1.
Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).
CAS Google Scholar
2.
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 166, 11195–11200 (2019).
Google Scholar
3.
Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: the DIVA wetland change model. Glob. Planet. Change 139, 15–30 (2016).
Google Scholar
4.
Moftakhari, H. R. et al. Increased nuisance flooding due to sea-level rise: past and future. Geophys. Res. Lett. 42, 9846–9852 (2015).
Google Scholar
5.
Vitousek, S. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).
Google Scholar
6.
Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2013).
7.
Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).
Google Scholar
8.
Diaz, D. B. Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM). Clim. Change 137, 143–156 (2016).
Google Scholar
9.
Barnard, P. L. et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 9, 4309 (2019).
Google Scholar
10.
Rotzoll, K. & Fletcher, C. H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477–481 (2013).
Google Scholar
11.
Webb, M. D. & Howard, K. W. F. Modeling the transient response of saline intrusion to rising sea-levels. Ground Water 49, 560–569 (2011).
CAS Google Scholar
12.
Werner, A. D. & Simmons, C. T. Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47, 197–204 (2009).
CAS Google Scholar
13.
Michael, H. A., Russoniello, C. J. & Byron, L. A. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems. Water Resour. Res. 49, 2228–2240 (2013).
Google Scholar
14.
Masterson, J. P. et al. Effects of sea-level rise on barrier island groundwater system dynamics—ecohydrological implications. Ecohydrology 7, 1064–1071 (2014).
Google Scholar
15.
Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).
Google Scholar
16.
Hummel, M. A., Berry, M. S. & Stacey, M. T. Sea level rise impacts on wastewater treatment systems along the U.S. coasts. Earth’s Future 6, 622–633 (2018).
Google Scholar
17.
Liu, T., Su, X. & Prigiobbe, V. Groundwater–sewer interaction in urban coastal areas. Water 10, 1774 (2018).
CAS Google Scholar
18.
Knott, J. F., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Adaptation planning to mitigate coastal-road pavement damage from groundwater rise caused by sea-level rise. Transp. Res. Rec. 2672, 11–22 (2018).
Google Scholar
19.
Myers, N. Environmental refugees: a growing phenomenon of the 21st century. Phil. Trans. R. Soc. Lond. B 357, 609–613 (2002).
Google Scholar
20.
Nicholls, R. J. et al. Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Phil. Trans. R. Soc. A 369, 161–181 (2011).
Google Scholar
21.
Abarca, E., Karam, H., Hemond, H. F. & Harvey, C. F. Transient groundwater dynamics in a coastal aquifer: the effects of tides, the lunar cycle and the beach profile. Water Resour. Res. 49, 2473–2488 (2013).
Google Scholar
22.
Nielsen, P. Tidal dynamics of the water table in beaches. Water Resour. Res. 26, 2127–2134 (1990).
Google Scholar
23.
Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B. & Simmons, C. T. Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration. J. Hydrol. 535, 235–255 (2016).
Google Scholar
24.
Masterson, J. P. & Garabedian, S. P. Effects of sea-level rise on ground water flow in a coastal aquifer system. Ground Water 45, 209–217 (2007).
CAS Google Scholar
25.
Werner, A. D. et al. Vulnerability indicators of sea water intrusion. Ground Water 50, 48–58 (2012).
CAS Google Scholar
26.
Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S. & Taniguchi, M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66, 3–33 (2003).
CAS Google Scholar
27.
Hoover, D. J., Odigie, K. O., Swarzenski, P. W. & Barnard, P. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA. J. Hydrol. Reg. Stud. 11, 234–249 (2017).
Google Scholar
28.
Plane, E., Hill, K. & May, C. A rapid assessment method to identify potential groundwater flooding hotspots as sea levels rise in coastal cities. Water 11, 2228 (2019).
CAS Google Scholar
29.
Lu, C., Werner, A. D. & Simmons, C. T. Threats to coastal aquifers. Nat. Clim. Change 3, 605 (2013).
Google Scholar
30.
Harbaugh, A. W. MODFLOW-2005: The U.S. Geological Survey Modular Ground-Water Model—the Ground-Water Flow Process Techniques and Methods No. 6-A16 (US Geological Survey, 2005).
31.
Topologically Integrated Geographic Encoding and Referencing (TIGER) Database (US Census Bureau, 2016).
32.
Gleeson, T., Moosdorf, N., Hartmann, J. & van Beek, L. P. H. A glimpse beneath Earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).
Google Scholar
33.
Glover, R. E. The pattern of fresh-water flow in a coastal aquifer. J. Geophys. Res. 64, 457–459 (1959).
Google Scholar
34.
Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).
Google Scholar
35.
Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States Technical Report NOS CO-OPS (NOAA, 2017).
36.
State of California Sea-Level Rise Guidance—2018 Update (California Ocean Protection Council, 2018).
37.
Duvall, A., Kirby, E. & Burbank, D. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. J. Geophys. Res. 109, F03002 (2004).
Google Scholar
38.
Vitousek, S., Barnard, P. L., Limber, P., Erikson, L. & Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 122, 782–806 (2017).
Google Scholar
39.
Erikson, L. H., O’Neill, A., Barnard, P. L., Vitousek, S. & Limber, P. Climate change-driven cliff and beach evolution at decadal to centennial time scales. In Proc. Coastal Dynamics 2017 (eds Aagaard, T. et al.) 125–136 (2017).
40.
Limber, P. W., Barnard, P. L., Vitousek, S. & Erikson, L. H. A model ensemble for projecting multidecadal coastal cliff retreat during the 21st century. J. Geophys. Res. Earth Surf. 123, 1566–1589 (2018).
Google Scholar
41.
Knott, J. F., Elshaer, M., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2639, 1–10 (2017).
Google Scholar
42.
Habel, S., Fletcher, C. H., Rotzoll, K. & El-Kadi, A. I. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Res. 114, 122–134 (2017).
CAS Google Scholar
43.
Hughes, J. D. & White, J. T. Hydrologic Conditions in Urban Miami-Dade County, Florida, and the Effect of Groundwater Pumpage and Increased Sea Level on Canal Leakage and Regional Groundwater Flow Scientific Investigations Report No. 2014–5162 (US Geological Survey, 2014).
44.
Guha, H. & Panday, S. Impact of sea level rise on groundwater salinity in a coastal community of South Florida. J. Am. Water Resour. Assoc. 48, 510–529 (2012).
Google Scholar
45.
Sukop, M. C., Rogers, M., Guannel, G., Infanti, J. M. & Hagemann, K. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA. Sci. Total Environ. 616–617, 1668–1688 (2018).
Google Scholar
46.
Bakker, M. et al. Scripting MODFLOW model development using Python and FloPy. Groundwater 54, 733–739 (2016).
CAS Google Scholar
47.
Reitz, M., Sanford, W. E., Senay, G. B. & Cazenas, J. Annual Estimates of Recharge, Quick-Flow Runoff, and ET for the Contiguous US Using Empirical Regression Equations, 2000–2013 (US Geological Survey, 2017).
48.
Reitz, M., Sanford, W. E., Senay, G. B. & Cazenas, J. Annual estimates of recharge, quick-flow runoff, and evapotranspiration for the contiguous U.S. using empirical regression equations. J. Am. Water Resour. Assoc. 53, 961–983 (2017).
Google Scholar
49.
Hanson, R. T., Martin, P. & Koczot, K. M. Simulation of Ground-Water/Surface-Water Flow in the Santa Clara-Calleguas Ground-Water Basin, Ventura County, California Water-Resources Investigations Report No. 2002-4136 (US Geological Survey, 2003).
50.
Hanson, R. T., Schmid, W., Faunt, C. C., Lear, J. & Lockwood, B. Integrated Hydrologic Model of Pajaro Valley, Santa Cruz and Monterey Counties, California Scientific Investigations Report No. 2014-5111 (US Geological Survey, 2014).
51.
Reichard, E. G. et al. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California Water-Resources Investigations Report No. 03-4065 (US Geological Survey, 2003).
52.
Nishikawa, T. A Simulation-Optimization Model for Water-Resources Management, Santa Barbara, California Water-Resources Investigations Report No. 97-4246 (US Geological Survey, 1998).
53.
Farrar, C. D., Metzger, L. F., Nishikawa, T., Koczot, K. M. & Reichard, E. G. Geohydrological Characterization, Water-Chemistry, and Ground-Water Flow Simulation Model of the Sonoma Valley Area, Sonoma County, California Scientific Investigations Report No. 2006-5092 (US Geological Survey, 2006).
54.
Bright, D. J., Nash, D. B. & Martin, P. Evaluation of Ground-Water Flow and Solute Transport in the Lompoc Area, Santa Barbara County, California Water-Resources Investigations Report No. 97-4056 (US Geological Survey, 1997).
55.
Knott, J. F., Jacobs, J. M., Daniel, J. S. & Kirshen, P. Modeling groundwater rise caused by sea-level rise in coastal New Hampshire. J. Coast. Res. 35, 143–157 (2019).
Google Scholar
56.
Huscroft, J., Gleeson, T., Hartmann, J. & Börker, J. Compiling and mapping global permeability of the unconsolidated and consolidated Earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0). Geophys. Res. Lett. 45, 1897–1904 (2018).
Google Scholar
57.
Gleeson, T. et al. Mapping permeability over the surface of the Earth. Geophys. Res. Lett. 38, L02401 (2011).
Google Scholar
58.
Zamrsky, D., Oude Essink, G. H. P. & Bierkens, M. F. P. Estimating the thickness of unconsolidated coastal aquifers along the global coastline. Earth Syst. Sci. Data 10, 1591–1603 (2018).
Google Scholar
59.
Tyler, D. J. & Danielson, J. J. Topobathymetric Model for the Southern Coast of California and the Channel Islands, 1930 to 2014 (US Geological Survey, 2018).
60.
Danielson, J. J. et al. Topobathymetric elevation model development using a new methodology: coastal national elevation. Database J. Coast. Res. 76, 75–89 (2016).
Google Scholar
61.
Tyler, D. J., Danielson, J. J., Poppenga, S. K. & Gesch, D. B. Topobathymetric Model for the Central Coast of California, 1929 to 2017 (US Geological Survey, 2018).
62.
Tarboton, D. G. Terrain Analysis Using Digital Elevation Models (TauDEM) (Utah State Univ., 2005).
63.
Estimation of Vertical Uncertainties in VDatum (National Oceanic and Atmospheric Administration, 2018).
64.
National Oceanic Data Center (Levitus) World Ocean Atlas (National Oceanic and Atmospheric Administration, 1994).
65.
Schraga, T. S. & Cloern, J. E. Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969-2015. Sci. Data 4, 170098 (2017).
CAS Google Scholar
66.
Post, V., Kooi, H. & Simmons, C. Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45, 664–671 (2007).
CAS Google Scholar
67.
Befus, K. M. kbefus/ca_gw_slr Zenodo https://doi.org/10.5281/zenodo. 3897502 (2020).
68.
Befus, K. M., Hoover, D., Barnard, P. L. & Erikson, L. H. California Coastal Groundwater Projected Response with Sea-Level Rise (US Geological Survey, 2020); https://doi.org/10.5066/P9H5PBXP
69.
Befus, K. M., Barnard, P. L., Hoover, D. J., Finzi Hart, J. A. & Voss C. California saline groundwater wedge footprint model results. HydroShare https://doi.org/10.4211/hs.1c95059edcf041a0959e0b4a1f05478c (2020).
70.
Badon Ghyben, W. Nota in Verband Met de Voorgenomen Putboring Nabil Amsterdam. Tijdschr. K. Inst. Ing. 9, 8–22 (1888).
Google Scholar
71.
Herzberg, A. Die wasserversorgung einiger Nordseebader. J. Gasbeleucht. Wasserversorg. 44, 815–819 (1901).
Google Scholar
72.
Feistel, R. A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg−1. Deep Sea Res. I 55, 1639–1671 (2008).
Google Scholar
73.
Kuan, W. K. et al. Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resour. Res. 48, W02502 (2012).
Google Scholar
74.
Ataie-Ashtiani, B., Volker, R. E. & Lockington, D. A. Tidal effects on sea water intrusion in unconfined aquifers. J. Hydrol. 216, 17–31 (1999).
Google Scholar
75.
Pool, M., Post, V. E. A. & Simmons, C. T. Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers. Water Resour. Res. 51, 1570–1585 (2015).
Google Scholar
76.
Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Res. 51, 3–26 (2013).
Google Scholar
77.
Yu, X. & Michael, H. A. Mechanisms, configuration typology, and vulnerability of pumping-induced seawater intrusion in heterogeneous aquifers. Adv. Water Resour. 128, 117–128 (2019).
Google Scholar
78.
Strack, O. D. L. & Ausk, B. K. A formulation for vertically integrated groundwater flow in a stratified coastal aquifer. Water Resour. Res. 51, 6756–6775 (2015).
Google Scholar More