More stories

  • in

    Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs

    1.Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol. Conserv. 128, 231–240 (2006).Article 

    Google Scholar 
    5.Opdam, P. & Wascher, D. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 117, 285–297 (2004).Article 

    Google Scholar 
    6.Broadhurst, L. M. et al. Seed supply for broadscale restoration: maximizing evolutionary potential. Evol. Appl. 1, 587–597 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Vitt, P., Havens, K., Kramer, A. T., Sollenberger, D. & Yates, E. Assisted migration of plants: changes in latitudes, changes in attitudes. Biol. Conserv. 143, 18–27 (2010).Article 

    Google Scholar 
    8.Aitken, S. N. & Bemmels, J. B. Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9, 271–290 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Evans, B. J. et al. Speciation over the edge: gene flow among non-human primate species across a formidable biogeographic barrier. R. Soc. Open Sci. 4, 170351 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol. Appl. 4, 709–725 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Pavlova, A. et al. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evol. Appl. 10, 531–550 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).Article 

    Google Scholar 
    13.Rajpurohit, S. & Nedved, O. Clinal variation in fitness related traits in tropical drosophilids of the Indian subcontinent. J. Therm. Biol. 38, 345–354 (2013).Article 

    Google Scholar 
    14.Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).Article 

    Google Scholar 
    15.Kottler, E. J., Dickman, E. E., Sexton, J. P., Emery, N. C. & Franks, S. J. Draining the swamp hypothesis: little evidence that gene flow reduces fitness at range edges. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.02.004 (2021).16.Kelly, E. & Phillips, B. L. Targeted gene flow for conservation. Conserv. Biol. 30, 259–267 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Macdonald, S. L., Llewelyn, J., Moritz, C. & Phillips, B. L. Peripheral isolates as sources of adaptive diversity under climate change. Front. Ecol. Evol. 5, 88 (2017).Article 

    Google Scholar 
    18.Edmands, S. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 16, 463–475 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Edmands, S. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53, 1757–1768 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Schierup, M. H. & Christiansen, F. B. Inbreeding depression and outbreeding depression in plants. Heredity 77, 461–468 (1996).Article 

    Google Scholar 
    23.Bjorkman, A. D., Vellend, M., Frei, E. R. & Henry, G. H. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Glob. Change Biol. 23, 1540–1551 (2017).Article 

    Google Scholar 
    24.Frankham, R. Where are we in conservation genetics and where do we need to go? Conserv. Genet. 11, 661–663 (2010).Article 

    Google Scholar 
    25.Tallmon, D. A., Luikart, G. & Waples, R. S. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19, 489–496 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Weeks, A. R. et al. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 8, 1071 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Le Cam, S., Perrier, C., Besnard, A.-L., Bernatchez, L. & Evanno, G. Genetic and phenotypic changes in an Atlantic salmon population supplemented with non-local individuals: a longitudinal study over 21 years. Proc. Roy. Soc. B-Biol. Sci. 282, 20142765 (2015).Article 
    CAS 

    Google Scholar 
    28.Fitzpatrick, S. W. et al. Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies. Evol. Appl. 9, 879–891 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Robinson, Z. L. et al. Experimental test of genetic rescue in isolated populations of brook trout. Mol. Ecol. 26, 4418–4433 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Byrne, P. G. & Silla, A. J. An experimental test of the genetic consequences of population augmentation in an amphibian. Conserv. Sci. Pract. 2, e194 (2020).31.Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Urban, M. C., Richardson, J. L. & Freidenfelds, N. A. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol. Appl. 7, 88–103 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003).Article 

    Google Scholar 
    34.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 74, 1186–1199 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Eads, A., Mitchell, N. J. & Evans, J. Patterns of genetic variation in desiccation tolerance in embryos of the terrestrial-breeding frog, Pseudophryne guentheri. Evolution 66, 2865–2877 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Cummins, D., Kennington, W. J., Rudin‐Bitterli, T. & Mitchell, N. J. A genome‐wide search for local adaptation in a terrestrial‐breeding frog reveals vulnerability to climate change. Glob. Change Biol. 25, 3151–3162 (2019).Article 

    Google Scholar 
    40.Bureau of Meteorology. Climate Data Online, http://www.bom.gov.au/climate/data/ (2020).41.Turelli, M. & Moyle, L. C. Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics 176, 1059–1088 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Dobzhansky, T. Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21, 113 (1936).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Muller, H. J. Isolating mechanisms, evolution and temperature. Biol. Symp. 6, 71–125 (1942).
    Google Scholar 
    44.Orr, H. A. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Arntzen, J. W., Jehle, R., Bardakci, F., Burke, T. & Wallis, G. P. Asymmetric viability of reciprocal-cross hybrids between crested and marbled newts (Trituris cristatus and Trituris marmoratus). Evolution 63, 1191–1202 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Lee-Yaw, J. A., Jacobs, C. G. C. & Irwin, D. E. Individual performance in relation to cytonuclear discordance in a northern contact zone between long-toed salamander (Ambystoma macrodactylum) lineages. Mol. Ecol. 23, 4590–4602 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Sanchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).Article 

    Google Scholar 
    48.Sasa, M. M., Chippindale, P. T. & Johnson, N. A. Patterns of postzygotic isolation in frogs. Evolution 52, 1811–1820 (1998).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Sánchez‐Guillén, R., Córdoba‐Aguilar, A., Cordero‐Rivera, A. & Wellenreuther, M. Genetic divergence predicts reproductive isolation in damselflies. J. Evol. Biol. 27, 76–87 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Coyne, J. A. & Orr, H. A. Patterns of speciation in Drosophila. Evolution 43, 362–381 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Kelemen, L. & Moritz, C. Comparative phylogeography of a sibling pair of rainforest Drosophila species (Drosophila serrata and D. birchii). Evolution 53, 1306–1311 (1999).PubMed 
    PubMed Central 

    Google Scholar 
    52.Hercus, M. J. & Hoffmann, A. A. Desiccation resistance in interspecific Drosophila crosses: genetic interactions and trait correlations. Genetics 151, 1493–1502 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Rudin-Bitterli, T. S., Mitchell, N. J. & Evans, J. P. Extensive geographical variation in testes size and ejaculate traits in a terrestrial-breeding frog. Biol. Lett. 16, 20200411 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Shaver, J., Barch, S. & Shivers, C. Tissue-specificity of frog egg-jelly antigens. J. Exp. Zool. 151, 95–103 (1962).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Bradford, D. F. & Seymour, R. S. Influence of environmental PO2 on embryonic oxygen consumption, rate of development, and hatching in the frog, Pseudophryne bibroni. Physiol. Zool. 61, 475–482 (1988).Article 

    Google Scholar 
    56.Seymour, R. S., Geiser, F. & Bradford, D. F. Metabolic cost of development in terrestrial frog eggs (Pseudophryne bibronii). Physiol. Zool. 64, 688–696 (1991).Article 

    Google Scholar 
    57.Warkentin, K. M. Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proc. Natl Acad. Sci. USA 92, 3507–3510 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Webb, P. Effect of body form and response threshold on the vulnerability of four species of teleost prey attacked by largemouth bass (Micropterus salmoides). Can. J. Fish. Aquat. Sci. 43, 763–771 (1986).Article 

    Google Scholar 
    59.Watkins, T. B. Predator-mediated selection on burst swimming performance in tadpoles of the Pacific tree frog, Pseudacris regilla. Physiol. Zool. 69, 154–167 (1996).Article 

    Google Scholar 
    60.Wilson, R. & Franklin, C. Thermal acclimation of locomotor performance in tadpoles of the frog Limnodynastes peronii. J. Comp. Physiol. B 169, 445–451 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Teplitsky, C. et al. Escape behaviour and ultimate causes of specific induced defences in an anuran tadpole. J. Evol. Biol. 18, 180–190 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Walker, J., Ghalambor, C., Griset, O., McKenney, D. & Reznick, D. Do faster starts increase the probability of evading predators? Funct. Ecol. 19, 808–815 (2005).Article 

    Google Scholar 
    63.Langerhans, R. B. Morphology, performance, fitness: functional insight into a post-Pleistocene radiation of mosquitofish. Biol. Lett. 5, 488–491 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Plowman, M. C., Grbac-lvankovic, S., Martin, J., Hopfer, S. M. & Sunderman, F. W. Jr Malformations persist after metamorphosis of Xenopus laevis tadpoles exposed to Ni2+, Co2+, or Cd2+ in FETAX assays. Teratog. Carcinog. Mutagen. 14, 135–144 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits. Vol. 1 (Sinauer Sunderland, MA, 1998).66.Remington, D. L. & O’Malley, D. M. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155, 337–348 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Lynch, M. The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45, 622–629 (1991).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Armbruster, P., Bradshaw, W. E., Steiner, A. L. & Holzapfel, C. M. Evolutionary responses to environmental stress by the pitcher-plant mosquito, Wyeomyia smithii. Heredity 83, 509–519 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Marr, A. B., Keller, L. F. & Arcese, P. Heterosis and outbreeding depression in descendants of natural immigrants to an inbred population of song sparrows (Melospiza melodia). Evolution 56, 131–142 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Marshall, T. & Spalton, J. Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx. Anim. Conserv. 3, 241–248 (2000).Article 

    Google Scholar 
    71.Rudin-Bitterli, T. S., Mitchell, N. J. & Evans, J. P. Environmental stress increases the magnitude of nonadditive genetic variation in offspring fitness in the frog Crinia georgiana. Am. Nat. 192, 461–478 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Drummond, E., Short, E. & Clancy, D. Mitonuclear gene X environment effects on lifespan and health: How common, how big? Mitochondrion 49, 12–18 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Morales, H. E. et al. Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat. Ecol. Evol. 2, 1258–1267 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Schmid, M., Evans, B. J. & Bogart, J. P. Polyploidy in amphibia. Cytogenet. Genome Res. 145, 315–330 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Silla, A. J. Artificial fertilisation in a terrestrial toadlet (Pseudophryne guentheri): effect of medium osmolality, sperm concentration and gamete storage. Reprod. Fertil. Dev. 25, 1134–1141 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Phillip, G. B. & Keogh, J. S. Extreme sequential polyandry insures against nest failure in a frog. Proc. Roy. Soc. B-Biol. Sci. 276, 115–120 (2009).Article 

    Google Scholar 
    77.Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    78.Scheele, B. C. et al. Interventions for reducing extinction risk in chytridiomycosis‐threatened amphibians. Conserv. Biol. 28, 1195–1205 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Osborne, W. S. & Norman, J. A. Conservation genetics of Corroboree frogs, Psuedophryne corroboree (Anura: Myobatrachidae): population subdivision and genetic divergence. Aust. J. Zool. 39, 285–297 (1991).Article 

    Google Scholar 
    80.Browne, R. K. et al. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 133, 187–200 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Silla, A. J. & Byrne, P. G. Hormone-induced ovulation and artificial fertilisation in four terrestrial-breeding anurans. Reprod. Fertil. Dev. https://doi.org/10.1071/RD20243 (2021).82.O’Brien, D. M., Keogh, J. S., Silla, A. J. & Byrne, P. G. Female choice for related males in wild red-backed toadlets (Pseudophryne coriacea). Behav. Ecol. 30, 928–937 (2019).Article 

    Google Scholar 
    83.Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    84.Anstis, M. Tadpoles and Frogs of Australia. (New Holland Publishers, 2013).85.CSIRO, and Bureau of Meteorology. State of the Climate 2018 (CSIRO Publishing, 2018).86.Andrich, M. A. & Imberger, J. The effect of land clearing on rainfall and fresh water resources in Western Australia: a multi-functional sustainability analysis. Int. J. Sustain. Dev. World Ecol. 20, 549–563 (2013).Article 

    Google Scholar 
    87.Raut, B. A., Jakob, C. & Reeder, M. J. Rainfall changes over southwestern Australia and their relationship to the Southern Annular Mode and ENSO. J. Clim. 27, 5801–5814 (2014).Article 

    Google Scholar 
    88.Arnold, G. in Greenhouse: Planning for Climate Change (ed. Pearman, G. I.) 375–386 (CSIRO Publishing, 1988).89.Hobbs, R. J. Effects of landscape fragmentation on ecosystem processes in the Western Australian wheatbelt. Biol. Conserv. 64, 193–201 (1993).Article 

    Google Scholar 
    90.Silla, A. J. Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Gϋnther’s toadlet, Pseudophryne guentheri. Reprod. Biol. Endocrinol. 9, 68 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Lymbery, R. A., Kennington, W. J. & Evans, J. P. Multivariate sexual selection on ejaculate traits under sperm competition. Am. Nat. 192, 94–104 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Browne, R. K., Clulow, J. & Mahony, M. Short-term storage of cane toad (Bufo marinus) gametes. Reproduction 121, 167–173 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Kouba, A. J., Vance, C. K., Frommeyer, M. A. & Roth, T. L. Structural and functional aspects of Bufo americanus spermatozoa: effects of inactivation and reactivation. J. Exp. Zool. A. Comp. Exp. Biol. 295, 172–182 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with Image. J. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    95.Noldus, L. P., Spink, A. J. & Tegelenbosch, R. A. EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 33, 398–414 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2014).97.Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs. Data sets. https://doi.org/10.5061/dryad.6m905qg09 (2021). More

  • in

    Iterative human and automated identification of wildlife images

    1.Steenweg, R. et al. Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Front. Ecol. Environ. 15, 26–34 (2017).Article 

    Google Scholar 
    2.Rich, L. N. et al. Assessing global patterns in mammalian carnivore occupancy and richness by integrating local camera trap surveys. Global Ecol. Biogeogr. 26, 918–929 (2017).Article 

    Google Scholar 
    3.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 

    Google Scholar 
    4.Ahumada, J. A. et al. Wildlife insights: a platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 47, 1–6 (2020).MathSciNet 
    Article 

    Google Scholar 
    5.Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl Acad. Sci. 115, E5716–E5725 (2018).Article 

    Google Scholar 
    6.Miao, Z. et al. Insights and approaches using deep learning to classify wildlife. Sci. Rep. 9, 8137 (2019).Article 

    Google Scholar 
    7.Liu, Z. et al. Large-scale long-tailed recognition in an open world. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2537–2546 (IEEE, 2019).8.Liu, Z. et al. Open compound domain adaptation. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 12406–12415 (IEEE, 2020).9.Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).Article 

    Google Scholar 
    10.Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).Article 

    Google Scholar 
    11.Ripple, W. J. et al. Conserving the world’s megafauna and biodiversity: the fierce urgency of now. Bioscience 67, 197–200 (2017).Article 

    Google Scholar 
    12.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article 

    Google Scholar 
    13.O’Connell, A. F., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses (Springer Science & Business Media, 2010).14.Burton, A. C. et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article 

    Google Scholar 
    15.Kays, R., McShea, W. J. & Wikelski, M. Born-digital biodiversity data: millions and billions. Divers. Distrib. 26, 644–648 (2020).Article 

    Google Scholar 
    16.Swanson, A. et al. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci. Data 2, 1–14 (2015).Article 

    Google Scholar 
    17.Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos. Trans. R. Soc. B Biol. Sci. 366, 2703–2711 (2011).Article 

    Google Scholar 
    18.Pardo, L. E. et al. Snapshot Safari: a large-scale collaborative to monitor Africa’s remarkable biodiversity. South Africa J. Sci. https://doi.org/10.17159/sajs.2021/8134 (2021).19.Anderson, T. M. et al. The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150314 (2016).Article 

    Google Scholar 
    20.Palmer, M., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).Article 

    Google Scholar 
    21.Tabak, M. A. et al. Machine learning to classify animal species in camera trap images: applications in ecology. Methods Ecol. Evol. 10, 585–590 (2019).Article 

    Google Scholar 
    22.Whytock, R. C. et al. Robust ecological analysis of camera trap data labelled by a machine learning model. Methods Ecol. Evol 12, 1080–1092 (2021).Article 

    Google Scholar 
    23.Beery, S., Van Horn, G. & Perona, P. Recognition in terra incognita. In Proc. European Conference on Computer Vision (ECCV) 456–473 (IEEE, 2018).24.Tabak, M. A. et al. Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: MLWIC2. Ecol. Evol. 10, 10374–10383 (2020).Article 

    Google Scholar 
    25.Shahinfar, S., Meek, P. & Falzon, G. How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecol. Inform. 57, 101085 (2020).Article 

    Google Scholar 
    26.Norouzzadeh, M. S. et al. A deep active learning system for species identification and counting in camera trap images. Methods Ecol. Evol. 12, 150–161 (2020).Article 

    Google Scholar 
    27.Willi, M. et al. Identifying animal species in camera trap images using deep learning and citizen science. Methods Ecol. Evol. 10, 80–91 (2019).Article 

    Google Scholar 
    28.Schneider, S., Greenberg, S., Taylor, G. W. & Kremer, S. C. Three critical factors affecting automated image species recognition performance for camera traps. Ecol. Evol. 10, 3503–3517 (2020).Article 

    Google Scholar 
    29.Kays, R. et al. An empirical evaluation of camera trap study design: how many, how long and when? Methods Ecol. Evol. 11, 700–713 (2020).Article 

    Google Scholar 
    30.Prach, K. & Walker, L. R. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 26, 119–123 (2011).Article 

    Google Scholar 
    31.Mech, L. D., Isbell, F., Krueger, J. & Hart, J. Gray wolf (Canis lupus) recolonization failure: a Minnesota case study. Can. Field-Nat. 133, 60–65 (2019).Article 

    Google Scholar 
    32.Taylor, G. et al. Is reintroduction biology an effective applied science? Trends Ecol. Evol. 32, 873–880 (2017).Article 

    Google Scholar 
    33.Clavero, M. & Garcia-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).Article 

    Google Scholar 
    34.Caravaggi, A. et al. An invasive-native mammalian species replacement process captured by camera trap survey random encounter models. Remote Sens. Ecol. Conserv. 2, 45–58 (2016).Article 

    Google Scholar 
    35.Arjovsky, M., Bottou, L., Gulrajani, I. & Lopez-Paz, D. Invariant risk minimization. Preprint at https://arxiv.org/abs/1907.02893 (2019).36.Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems 3320–3328 (IEEE, 2014).37.Deng, J. et al. ImageNet: a large-scale hierarchical image database. In Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).38.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution and protection. Science https://doi.org/10.1126/science.1246752 (2014).39.Liu, W., Wang, X., Owens, J. & Li, Y. Energy-based out-of-distribution detection. In Advances in Neural Information Processing Systems (eds Larochelle, H. et al.) 21464–21475 (Curran Associates, 2020).40.Lee, D.-H. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning, ICML, Vol. 3 (2013).41.He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).42.Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. Preprint at https://arxiv.org/abs/1503.02531 (2015).43.Gaynor, K. M., Daskin, J. H., Rich, L. N. & Brashares, J. S. Postwar wildlife recovery in an African savanna: evaluating patterns and drivers of species occupancy and richness. Anim. Conserv. 24, 510–522 (2020).Article 

    Google Scholar 
    44.Paszke, A. et al. in Advances in Neural Information Processing Systems Vol. 32 (eds Wallach, H. et al.) 8024–8035 http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (Curran Associates, 2019)45.Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. Preprint at https://arxiv.org/abs/2002.05709 (2020).46.He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 9729–9738 (IEEE, 2020).47.Xiao, T., Wang, X., Efros, A. A. & Darrell, T. What should not be contrastive in contrastive learning. Preprint at https://arxiv.org/abs/2008.05659 (2020). More

  • in

    Constraining photosynthesis with ∆17O in CO2

    The net uptake of CO2 by the biosphere offsets roughly a quarter of current fossil fuel emissions. However, climate change is expected to impact photosynthesis and ecosystem respiration differently. Quantification of these individual processes is required to better understand and predict the consequences for carbon cycling. Variations in oxygen isotope signatures (δ18O and Δ17O) in atmospheric CO2 can be used as tracers for photosynthesis. Δ17O is much less dependent on variations in the hydrological cycle, which often obscure photosynthesis signals in the more widely measured δ18O. Although, measurement techniques for Δ17O in tropospheric CO2 only became sufficiently accurate to interpret variations since the ~2010s, providing new insights into the carbon cycle. More

  • in

    Saving hawksbill sea turtles from rats, cats and Hurricane Ida

    Download PDF

    It was turtle-nesting season when this photograph was taken one night in June. I am on Needham’s Point beach measuring a critically endangered female hawksbill turtle (Eretmochelys imbricata). As field director of the Barbados sea turtle project, I run the day-to-day conservation activities and train and manage volunteers.We also run research projects that inform our conservation activities. We collect data such as shell length, which can tell us the age at which females become sexually mature and can indicate growth rates. These data help us to keep track of turtle health and survival. For example, if we start seeing smaller turtles, this could indicate that they are maturing faster, or that food is scarce and the turtles are growing more slowly.In August, the baby turtles hatch. I was on call 7 days a week for around 8 hours a day, responding to emergencies. These included hatchlings wandering off in the wrong direction, putting them at risk of being hit by a car or eaten by predators such as rats and cats. We took the hatchlings to a safe spot on the beach and released them. I also had to prepare for the expected swells as Hurricane Ida passed us by: when beaches flood, nests can wash away. We took rescued eggs and premature hatchlings to a makeshift intensive-care unit until they were ready for release. We aim to leave no turtle behind.I have worked at the project for 15 years. I recently finished a master’s degree on the coloration of the Barbados bullfinch (Loxigilla barbadensis) at the University of the West Indies, which hosts the turtle project. Next year I hope to start a PhD, part of which will look at the conflict between tourism and sea-turtle survival in Barbados. Here, interactions between sea turtles and humans occur at every stage of the turtles’ lives and can affect their survival. After my doctorate, I will continue to focus on helping sea turtles in the Caribbean. There is something addictive about making a real-time, tangible difference to their lives.

    Nature 598, 532 (2021)
    doi: https://doi.org/10.1038/d41586-021-02851-6

    Related Articles

    230-million-year-old turtle fossil deepens mystery of reptile’s origins

    Breeding the sweetest biofuels in the business

    Dexterous sea turtles use flippers as grippers

    Subjects

    Careers

    Conservation biology

    Latest on:

    Careers

    How I wrote a pop-science book
    Career Column 15 OCT 21

    How AI is helping the natural sciences
    Career Guide 13 OCT 21

    Eight career tips from Nobel Laureates
    Career Column 08 OCT 21

    Jobs

    W 3-Professorship for Biochemistry

    University of Kiel (CAU)
    Kiel, Germany

    Laboratory Associate

    Center for Molecular Fingerprinting (CMF) Research Nonprofit LLC
    Multiple locations

    Scientific Computing Officer – Structural Studies – Scientific Computing – LMB 1697

    MRC Laboratory of Molecular Biology
    Cambridge, United Kingdom

    Head of Laser Lab Operations

    Center for Molecular Fingerprinting (CMF) Research Nonprofit LLC
    Multiple locations More

  • in

    Carbon dioxide levels in initial nests of the leaf-cutting ant Atta sexdens (Hymenoptera: Formicidae)

    1.Hughes, W. O. H. & Goulson, D. The use of alarm pheromones to enhance bait harvest by grass-cutting ants. Bull. Entomol. Res. 92, 213–218 (2002).CAS 
    Article 

    Google Scholar 
    2.Staab, M. & Kleineidam, C. J. Initiation of swarming behavior and synchronization of mating flights in the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hymenoptera: Formicidae). Myrmecol. News 19, 93–102 (2014).
    Google Scholar 
    3.Sales, T. A., Toledo, A. M. O. & Lopes, J. F. S. The best of heavy queens: Influence of post-flight weight on queens’ survival and productivity in Acromyrmex subterraneus (Forel, 1893) (Hymenoptera: Formicidae). Insectes Soc. 67, 383–390 (2020).Article 

    Google Scholar 
    4.Camargo, R. S., Forti, L. C., Fujihara, R. T. & Roces, F. Digging effort in leaf-cutting ant queens (Atta sexdens rubropilosa) and its effects on survival and colony growth during the claustral phase. Insectes Soc. 58, 17–22 (2011).Article 

    Google Scholar 
    5.Autuori, M. Contribuição para o conhecimento da saúva (Atta spp.) (Hymenoptera: Formicidae). I. Evolução do sauveiro (Atta sexdens rubropilosa Forel, 1908). Arq. Inst. Biol. 12, 197–228 (1941).
    Google Scholar 
    6.Aylward, F. O. et al. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl. Environ. Microbiol. 79, 3770–3778 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Costa, A. N., Vasconcelos, H. L., Vieira-Neto, E. H. M. & Bruna, E. M. Do herbivores exert top-down effects in Neotropical savannas? Estimates of biomass consumption by leaf-cutter ants. J. Veg. Sci. 19, 849–854 (2008).Article 

    Google Scholar 
    8.Bollazzi, M., Forti, L. C. & Roces, F. Ventilation of the giant nests of Atta leaf-cutting ants: Does underground circulating air enter the fungus chambers?. Insectes Soc. 59, 487–498 (2012).Article 

    Google Scholar 
    9.Sousa-Souto, L. et al. Increased CO2 emission and organic matter decomposition by leaf-cutting ant nests in a coastal environment. Soil Biol. Biochem. 44, 21–25 (2012).CAS 
    Article 

    Google Scholar 
    10.Hasin, S. et al. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand. Ecol. Evol. 4, 3929–3939 (2014).Article 

    Google Scholar 
    11.Tschinkel, W. R. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J. Insect Sci. 4, 21 (2004).Article 

    Google Scholar 
    12.Kleineidam, C. & Roces, F. Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insectes Soc. 47, 241–248 (2000).Article 

    Google Scholar 
    13.Currie, J. A. Gas diffusion through soil crumbs: The effects of compaction and wetting. J. Soil Sci. 35, 1–10 (1984).CAS 
    Article 

    Google Scholar 
    14.Kleineidam, C., Ernst, R. & Roces, F. Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri. Naturwissenschaften 88, 301–305 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Vogel, S., Ellington, C. P. & Kilgore, D. L. Wind-induced ventilation of the burrow of the prairie-dog, Cynomys ludovicianus. J. Comp. Physiol. 85, 1–14 (1973).Article 

    Google Scholar 
    16.Jonkman, J. C. M. The external and internal structure and growth of nests of the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hym: Formicidae) Part II. Zeitschrift für Angew. Entomol. 89, 158–173 (1980).Article 

    Google Scholar 
    17.Gutiérrez, J. L. & Jones, C. G. Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56, 227–236 (2006).Article 

    Google Scholar 
    18.Fernandez-Bou, A. S. et al. The role of the ecosystem engineer, the leaf-cutter ant Atta cephalotes, on soil CO2 dynamics in a wet tropical rainforest. J. Geophys. Res. Biogeosciences 124, 260–273 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Moitinho, M. R. et al. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota?. J. Environ. Manag. 11, 1–15 (2021).
    Google Scholar 
    20.Roces, F. Variable thermal sensitivity as output of a circadian clock controlling the bimodal rhythm of temperature choice in the ant Camponotus mus. J. Comp. Physiol. A 177, 637–643 (1995).Article 

    Google Scholar 
    21.Römer, D., Bollazzi, M. & Roces, F. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus. PLoS ONE 12, e0174597 (2017).Article 

    Google Scholar 
    22.Halboth, F. & Roces, F. The construction of ventilation turrets in Atta vollenweideri leaf-cutting ants: Carbon dioxide levels in the nest tunnels, but not airflow or air humidity, influence turret structure. PLoS ONE 12, e0188162 (2017).Article 

    Google Scholar 
    23.Kleineidam, C. & Tautz, J. Perception of carbon dioxide and other “air-condition” parameters in the leaf cutting ant Atta cephalotes. Naturwissenschaften 83, 566–568 (1996).ADS 
    CAS 

    Google Scholar 
    24.Kleineidam, C., Romani, R., Tautz, J. & Isidoro, N. Ultrastructure and physiology of the CO2 sensitive sensillum ampullaceum in the leaf-cutting ant Atta sexdens. Arthropod Struct. Dev. 29, 43–55 (2000).CAS 
    Article 

    Google Scholar 
    25.Camargo, R. S. & Forti, L. C. Queen lipid content and nest growth in the leaf cutting ant (Atta sexdens rubropilosa) (Hymenoptera: Formicidae). J. Nat. Hist. 47, 65–73 (2013).Article 

    Google Scholar 
    26.Seal, J. N. Scaling of body weight and fat content in fungus-gardening ant queens: Does this explain why leaf-cutting ants found claustrally?. Insectes Soc. 56, 135–141 (2009).Article 

    Google Scholar 
    27.Camargo, R. D. S., Fonseca, J. A., Lopes, J. F. S. & Forti, L. C. Influência do ambiente no desenvolvimento de colônias iniciais de formigas cortadeiras (Atta sexdens rubropilosa). Ciência Rural 43, 1375–1380 (2013).Article 

    Google Scholar 
    28.Silva, E. J., da Silva Camargo, R. & Forti, L. C. Flight and digging effort in leaf-cutting ant males and gynes. Sociobiology 62, 334–339 (2015).Article 

    Google Scholar 
    29.Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 38, 425–448 (2006).CAS 
    Article 

    Google Scholar 
    30.Camargo, R. S., Silva, E. J., Forti, L. C. & Matos, C. A. O. Initial development and production of CO2 in colonies of the leaf-cutting ant Atta sexdens during the claustral foundation. Sociobiology 63, 720–723 (2016).Article 

    Google Scholar 
    31.Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Softw. 34, 1–24 (2010).Article 

    Google Scholar 
    32.Ferrari, S. & Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 31, 799–815 (2004).MathSciNet 
    Article 

    Google Scholar 
    33.Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54 (2006).Article 

    Google Scholar  More

  • in

    Identification and analyses of the chemical composition of a naturally occurring albino mutant chanterelle

    All fungal specimens were collected on Crown Lands for which no permission is required. Specimens of fresh, field-collected mushroom fruiting bodies were either air-dried at a temperature of 30–35 °C or frozen at − 80 °C until processing, and air-dried voucher specimens have been deposited at the Dr. Laurie L. Consaul Herbarium, London, Canada (UWO) and the National Mycological Herbarium of Canada, Ottawa (DAOM) (Table 1).DNA extraction, PCR amplification and sequencingGenomic DNA was extracted from air-dried specimens following Thorn et al.9. Primers ITS1 and ITS6R were used to amplify the ITS region, LS1 and LR3 to amplify ~ 650 bases of the 5’-LSU region and Canth-ef1a983-F and Canth-ef1a-1567-R to amplify Tef-19,41,42,43,44. The PCR products were checked using gel electrophoresis and successful products were cleaned using Bio Basic EZ-10 Spin Column PCR Products Purification Kit. Cleaned PCR products were submitted to the sequencing facility of Robarts Institute (University of Western Ontario) to obtain sequences through Sanger sequencing with amplification primers, and internal sequencing primers CanthITS1_Internal-R, 5.8S-R-Canth, and ITS86R-Canth for the ITS region9. New sequences produced for this study were deposited in GenBank as accessions MN181445–MN181461 and MN206911–MN206945.Phylogenetic analysesSequences of the ITS, LSU and Tef-1 regions were cleaned and assembled with SeqEd v.1.03, then, together with sequences of related species downloaded from GenBank, each region was aligned separately with MAFFT v.745 under the G-INS-i strategy, with “leave gappy regions” selected. The draft Cantharellus cibarius genome (QOWL00000000.1)18 was searched by BLASTn for ribosomal and Tef-1 sequences. The full-length match to our Tef-1 sequences was found in a single scaffold (QOWL01010594_RC), but no ITS sequences and only partial LSU sequences were found (in QOWL01010930_RC, QOWL01012415, QOWL01007530_RC, and QOWL01005980_RC). Alignments were imported into MEGA X46,47, trimmed and concatenated into a single ITS-LSU-Tef-1 dataset, then optimized manually. Phylogenetic trees were constructed with maximum likelihood (ML), with 1000 bootstrapping replicates in MEGA X. Analyses were repeated with Bayesian inference using MrBayes 3.2.6 with 4 chains and 5 million generations, discarding the first 25% of trees, when the average standard deviation of split frequencies had stabilized below 0.0148. Tree topologies were compared, and Bayesian prior probabilities transferred to the ML bootstrap tree in Adobe Acrobat.Genetic analysis of carotenoid synthesis genesIn order to design primers to amplify portions of the Al-1 and Al-2 genes in white and golden chanterelles, these genes were first located in three published Cantharellus genome sequences18 using tBLASTn49 to query the genomes with protein sequences from N. crassa (PRJNA132; Al-1 XM_959620.2 and Al-2 XM_960632.3)19. Candidate gene sequences from Cantharellus appalachiensis (QLPK00000000.1; Al-1 Scaffold 4647: QLPK01003932.1 and Al-2 Scaffold 1419: QLPK01001208.1), C. cibarius (QOWL00000000.1; Al-1 Scaffold 15338: QOWL01009792.1 and Al-2 Scaffold 1560: QOWL01001169.1), and C. cinnabarinus (QLPJ00000000.1; Al-1 Scaffold 1057: QLPJ01000880.1 and Al-2 Scaffold 2474: QLPJ01001998.1) were annotated in Geneious using a discontiguous megablast against GenBank to search for homologous motifs50. Based on these alignments, putative ORFs were annotated and aligned, and an overlapping set of PCR primers for AL-1 and AL-2 were designed in Geneious (Table 5). Designed primers were tested for specificity using the BLAST algorithm against the three Cantharellus genomes18. PCR amplified products were assessed for quality, cleaned, sent for sequencing, and assembled as above. Assembled sequences of white and gold samples were compared, along with their putative amino acid products determined using ExPASy51, guided by the translations of the Neurospora crassa Al-1 (XM_959620.2) and Al-2 (XM_960632.3) genes. Partial sequences of the Al-1 and Al-2 genes of gold and white variants have been deposited in GenBank as MW442833–MW442836.Table 5 PCR primers designed to amplify portions of the phytoene desaturase gene (Al-1) and phytoene synthase gene (Al-2) from Cantharellus species, based on genomic sequences from Cantharellus appalachiensis, C. cibarius, and C. cinnabarinus18, listed in “Materials and methods” section.Full size tablePigment analysisField-collected mushroom fruiting bodies were weighed while fresh, wrapped in aluminum foil, and frozen at − 80 °C for pigment analyses, and other samples were weighed fresh and then dried to obtain a conversion for fresh to dry weight. Pigments were extracted with ice-cold 100% acetone at 4 °C and dim light. The supernatant was filtered through a 0.22 µm syringe filter and samples were stored at − 80 °C until analysed. Pigments were separated and quantified by high-performance liquid chromatography (HPLC) as described previously20, with some modifications. The system consisted of a Beckman System Gold programmable solvent module 126, diode array detector module 168 (Beckman Instruments, San Ramon, California, USA), CSC-Spherisorb ODS-1 reverse-phase column (5 mm particle size, 25 × 0.46 cm I.D.) with an Upchurch Perisorb A guard column (both columns from Chromatographic Specialties Inc., Concord, Ontario, Canada). Samples were injected using a Beckman 210A sample injection valve with a 20 μL sample loop. Pigments were eluted isocratically for 6 min with a solvent system of acetonitrile:methanol:0.1 M Tris–HCl (pH 8.0), (72:8:3.5, v/v/v), followed by a 2 min linear gradient to 100% methanol:hexane (75:25, v/v) which continued isocratically for 4 min. Total run time was 12 min. Flow rate was 2 mL min−1. Absorbance was detected at 440 nm and peak areas were integrated by Beckman System Gold software. Retention times and response factors of Chl a, Chl b, lutein and ß-carotene were determined by injection of known amounts of pure standards purchased from Sigma (St. Louis, MO, USA). The retention times of zeaxanthin, antheraxanthin, violaxanthin and neoxanthin were determined by using pigments purified by thin-layer chromatography as described by Diaz et al.52.Extraction and analysis of chanterelle lipidsSamples of each chanterelle species were homogenized to fine powder in a cryomill (Reitch, Germany) and 100 mg of the homogenized powder mixed with 1 mL methanol (MeOH), 1 mL chloroform (CHCl3) and 0.8 mL water following Pham et al.53. The sample mixture was thoroughly vortexed, then centrifuged (Sorvall Legend XT/XF centrifuge; ThermoFisher Scientific, Mississauga, Ontario) at 2500 rpm for 15 min. The organic layer was transferred to new vials, dried under nitrogen and then reconstituted in 1 mL chloroform:methanol (1:1 v/v). Aliquots were then used for either gas chromatography with mass spectrometric and flame ionization detection (GC–MS/FID) or ultra-high-performance liquid chromatography with heated electrospray ionization high resolution accurate mass tandem mass spectrometric analysis (UHPLC-HESI-HRAM/MS–MS) for fatty acids and intact lipids analysis, respectively.For GC–MS/FID analysis, chanterelle fatty acids were converted to fatty acid methyl esters (FAMEs) as follows: To 300 µL aliquot of the lipid extract, 50 μL of C18:0 alkane (1 mg mL−1 in chloroform: methanol 1:1 v/v) was added as internal standards and the samples dried under nitrogen and the fatty acids esterified by adding 400 µL methanolic HCl (1.5 N). The samples were then incubated in a pre-heated oven at 60 °C for 30 min. After incubation, 0.8 mL of distilled water was added to the cooled samples and the FAMEs extracted with 3 aliquots each of 500 μL of hexane. The fractions were combined, dried under N2, re-suspended in 50 μL hexane, and the FAMEs analyzed using a Trace 1300 gas chromatograph coupled to a Flame Ionization Detector and TSQ 8000 mass spectrometer (Thermo Fisher Scientific). The FAMEs were separated on a BPX70 high-resolution column (10 m × 0.1 mm ID × 0.2 μm, Canadian Life Science, Peterborough, Ontario) using helium as the carrier gas at a flow rate of 1 mL min−1. One μL of each sample was injected in split mode (1:15) using a Tri-plus auto-sampler (Thermo Fisher Scientific). The operation conditions were as follows: initial oven temperature set at 50 °C for 0.75 min, increased to 155 °C at 4 °C min−1, ramped to 210 °C at 6 °C min−1, then 240 °C at 15 °C min−1 and final temperature held for 2 min. Methylated fatty acids were determined by comparison with retention times and mass spectra obtained from commercial standards (Supelco 37 component mix, Supelco PUFA No. 3, Sigma Aldrich, Oakville, Ontario) and the NIST database (Thermo Fisher Scientific). Standard curves were employed to determine the amount of individual fatty acids, and values are presented as nmole%.For the UHPLC-HESI-HRAM/MS–MS analysis, a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific) coupled to an automated Dionex UltiMate 3000 UHPLC system was used to analyze the intact chanterelle lipids according to our previously published method53. Briefly, the intact lipids were resolved using an Accucore C30 column (150 mm × 2 mm I.D., particle size: 2.6 µm, pore diameter: 150 Å) and the following solvent systems: (i) Solvent A consisted of acetonitrile:water (60:40 v/v) containing 10 mM ammonium formate and 0.1% formic acid and (ii) Solvent B consisted of isopropanol:acetonitrile:water (90:10:1 v/v/v) with 10 mM ammonium formate and 0.1% formic acid. The conditions used for separation were 30 °C (column oven temperature), flow rate of 0.2 mL min−1, and 10 µL of sample injected. The gradient system used was as follow: solvent B increased to 30% in 3 min; 43% in 5 min, 50% in 1 min, 90% in 9 min, 99% in 8 min, and finally maintained at 99% for 4 min. The column was re-equilibrated for 5 min before each new injection. Full scans and tandem MS acquisitions were performed in both negative and positive modes using the following parameters: sheath gas: 40, auxiliary gas: 2, ion spray voltage: 3.2 kV, capillary temperature: 300 °C; S-lens RF: 30 V; mass range: 200–2000 m/z; full scan at 70,000 m/z resolution; top-20 data-dependent MS/MS resolution at 35,000 m/z, collision energy of 35 (arbitrary unit); injection time of 35 min for C30RP chromatography; isolation window: 1 m/z; automatic gain control target: 1e5 with dynamic exclusion setting of 5.0 s. The instrument was externally calibrated to 1 ppm using electrospray ionization (ESI); negative and positive calibration solutions (Thermo Fisher Scientific) were used to calibrate the instrument at 1 ppm. Tune parameters were optimized using PC 18:1(9Z)/18:1(9Z), Cer d18:1/18:1(9Z), PG 18:1(9Z)/18:1(9Z), sulfoquinovosyl diacylglycerols [SQDG] 18:3(9Z,12Z,15Z)/16:0, monogalactosyl diglyceride [MGDG] 18:3(9Z,12Z,15Z)/16:3(7Z,10Z,13Z), and digalactosyldiacylglycerol [DGDG] 18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z) lipid standards (Avanti Polar Lipids, Alabaster, AL, USA) in both negative and positive ion modes. The data were processed using either X-Calibur 4.0 (Thermo Fisher Scientific) or LipidSearch version 4.1 (Mitsui Knowledge Industry, Tokyo, Japan) software packages.Phenolics analysis by GC–MSReagent grade phenolic acid standards including benzoic acids, p-hydroxybenzoic acid, vanillic acid, gallic acid, 3,4-dihydroxybenzoic acid, syringic acid, gentisic acid, veratric acid, salicylic acid, cinnamic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, ferulic acid, sinapic acid, caffeic acid, sodium hydroxide, N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA-TCMS) were purchased from Sigma Aldrich. Methanol, ethyl acetate, and hydrochloric acid (36% w/v) were purchased from VWR (Mississauga, Ontario, Canada). For alkaline hydrolysis of powdered chanterelles, 100 µL of aqueous 3,4-dihydroxybenzoic acid solution (0.2 mg mL−1) was added to a mixture containing 4 g of sample in 8 mL 1 M sodium hydroxide. The resultant mixture was incubated in the dark for 24 h at 25 °C on an orbital shaker (50 rpm). The pH of the reaction mixture was adjusted to 2.0–2.5 using concentrated HCl then vortexed. The organic components were extracted four times with 4 mL methanol: ethyl acetate (1:3 ratio) into pre-weighed vials. The solvent was evaporated under nitrogen at 35 °C to determine the crude extraction yield. The extracts were resuspended in 1 mL ethyl acetate, vortexed, then 300 µL of extract transferred into a pre-weighed vial, dried under nitrogen, and 50 µL of BSTFA-TCMS and 50 µL of pyridine added. The resultant mixture was incubated at 70 °C in darkness for 30 min then transferred to GC vials for GC–MS analysis. Standard solutions were derivatized in a similar manner.A Thermo Scientific Trace 1300 gas chromatograph coupled to a Triple Quad mass spectrometer (Thermo Fisher Scientific) was used for the analysis and the compounds resolved on a ZB-5MS non-polar stationary phase column (30 m × 0.25 mm I.D., 0.25 μm film thickness, Phenomenex, Torrance, CA, USA) with helium as the carrier gas (flow rate of 0.6 mL min−1). One microliter of the standard or sample was injected in basic mode (15:0) using a Tri-plus auto-sampler. The oven temperature program was as follows: the initial oven temperature was 70 °C (held for 1 min), was increased at 12 °C min−1 to 220 °C (held for 3 min), 15 °C min−1 to reach 250 °C and held for 1 min. Identification of the phenolic acids (as trimethylsilyl ether, TMS) was based on the comparison of their retention times and mass spectra with that of the NIST library and commercial standards, with quantities calculated and expressed as nmole%.
    Analysis of the volatile profile of chanterelles by SPME-GC/MSVolatile metabolites were extracted and analysed by Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry (SPME-GC/MS) following Vidal et al.54. Briefly, 100 mg of sample powder obtained after cryo homogenization was placed in 10 mL headspace glass vials and kept at 50 °C for 5 min (sample equilibration) before volatile metabolites extraction and analysis began. A divinylbenzene/carboxen/polydimethylsyloxane (DVB/CAR/ PDMS) coated fibre (1 cm long, 50/30 μm film thickness; Supelco, Sigma-Aldrich), was inserted into the headspace of the sample vial and held there for 60 min55,56. Chanterelle volatile composition was analyzed using a Trace 1300 gas chromatograph coupled to a TSQ 8000 Triple Quadrupole mass spectrometer (Thermo Fisher Scientific). The extracted volatile compounds were separated using a ZB-5MS non-polar stationary phase column (30 m × 0.25 mm I.D., 0.25 μm film thickness; Phenomenex) with He used as the carrier at a flow rate of 1 mL min−1. After extraction the fibre was desorbed for 10 min in the injection port and the instrument operated as follows: splitless mode with a purge time of 5 min, initial oven temperature set at 50 °C (5 min hold) and increased to 290 °C at 4 °C min−1 (2 min hold). Ion source and quadrupole mass analyzer temperatures were set at 230 and 150 °C respectively, injector and detector temperatures held at 250 and 290 °C respectively, mass spectra ionization energy set at 70 eV, and data acquisition done in scan mode. After each sample desorption, the fiber was cleaned for 10 min at 250 °C in the conditioning station. Volatile compounds were identified by matching the obtained mass spectra with those of available standards, and mass spectra from commercial libraries NIST/EPA/NIH (version 2.2, Thermo Fisher Scientific) or the scientific literature55,56. Volatile compounds in the chanterelle samples were semi-quantified based on the area counts × 10−6 of the base peak. Compounds with lower abundances than 10−6 area counts were considered as traces. Although the chromatographic response factor of each compound is different, the area counts determined are useful for comparison of the relative abundance of each compound in the different samples analysed55,56.Statistics and reproducibilityResults of analyses of lipids and phenolics are presented as means and standard errors of 4 replicates and those of head-space analyses of volatiles are based on 2 replicates (Tables 2, 3, 4). The values of all dependent variables were tested for normal distribution and homoscedasticity by Shapiro–Wilk and Levene tests, respectively. For variables with homogeneous variance, parametric one-way analysis of variance (ANOVA) was used to determine if there were significant differences between chanterelle samples. Where significance was detected, the means were compared with Fisher’s Least Significant Difference (LSD), α = 0.05. Where the assumption of normality was not met (pentanal, 3-octen-2-one, 2-nonanone, 2-undecanone, (E)-α-Ionone, 3-hydroxy-α-ionene, all phenolic acids, and some minor fatty acids 10:0, 15:0, 14:1, 16:1n5, 20:1n9 and 24:1n9), no significance was detected after the data were treated with a non-parametric Kruskal–Wallis test and significance (p  More

  • in

    Bacterial structure and dynamics in mango (Mangifera indica) orchards after long term organic and conventional treatments under subtropical ecosystem

    Bacterial strains isolation and identificationFifty six bacterial cultures were isolated from both management systems (G1 and G2) of mango orchards (rhizosphere) at CISH, Lucknow, India. Isolation of microorganisms using spread plate methods revealed that the Nutrient agar medium had the highest number of colony appearances compared to the Rose Bengal Agar medium. Microbial enumeration showed organic system enriched with higher bacterial and fungal population than conventional system (Fig. 1). From organic system, thirty seven bacteria were isolated out of which, twenty-three isolates were (G+), and fourteen were (G−). While, in the conventional system, nineteen bacteria were isolated, out of which fifteen were (G+) and four were (G−) isolates.Figure 1Comparative microbial enumeration of organic and conventional treated mango rhizosphere soil the CFU mL−1 of selected samples showing growth of fungus and bacterial populations under two different treatments i.e. organic and conventional. The results are the average of five replicates (n = 5), with bars representing standard error. Significant differences based on the analysis variance (ANOVA) are shown by different letters above the error bars, followed by the post hoc DMRT test (p ≤ 0.05) using the software SPSS.Full size imagePlant growth promotion propertiesFor plant growth promotory properties out of fifty-six bacterial isolates total, ten bacterial cultures (2, 3, 4, 8, 15, 23 and 31) from the organic system showed positive results for phosphate solubilization. In contrast, three bacterial cultures (I1, I8 and I9) from the inorganic system (conventional system) showed positive phosphate solubilization in Pikovaskya’s agar medium. For siderophore production, bacterial cultures (2, 3, 4, 8, 12 and 26) from the organic system showed positive results, while four bacterial cultures (I1, I6, I8 and I9) inorganic system showed positive results. Bacterial cultures (2, 3, 4 and 8) from the organic system showed positive results for K-solubilization, while five bacterial cultures (I1, I2, I7, I8 and I9) from the inorganic system showed positive K-solubilization. A total of ten isolates (7 from organic and 3 from the inorganic system) possessed Zn-solubilizing activity. The test isolated from the organic system showed better Zn (ZnO), Zn3 (PO4)2, and (ZnCO3) solubilization as compared to test culture isolated from the inorganic system (Supplementary S1.8).Acetylene reduction assay (ARA)Results from acetylene reduction assay showed in aerophilic condition, bacterial isolates 1, 3, 4 (from organic treated soil) and I1, I8 and I9 (conventional system) showed 134.8, 37.70, 36.73, 13.15, 16.70 and 12.87 ppm of ethylene tube−1 h−1, respectively. In case of microaerophilic condition, bacterial isolates 4, 9, I9 showed 24.17, 19.14, and 12.71 ppm ethylene, respectively. Results indicate possible use of these bacterial isolates as a bioinoculant agent for horticultural crops, especially mango and other subtropical climate fruit crops.Soil enzymatic studyThe soil enzymatic activity in the organic system (G1) showed better dehydrogenase activity than the conventional system (G2). For both methods, alkaline phosphatase almost showed similar activity (at pH 11), while in the case of acid phosphatase showed better activity in the inorganic system (G2) as compared to the organic system (G1) at pH level 6.5 (Fig. 2). The dehydrogenase enzyme oxidizes the organic matter, and it belongs to the oxidoreductase type of enzyme. In the process of respiration of soil microorganisms, the dehydrogenase enzyme facilitates the transfer of protons and electrons from the substrate to the acceptor. It was significant to observe that the dehydrogenase activity was higher in organic treated soils (0.784 µg TPF g−1 h−1) than in conventional system (0.053 µg TPF g−1 h−1).Figure 2Comparative soil enzymes activities of conventional and organic treated mango rhizosphere soil the dehydrogenase, acid phosphatase and alkaline phosphatase activities were showing in µg TPF formed g−1 of soil h−1 and µg PNP g−1 soil h−1 respectively. The results are the average of five replicates (n = 5), with bars representing standard error. Significant differences based on the analysis variance (ANOVA) are shown by different letters above the error bars, followed by the post hoc DMRT test (p ≤ 0.05) using the software SPSS.Full size imageAlpha biodiversity with samples and rarefaction curvesIn this segment, by measuring Shannon, Chao1, and observed species metrics, we analyze the microbial diversity within the samples. The chao1 metric measures the richness of the ecosystem, while the Shannon metric is the formula for calculating reported OTU abundances and accounts for both prosperity and equality. The rarefaction curve is provided in Fig. 3 for each metric. Using QIIME software, the metric measurement was done. The impact of both treatments on the microbial complexity and abundance in the sample was also revealed using the Shannon diversity Index (depicting richness and evenness) and Chao 1 representing only richness. Shannon’s diversity index of the bacterial community in the treatment (G1 and G2) was 8.06 and 8.12. The Simpson index in ecology is used to quantify biological diversity in a region, which was also nearly similar in both the treatments. Chao 1 richness estimator showed an increase in species richness. Rarefaction analysis conducted to confirm species richness revealed a difference in the number of reads and OTUs between the samples. The Rare fraction curve had a similar pattern for both samples and showed an impact on the bacterial population in the experiment (Fig. 3a–c).Figure 3Shanon (a), Chao1 (b) curves and observed species (c) obtained for the samples (G1 and G2).Full size imageBacterial diversity analysis at phyla levelTaxonomic study of the 16S rRNA gene amplicon reads yielded seven classifiable bacterial phyla. Six phyla, namely Acidobacteria, Actinobacteria, Bacteroides, Proteobacteria, Firmicutes, and Chloroflexi were dominant in both the systems. The Organically treated soil (G1) sample harbored a higher percentage of Bacteroidetes (14.55%), Actinobacteria (7.45%), and Proteobacteria (10.82%) as compared to conventional treatment (G2) 8.98%, 5.71%, and 6.64%, respectively. However, phylum Acidobacteria(13.6%), Firmicutes(4.84%), and Chloroflexi (2.56) were higher abundance in conventional treatment as compared to the organic treatment, which showed the same phyla with lesser quantity, i.e., 5.63%, 0.91%, and 0.79% respectively (Fig. 4a).Figure 4Comparative microbiome (a-phylum and b-order) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 region) approach.Full size imageDistribution of bacterial community at order levelThe bacterial orders in both systems were diversified. The most abundant orders in organic and conventional systems were Chitinophagales (Organic-11.32%, Conventional-43%), Elev-16S-573 (Organic-3.09%, Conventional-8.69%), Pedosphaerales (Organic-1.56%, Conventional-3.55%), Opitutales (Organic-2.46%, Conventional-0.27%), Chthoniobacterales (Organic-1.35%, Conventional-2.84%), Bacillales (Organic-0.91%, Conventional-4.84%) and Solibacterales (Organic-1.39%, Conventional-2.26%) (Fig. 4b).Bacterial community distribution at family levelBacterial family members were identified and enriched including Pedosphaeraceae (O-1.56%, C-3.55%), Opitutaceae (O-2.46%, C-0.27%), Chthoniobacteraceae (O-1.03%, C-2.68%), Steroidobacteraceae (O-2.05%, C-0.73%), Bacillaceae (O-0.77%, C-4.55%), Chitinophagaceae (O-10.99%, C-5.06%), and Xanthomonadaceae (O-1.39%, C-0.06%) and other families (Fig. 5a).Figure 5Comparative microbiome (a-family and b-genus) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 region) approach.Full size imageBacterial community distribution at the genus levelComparative abundance of unidentified genus in organic system were uncultured soil bacterium, Glycomyces, Chitinophaga, Lysobacter, Udaeobacter, Bacillus (not detected, 1.85%, 4.77%, 1.19%,1.03% and 0.75% respectively) whereas same genus-group were observed in conventional system with different percentage i.e., 0.11%, not detected, 0.56%, 0.04%, 2.67%, 4.54% respectively (Fig. 5b).Bacterial communities at species levelBecause most of the species were unidentified and uncultured bacterium based on relative abundance, they could not be assigned a species name in either sample. Few species are identified in both systems, like Sphingomonas sp. (O-1.57%, C-1.05%), Bacillus drentensis (O-0.25%, C-2.65%), and Chitinophaga sp. (O-4.64%, C-0.11%) (Fig. 6).Figure 6Comparative microbiome (Species) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 regions) approach.Full size imageHeat map and PCA analysisUnder long-term exposure of organic and conventional treatments, a microbial shift was observed in the rhizosphere microbiome of mango orchards. Based on percent abundance, nine different microbial genera Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria formed Cluster I. While, Firmicutes, Chloroflexi and Opitutales were abundances in cluster II. Cluster III includes Chitinobacterales, Bacillales, Chitinophagarales and Otherales genera. Whereas cluster IV (Elev7-16S-573, Otherales, Solibacterales and Pedobacteriaceae), cluster V (Opitutaceae, Chitnobacteraceae, Bacillaceae, Chitinophagaceae and Otherales), cluster VI (Xanthomonadaceae, Uncultured soil bacterium, Candidatus-Udaeobacter, Lysobacter and Bacillus), cluster VII (Chitinophaga, Glycomyces and Other), cluster VIII (Uncultured bacterium and Others) and cluster IX (Bacillus drentensis and Others) (Fig. 7). The cluster I observed with the highest abundance was closely related to clusters II and III. Cluster IV to IX created large groups and is distantly related to cluster I to III of the microbial groups in organic and conventional systems (Fig. 7). In the organic system (G1), microbial groups like Proteobacteria, Actinobacteria, Bacteroidetes, and Opitutaceae were largely dominated and provided benefits to the mango rhizosphere in terms of nutrient availability, plant growth promotion, and protection against biotic and abiotic stress. Phylum Proteobacteria and Actinobacteria are closely linked with the rhizosphere and identified as potential PGPR. Acidobacteria and firmicutes, on the other hand, were dominated primarily by conventional systems and serve as a bio-indicator of anthropogenic stress caused by excessive chemical fertilizer application. Undefined Acidobacteria is oligotrophic in nature and considered as an indicator of low organic carbon and acidic environment. To desire higher productivity, the indiscriminate use of chemical fertilizers or pesticides in conventional systems leads to low nutrient availability, microbial shift, less PGPR, and developing the environment for Acidobacteria, Firmicutes and Chloroflexia group of microorganisms. Principal component analysis (PCA) was performed for both systems (organic-component 1; conventional-component 2). The total variables of principal component analysis were the percentage of different parameters such as alkaline phosphatase, acid phosphatase, DHA, Acetylene reduction assay (ARA1, ARA2, ARA3), and CFU mL−1 (bacteria and fungi). The results of PCA yielded two components that explained 100% of the total variance in the data and had an Eigen value of 6.1 for component 1. In contrast, 1.8 for component 2 and together they described 100% of the total variance in the data (Fig. 8). In the organic system, the loading factor with score plot indicates that component-1 is positively associated with DHA, ARA1, ARA2, alkaline phosphatase, acid phosphatase while negatively correlated with CFU ARA3 activity. Component-1 explains the 76.42% variance of the experimental data, while component-2 explains 23.58%. The second component (PC2) represents the positive association with DHA, ARA1, ARA2, ARA3 activity, and CFU while negatively correlated with alkaline phosphatase and acid phosphatase. In the conventional system, the loading factor with score plot indicates that component-1 is positively associated with single variable acid phosphatise while negatively correlated with DHA, ARA1, ARA2, ARA3, CFU, and alkaline phosphatase activity. The second component (PC2) of the conventional system showed positive association with DHA, ARA1, ARA2, ARA3 activity, and CFU, while the negative association with alkaline phosphatase and acid phosphatase.Figure 7Comparative (G1 organic and G2 conventional) heat map of dominant microbial diversity and their clusters in terms of T1 (phylum), T2 (order), T3 (family), T4 (Genus) and T5 (Species).Full size imageFigure 8PCA analysis of different parameters for organic and conventional systems.Full size image More

  • in

    The changing face of floodplains in the Mississippi River Basin detected by a 60-year land use change dataset

    1.Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. In D. P. Dodge [ed.] Proceedings of the International Large River Symposium, Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110-127 https://www.waterboards.ca.gov/waterrights//water_issues/programs/bay_delta/docs/cmnt081712/sldmwa/junketal1989.pdf (1989).2.Karpack, M. N., Morrison, R. R. & McManamay, R. A. Quantitative assessment of floodplain functionality using an index of integrity. Ecological Indicators 111, 106051, https://doi.org/10.1016/j.ecolind.2019.106051 (2020).Article 

    Google Scholar 
    3.Costanza, R. et al. Changes in the global value of ecosystem services. Global Environmental Change 26, 152–158, https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    4.Wohl, E., Lane, S. N. & Wilcox, A. C. The science and practice of river restoration. Water Resources Research 51, 5974–5997, https://doi.org/10.1002/2014WR016874 (2015).ADS 
    Article 

    Google Scholar 
    5.Hamilton, S. K. Wetlands of Large Rivers: Flood plains. Encyclopedia of Inland Waters 607-610 https://doi.org/10.1016/B978-012370626-3.00065-X (2009).6.Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M. & Meadows, A. W. Ecologically functional floodplains: connectivity, flow regime, and scale. Journal of the American Water Resources Association 46, 211–226, https://doi.org/10.1111/j.1752-1688.2010.00426.x (2010).ADS 
    Article 

    Google Scholar 
    7.Waltham, N. J. et al. Lost floodplain wetland environments and efforts to restore connectivity, habitat, and water quality settings on the great barrier reef. Front. Mar. Sci. 6, 71, https://doi.org/10.3389/fmars.2019.00071 (2019).Article 

    Google Scholar 
    8.Tockner, K. & Stanford, J. A. Review of: riverine flood plains: present state and future trends. Biological Sciences Faculty Publications 29, 166 https://scholarworks.umt.edu/biosci_pubs/166 (2002).9.Erwin, K. L. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17, 71, https://doi.org/10.1007/s11273-008-9119-1 (2009).Article 

    Google Scholar 
    10.Johnson, K. A. et al. A benefit-cost analysis of floodplain land acquisition for US flood damage reduction. Nat Sustain 3, 56–62, https://doi.org/10.1038/s41893-019-0437-5 (2019).Article 

    Google Scholar 
    11.Quinn, N. et al. The spatial dependence of flood hazard and risk in the United States. Water Resources Research 55, 1890–1911, https://doi.org/10.1029/2018WR024205 (2019).ADS 
    Article 

    Google Scholar 
    12.Pinter, N. One step forward, two steps back on U.S. floodplains. Science 308(5719), 207–208 https://science.sciencemag.org/content/308/5719/207 (2005).13.Kousky, C. & Walls, M. Floodplain conservation as a flood mitigation strategy: examining costs and benefits. Ecological Economics 104, 119–128, https://doi.org/10.1016/j.ecolecon.2014.05.001 (2014).Article 

    Google Scholar 
    14.Tullos, D. Opinion: how to achieve better flood-risk governance in the United States. Proceedings of the National Academy of Sciences of the United States of America 115(15), 3731–3734, https://doi.org/10.1073/pnas.1722412115 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Kundzewicz, Z. W., Hegger, D. L. T., Matczak, P. & Driessen, P. P. J. Opinion: flood-risk reduction: structural measures and diverse strategies. Proceedings of the National Academy of Sciences of the United States of America 115(49), 12321–12325, https://doi.org/10.1073/pnas.1818227115 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Lambin, E. F., Geist, H. J. & Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28, 205–241, https://doi.org/10.1146/annurev.energy.28.050302.105459 (2003).Article 

    Google Scholar 
    17.Entwistle, N. S., Heritage, G. L., Schofield, L. A. & Williamson, R. J. Recent changes to floodplain character and functionality in England. Catena 174, 490–498, https://doi.org/10.1016/j.catena.2018.11.018 (2019).Article 

    Google Scholar 
    18.Dewan, A. M. & Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Applied Geography 29, 390–401, https://doi.org/10.1016/j.apgeog.2008.12.005 (2009).Article 

    Google Scholar 
    19.Amoateng, P., Finlayson, C. M., Howard, J. & Wilson, B. Dwindling rivers and floodplains in Kumasi, Ghana: a socio-spatial analysis of the extent and trend. Applied Geography 90, 82–95, https://doi.org/10.1016/j.apgeog.2017.11.007 (2018).Article 

    Google Scholar 
    20.Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Jr. Gulf of Mexico hypoxia, a.k.a. “the dead zone. Annual Review of Ecology and Systematics 33, 235–263, https://doi.org/10.1146/annurev.ecolsys.33.010802.150513 (2002).Article 

    Google Scholar 
    21.Wohl, E. An integrative conceptualization of floodplain storage. Reviews of Geophysics 59, e2020RG000724, https://doi.org/10.1029/2020RG000724 (2021).ADS 
    Article 

    Google Scholar 
    22.Scott, D. T., Gomez-Velez, J. D., Jones, C. N. & Harvey, J. W. Floodplain inundation spectrum across the United States. Nat. Commun. 10, 5194, https://doi.org/10.1038/s41467-019-13184-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Hattermann, F. F. et al. Climatological drivers of changes in flood hazard in Germany. Acta Geophysica 61, 463–477, https://doi.org/10.2478/s11600-012-0070-4 (2013).ADS 
    Article 

    Google Scholar 
    24.Mallakpour, I. & Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Change 5, 250–254, https://doi.org/10.1038/nclimate2516 (2015).ADS 
    Article 

    Google Scholar 
    25.Corvalán, C., Hales, S., McMichael, A. J., Millennium Ecosystem Assessment (Program), & World Health Organization (Eds.). Ecosystems and human well-being: Health synthesis (World Health Organization, 2005).26.Enhancing Restoration and advancing knowledge of the upper Mississippi river: a strategic plan for the upper Mississippi river restoration program 2015-2025. https://www.umesc.usgs.gov/ltrmp/documents/umrr_strategic_plan_jan2015.pdf (USGS, 2015).27.Nardi, F., Annis, A., Di Baldassarre, G., Vivoni, E. R. & Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Scientific Data 6, 180309, https://doi.org/10.1038/sdata.2018.309 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Sohl, T. L. et al. Modeled historical land use and land cover for the conterminous United States: 1938-1992. U.S. Geological Survey data release https://doi.org/10.5066/F7KK99RR (2018).29.Sohl, T.L. et al. Conterminous United States land cover projections – 1992 to 2100. U.S. Geological Survey data release https://doi.org/10.5066/P95AK9HP (2018).30.Leopold, L. B., & Maddock, T. The hydraulic geometry of stream channels and some physiographic implications. (U.S. Geological Survey, 1953)31.Nardi, F., Vivoni, E. R. & Grimaldi, S. Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resources Research 42(9), https://doi.org/10.1029/2005WR004155 (2006).32.Di Baldassarre, G. et al. Brief communication: comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping. Nat. Hazards Earth Syst. Sci. 20, 1415–1419, https://doi.org/10.5194/nhess-20-1415-2020 (2020).ADS 
    Article 

    Google Scholar 
    33.Homer, C. et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS Journal of Photogrammetry and Remote Sensing 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019 (2020).ADS 
    Article 

    Google Scholar 
    34.Yang, L. et al. A new generation of the United States national land cover database: requirements, research priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and Remote Sensing 146, 108–123, https://doi.org/10.1016/j.isprsjprs.2018.09.006 (2018).ADS 
    Article 

    Google Scholar 
    35.Jin, S. et al. Overall methodology design for the United States National Land Cover Database 2016 products. Remote Sensing 11, 2971, https://doi.org/10.3390/rs11242971 (2019).ADS 
    Article 

    Google Scholar 
    36. USDA Census of Agriculture Historical Archive http://agcensus.mannlib.cornell.edu/AgCensus/homepage.do;jsessionid=17C0132051BEB31DF79D01B0D07300F2 (US Department of Agriculture, 2007).37.Sleeter, B. M. et al. Land-cover change in the conterminous United States from 1973 to 2000. Global Environmental Change 23(4), 733–748, https://doi.org/10.1016/j.gloenvcha.2013.03.006 (2013).Article 

    Google Scholar 
    38.Cao, Y. et al. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling. Geosci. Model Dev. 10(9), 3425–3440, https://doi.org/10.5194/gmd-10-3425-2017 (2017).ADS 
    Article 

    Google Scholar 
    39.Piwowar, J. M., Ledrew, E. F. & Dudycha, D. J. Integration of spatial data in vector and raster formats in a geographic information system environment. International Journal of Geographical Information Systems 4, 429–444, https://doi.org/10.1080/02693799008941557 (2007).Article 

    Google Scholar 
    40.Croissant, C. Landscape patterns and parcel boundaries: an analysis of composition and configuration of land use and land cover in south-central Indiana. Agriculture Ecosystems and Environment 101, 219–232, https://doi.org/10.1016/j.agee.2003.09.006 (2004).Article 

    Google Scholar 
    41.LaGro Jr., J. A. Land-use Classification (Elsevier Press, 2005).42.Kutcher T. E. et al. Habitat and Land Cover Classification Scheme for the National Estuarine Research Reserve System. (National Estuarine Research Reserve System, 2008).43.Buskey, E. J. et al. in System-wide monitoring program of the national estuarine research reserve System: research and monitoring to address coastal management issues Chapter 21 (Academic Press, 2015).44.Feng, C.-C. & Flewelling, D. M. Assessment of semantic similarity between land use/land cover classification systems. Computers, Environment and Urban Systems 28(3), 229–246, https://doi.org/10.1016/S0198-9715(03)00020-6 (2004).Article 

    Google Scholar 
    45.Foufoula-Georgiou, E., Takbiri, Z., Czuba, J. A. & Schwenk, J. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resources Research 51, 6649–6671, https://doi.org/10.1002/2015WR017637 (2015).ADS 
    Article 

    Google Scholar 
    46.Biondini, M. & Kandus, P. Transition matrix analysis of land-cover change in the accretion area of the Lower Delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands 26, 981–991, https://link.springer.com/article/10.1672/0277-5212(2006)26[981:TMAOLC]2.0.CO;2#citeas (2006).47.Hu, Y., Batunacun, Zhen, L. & Zhuang, D. Assessment of land-use and land-cover change in Guangxi, China. Sci Rep. 9, 2189, https://doi.org/10.1038/s41598-019-38487-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability 3, 564–570, https://doi.org/10.1038/s41893-020-0521-x (2020).Article 

    Google Scholar 
    49.Teferi, E., Bewket, W., Uhlenbrook, S. & Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: spatially explicit statistical modeling of systematic transitions. Agriculture, ecosystems & environment 165(15), 98–117, https://doi.org/10.1016/j.agee.2012.11.007 (2013).Article 

    Google Scholar 
    50.Yu, Z., Guo, X., Zeng, Y., Koga, M. & Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: the case of Fuzhou city, China. Urban forestry & urban greening 29, 113–121, https://doi.org/10.1016/j.ufug.2017.11.008 (2018).Article 

    Google Scholar 
    51.Yuan, F., Sawaya, K. E., Loeffelholz, B. C. & Bauer, M. E. Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment 98, 317–328, https://doi.org/10.1016/j.rse.2005.08.006 (2005).ADS 
    Article 

    Google Scholar 
    52.Yuh, Y. G. et al. Effects of land cover change on great apes distribution at the Lobéké National Park and its surrounding forest management units, south-east Cameroon. A 13 year time series analysis. Sci. Rep. 9, 1445, https://doi.org/10.1038/s41598-018-36225-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Zhao, J., Yang, Y., Zhao, Q. & Zhao, Z. Effects of ecological restoration projects on changes in land cover: a case study on the Loess Plateau in China. Sci. Rep. 7, 44496, https://doi.org/10.1038/srep44496 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Rajib, A. et al. Land Use Changes in The Mississippi River Basin Floodplains: 1941 to 2000 (version 1). HydroShare https://doi.org/10.4211/hs.41a3a9a9d8e54cc68f131b9a9c6c8c54 (2021).55.Annis, A., Nardi, F., Morrison, R. R. & Castelli, F. Investigating hydrogeomorphic floodplain mapping performance with varying DTM resolution and stream order. Hydrological Sciences Journal 64(5), 525–538, https://doi.org/10.1080/02626667.2019.1591623 (2019).Article 

    Google Scholar 
    56.Dottori, F. et al. Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources 94, 87–102, https://doi.org/10.1016/j.advwatres.2016.05.002 (2016).ADS 
    Article 

    Google Scholar 
    57.Scheel, K., Morrison, R. R., Annis, A. & Nardi, F. Understanding the large-scale influence of levees on floodplain connectivity using a hydrogeomorphic approach. Journal of the American Water Resources Association 55(2), 413–429, https://doi.org/10.1111/1752-1688.12717 (2019).ADS 
    Article 

    Google Scholar 
    58. Climate Change Initiative (CCI) Land Cover products http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2018).59. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017).60.Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More