Severe vegetation degradation associated with different disturbance types in a poorly managed urban recreation destination in Iran
1.Tourism and visitor management in protected areas: guidelines for sustainability. (IUCN, International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.PAG.27.en.2.Pickering, C. M., Hill, W., Newsome, D. & Leung, Y.-F. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manag. 91, 551–562 (2010).Article
Google Scholar
3.Huddart, D. & Stott, T. Outdoor Recreation Environmental Impacts and Management (Springer International Publishing, 2019) https://doi.org/10.1007/978-3-319-97758-4.Book
Google Scholar
4.Marion, J. L., Leung, Y.-F., Eagleston, H. & Burroughs, K. A review and synthesis of recreation ecology research findings on visitor impacts to wilderness and protected natural areas. J. Forest. 114, 352–362 (2016).Article
Google Scholar
5.Monz, C. A. et al. Assessment and monitoring of recreation impacts and resource conditions on mountain summits: Examples from the Northern Forest, USA. Mt. Res. Dev. 30, 332–343 (2010).Article
Google Scholar
6.Salesa, D. & Cerdà, A. Soil erosion on mountain trails as a consequence of recreational activities. A comprehensive review of the scientific literature. J. Environ. Manag. 271, 110990 (2020).CAS
Article
Google Scholar
7.Barros, A., Aschero, V., Mazzolari, A., Cavieres, L. A. & Pickering, C. M. Going off trails: How dispersed visitor use affects alpine vegetation. J. Environ. Manag. 267, 110546 (2020).Article
Google Scholar
8.Cole, D. N. & Monz, C. A. Impacts of camping on vegetation: Response and recovery following acute and chronic disturbance. Environ. Manag. 32, 693–705 (2003).Article
Google Scholar
9.Andrés-Abellán, M. et al. Impacts of visitors on soil and vegetation of the recreational area ‘Nacimiento del Río Mundo’ (Castilla-La Mancha, Spain). Environ. Monit. Assess. 101, 55–67 (2005).PubMed
Google Scholar
10.Lathrop, E. W. The effect of vehicle use on desert vegetation. In Environmental Effects of Off-Road Vehicles (eds Webb, R. H. & Wilshire, H. G.) 153–166 (Springer New York, 1983) https://doi.org/10.1007/978-1-4612-5454-6_8.Chapter
Google Scholar
11.Abd El-Wahab, R. H., Al-Rashed, A. R. & Al-Dousari, A. Influences of physiographic factors, vegetation patterns and human impacts on aeolian landforms in arid environment. Arid Ecosyst. 8, 97–110 (2018).Article
Google Scholar
12.Abdullah, M. M., Feagin, R. A., Musawi, L., Whisenant, S. & Popescu, S. The use of remote sensing to develop a site history for restoration planning in an arid landscape: Developing site history using remote sensing. Restor. Ecol. 24, 91–99 (2016).Article
Google Scholar
13.Kariuki, S., Gallery, R. E., Sparks, J. P., Gimblett, R. & McClaran, M. P. Soil microbial activity is resistant to recreational camping disturbance in a Prosopis dominated semiarid savanna. Appl. Soil Ecol. 147, 103424 (2020).Article
Google Scholar
14.Ballantyne, M. & Pickering, C. M. The impacts of trail infrastructure on vegetation and soils: Current literature and future directions. J. Environ. Manag. 164, 53–64 (2015).Article
Google Scholar
15.Marion, J. L. & Cole, D. N. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecol. Appl. 6, 520–530 (1996).Article
Google Scholar
16.Favretto, N., Luedeling, E., Stringer, L. C. & Dougill, A. J. Valuing ecosystem services in semi-arid rangelands through stochastic simulation. Land Degrad. Dev. 28, 65–73 (2017).Article
Google Scholar
17.MalekiSadabadi, Z., Ejtehadi, H., Abrishamchi, P., Vaezi, J. & Erfanian Taleii Noghan, M. B. Comparative study of autecological, morphological, anatomical and karyological characteristics of Acanthophyllum ejtehadii Mahmoudi & Vaezi (Caryophyllaceae): A rare endemic in Iran. Taiwania 62, 321–330 (2017).
Google Scholar
18.Noroozi, J. et al. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 9, 12991 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
19.Erfanian, M. B., Ejtehadi, H., Vaezi, J. & Moazzeni, H. Plant community responses to multiple disturbances in an arid region of northeast Iran. Land Degrad. Dev. 30, 1554–1563 (2019).Article
Google Scholar
20.Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 9159 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
21.Memariani, F. Khorassan-Kopet Dagh Mountains. In Plant biogeography and vegetation of high mountains of central and south-west Asia (ed. Noroozi, J.) (Springer, 2020).
Google Scholar
22.Noroozi, J. et al. Hotspots within a global biodiversity hotspot—areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
23.Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the Orient: The Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. 92, 1365–1388 (2017).PubMed
Article
Google Scholar
24.Erfanian, M. B. et al. Plant community responses to environmentally friendly piste management in northeast Iran. Ecol. Evol. 9, 8193–8200 (2019).PubMed
PubMed Central
Article
Google Scholar
25.District 9 of Mashhad municipality. Introducing the Khorshid Park. District 9 of Mashhad municipality https://zone9.mashhad.ir/media_gallery/6505295 (2020).26.Djamali, M. et al. Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecol. Mediterr. 37, 91–114 (2011).Article
Google Scholar
27.Hamedian, M. Investigation of Plant Biodiversity in Najafi Mountains, Mashhad, Khorassan Razavi Province (Ferdowsi University of Mashhad, 2015).
Google Scholar
28.Kent, M. Vegetation Description and Data Analysis (Wiley, 2012).
Google Scholar
29.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH
Book
Google Scholar
30.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).31.de Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research (2020).32.Legendre, P. & Legendre, L. F. J. Numerical Ecology (Elsevier, 2012).MATH
Google Scholar
33.Oksanen, J. et al. vegan: Community Ecology Package. (2019).34.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article
Google Scholar
35.Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).PubMed
Article
Google Scholar
36.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article
Google Scholar
37.Jin, Y. & Qian, H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography https://doi.org/10.1111/ecog.04434 (2019).Article
Google Scholar
38.Barber, N. A. et al. Grassland restoration characteristics influence phylogenetic and taxonomic structure of plant communities and suggest assembly mechanisms. J. Ecol. 107, 2105–2120 (2019).Article
Google Scholar
39.Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).Article
Google Scholar
40.Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Philos. Trans. R. Soc. B Biol. Sci. 365, 3599–3609 (2010).Article
Google Scholar
41.Chao, A. et al. Rarefaction and extrapolation of phylogenetic diversity. Methods Ecol. Evol. 6, 380–388 (2015).Article
Google Scholar
42.Barros, A. & Marina Pickering, C. How networks of informal trails cause landscape level damage to vegetation. Environ. Manag. 60, 57–68 (2017).Article
Google Scholar
43.Kissling, M., Hegetschweiler, K. T., Rusterholz, H.-P. & Baur, B. Short-term and long-term effects of human trampling on above-ground vegetation, soil density, soil organic matter and soil microbial processes in suburban beech forests. Appl. Soil. Ecol. 42, 303–314 (2009).Article
Google Scholar
44.Mingyu, Y., Hens, L., Xiaokun, O. & Wulf, R. D. Impacts of recreational trampling on sub-alpine vegetation and soils in Northwest Yunnan, China. Acta Ecol. Sin. 29, 171–175 (2009).Article
Google Scholar
45.Pickering, C. M. & Growcock, A. J. Impacts of experimental trampling on tall alpine herbfields and subalpine grasslands in the Australian Alps. J. Environ. Manag. 91, 532–540 (2009).Article
Google Scholar
46.Roovers, P., Verheyen, K., Hermy, M. & Gulinck, H. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 7, 111–118 (2004).Article
Google Scholar
47.Jägerbrand, A. K. & Alatalo, J. M. Effects of human trampling on abundance and diversity of vascular plants, bryophytes and lichens in alpine heath vegetation, Northern Sweden. Springerplus 4, 95 (2015).PubMed
PubMed Central
Article
Google Scholar
48.Ballantyne, M. & Pickering, C. M. Recreational trails as a source of negative impacts on the persistence of keystone species and facilitation. J. Environ. Manag. 159, 48–57 (2015).Article
Google Scholar
49.Hill, W. & Pickering, C. M. Vegetation associated with different walking track types in the Kosciuszko alpine area, Australia. J. Environ. Manag. 78, 24–34 (2006).Article
Google Scholar
50.Wilkerson, E. & Whitman, A. Recreation trails in Maine and New Hampshire: A comparison of notorized, non-motorized, and non-mechanized trails. In Proceedings of the 2009 Northeastern Recreation Research Symposium, Vol. 1, 214–222 (U.S. Department of Agriculture, 2010).51.Karim, M. N. & Mallik, A. U. Roadside revegetation by native plants. Ecol. Eng. 32, 222–237 (2008).Article
Google Scholar
52.Lembrechts, J. J., Milbau, A. & Nijs, I. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLoS ONE 9, e89664 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
53.Lembrechts, J. J. et al. Mountain roads shift native and non-native plant species’ ranges. Ecography 40, 353–364 (2017).Article
Google Scholar
54.Farrell, T. A. & Marion, J. L. The protected area visitor impact management (PAVIM) framework: A simplified process for making management decisions. J. Sustain. Tour. 10, 31–51 (2002).Article
Google Scholar
55.Jim, C. Y. Camping impacts on vegetation and soil in a Hong Kong country park. Appl. Geogr. 7, 317–332 (1987).Article
Google Scholar
56.Nylund, M., Haapanen, A., Kellomäki, S. & Nylund, L. Deterioration of forest ground vegetation and decrease of radial growth of trees on camping sites. Silva Fenn. 13, 343–356 (1979).Article
Google Scholar
57.Lembrechts, J. J. et al. Disturbance is the key to plant invasions in cold environments. Proc. Natl. Acad. Sci. 113, 14061–14066 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar More