More stories

  • in

    Designing zeolites, porous materials made to trap molecules

    Zeolites are a class of minerals used in everything from industrial catalysts and chemical filters to laundry detergents and cat litter. They are mostly composed of silicon and aluminum — two abundant, inexpensive elements — plus oxygen; they have a crystalline structure; and most significantly, they are porous. Among the regularly repeating atomic patterns in them are tiny interconnected openings, or pores, that can trap molecules that just fit inside them, allow smaller ones to pass through, or block larger ones from entering. A zeolite can remove unwanted molecules from gases and liquids, or trap them temporarily and then release them, or hold them while they undergo rapid chemical reactions.

    Some zeolites occur naturally, but they take unpredictable forms and have variable-sized pores. “People synthesize artificial versions to ensure absolute purity and consistency,” says Rafael Gómez-Bombarelli, the Jeffrey Cheah Career Development Chair in Engineering in the Department of Materials Science and Engineering (DMSE). And they work hard to influence the size of the internal pores in hopes of matching the molecule or other particle they’re looking to capture.

    The basic recipe for making zeolites sounds simple. Mix together the raw ingredients — basically, silicon dioxide and aluminum oxide — and put them in a reactor for a few days at a high temperature and pressure. Depending on the ratio between the ingredients and the temperature, pressure, and timing, as the initial gel slowly solidifies into crystalline form, different zeolites emerge.

    But there’s one special ingredient to add “to help the system go where you want it to go,” says Gómez-Bombarelli. “It’s a molecule that serves as a template so that the zeolite you want will crystallize around it and create pores of the desired size and shape.”

    The so-called templating molecule binds to the material before it solidifies. As crystallization progresses, the molecule directs the structure, or “framework,” that forms around it. After crystallization, the temperature is raised and the templating molecule burns off, leaving behind a solid aluminosilicate material filled with open pores that are — given the correct templating molecule and synthesis conditions — just the right size and shape to recognize the targeted molecule.

    The zeolite conundrum

    Theoretical studies suggest that there should be hundreds of thousands of possible zeolites. But despite some 60 years of intensive research, only about 250 zeolites have been made. This is sometimes called the “zeolite conundrum.” Why haven’t more been made — especially now, when they could help ongoing efforts to decarbonize energy and the chemical industry?

    One challenge is figuring out the best recipe for making them: Factors such as the best ratio between the silicon and aluminum, what cooking temperature to use, and whether to stir the ingredients all influence the outcome. But the real key, the researchers say, lies in choosing a templating molecule that’s best for producing the intended zeolite framework. Making that match is difficult: There are hundreds of known templating molecules and potentially a million zeolites, and researchers are continually designing new molecules because millions more could be made and might work better.

    For decades, the exploration of how to synthesize a particular zeolite has been done largely by trial and error — a time-consuming, expensive, inefficient way to go about it. There has also been considerable effort to use “atomistic” (atom-by-atom) simulation to figure out what known or novel templating molecule to use to produce a given zeolite. But the experimental and modeling results haven’t generated reliable guidance. In many cases, researchers have carefully selected or designed a molecule to make a particular zeolite, but when they tried their molecule in the lab, the zeolite that formed wasn’t what they expected or desired. So they needed to start over.

    Those experiences illustrate what Gómez-Bombarelli and his colleagues believe is the problem that’s been plaguing zeolite design for decades. All the efforts — both experimental and theoretical — have focused on finding the templating molecule that’s best for forming a specific zeolite. But what if that templating molecule is also really good — or even better — at forming some other zeolite?

    To determine the “best” molecule for making a certain zeolite framework, and the “best” zeolite framework to act as host to a particular molecule, the researchers decided to look at both sides of the pairing. Daniel Schwalbe-Koda PhD ’22, a former member of Gómez-Bombarelli’s group and now a postdoc at Lawrence Livermore National Laboratory, describes the process as a sort of dance with molecules and zeolites in a room looking for partners. “Each molecule wants to find a partner zeolite, and each zeolite wants to find a partner molecule,” he says. “But it’s not enough to find a good dance partner from the perspective of only one dancer. The potential partner could prefer to dance with someone else, after all. So it needs to be a particularly good pairing.” The upshot: “You need to look from the perspective of each of them.”

    To find the best match from both perspectives, the researchers needed to try every molecule with every zeolite and quantify how well the pairings worked.

    A broader metric for evaluating pairs

    Before performing that analysis, the researchers defined a new “evaluating metric” that they could use to rank each templating molecule-zeolite pair. The standard metric for measuring the affinity between a molecule and a zeolite is “binding energy,” that is, how strongly the molecule clings to the zeolite or, conversely, how much energy is required to separate the two. While recognizing the value of that metric, the MIT-led team wanted to take more parameters into account.

    Their new evaluating metric therefore includes not only binding energy but also the size, shape, and volume of the molecule and the opening in the zeolite framework. And their approach calls for turning the molecule to different orientations to find the best possible fit.

    Affinity scores for all molecule-zeolite pairs based on that evaluating metric would enable zeolite researchers to answer two key questions: What templating molecule will form the zeolite that I want? And if I use that templating molecule, what other zeolites might it form instead? Using the molecule-zeolite affinity scores, researchers could first identify molecules that look good for making a desired zeolite. They could then rule out the ones that also look good for forming other zeolites, leaving a set of molecules deemed to be “highly selective” for making the desired zeolite.  

    Validating the approach: A rich literature

    But does their new metric work better than the standard one? To find out, the team needed to perform atomistic simulations using their new evaluating metric and then benchmark their results against experimental evidence reported in the literature. There are many thousands of journal articles reporting on experiments involving zeolites — in many cases, detailing not only the molecule-zeolite pairs and outcomes but also synthesis conditions and other details. Ferreting out articles with the information the researchers needed was a job for machine learning — in particular, for natural language processing.

    For that task, Gómez-Bombarelli and Schwalbe-Koda turned to their DMSE colleague Elsa Olivetti PhD ’07, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. Using a literature-mining technique that she and a group of collaborators had developed, she and her DMSE team processed more than 2 million materials science papers, found some 90,000 relating to zeolites, and extracted 1,338 of them for further analysis. The yield was 549 templating molecules tested, 209 zeolite frameworks produced, and 5,663 synthesis routes followed.

    Based on those findings, the researchers used their new evaluating metric and a novel atomistic simulation technique to examine more than half-a-million templating molecule-zeolite pairs. Their results reproduced experimental outcomes reported in more than a thousand journal articles. Indeed, the new metric outperformed the traditional binding energy metric, and their simulations were orders of magnitude faster than traditional approaches.

    Ready for experimental investigations

    Now the researchers were ready to put their approach to the test: They would use it to design new templating molecules and try them out in experiments performed by a team led by Yuriy Román-Leshkov, the Robert T. Haslam (1911) Professor of Chemical Engineering, and a team from the Instituto de Tecnologia Química in Valencia, Spain, led by Manuel Moliner and Avelino Corma.

    One set of experiments focused on a zeolite called chabazite, which is used in catalytic converters for vehicles. Using their techniques, the researchers designed a new templating molecule for synthesizing chabazite, and the experimental results confirmed their approach. Their analyses had shown that the new templating molecule would be good for forming chabazite and not for forming anything else. “Its binding strength isn’t as high as other molecules for chabazite, so people hadn’t used it,” says Gómez-Bombarelli. “But it’s pretty good, and it’s not good for anything else, so it’s selective — and it’s way cheaper than the usual ones.”

    In addition, in their new molecule, the electrical charge is distributed differently than in the traditional ones, which led to new possibilities. The researchers found that by adjusting both the shape and charge of the molecule, they could control where the negative charge occurs on the pore that’s created in the final zeolite. “The charge placement that results can make the chabazite a much better catalyst than it was before,” says Gómez-Bombarelli. “So our same rules for molecule design also determine where the negative charge is going to end up, which can lead to whole different classes of catalysts.”

    Schwalbe-Koda describes another experiment that demonstrates the importance of molecular shape as well as the types of new materials made possible using the team’s approach. In one striking example, the team designed a templating molecule with a height and width that’s halfway between those of two molecules that are now commonly used—one for making chabazite and the other for making a zeolite called AEI. (Every new zeolite structure is examined by the International Zeolite Association and — once approved — receives a three-letter designation.)

    Experiments using that in-between templating molecule resulted in the formation of not one zeolite or the other, but a combination of the two in a single solid. “The result blends two different structures together in a way that the final result is better than the sum of its parts,” says Schwalbe-Koda. “The catalyst is like the one used in catalytic converters in today’s trucks — only better.” It’s more efficient in converting nitrogen oxides to harmless nitrogen gases and water, and — because of the two different pore sizes and the aluminosilicate composition — it works well on exhaust that’s fairly hot, as during normal operation, and also on exhaust that’s fairly cool, as during startup.

    Putting the work into practice

    As with all materials, the commercial viability of a zeolite will depend in part on the cost of making it. The researchers’ technique can identify promising templating molecules, but some of them may be difficult to synthesize in the lab. As a result, the overall cost of that molecule-zeolite combination may be too high to be competitive.

    Gómez-Bombarelli and his team therefore include in their assessment process a calculation of cost for synthesizing each templating molecule they identified — generally the most expensive part of making a given zeolite. They use a publicly available model devised in 2018 by Connor Coley PhD ’19, now the Henri Slezynger (1957) Career Development Assistant Professor of Chemical Engineering at MIT. The model takes into account all the starting materials and the step-by-step chemical reactions needed to produce the targeted templating molecule.

    However, commercialization decisions aren’t based solely on cost. Sometimes there’s a trade-off between cost and performance. “For instance, given our chabazite findings, would customers or the community trade a little bit of activity for a 100-fold decrease in the cost of the templating molecule?” says Gómez-Bombarelli. “The answer is likely yes. So we’ve made a tool that can help them navigate that trade-off.” And there are other factors to consider. For example, is this templating molecule truly novel, or have others already studied it — or perhaps even hold a patent on it?

    “While an algorithm can guide development of templating molecules and quantify specific molecule-zeolite matches, other types of assessments are best left to expert judgment,” notes Schwalbe-Koda. “We need a partnership between computational analysis and human intuition and experience.”

    To that end, the MIT researchers and their colleagues decided to share their techniques and findings with other zeolite researchers. Led by Schwalbe-Koda, they created an online database that they made publicly accessible and easy to use — an unusual step, given the competitive industries that rely on zeolites. The interactive website — zeodb.mit.edu — contains the researchers’ final metrics for templating molecule-zeolite pairs resulting from hundreds of thousands of simulations; all the identified journal articles, along with which molecules and zeolites were examined and what synthesis conditions were used; and many more details. Users are free to search and organize the data in any way that suits them.

    Gómez-Bombarelli, Schwalbe-Koda, and their colleagues hope that their techniques and the interactive website will help other researchers explore and discover promising new templating molecules and zeolites, some of which could have profound impacts on efforts to decarbonize energy and tackle climate change.

    This research involved a team of collaborators at MIT, the Instituto de Tecnologia Química (UPV-CSIC), and Stockholm University. The work was supported in part by the MIT Energy Initiative Seed Fund Program and by seed funds from the MIT International Science and Technology Initiative. Daniel Schwalbe-Koda was supported by an ExxonMobil-MIT Energy Fellowship in 2020–21.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    A new concept for low-cost batteries

    As the world builds out ever larger installations of wind and solar power systems, the need is growing fast for economical, large-scale backup systems to provide power when the sun is down and the air is calm. Today’s lithium-ion batteries are still too expensive for most such applications, and other options such as pumped hydro require specific topography that’s not always available.

    Now, researchers at MIT and elsewhere have developed a new kind of battery, made entirely from abundant and inexpensive materials, that could help to fill that gap.

    The new battery architecture, which uses aluminum and sulfur as its two electrode materials, with a molten salt electrolyte in between, is described today in the journal Nature, in a paper by MIT Professor Donald Sadoway, along with 15 others at MIT and in China, Canada, Kentucky, and Tennessee.

    “I wanted to invent something that was better, much better, than lithium-ion batteries for small-scale stationary storage, and ultimately for automotive [uses],” explains Sadoway, who is the John F. Elliott Professor Emeritus of Materials Chemistry.

    In addition to being expensive, lithium-ion batteries contain a flammable electrolyte, making them less than ideal for transportation. So, Sadoway started studying the periodic table, looking for cheap, Earth-abundant metals that might be able to substitute for lithium. The commercially dominant metal, iron, doesn’t have the right electrochemical properties for an efficient battery, he says. But the second-most-abundant metal in the marketplace — and actually the most abundant metal on Earth — is aluminum. “So, I said, well, let’s just make that a bookend. It’s gonna be aluminum,” he says.

    Then came deciding what to pair the aluminum with for the other electrode, and what kind of electrolyte to put in between to carry ions back and forth during charging and discharging. The cheapest of all the non-metals is sulfur, so that became the second electrode material. As for the electrolyte, “we were not going to use the volatile, flammable organic liquids” that have sometimes led to dangerous fires in cars and other applications of lithium-ion batteries, Sadoway says. They tried some polymers but ended up looking at a variety of molten salts that have relatively low melting points — close to the boiling point of water, as opposed to nearly 1,000 degrees Fahrenheit for many salts. “Once you get down to near body temperature, it becomes practical” to make batteries that don’t require special insulation and anticorrosion measures, he says.

    The three ingredients they ended up with are cheap and readily available — aluminum, no different from the foil at the supermarket; sulfur, which is often a waste product from processes such as petroleum refining; and widely available salts. “The ingredients are cheap, and the thing is safe — it cannot burn,” Sadoway says.

    In their experiments, the team showed that the battery cells could endure hundreds of cycles at exceptionally high charging rates, with a projected cost per cell of about one-sixth that of comparable lithium-ion cells. They showed that the charging rate was highly dependent on the working temperature, with 110 degrees Celsius (230 degrees Fahrenheit) showing 25 times faster rates than 25 C (77 F).

    Surprisingly, the molten salt the team chose as an electrolyte simply because of its low melting point turned out to have a fortuitous advantage. One of the biggest problems in battery reliability is the formation of dendrites, which are narrow spikes of metal that build up on one electrode and eventually grow across to contact the other electrode, causing a short-circuit and hampering efficiency. But this particular salt, it happens, is very good at preventing that malfunction.

    The chloro-aluminate salt they chose “essentially retired these runaway dendrites, while also allowing for very rapid charging,” Sadoway says. “We did experiments at very high charging rates, charging in less than a minute, and we never lost cells due to dendrite shorting.”

    “It’s funny,” he says, because the whole focus was on finding a salt with the lowest melting point, but the catenated chloro-aluminates they ended up with turned out to be resistant to the shorting problem. “If we had started off with trying to prevent dendritic shorting, I’m not sure I would’ve known how to pursue that,” Sadoway says. “I guess it was serendipity for us.”

    What’s more, the battery requires no external heat source to maintain its operating temperature. The heat is naturally produced electrochemically by the charging and discharging of the battery. “As you charge, you generate heat, and that keeps the salt from freezing. And then, when you discharge, it also generates heat,” Sadoway says. In a typical installation used for load-leveling at a solar generation facility, for example, “you’d store electricity when the sun is shining, and then you’d draw electricity after dark, and you’d do this every day. And that charge-idle-discharge-idle is enough to generate enough heat to keep the thing at temperature.”

    This new battery formulation, he says, would be ideal for installations of about the size needed to power a single home or small to medium business, producing on the order of a few tens of kilowatt-hours of storage capacity.

    For larger installations, up to utility scale of tens to hundreds of megawatt hours, other technologies might be more effective, including the liquid metal batteries Sadoway and his students developed several years ago and which formed the basis for a spinoff company called Ambri, which hopes to deliver its first products within the next year. For that invention, Sadoway was recently awarded this year’s European Inventor Award.

    The smaller scale of the aluminum-sulfur batteries would also make them practical for uses such as electric vehicle charging stations, Sadoway says. He points out that when electric vehicles become common enough on the roads that several cars want to charge up at once, as happens today with gasoline fuel pumps, “if you try to do that with batteries and you want rapid charging, the amperages are just so high that we don’t have that amount of amperage in the line that feeds the facility.” So having a battery system such as this to store power and then release it quickly when needed could eliminate the need for installing expensive new power lines to serve these chargers.

    The new technology is already the basis for a new spinoff company called Avanti, which has licensed the patents to the system, co-founded by Sadoway and Luis Ortiz ’96 ScD ’00, who was also a co-founder of Ambri. “The first order of business for the company is to demonstrate that it works at scale,” Sadoway says, and then subject it to a series of stress tests, including running through hundreds of charging cycles.

    Would a battery based on sulfur run the risk of producing the foul odors associated with some forms of sulfur? Not a chance, Sadoway says. “The rotten-egg smell is in the gas, hydrogen sulfide. This is elemental sulfur, and it’s going to be enclosed inside the cells.” If you were to try to open up a lithium-ion cell in your kitchen, he says (and please don’t try this at home!), “the moisture in the air would react and you’d start generating all sorts of foul gases as well. These are legitimate questions, but the battery is sealed, it’s not an open vessel. So I wouldn’t be concerned about that.”

    The research team included members from Peking University, Yunnan University and the Wuhan University of Technology, in China; the University of Louisville, in Kentucky; the University of Waterloo, in Canada; Oak Ridge National Laboratory, in Tennessee; and MIT. The work was supported by the MIT Energy Initiative, the MIT Deshpande Center for Technological Innovation, and ENN Group. More

  • in

    Building better batteries, faster

    To help combat climate change, many car manufacturers are racing to add more electric vehicles in their lineups. But to convince prospective buyers, manufacturers need to improve how far these cars can go on a single charge. One of their main challenges? Figuring out how to make extremely powerful but lightweight batteries.

    Typically, however, it takes decades for scientists to thoroughly test new battery materials, says Pablo Leon, an MIT graduate student in materials science. To accelerate this process, Leon is developing a machine-learning tool for scientists to automate one of the most time-consuming, yet key, steps in evaluating battery materials.

    With his tool in hand, Leon plans to help search for new materials to enable the development of powerful and lightweight batteries. Such batteries would not only improve the range of EVs, but they could also unlock potential in other high-power systems, such as solar energy systems that continuously deliver power, even at night.

    From a young age, Leon knew he wanted to pursue a PhD, hoping to one day become a professor of engineering, like his father. Growing up in College Station, Texas, home to Texas A&M University, where his father worked, many of Leon’s friends also had parents who were professors or affiliated with the university. Meanwhile, his mom worked outside the university, as a family counselor in a neighboring city.

    In college, Leon followed in his father’s and older brother’s footsteps to become a mechanical engineer, earning his bachelor’s degree at Texas A&M. There, he learned how to model the behaviors of mechanical systems, such as a metal spring’s stiffness. But he wanted to delve deeper, down to the level of atoms, to understand exactly where these behaviors come from.

    So, when Leon applied to graduate school at MIT, he switched fields to materials science, hoping to satisfy his curiosity. But the transition to a different field was “a really hard process,” Leon says, as he rushed to catch up to his peers.

    To help with the transition, Leon sought out a congenial research advisor and found one in Rafael Gómez-Bombarelli, an assistant professor in the Department of Materials Science and Engineering (DMSE). “Because he’s from Spain and my parents are Peruvian, there’s a cultural ease with the way we talk,” Leon says. According to Gómez-Bombarelli, sometimes the two of them even discuss research in Spanish — a “rare treat.” That connection has empowered Leon to freely brainstorm ideas or talk through concerns with his advisor, enabling him to make significant progress in his research.

    Leveraging machine learning to research battery materials

    Scientists investigating new battery materials generally use computer simulations to understand how different combinations of materials perform. These simulations act as virtual microscopes for batteries, zooming in to see how materials interact at an atomic level. With these details, scientists can understand why certain combinations do better, guiding their search for high-performing materials.

    But building accurate computer simulations is extremely time-intensive, taking years and sometimes even decades. “You need to know how every atom interacts with every other atom in your system,” Leon says. To create a computer model of these interactions, scientists first make a rough guess at a model using complex quantum mechanics calculations. They then compare the model with results from real-life experiments, manually tweaking different parts of the model, including the distances between atoms and the strength of chemical bonds, until the simulation matches real life.

    With well-studied battery materials, the simulation process is somewhat easier. Scientists can buy simulation software that includes pre-made models, Leon says, but these models often have errors and still require additional tweaking.

    To build accurate computer models more quickly, Leon is developing a machine-learning-based tool that can efficiently guide the trial-and-error process. “The hope with our machine learning framework is to not have to rely on proprietary models or do any hand-tuning,” he says. Leon has verified that for well-studied materials, his tool is as accurate as the manual method for building models.

    With this system, scientists will have a single, standardized approach for building accurate models in lieu of the patchwork of approaches currently in place, Leon says.

    Leon’s tool comes at an opportune time, when many scientists are investigating a new paradigm of batteries: solid-state batteries. Compared to traditional batteries, which contain liquid electrolytes, solid-state batteries are safer, lighter, and easier to manufacture. But creating versions of these batteries that are powerful enough for EVs or renewable energy storage is challenging.

    This is largely because in battery chemistry, ions dislike flowing through solids and instead prefer liquids, in which atoms are spaced further apart. Still, scientists believe that with the right combination of materials, solid-state batteries can provide enough electricity for high-power systems, such as EVs. 

    Leon plans to use his machine-learning tool to help look for good solid-state battery materials more quickly. After he finds some powerful candidates in simulations, he’ll work with other scientists to test out the new materials in real-world experiments.

    Helping students navigate graduate school

    To get to where he is today, doing exciting and impactful research, Leon credits his community of family and mentors. Because of his upbringing, Leon knew early on which steps he would need to take to get into graduate school and work toward becoming a professor. And he appreciates the privilege of his position, even more so as a Peruvian American, given that many Latino students are less likely to have access to the same resources. “I understand the academic pipeline in a way that I think a lot of minority groups in academia don’t,” he says.

    Now, Leon is helping prospective graduate students from underrepresented backgrounds navigate the pipeline through the DMSE Application Assistance Program. Each fall, he mentors applicants for the DMSE PhD program at MIT, providing feedback on their applications and resumes. The assistance program is student-run and separate from the admissions process.

    Knowing firsthand how invaluable mentorship is from his relationship with his advisor, Leon is also heavily involved in mentoring junior PhD students in his department. This past year, he served as the academic chair on his department’s graduate student organization, the Graduate Materials Council. With MIT still experiencing disruptions from Covid-19, Leon noticed a problem with student cohesiveness. “I realized that traditional [informal] modes of communication across [incoming class] years had been cut off,” he says, making it harder for junior students to get advice from their senior peers. “They didn’t have any community to fall back on.”

    To help fix this problem, Leon served as a go-to mentor for many junior students. He helped second-year PhD students prepare for their doctoral qualification exam, an often-stressful rite of passage. He also hosted seminars for first-year students to teach them how to make the most of their classes and help them acclimate to the department’s fast-paced classes. For fun, Leon organized an axe-throwing event to further facilitate student cameraderie.

    Leon’s efforts were met with success. Now, “newer students are building back the community,” he says, “so I feel like I can take a step back” from being academic chair. He will instead continue mentoring junior students through other programs within the department. He also plans to extend his community-building efforts among faculty and students, facilitating opportunities for students to find good mentors and work on impactful research. With these efforts, Leon hopes to help others along the academic pipeline that he’s become familiar with, journeying together over their PhDs. More

  • in

    New hardware offers faster computation for artificial intelligence, with much less energy

    As scientists push the boundaries of machine learning, the amount of time, energy, and money required to train increasingly complex neural network models is skyrocketing. A new area of artificial intelligence called analog deep learning promises faster computation with a fraction of the energy usage.

    Programmable resistors are the key building blocks in analog deep learning, just like transistors are the core elements for digital processors. By repeating arrays of programmable resistors in complex layers, researchers can create a network of analog artificial “neurons” and “synapses” that execute computations just like a digital neural network. This network can then be trained to achieve complex AI tasks like image recognition and natural language processing.

    A multidisciplinary team of MIT researchers set out to push the speed limits of a type of human-made analog synapse that they had previously developed. They utilized a practical inorganic material in the fabrication process that enables their devices to run 1 million times faster than previous versions, which is also about 1 million times faster than the synapses in the human brain.

    Moreover, this inorganic material also makes the resistor extremely energy-efficient. Unlike materials used in the earlier version of their device, the new material is compatible with silicon fabrication techniques. This change has enabled fabricating devices at the nanometer scale and could pave the way for integration into commercial computing hardware for deep-learning applications.

    “With that key insight, and the very powerful nanofabrication techniques we have at MIT.nano, we have been able to put these pieces together and demonstrate that these devices are intrinsically very fast and operate with reasonable voltages,” says senior author Jesús A. del Alamo, the Donner Professor in MIT’s Department of Electrical Engineering and Computer Science (EECS). “This work has really put these devices at a point where they now look really promising for future applications.”

    “The working mechanism of the device is electrochemical insertion of the smallest ion, the proton, into an insulating oxide to modulate its electronic conductivity. Because we are working with very thin devices, we could accelerate the motion of this ion by using a strong electric field, and push these ionic devices to the nanosecond operation regime,” explains senior author Bilge Yildiz, the Breene M. Kerr Professor in the departments of Nuclear Science and Engineering and Materials Science and Engineering.

    “The action potential in biological cells rises and falls with a timescale of milliseconds, since the voltage difference of about 0.1 volt is constrained by the stability of water,” says senior author Ju Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and professor of materials science and engineering, “Here we apply up to 10 volts across a special solid glass film of nanoscale thickness that conducts protons, without permanently damaging it. And the stronger the field, the faster the ionic devices.”

    These programmable resistors vastly increase the speed at which a neural network is trained, while drastically reducing the cost and energy to perform that training. This could help scientists develop deep learning models much more quickly, which could then be applied in uses like self-driving cars, fraud detection, or medical image analysis.

    “Once you have an analog processor, you will no longer be training networks everyone else is working on. You will be training networks with unprecedented complexities that no one else can afford to, and therefore vastly outperform them all. In other words, this is not a faster car, this is a spacecraft,” adds lead author and MIT postdoc Murat Onen.

    Co-authors include Frances M. Ross, the Ellen Swallow Richards Professor in the Department of Materials Science and Engineering; postdocs Nicolas Emond and Baoming Wang; and Difei Zhang, an EECS graduate student. The research is published today in Science.

    Accelerating deep learning

    Analog deep learning is faster and more energy-efficient than its digital counterpart for two main reasons. “First, computation is performed in memory, so enormous loads of data are not transferred back and forth from memory to a processor.” Analog processors also conduct operations in parallel. If the matrix size expands, an analog processor doesn’t need more time to complete new operations because all computation occurs simultaneously.

    The key element of MIT’s new analog processor technology is known as a protonic programmable resistor. These resistors, which are measured in nanometers (one nanometer is one billionth of a meter), are arranged in an array, like a chess board.

    In the human brain, learning happens due to the strengthening and weakening of connections between neurons, called synapses. Deep neural networks have long adopted this strategy, where the network weights are programmed through training algorithms. In the case of this new processor, increasing and decreasing the electrical conductance of protonic resistors enables analog machine learning.

    The conductance is controlled by the movement of protons. To increase the conductance, more protons are pushed into a channel in the resistor, while to decrease conductance protons are taken out. This is accomplished using an electrolyte (similar to that of a battery) that conducts protons but blocks electrons.

    To develop a super-fast and highly energy efficient programmable protonic resistor, the researchers looked to different materials for the electrolyte. While other devices used organic compounds, Onen focused on inorganic phosphosilicate glass (PSG).

    PSG is basically silicon dioxide, which is the powdery desiccant material found in tiny bags that come in the box with new furniture to remove moisture. It is studied as a proton conductor under humidified conditions for fuel cells. It is also the most well-known oxide used in silicon processing. To make PSG, a tiny bit of phosphorus is added to the silicon to give it special characteristics for proton conduction.

    Onen hypothesized that an optimized PSG could have a high proton conductivity at room temperature without the need for water, which would make it an ideal solid electrolyte for this application. He was right.

    Surprising speed

    PSG enables ultrafast proton movement because it contains a multitude of nanometer-sized pores whose surfaces provide paths for proton diffusion. It can also withstand very strong, pulsed electric fields. This is critical, Onen explains, because applying more voltage to the device enables protons to move at blinding speeds.

    “The speed certainly was surprising. Normally, we would not apply such extreme fields across devices, in order to not turn them into ash. But instead, protons ended up shuttling at immense speeds across the device stack, specifically a million times faster compared to what we had before. And this movement doesn’t damage anything, thanks to the small size and low mass of protons. It is almost like teleporting,” he says.

    “The nanosecond timescale means we are close to the ballistic or even quantum tunneling regime for the proton, under such an extreme field,” adds Li.

    Because the protons don’t damage the material, the resistor can run for millions of cycles without breaking down. This new electrolyte enabled a programmable protonic resistor that is a million times faster than their previous device and can operate effectively at room temperature, which is important for incorporating it into computing hardware.

    Thanks to the insulating properties of PSG, almost no electric current passes through the material as protons move. This makes the device extremely energy efficient, Onen adds.

    Now that they have demonstrated the effectiveness of these programmable resistors, the researchers plan to reengineer them for high-volume manufacturing, says del Alamo. Then they can study the properties of resistor arrays and scale them up so they can be embedded into systems.

    At the same time, they plan to study the materials to remove bottlenecks that limit the voltage that is required to efficiently transfer the protons to, through, and from the electrolyte.

    “Another exciting direction that these ionic devices can enable is energy-efficient hardware to emulate the neural circuits and synaptic plasticity rules that are deduced in neuroscience, beyond analog deep neural networks. We have already started such a collaboration with neuroscience, supported by the MIT Quest for Intelligence,” adds Yildiz.

    “The collaboration that we have is going to be essential to innovate in the future. The path forward is still going to be very challenging, but at the same time it is very exciting,” del Alamo says.

    “Intercalation reactions such as those found in lithium-ion batteries have been explored extensively for memory devices. This work demonstrates that proton-based memory devices deliver impressive and surprising switching speed and endurance,” says William Chueh, associate professor of materials science and engineering at Stanford University, who was not involved with this research. “It lays the foundation for a new class of memory devices for powering deep learning algorithms.”

    “This work demonstrates a significant breakthrough in biologically inspired resistive-memory devices. These all-solid-state protonic devices are based on exquisite atomic-scale control of protons, similar to biological synapses but at orders of magnitude faster rates,” says Elizabeth Dickey, the Teddy & Wilton Hawkins Distinguished Professor and head of the Department of Materials Science and Engineering at Carnegie Mellon University, who was not involved with this work. “I commend the interdisciplinary MIT team for this exciting development, which will enable future-generation computational devices.”

    This research is funded, in part, by the MIT-IBM Watson AI Lab. More

  • in

    Donald Sadoway wins European Inventor Award for liquid metal batteries

    MIT Professor Donald Sadoway has won the 2022 European Inventor Award, in the category for Non-European Patent Office Countries, for his work on liquid metal batteries that could enable the long-term storage of renewable energy.

    Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a longtime supporter and friend of the Materials Research Laboratory.

    “By enabling the large-scale storage of renewable energy, Donald Sadoway’s invention is a huge step towards the deployment of carbon-free electricity generation,” says António Campinos, president of the European Patent Office. “He has spent his career studying electrochemistry and has transformed this expertise into an invention that represents a huge step forward in the transition to green energy.”

    Sadoway was honored at the 2022 European Inventor Award ceremony on June 21. The award is one of Europe’s most prestigious innovation prizes and is presented annually to outstanding inventors from Europe and beyond who have made an exceptional contribution to society, technological progress, and economic growth.

    When accepting the award in Munich, Sadoway told the audience:

    “I am astonished. When I look at all the patented technologies that are represented at this event I see an abundance of excellence, all of them solutions to pressing problems. I wonder if the judges are assessing not only degrees of excellence but degrees of urgency. The liquid metal battery addresses an existential threat to the health of our atmosphere which is related to climate change.

    “By hosting this event the EPO celebrates invention. The thread that connects all the inventors is their efforts to make the world a better place. In my judgment there is no nobler pursuit. So perhaps this is a celebration of nobility.”

    Sadoway’s liquid metal batteries consist of three liquid layers of different densities, which naturally separate in the same way as oil and vinegar do in a salad dressing. The top and bottom layers are made from molten metals, with a middle layer of molten liquid salt.

    To keep the metals liquid, the batteries need to operate at extremely high temperatures, so Sadoway designed a system that is self-heating and insulated, requiring no external heating or cooling. They have a lifespan of more than 20 years, can maintain 99 percent of their capacity over 5,000 charging cycles, and have no combustible materials, meaning there is no fire risk.

    In 2010, with a patent for his invention and support from Bill Gates, Sadoway co-founded Ambri, based in Marlborough, Massachusetts just outside Boston, to develop a commercial product. The company will soon install a unit on a 3,700-acre development for a data center in Nevada. This battery will store energy from a reported 500 megawatts of on-site renewable generation, the same output as a natural gas power plant.

    Born in 1950 into a family of Ukrainian immigrants in Canada, Sadoway studied chemical metallurgy specializing in what he calls “extreme electrochemistry” — chemical reactions in molten salts and liquid metals that have been heated to over 500 degrees Celsius. After earning his BASc, MASc, and PhD, all from the University of Toronto, he joined the faculty at MIT in 1978. More

  • in

    MIT Climate and Sustainability Consortium announces recipients of inaugural MCSC Seed Awards

    The MIT Climate and Sustainability Consortium (MCSC) has awarded 20 projects a total of $5 million over two years in its first-ever 2022 MCSC Seed Awards program. The winning projects are led by principal investigators across all five of MIT’s schools.

    The goal of the MCSC Seed Awards is to engage MIT researchers and link the economy-wide work of the consortium to ongoing and emerging climate and sustainability efforts across campus. The program offers further opportunity to build networks among the awarded projects to deepen the impact of each and ensure the total is greater than the sum of its parts.

    For example, to drive progress under the awards category Circularity and Materials, the MCSC can facilitate connections between the technologists at MIT who are developing recovery approaches for metals, plastics, and fiber; the urban planners who are uncovering barriers to reuse; and the engineers, who will look for efficiency opportunities in reverse supply chains.

    “The MCSC Seed Awards are designed to complement actions previously outlined in Fast Forward: MIT’s Climate Action Plan for the Decade and, more specifically, the Climate Grand Challenges,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MIT Climate and Sustainability Consortium. “In collaboration with seed award recipients and MCSC industry members, we are eager to engage in interdisciplinary exploration and propel urgent advancements in climate and sustainability.” 

    By supporting MIT researchers with expertise in economics, infrastructure, community risk assessment, mobility, and alternative fuels, the MCSC will accelerate implementation of cross-disciplinary solutions in the awards category Decarbonized and Resilient Value Chains. Enhancing Natural Carbon Sinks and building connections to local communities will require associations across experts in ecosystem change, biodiversity, improved agricultural practice and engagement with farmers, all of which the consortium can begin to foster through the seed awards.

    “Funding opportunities across campus has been a top priority since launching the MCSC,” says Jeremy Gregory, MCSC executive director. “It is our honor to support innovative teams of MIT researchers through the inaugural 2022 MCSC Seed Awards program.”

    The winning projects are tightly aligned with the MCSC’s areas of focus, which were derived from a year of highly engaged collaborations with MCSC member companies. The projects apply across the member’s climate and sustainability goals.

    The MCSC’s 16 member companies span many industries, and since early 2021, have met with members of the MIT community to define focused problem statements for industry-specific challenges, identify meaningful partnerships and collaborations, and develop clear and scalable priorities. Outcomes from these collaborations laid the foundation for the focus areas, which have shaped the work of the MCSC. Specifically, the MCSC Industry Advisory Board engaged with MIT on key strategic directions, and played a critical role in the MCSC’s series of interactive events. These included virtual workshops hosted last summer, each on a specific topic that allowed companies to work with MIT and each other to align key assumptions, identify blind spots in corporate goal-setting, and leverage synergies between members, across industries. The work continued in follow-up sessions and an annual symposium.

    “We are excited to see how the seed award efforts will help our member companies reach or even exceed their ambitious climate targets, find new cross-sector links among each other, seek opportunities to lead, and ripple key lessons within their industry, while also deepening the Institute’s strong foundation in climate and sustainability research,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.

    As the seed projects take shape, the MCSC will provide ongoing opportunities for awardees to engage with the Industry Advisory Board and technical teams from the MCSC member companies to learn more about the potential for linking efforts to support and accelerate their climate and sustainability goals. Awardees will also have the chance to engage with other members of the MCSC community, including its interdisciplinary Faculty Steering Committee.

    “One of our mantras in the MCSC is to ‘amplify and extend’ existing efforts across campus; we’re always looking for ways to connect the collaborative industry relationships we’re building and the work we’re doing with other efforts on campus,” notes Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. “We feel the urgency as well as the potential, and we don’t want to miss opportunities to do more and go faster.”

    The MCSC Seed Awards complement the Climate Grand Challenges, a new initiative to mobilize the entire MIT research community around developing the bold, interdisciplinary solutions needed to address difficult, unsolved climate problems. The 27 finalist teams addressed four broad research themes, which align with the MCSC’s focus areas. From these finalist teams, five flagship projects were announced in April 2022.

    The parallels between MCSC’s focus areas and the Climate Grand Challenges themes underscore an important connection between the shared long-term research interests of industry and academia. The challenges that some of the world’s largest and most influential companies have identified are complementary to MIT’s ongoing research and innovation — highlighting the tremendous opportunity to develop breakthroughs and scalable solutions quickly and effectively. Special Presidential Envoy for Climate John Kerry underscored the importance of developing these scalable solutions, including critical new technology, during a conversation with MIT President L. Rafael Reif at MIT’s first Climate Grand Challenges showcase event last month.

    Both the MCSC Seed Awards and the Climate Grand Challenges are part of MIT’s larger commitment and initiative to combat climate change; this was underscored in “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021.

    The project titles and research leads for each of the 20 awardees listed below are categorized by MCSC focus area.

    Decarbonized and resilient value chains

    “Collaborative community mapping toolkit for resilience planning,” led by Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on Climate Grand Challenges flagship project) and Nicholas de Monchaux, professor and department head in the Department of Architecture
    “CP4All: Fast and local climate projections with scientific machine learning — towards accessibility for all of humanity,” led by Chris Hill, principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences and Dava Newman, director of the MIT Media Lab and the Apollo Program Professor in the Department of Aeronautics and Astronautics
    “Emissions reductions and productivity in U.S. manufacturing,” led by Mert Demirer, assistant professor of applied economics at the MIT Sloan School of Management and Jing Li, assistant professor and William Barton Rogers Career Development Chair of Energy Economics in the MIT Sloan School of Management
    “Logistics electrification through scalable and inter-operable charging infrastructure: operations, planning, and policy,” led by Alex Jacquillat, the 1942 Career Development Professor and assistant professor of operations research and statistics in the MIT Sloan School of Management
    “Powertrain and system design for LOHC-powered long-haul trucking,” led by William Green, the Hoyt Hottel Professor in Chemical Engineering in the Department of Chemical Engineering and postdoctoral officer, and Wai K. Cheng, professor in the Department of Mechanical Engineering and director of the Sloan Automotive Laboratory
    “Sustainable Separation and Purification of Biochemicals and Biofuels using Membranes,” led by John Lienhard, the Abdul Latif Jameel Professor of Water in the Department of Mechanical Engineering, director of the Abdul Latif Jameel Water and Food Systems Lab, and director of the Rohsenow Kendall Heat Transfer Laboratory; and Nicolas Hadjiconstantinou, professor in the Department of Mechanical Engineering, co-director of the Center for Computational Science and Engineering, associate director of the Center for Exascale Simulation of Materials in Extreme Environments, and graduate officer
    “Toolkit for assessing the vulnerability of industry infrastructure siting to climate change,” led by Michael Howland, assistant professor in the Department of Civil and Environmental Engineering

    Circularity and Materials

    “Colorimetric Sulfidation for Aluminum Recycling,” led by Antoine Allanore, associate professor of metallurgy in the Department of Materials Science and Engineering
    “Double Loop Circularity in Materials Design Demonstrated on Polyurethanes,” led by Brad Olsen, the Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering, and Kristala Prather, the Arthur Dehon Little Professor and department executive officer in the Department of Chemical Engineering
    “Engineering of a microbial consortium to degrade and valorize plastic waste,” led by Otto Cordero, associate professor in the Department of Civil and Environmental Engineering, and Desiree Plata, the Gilbert W. Winslow (1937) Career Development Professor in Civil Engineering and associate professor in the Department of Civil and Environmental Engineering
    “Fruit-peel-inspired, biodegradable packaging platform with multifunctional barrier properties,” led by Kripa Varanasi, professor in the Department of Mechanical Engineering
    “High Throughput Screening of Sustainable Polyesters for Fibers,” led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Brad Olsen, Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering
    “Short-term and long-term efficiency gains in reverse supply chains,” led by Yossi Sheffi, the Elisha Gray II Professor of Engineering Systems, professor in the Department of Civil and Environmental Engineering, and director of the Center for Transportation and Logistics
    The costs and benefits of circularity in building construction, led by Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at the MIT Center for Real Estate and Department of Urban Studies and Planning, faculty director of the MIT Center for Real Estate, and faculty director for the MIT Sustainable Urbanization Lab; and Randolph Kirchain, principal research scientist and co-director of MIT Concrete Sustainability Hub

    Natural carbon sinks

    “Carbon sequestration through sustainable practices by smallholder farmers,” led by Joann de Zegher, the Maurice F. Strong Career Development Professor and assistant professor of operations management in the MIT Sloan School of Management, and Karen Zheng the George M. Bunker Professor and associate professor of operations management in the MIT Sloan School of Management
    “Coatings to protect and enhance diverse microbes for improved soil health and crop yields,” led by Ariel Furst, the Raymond A. (1921) And Helen E. St. Laurent Career Development Professor of Chemical Engineering in the Department of Chemical Engineering, and Mary Gehring, associate professor of biology in the Department of Biology, core member of the Whitehead Institute for Biomedical Research, and graduate officer
    “ECO-LENS: Mainstreaming biodiversity data through AI,” led by John Fernández, professor of building technology in the Department of Architecture and director of MIT Environmental Solutions Initiative
    “Growing season length, productivity, and carbon balance of global ecosystems under climate change,” led by Charles Harvey, professor in the Department of Civil and Environmental Engineering, and César Terrer, assistant professor in the Department of Civil and Environmental Engineering

    Social dimensions and adaptation

    “Anthro-engineering decarbonization at the million-person scale,” led by Manduhai Buyandelger, professor in the Anthropology Section, and Michael Short, the Class of ’42 Associate Professor of Nuclear Science and Engineering in the Department of Nuclear Science and Engineering
    “Sustainable solutions for climate change adaptation: weaving traditional ecological knowledge and STEAM,” led by Janelle Knox-Hayes, the Lister Brothers Associate Professor of Economic Geography and Planning and head of the Environmental Policy and Planning Group in the Department of Urban Studies and Planning, and Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on a Climate Grand Challenges flagship project) More

  • in

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC

    MIT’s Plasma Science and Fusion Center (PSFC) will substantially expand its fusion energy research and education activities under a new five-year agreement with Institute spinout Commonwealth Fusion Systems (CFS).

    “This expanded relationship puts MIT and PSFC in a prime position to be an even stronger academic leader that can help deliver the research and education needs of the burgeoning fusion energy industry, in part by utilizing the world’s first burning plasma and net energy fusion machine, SPARC,” says PSFC director Dennis Whyte. “CFS will build SPARC and develop a commercial fusion product, while MIT PSFC will focus on its core mission of cutting-edge research and education.”

    Commercial fusion energy has the potential to play a significant role in combating climate change, and there is a concurrent increase in interest from the energy sector, governments, and foundations. The new agreement, administered by the MIT Energy Initiative (MITEI), where CFS is a startup member, will help PSFC expand its fusion technology efforts with a wider variety of sponsors. The collaboration enables rapid execution at scale and technology transfer into the commercial sector as soon as possible.

    This new agreement doubles CFS’ financial commitment to PSFC, enabling greater recruitment and support of students, staff, and faculty. “We’ll significantly increase the number of graduate students and postdocs, and just as important they will be working on a more diverse set of fusion science and technology topics,” notes Whyte. It extends the collaboration between PSFC and CFS that resulted in numerous advances toward fusion power plants, including last fall’s demonstration of a high-temperature superconducting (HTS) fusion electromagnet with record-setting field strength of 20 tesla.

    The combined magnetic fusion efforts at PSFC will surpass those in place during the operations of the pioneering Alcator C-Mod tokamak device that operated from 1993 to 2016. This increase in activity reflects a moment when multiple fusion energy technologies are seeing rapidly accelerating development worldwide, and the emergence of a new fusion energy industry that would require thousands of trained people.

    MITEI director Robert Armstrong adds, “Our goal from the beginning was to create a membership model that would allow startups who have specific research challenges to leverage the MITEI ecosystem, including MIT faculty, students, and other MITEI members. The team at the PSFC and MITEI have worked seamlessly to support CFS, and we are excited for this next phase of the relationship.”

    PSFC is supporting CFS’ efforts toward realizing the SPARC fusion platform, which facilitates rapid development and refinement of elements (including HTS magnets) needed to build ARC, a compact, modular, high-field fusion power plant that would set the stage for commercial fusion energy production. The concepts originated in Whyte’s nuclear science and engineering class 22.63 (Principles of Fusion Engineering) and have been carried forward by students and PSFC staff, many of whom helped found CFS; the new activity will expand research into advanced technologies for the envisioned pilot plant.

    “This has been an incredibly effective collaboration that has resulted in a major breakthrough for commercial fusion with the successful demonstration of revolutionary fusion magnet technology that will enable the world’s first commercially relevant net energy fusion device, SPARC, currently under construction,” says Bob Mumgaard SM ’15, PhD ’15, CEO of Commonwealth Fusion Systems. “We look forward to this next phase in the collaboration with MIT as we tackle the critical research challenges ahead for the next steps toward fusion power plant development.”

    In the push for commercial fusion energy, the next five years are critical, requiring intensive work on materials longevity, heat transfer, fuel recycling, maintenance, and other crucial aspects of power plant development. It will need innovation from almost every engineering discipline. “Having great teams working now, it will cut the time needed to move from SPARC to ARC, and really unleash the creativity. And the thing MIT does so well is cut across disciplines,” says Whyte.

    “To address the climate crisis, the world needs to deploy existing clean energy solutions as widely and as quickly as possible, while at the same time developing new technologies — and our goal is that those new technologies will include fusion power,” says Maria T. Zuber, MIT’s vice president for research. “To make new climate solutions a reality, we need focused, sustained collaborations like the one between MIT and Commonwealth Fusion Systems. Delivering fusion power onto the grid is a monumental challenge, and the combined capabilities of these two organizations are what the challenge demands.”

    On a strategic level, climate change and the imperative need for widely implementable carbon-free energy have helped orient the PSFC team toward scalability. “Building one or 10 fusion plants doesn’t make a difference — we have to build thousands,” says Whyte. “The design decisions we make will impact the ability to do that down the road. The real enemy here is time, and we want to remove as many impediments as possible and commit to funding a new generation of scientific leaders. Those are critically important in a field with as much interdisciplinary integration as fusion.” More

  • in

    Team creates map for production of eco-friendly metals

    In work that could usher in more efficient, eco-friendly processes for producing important metals like lithium, iron, and cobalt, researchers from MIT and the SLAC National Accelerator Laboratory have mapped what is happening at the atomic level behind a particularly promising approach called metal electrolysis.

    By creating maps for a wide range of metals, they not only determined which metals should be easiest to produce using this approach, but also identified fundamental barriers behind the efficient production of others. As a result, the researchers’ map could become an important design tool for optimizing the production of all these metals.

    The work could also aid the development of metal-air batteries, cousins of the lithium-ion batteries used in today’s electric vehicles.

    Most of the metals key to society today are produced using fossil fuels. These fuels generate the high temperatures necessary to convert the original ore into its purified metal. But that process is a significant source of greenhouse gases — steel alone accounts for some 7 percent of carbon dioxide emissions globally. As a result, researchers from around the world are working to identify more eco-friendly ways for the production of metals.

    One promising approach is metal electrolysis, in which a metal oxide, the ore, is zapped with electricity to create pure metal with oxygen as the byproduct. That is the reaction explored at the atomic level in new research reported in the April 8 issue of the journal Chemistry of Materials.

    Donald Siegel is department chair and professor of mechanical engineering at the University of Texas at Austin. Says Siegel, who was not involved in the Chemistry of Materials study: “This work is an important contribution to improving the efficiency of metal production from metal oxides. It clarifies our understanding of low-carbon electrolysis processes by tracing the underlying thermodynamics back to elementary metal-oxygen interactions. I expect that this work will aid in the creation of design rules that will make these industrially important processes less reliant on fossil fuels.”

    Yang Shao-Horn, the JR East Professor of Engineering in MIT’s Department of Materials Science and Engineering (DMSE) and Department of Mechanical Engineering, is a leader of the current work, with Michal Bajdich of SLAC.

    “Here we aim to establish some basic understanding to predict the efficiency of electrochemical metal production and metal-air batteries from examining computed thermodynamic barriers for the conversion between metal and metal oxides,” says Shao-Horn, who is on the research team for MIT’s new Center for Electrification and Decarbonization of Industry, a winner of the Institute’s first-ever Climate Grand Challenges competition. Shao-Horn is also affiliated with MIT’s Materials Research Laboratory and Research Laboratory of Electronics.

    In addition to Shao-Horn and Bajdich, other authors of the Chemistry of Materials paper are Jaclyn R. Lunger, first author and a DMSE graduate student; mechanical engineering senior Naomi Lutz; and DMSE graduate student Jiayu Peng.

    Other applications

    The work could also aid in developing metal-air batteries such as lithium-air, aluminum-air, and zinc-air batteries. These cousins of the lithium-ion batteries used in today’s electric vehicles have the potential to electrify aviation because their energy densities are much higher. However, they are not yet on the market due to a variety of problems including inefficiency.

    Charging metal-air batteries also involves electrolysis. As a result, the new atomic-level understanding of these reactions could not only help engineers develop efficient electrochemical routes for metal production, but also design more efficient metal-air batteries.

    Learning from water splitting

    Electrolysis is also used to split water into oxygen and hydrogen, which stores the resulting energy. That hydrogen, in turn, could become an eco-friendly alternative to fossil fuels. Since much more is known about water electrolysis, the focus of Bajdich’s work at SLAC, than the electrolysis of metal oxides, the team compared the two processes for the first time.

    The result: “Slowly, we uncovered the elementary steps involved in metal electrolysis,” says Bajdich. The work was challenging, says Lunger, because “it was unclear to us what those steps are. We had to figure out how to get from A to B,” or from a metal oxide to metal and oxygen.

    All of the work was conducted with supercomputer simulations. “It’s like a sandbox of atoms, and then we play with them. It’s a little like Legos,” says Bajdich. More specifically, the team explored different scenarios for the electrolysis of several metals. Each involved different catalysts, molecules that boost the speed of a reaction.

    Says Lunger, “To optimize the reaction, you want to find the catalyst that makes it most efficient.” The team’s map is essentially a guide for designing the best catalysts for each different metal.

    What’s next? Lunger noted that the current work focused on the electrolysis of pure metals. “I’m interested in seeing what happens in more complex systems involving multiple metals. Can you make the reaction more efficient if there’s sodium and lithium present, or cadmium and cesium?”

    This work was supported by a U.S. Department of Energy Office of Science Graduate Student Research award. It was also supported by an MIT Energy Initiative fellowship, the Toyota Research Institute through the Accelerated Materials Design and Discovery Program, the Catalysis Science Program of Department of Energy, Office of Basic Energy Sciences, and by the Differentiate Program through the U.S. Advanced Research Projects Agency — Energy.  More