow and research scientist at the MIT Center for Global Change Science; and Ippolyti Dellatolas graduate student and MITOS Climate Action Sustainability researcher shared ways in which they utilize the MIT campus as a test bed to design, study, and implement solutions related to flood risk, campus porosity, emissions reductions, and climate policy — efforts that can also inform work beyond MIT. Dellatolas reflected on success in this space. “With a successful campus as a test bed project, there is either output: we achieved these greenhouse gas emissions reductions or we learned something valuable in the process, so even if it fails, we understand why it failed and we can lend that knowledge to the next project,” she explained.

    Later in the morning, an “On the Horizon” panel focused on what key areas of focus, partnerships, and evolutions will propel the campus forward — anchored in the intersectional topics of decarbonization, climate justice, and experiential learning. To kick off the discussion, panelists John Fernández, director of the Environmental Solutions Initiative and professor of architecture; Joe Higgins, vice president for campus services and stewardship; Susy Jones, senior sustainability project manager; and Kate Trimble, senior associate dean for experiential learning shared which elements of their work have shifted in the last five years. Higgins commented on exciting progress being made in the space of renewables, electrification, smart thermostats, offshore wind, and other advances both at MIT and the municipal level. “You take this moment, and you think, these things weren’t in the moment five years ago when we were here on this stage. It brings a sense of abundance and optimism,” he concluded.

    Jones, for her part, shared how thinking about food and nutrition evolved over this period. “We’ve developed a lot of programming around nutrition. In the past few years, this new knowledge around the climate impact of our food system has joined the conversation,” she shared. “I think it’s really important to add that to the many years and decades of work that have been going on around food justice and food access and bring that climate conversation into that piece and acknowledge that, yes, the food system is accountable for about a quarter of global greenhouse gases.”

    Throughout the event, attendees were encouraged to share their questions and ideas for the future. In the closing workshop, “The Future of Sustainability at MIT,” attendees responded to questions such as, “What gives you hope?” and “What are we already doing well at MIT, what could we do more of?” The answers and ideas — which ranged from fusion to community co-design to a continued focus on justice — will inform MITOS’s work going forward, says Newman. “This is an activity we did within our core team, and the answers were so impactful and candid that we thought to bring it to the larger community to learn even more,” she says.

    That larger community was also recognized for their contributions with the first-ever Sustainability Awards, which honored nominated staff and students from departments across MIT for their contributions to building a more sustainable MIT. “This year we had a special opportunity to spotlight some of those individuals and teams leading transformative change at MIT,” explained Newman. “But everyone in the room and everyone working on sustainability at MIT in some way are our partners in this work. Our office could not do what we do without them.” More

  • in

    MIT community in 2022: A year in review

    In 2022, MIT returned to a bit of normalcy after the challenge of Covid-19 began to subside. The Institute prepared to bid farewell to its president and later announced his successor; announced five flagship projects in a new competition aimed at tackling climate’s greatest challenges; made new commitments toward ensuring support for diverse voices; and celebrated the reopening of a reimagined MIT Museum — as well as a Hollywood blockbuster featuring scenes from campus. Here are some of the top stories in the MIT community this year.

    Presidential transition

    In February, MIT President L. Rafael Reif announced that he planned to step down at the end of 2022. In more than 10 years as president, Reif guided MIT through a period of dynamic growth, greatly enhancing its global stature and magnetism. At the conclusion of his term at the end of this month, Reif will take a sabbatical, then return to the faculty of the Department of Electrical Engineering and Computer Science. In September, Reif expressed his gratitude to the MIT community at an Institute-wide dance celebration, and he was honored with a special MIT Dome lighting earlier this month.

    After an extensive presidential search, Sally Kornbluth, a cell biologist and the current provost of Duke University, was announced in October as MIT’s 18th president. Following an introduction to MIT that included a press conference, welcoming event, and community celebration, Kornbluth will assume the MIT presidency on Jan. 1, 2023.

    In other administrative transitions: Cynthia Barnhart was appointed provost after Martin Schmidt stepped down to become president of Rensselaer Polytechnic Institute; Sanjay Sarma stepped down as vice president for open learning after nine years in the role; professors Brent Ryan and Anne White were named associate provosts, while White was also named associate vice president for research administration; and Agustín Rayo was named dean of the School of Humanities, Arts, and Social Sciences.

    Climate Grand Challenges

    MIT announced five flagship projects in its first-ever Climate Grand Challenges competition. These multiyear projects focus on unraveling some of the toughest unsolved climate problems and bringing high-impact, science-based solutions to the world on an accelerated basis. Representing the most promising concepts to emerge from the two-year competition that yielded 27 finalist projects, the five flagship projects will receive additional funding and resources from MIT and others to develop their ideas and swiftly transform them into practical solutions at scale.

    CHIPS and Science Act

    President Reif and Vice President for Research Maria Zuber were among several MIT representatives to witness President Biden’s signing of the $52 billion “CHIPS and Science” bill into law in August. Reif helped shape aspects of the bill and was a vocal advocate for it among university and government officials, while Zuber served on two government science advisory boards during the bill’s gestation and consideration. Earlier in the year, MIT.nano hosted U.S. Secretary of Commerce Gina Raimondo, while MIT researchers released a key report on U.S. microelectronics research and manufacturing.

    MIT Morningside Academy for Design

    Supported by a $100 million founding gift, the MIT Morningside Academy for Design launched as a major interdisciplinary center that aims to build on the Institute’s leadership in design-focused education. Housed in the School of Architecture and Planning, the academy provides a hub that will encourage design work at MIT to grow and cross disciplines among engineering, science, management, computing, architecture, urban planning, and the arts.

    Reports of the Institute

    A number of key Institute reports and announcements were released in 2022. They include: an announcement of the future of gift acceptance for MIT: an announcement of priority MIT investments; a new MIT Values Statement; a renewed commitment to Indigenous scholarship and community; the Strategic Action Plan for Belonging, Achievement, and Composition; a report on MIT’s engagement with China; a report of the Working Group on Reimagining Public Safety at MIT; a report of the Indigenous Working Group; and a report of the Ad Hoc Committee on Arts, Culture, and DEI.

    Nobel Prizes

    MIT affiliates were well-represented among new and recent Nobel laureates who took part in the first in-person Nobel Prize ceremony since the start of the Covid-19 pandemic. MIT-affiliated winners for 2022 included Ben Bernanke PhD ’79, K. Barry Sharpless, and Carolyn Bertozzi. Winners in attendance from 2020 and 2021 included Professor Joshua Angrist, David Julius ’77, and Andrea Ghez ’87.

    New MIT Museum

    A reimagined MIT Museum opened this fall in a new 56,000-square-foot space in the heart of Cambridge’s Kendall Square. The museum invites visitors to explore the Institute’s innovations in science, technology, engineering, arts, and math — and to take part in that work with hands-on learning labs and maker spaces, interactive exhibits, and venues to discuss the impact of science and technology on society.

    “Wakanda Forever”

    In November, the Institute Office of Communications and the Division of Student Life hosted a special screening of Marvel Studios’ “Black Panther: Wakanda Forever.” The MIT campus had been used as a filming location in summer 2021, as one of the film’s characters, Riri Williams (also known as Ironheart), is portrayed as a student at the Institute.

    In-person Commencement returns

    After two years of online celebrations due to Covid-19, MIT Commencement returned to Killian Court at the end of May. World Trade Organization Director-General Ngozi Okonjo-Iweala MCP ’78, PhD ’81 delivered the Commencement address, while poet Kealoha Wong ’99 spoke at a special ceremony for the classes of 2020 and 2021.

    Students win distinguished fellowships

    As in previous years, MIT students continued to shine. This year, exceptional undergraduates were awarded Fulbright, Marshall, Mitchell, Rhodes, and Schwarzman scholarships.

    Remembering those we’ve lost

    Among MIT community members who died this year were Robert Balluffi, Louis Braida, Ashton Carter, Tom Eagar, Dick Eckaus, Octavian-Eugen Ganea, Peter Griffith, Patrick Hale, Frank Sidney Jones, Nonabah Lane, Leo Marx, Bruce Montgomery, Joel Moses, Brian Sousa Jr., Mohamed Magdi Taha, John Tirman, Richard Wurtman, and Markus Zahn.

    In case you missed it:

    Additional top community stories of 2022 included MIT students dominating the 82nd Putnam Mathematical Competition, an update on MIT’s reinstating the SAT/ACT requirement for admissions, a new mathematics program for Ukrainian students and refugees, a roundup of new books from MIT authors, the renaming of the MIT.nano building, an announcement of winners of this year’s MIT $100K Entrepreneurship Competition, the new MIT Wright Brothers Wind Tunnel, and MIT students winning the 45th International Collegiate Programming Contest for the first time in 44 years. More

  • in

    Food for thought, thought for food

    According to the Food and Agriculture Organization of the United Nations, approximately 3.1 billion people worldwide were unable to afford a healthy diet in 2020. Meanwhile, in 2021 close to 2.3 billion people were moderately or severely food insecure. Given the strong link between malnutrition and income disparity, the numbers paint a grim picture representing one of the grand challenges of our time.

    “I’m probably an idealist,” says MIT Research Scientist Christopher Mejía Argueta, “but I really believe that if we change our diets and think about ways to help others, we can make a difference — that’s my motivation.”

    Mejía Argueta is the founder and director of the MIT Food and Retail Operations Lab (FaROL). He has more than a decade of experience in supply chain management, optimization, and effective data-driven decision-making on pressing issues like the evolution of end consumers for retail and e-tail supply chains, food waste, and equitable access to nutrition.  

    Supply chain network designs typically focus on minimizing costs without considering the implications (e.g., cost) of changes in consumer behavior. Mejía Argueta and his colleagues at the FaROL, however, are working to understand and design optimal supply chains to create high-performance operations based on consumer choice. “Understanding the significant factors of consumer choice and analyzing their evolution over time becomes critical to designing forward-looking retail operations with data-driven and customer-centric supply chains, inventory management, and distribution systems,” explains Mejía Argueta. 

    Play video

    One of his recent projects examined the challenges of small retailers worldwide. These mom-and-pop outlets, or nanostores, account for 50 percent of the global market share and are the primary source of consumer packaged goods for people in urban areas. Worldwide there are nearly 50 million nanostores, each serving between 100-200 households in a community. In India alone, there are 14 million nanostores known as kiranas. And while these retailers are more prevalent in emerging markets, they play an important role in developed markets, particularly in under-resourced communities, and are frequently located in “food deserts,” where they are the only source of essential goods for the community.  

    These small retailers thrive thanks, partly, to their ability to offer the right combination of affordability and convenience while fostering trust with local customers, who often lack access to a supermarket or a grocery store. They often exist in fragmented, densely populated areas where infrastructure and public transportation services are poor and consumers have limited purchasing power. But nanostore shopkeepers and owners are intimately familiar with their customers and their consumption patterns, which means they can connect those consumption patterns or information to the larger supply chain. According to Mejía Argueta, when it comes to the future of retail, nanostores will be the cornerstones of growth in emerging economies. 

    But it’s a complicated scenario. Mom-and-pop shops don’t have the capacity to offer a broad range of products to their customers, and often, they lack access to nutritious food options. Logistically speaking, it is expensive to supply them, and the cost-to-serve (i.e., the logistics cost) is between 10 to 30 percent more expensive than other retailers. According to Mejía Argueta, this has a significant ripple effect, impacting education, productivity, and, eventually, the economic performance of an entire nation.  

    “The high fragmentation of nanostores causes substantial distribution inefficiencies, especially in congested megacities,” he says. “At my lab, we study how to make nanostores more efficient and effective by considering various commercial and logistics strategies while considering inherent technical challenges. We need to serve these small retailers better to help them survive and thrive, to provide a greater impact for underserved communities and the entire economic ecosystem.”

    Play video

    Mejía Argueta and his team recently collaborated with Tufts University and the City of Somerville, Massachusetts, to conduct research on food access models in underserved communities. The Somerville Project explored various interventions to supply fresh produce in food desert neighborhoods.

    “A lack of nutrition does not simply mean a lack of food,” Mejía Argueta says. “It can also be caused by an overabundance of unhealthy foods in a given market, which is particularly troublesome for U.S. cities where people in underserved communities don’t have access to healthy food options. We believe that one way to combat the problem of food deserts is to supply these areas with healthy food options affordably and create awareness programs.”  

    The collaborative project saw Mejía Argueta and his colleagues assessing the impact of several intervention schemes designed to empower the end consumer. For example, they implemented a low-cost grocery delivery model similar to Instacart as well as a ride sharing system to transport people from their homes to grocery stores and back. They also collaborated with a nonprofit organization, Partnership for a Healthier America, and began working with retailers to deliver “veggie boxes” in underserved communities. Models like these provide low-income people access to food while providing dignity of choice, Mejía Argueta explains.  

    When it comes to supply chain management research, sustainability and societal impact often fall by the wayside, but Mejía Argueta’s bottom-up approach shirks tradition. “We’re trying to build a community, employing a socially driven perspective because if you work with the community, you gain their trust. If you want to make something sustainable in the long term, people need to trust in these solutions and engage with the ecosystem as a whole.”  

    And to achieve real-world impact, collaboration is key. Mejía Argueta says that government has an important role to play, developing policy to connect the models he and his colleagues develop in academia to societal challenges. Meanwhile, he believes startups and entrepreneurs can function as bridge-builders to link the flows of information, the flows of goods and cash, and even knowledge and security in an ecosystem that suffers from fragmentation and siloed thinking among stakeholders.

    Finally, Mejía Argueta reflects on the role of corporations and his belief that the MIT Industrial Liaison Program is essential to getting his research to the frontline of business challenges. “The Industrial Liaison Program does a fantastic job of connecting our research to real-world scenarios,” he says. “It creates opportunities for us to have meaningful interactions with corporates for real-world impact. I believe strongly in the MIT motto ‘mens et manus,’ and ILP helps drive our research into practice.” More

  • in

    Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

    Nonabah Lane, a Navajo educator and environmental sustainability specialist with numerous MIT ties to MIT, passed away in October. She was 46.

    Lane had recently been an MIT Media Lab Director’s Fellow; MIT Solve 2019 Indigenous Communities Fellow; Department of Urban Studies and Planning guest lecturer and community partner; community partner with the PKG Public Service Center, Terrascope, and D-Lab; and a speaker at this year’s MIT Energy Week.

    Lane was a passionate sustainability specialist with experience spearheading successful environmental civic science projects focused in agriculture, water science, and energy. Committed to mitigating water pollutants and environmental hazards in tribal communities, she held extensive knowledge of environmental policy and Indigenous water rights. 

    Lane’s clans were Ta’neezahnii (Tangled People), born for Tł’izíłání (Manygoats People), and her maternal grandfathers are the Kiiyaa’aanii (Towering House People), and paternal grandfathers are Bįįh Bitoo’nii (Deer Spring People).

    Lane was a member of the Navajo Nation, Nenahnezad Chapter. At Navajo Power, she worked as the lead developer for solar and energy storage projects to benefit tribal communities on the Navajo Nation and other tribal nations in New Mexico. Prior to joining Navajo Power, Lane co-founded Navajo Ethno-Agriculture, a farm that teaches Navajo culture through traditional farming and bilingual education. Lane also launched a campaign to partner with local Navajo schools and tribal colleges to create their own water-testing capabilities and translate data into information to local farmers.

    “I had the opportunity to collaborate closely with Nonabah on a range of initiatives she was championing on energy, food, justice, water, Indigenous leadership, youth STEM, and more. She was innovative, entrepreneurial, inclusive, heartfelt, and positively impacted MIT on every visit to campus. She articulated important things that needed saying and expanded people’s thinking constantly. We will all miss her insights and teamwork,” says Megan Smith ’86, SM ’88, MIT Corporation life member; third U.S. chief technology officer and assistant to the president in the Office of Science and Technology Policy; and founder and CEO of shift7.

    In March 2019, Lane and her family — parents Gloria and Harry and brother Bruce — welcomed students and staff of the MIT Terrascope first-year learning community to their farm, where they taught unique, hands-on lessons about traditional Diné farming and spirituality. She then continued to collaborate with Terrascope, helping staff and students develop community-based work with partners in Navajo Nation. 

    Terrascope associate director and lecturer Ari Epstein says, “Nonabah was an inspiring person and a remarkable collaborator; she had a talent for connecting and communicating across disciplinary, organizational, and cultural differences, and she was generous with her expertise and knowledge. We will miss her very much.”

    Lane came to MIT in May 2019 for the MIT Solve Indigenous Communities Fellowship and Solve at MIT event, representing Navajo Ethno-Agriculture with her mother, Gloria Lane, and brother, Bruce Lane, and later serving as a Fellow Leadership Group member. 

    “Nonabah was an incredible individual who worked tirelessly to better all of her communities, whether it was back home on the Navajo Nation, here at MIT Solve, or supporting her family and friends,” says Alex Amouyel, executive director of MIT Solve. “More than that, Nonabah was a passionate mentor and caring friend of so many, carefully tending the next generation of Indigenous innovators, entrepreneurs, and change-makers. Her loss will be felt deeply by the MIT community, and her legacy of heartfelt service will not be forgotten.”

    She continued to be heavily involved across the MIT campus — named as a 2019 Media Lab Director’s Fellow, leading a workshop at the 2020 MIT Media Lab Festival of Learning on modernizing Navajo foods using traditional food science and cultural narrative, speaking at the 2022 MIT Energy Conference “Accelerating the Clean Energy Transition,” and taking part in the MIT Center for Bits and Atoms (CBA) innovation weekly co-working groups for Covid-response related innovations. 

    “My CBA colleagues and I enjoyed working with Nonabah on rapid-prototyping for the Covid response, on expanding access to digital fabrication, and on ambitious proposals for connecting emerging technology with Indigenous knowledge,” says Professor Neil Gershenfeld, director, MIT Center for Bits and Atoms.

    Nonabah also guest lectured for the MIT Department of Urban Studies and Planning’s Indigenous Environmental Planning class in Spring 2022. Professors Lawrence Susskind and Gabriella Carolini and teaching assistant Dení López led the class in cooperation with Elizabeth Rule, Chickasaw Nation member and professor at American University. 

    Carolini shares, on behalf of Susskind and the class, “During this time, our teaching team and students from a broad range of fields at MIT had the deep honor of learning from and with the inimitable Nonabah Lane. Nonabah was a dedicated and critical partner to our class, representing in this instance Navajo Power — but of course, also so much more. Her broad experiences and knowledge — working with fellow Navajo members on energy and agriculture sovereignty, as well as in advancing entrepreneurship and innovation — reflected the urgency Nonabah saw in meeting the challenges and opportunities for sustainable and equitable futures in Navajo nation and beyond. She was a pure life force, running on all fires, and brought to our class a dedicated drive to educate, learn, and extend our reference points beyond current knowledge frontiers.” 

    Three MIT students — junior Isabella Gandara, Alexander Gerszten ’22, and Paul Picciano MS ’22 — who worked closely with Lane on a project with Navajo Power, recalled how she shared herself with them in so many ways, through her truly exceptional work ethic, stories about herself and her family, and the care and thought that she put into her ventures. They noted there was always something new to feel inspired by when in her presence. 

    “The PKG Public Service Center mourns the passing of Nonabah Lane. Navajo Ethno-Agriculture is a valued PKG Center partner that offers MIT undergraduate students the opportunity to support community-led projects with the Diné Community on Navajo Nation. Nonabah inspired students to examine broad social and technical issues that impact Indigenous communities in Navajo Nation and beyond, in many cases leaving an indelible mark on their personal and professional paths,” says Jill S. Bassett, associate dean and director of the PKG Public Service Center.

    Lane was a Sequoyah Fellow of the American Indian Science and Engineering Society (AISES) and remained actively engaged in the AISES community by mentoring young people interested in the fields of science, engineering, agriculture, and energy. Over the years, Lane collaborated with leaders across tribal lands and beyond on projects related to agriculture, energy, sustainable chemicals, and finance. Lane had an enormous positive impact on many through her accomplishments and also the countless meaningful connections she helped to form among people in diverse fields.

    Donations may be made to a memorial fund organized by Navajo Power, PBC in honor of Nonabah Lane, in support of Navajo Ethno-Agriculture, the Native American nonprofit she co-founded and cared deeply for. More