More stories

  • in

    Severe vegetation degradation associated with different disturbance types in a poorly managed urban recreation destination in Iran

    1.Tourism and visitor management in protected areas: guidelines for sustainability. (IUCN, International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.PAG.27.en.2.Pickering, C. M., Hill, W., Newsome, D. & Leung, Y.-F. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manag. 91, 551–562 (2010).Article 

    Google Scholar 
    3.Huddart, D. & Stott, T. Outdoor Recreation Environmental Impacts and Management (Springer International Publishing, 2019) https://doi.org/10.1007/978-3-319-97758-4.Book 

    Google Scholar 
    4.Marion, J. L., Leung, Y.-F., Eagleston, H. & Burroughs, K. A review and synthesis of recreation ecology research findings on visitor impacts to wilderness and protected natural areas. J. Forest. 114, 352–362 (2016).Article 

    Google Scholar 
    5.Monz, C. A. et al. Assessment and monitoring of recreation impacts and resource conditions on mountain summits: Examples from the Northern Forest, USA. Mt. Res. Dev. 30, 332–343 (2010).Article 

    Google Scholar 
    6.Salesa, D. & Cerdà, A. Soil erosion on mountain trails as a consequence of recreational activities. A comprehensive review of the scientific literature. J. Environ. Manag. 271, 110990 (2020).CAS 
    Article 

    Google Scholar 
    7.Barros, A., Aschero, V., Mazzolari, A., Cavieres, L. A. & Pickering, C. M. Going off trails: How dispersed visitor use affects alpine vegetation. J. Environ. Manag. 267, 110546 (2020).Article 

    Google Scholar 
    8.Cole, D. N. & Monz, C. A. Impacts of camping on vegetation: Response and recovery following acute and chronic disturbance. Environ. Manag. 32, 693–705 (2003).Article 

    Google Scholar 
    9.Andrés-Abellán, M. et al. Impacts of visitors on soil and vegetation of the recreational area ‘Nacimiento del Río Mundo’ (Castilla-La Mancha, Spain). Environ. Monit. Assess. 101, 55–67 (2005).PubMed 

    Google Scholar 
    10.Lathrop, E. W. The effect of vehicle use on desert vegetation. In Environmental Effects of Off-Road Vehicles (eds Webb, R. H. & Wilshire, H. G.) 153–166 (Springer New York, 1983) https://doi.org/10.1007/978-1-4612-5454-6_8.Chapter 

    Google Scholar 
    11.Abd El-Wahab, R. H., Al-Rashed, A. R. & Al-Dousari, A. Influences of physiographic factors, vegetation patterns and human impacts on aeolian landforms in arid environment. Arid Ecosyst. 8, 97–110 (2018).Article 

    Google Scholar 
    12.Abdullah, M. M., Feagin, R. A., Musawi, L., Whisenant, S. & Popescu, S. The use of remote sensing to develop a site history for restoration planning in an arid landscape: Developing site history using remote sensing. Restor. Ecol. 24, 91–99 (2016).Article 

    Google Scholar 
    13.Kariuki, S., Gallery, R. E., Sparks, J. P., Gimblett, R. & McClaran, M. P. Soil microbial activity is resistant to recreational camping disturbance in a Prosopis dominated semiarid savanna. Appl. Soil Ecol. 147, 103424 (2020).Article 

    Google Scholar 
    14.Ballantyne, M. & Pickering, C. M. The impacts of trail infrastructure on vegetation and soils: Current literature and future directions. J. Environ. Manag. 164, 53–64 (2015).Article 

    Google Scholar 
    15.Marion, J. L. & Cole, D. N. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecol. Appl. 6, 520–530 (1996).Article 

    Google Scholar 
    16.Favretto, N., Luedeling, E., Stringer, L. C. & Dougill, A. J. Valuing ecosystem services in semi-arid rangelands through stochastic simulation. Land Degrad. Dev. 28, 65–73 (2017).Article 

    Google Scholar 
    17.MalekiSadabadi, Z., Ejtehadi, H., Abrishamchi, P., Vaezi, J. & Erfanian Taleii Noghan, M. B. Comparative study of autecological, morphological, anatomical and karyological characteristics of Acanthophyllum ejtehadii Mahmoudi & Vaezi (Caryophyllaceae): A rare endemic in Iran. Taiwania 62, 321–330 (2017).
    Google Scholar 
    18.Noroozi, J. et al. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 9, 12991 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Erfanian, M. B., Ejtehadi, H., Vaezi, J. & Moazzeni, H. Plant community responses to multiple disturbances in an arid region of northeast Iran. Land Degrad. Dev. 30, 1554–1563 (2019).Article 

    Google Scholar 
    20.Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 9159 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Memariani, F. Khorassan-Kopet Dagh Mountains. In Plant biogeography and vegetation of high mountains of central and south-west Asia (ed. Noroozi, J.) (Springer, 2020).
    Google Scholar 
    22.Noroozi, J. et al. Hotspots within a global biodiversity hotspot—areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the Orient: The Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. 92, 1365–1388 (2017).PubMed 
    Article 

    Google Scholar 
    24.Erfanian, M. B. et al. Plant community responses to environmentally friendly piste management in northeast Iran. Ecol. Evol. 9, 8193–8200 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.District 9 of Mashhad municipality. Introducing the Khorshid Park. District 9 of Mashhad municipality https://zone9.mashhad.ir/media_gallery/6505295 (2020).26.Djamali, M. et al. Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecol. Mediterr. 37, 91–114 (2011).Article 

    Google Scholar 
    27.Hamedian, M. Investigation of Plant Biodiversity in Najafi Mountains, Mashhad, Khorassan Razavi Province (Ferdowsi University of Mashhad, 2015).
    Google Scholar 
    28.Kent, M. Vegetation Description and Data Analysis (Wiley, 2012).
    Google Scholar 
    29.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    30.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).31.de Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research (2020).32.Legendre, P. & Legendre, L. F. J. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    33.Oksanen, J. et al. vegan: Community Ecology Package. (2019).34.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    35.Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).PubMed 
    Article 

    Google Scholar 
    36.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    37.Jin, Y. & Qian, H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography https://doi.org/10.1111/ecog.04434 (2019).Article 

    Google Scholar 
    38.Barber, N. A. et al. Grassland restoration characteristics influence phylogenetic and taxonomic structure of plant communities and suggest assembly mechanisms. J. Ecol. 107, 2105–2120 (2019).Article 

    Google Scholar 
    39.Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).Article 

    Google Scholar 
    40.Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Philos. Trans. R. Soc. B Biol. Sci. 365, 3599–3609 (2010).Article 

    Google Scholar 
    41.Chao, A. et al. Rarefaction and extrapolation of phylogenetic diversity. Methods Ecol. Evol. 6, 380–388 (2015).Article 

    Google Scholar 
    42.Barros, A. & Marina Pickering, C. How networks of informal trails cause landscape level damage to vegetation. Environ. Manag. 60, 57–68 (2017).Article 

    Google Scholar 
    43.Kissling, M., Hegetschweiler, K. T., Rusterholz, H.-P. & Baur, B. Short-term and long-term effects of human trampling on above-ground vegetation, soil density, soil organic matter and soil microbial processes in suburban beech forests. Appl. Soil. Ecol. 42, 303–314 (2009).Article 

    Google Scholar 
    44.Mingyu, Y., Hens, L., Xiaokun, O. & Wulf, R. D. Impacts of recreational trampling on sub-alpine vegetation and soils in Northwest Yunnan, China. Acta Ecol. Sin. 29, 171–175 (2009).Article 

    Google Scholar 
    45.Pickering, C. M. & Growcock, A. J. Impacts of experimental trampling on tall alpine herbfields and subalpine grasslands in the Australian Alps. J. Environ. Manag. 91, 532–540 (2009).Article 

    Google Scholar 
    46.Roovers, P., Verheyen, K., Hermy, M. & Gulinck, H. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 7, 111–118 (2004).Article 

    Google Scholar 
    47.Jägerbrand, A. K. & Alatalo, J. M. Effects of human trampling on abundance and diversity of vascular plants, bryophytes and lichens in alpine heath vegetation, Northern Sweden. Springerplus 4, 95 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ballantyne, M. & Pickering, C. M. Recreational trails as a source of negative impacts on the persistence of keystone species and facilitation. J. Environ. Manag. 159, 48–57 (2015).Article 

    Google Scholar 
    49.Hill, W. & Pickering, C. M. Vegetation associated with different walking track types in the Kosciuszko alpine area, Australia. J. Environ. Manag. 78, 24–34 (2006).Article 

    Google Scholar 
    50.Wilkerson, E. & Whitman, A. Recreation trails in Maine and New Hampshire: A comparison of notorized, non-motorized, and non-mechanized trails. In Proceedings of the 2009 Northeastern Recreation Research Symposium, Vol. 1, 214–222 (U.S. Department of Agriculture, 2010).51.Karim, M. N. & Mallik, A. U. Roadside revegetation by native plants. Ecol. Eng. 32, 222–237 (2008).Article 

    Google Scholar 
    52.Lembrechts, J. J., Milbau, A. & Nijs, I. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLoS ONE 9, e89664 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Lembrechts, J. J. et al. Mountain roads shift native and non-native plant species’ ranges. Ecography 40, 353–364 (2017).Article 

    Google Scholar 
    54.Farrell, T. A. & Marion, J. L. The protected area visitor impact management (PAVIM) framework: A simplified process for making management decisions. J. Sustain. Tour. 10, 31–51 (2002).Article 

    Google Scholar 
    55.Jim, C. Y. Camping impacts on vegetation and soil in a Hong Kong country park. Appl. Geogr. 7, 317–332 (1987).Article 

    Google Scholar 
    56.Nylund, M., Haapanen, A., Kellomäki, S. & Nylund, L. Deterioration of forest ground vegetation and decrease of radial growth of trees on camping sites. Silva Fenn. 13, 343–356 (1979).Article 

    Google Scholar 
    57.Lembrechts, J. J. et al. Disturbance is the key to plant invasions in cold environments. Proc. Natl. Acad. Sci. 113, 14061–14066 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Mauritia flexuosa palm trees airborne mapping with deep convolutional neural network

    1.Nãsi, R. et al. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens. 7, 15467–15493. https://doi.org/10.3390/rs71115467 (2015).ADS 
    Article 

    Google Scholar 
    2.Navarro, A. et al. The application of unmanned aerial vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sens. Environ. 242, 111747. https://doi.org/10.1016/j.rse.2020.111747 (2020).ADS 
    Article 

    Google Scholar 
    3.Reis, B. P. et al. Management recommendation generation for areas under forest restoration process through images obtained by UAV and LiDAR. Remote Sens. 11, 1508. https://doi.org/10.3390/rs11131508 (2019).ADS 
    Article 

    Google Scholar 
    4.Saarinen, N. et al. Assessing biodiversity in boreal forests with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 10, 338. https://doi.org/10.3390/rs10020338 (2018).ADS 
    Article 

    Google Scholar 
    5.Casapia, X. T. et al. Identifying and quantifying the abundance of economically important palms in tropical moist forest using UAV imagery. Remote Sens. 12, 9. https://doi.org/10.3390/rs12010009 (2019).ADS 
    Article 

    Google Scholar 
    6.Li, L. et al. Quantifying understory and overstory vegetation cover using UAV-based RGB imagery in forest plantation. Remote Sens. 12, 298. https://doi.org/10.3390/rs12020298 (2020).ADS 
    Article 

    Google Scholar 
    7.dos Santos, A. A. et al. Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs. Sensors 19, 3595. https://doi.org/10.3390/s19163595 (2019).ADS 
    Article 
    PubMed Central 

    Google Scholar 
    8.Miyoshi, G. T., Imai, N. N., Tommaselli, A. M. G., de Moraes, M. V. A. & Honkavaara, E. Evaluation of hyperspectral multitemporal information to improve tree species identification in the highly diverse Atlantic forest. Remote Sens. 12, 244. https://doi.org/10.3390/rs12020244 (2020).ADS 
    Article 

    Google Scholar 
    9.Morales, G. et al. Automatic segmentation of Mauritia flexuosa in unmanned aerial vehicle (UAV) imagery using deep learning. Forests 9, 736. https://doi.org/10.3390/f9120736 (2018).Article 

    Google Scholar 
    10.Voss, M. & Sugumaran, R. Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object- oriented approach. Sensors 8, 3020–3036. https://doi.org/10.3390/s8053020 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Andersen, H.-E., Reutebuch, S. E. & McGaughey, R. J. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can. J. Remote Sens. 32, 355–366. https://doi.org/10.5589/m06-030 (2006).ADS 
    Article 

    Google Scholar 
    12.Ganz, S., Käber, Y. & Adler, P. Measuring tree height with remote sensing—A comparison of photogrammetric and LiDAR data with different field measurements. Forests 10, 694. https://doi.org/10.3390/f10080694 (2019).Article 

    Google Scholar 
    13.Csillik, O., Cherbini, J., Johnson, R., Lyons, A. & Kelly, M. Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones 2, 39. https://doi.org/10.3390/drones2040039 (2018).Article 

    Google Scholar 
    14.Berveglieri, A., Imai, N. N., Tommaselli, A. M., Casagrande, B. & Honkavaara, E. Successional stages and their evolution in tropical forests using multi-temporal photogrammetric surface models and superpixels. ISPRS J. Photogram. Remote Sens. 146, 548–558. https://doi.org/10.1016/j.isprsjprs.2018.11.002 (2018).ADS 
    Article 

    Google Scholar 
    15.Cao, J. et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 10, 89. https://doi.org/10.3390/rs10010089 (2018).ADS 
    Article 

    Google Scholar 
    16.Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A. & White, E. Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sens. 11, 1309. https://doi.org/10.3390/rs11111309 (2019).ADS 
    Article 

    Google Scholar 
    17.Torres, D. L. et al. Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution UAV optical imagery. Sensors 20, 563. https://doi.org/10.3390/s20020563 (2020).ADS 
    Article 

    Google Scholar 
    18.Liu, L., Song, B., Zhang, S. & Liu, X. A novel principal component analysis method for the reconstruction of leaf reflectance spectra and retrieval of leaf biochemical contents. Remote Sens. 9, 1113. https://doi.org/10.3390/rs9111113 (2017).ADS 
    Article 

    Google Scholar 
    19.Maschler, J., Atzberger, C. & Immitzer, M. Individual tree crown segmentation and classification of 13 tree species using airborne hyperspectral data. Remote Sens. 10, 1218. https://doi.org/10.3390/rs10081218 (2018).ADS 
    Article 

    Google Scholar 
    20.Hennessy, A., Clarke, K. & Lewis, M. Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sens. 12, 113. https://doi.org/10.3390/rs12010113 (2020).Article 

    Google Scholar 
    21.Hamraz, H., Contreras, M. A. & Zhang, J. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds. Sci. Rep. 7, 1–9. https://doi.org/10.1038/s41598-017-07200-0 (2017).CAS 
    Article 

    Google Scholar 
    22.Cho, M. A. et al. Mapping tree species composition in south African savannas using an integrated airborne spectral and LiDAR system. Remote Sens. Environ. 125, 214–226. https://doi.org/10.1016/j.rse.2012.07.010 (2012).ADS 
    Article 

    Google Scholar 
    23.Apostol, B. et al. Species discrimination and individual tree detection for predicting main dendrometric characteristics in mixed temperate forests by use of airborne laser scanning and ultra-high-resolution imagery. Sci. Total Environ. 698, 134074. https://doi.org/10.1016/j.scitotenv.2019.134074 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Immitzer, M., Atzberger, C. & Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens. 4, 2661–2693. https://doi.org/10.3390/rs4092661 (2012).ADS 
    Article 

    Google Scholar 
    25.Franklin, S. E. & Ahmed, O. S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. Int. J. Remote Sens. 39, 5236–5245. https://doi.org/10.1080/01431161.2017.1363442 (2017).Article 

    Google Scholar 
    26.Dalponte, M., Orka, H. O., Gobakken, T., Gianelle, D. & Naesset, E. Tree species classification in boreal forests with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 51, 2632–2645. https://doi.org/10.1109/tgrs.2012.2216272 (2013).ADS 
    Article 

    Google Scholar 
    27.Guimarães, N. et al. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens. 12, 1046. https://doi.org/10.3390/rs12061046 (2020).ADS 
    Article 

    Google Scholar 
    28.Kattenborn, T., Eichel, J. & Fassnacht, F. E. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-53797-9 (2019).CAS 
    Article 

    Google Scholar 
    29.Onishi, M. & Ise, T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s41598-020-79653-9 (2021).CAS 
    Article 

    Google Scholar 
    30.Näsi, R. et al. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 30, 72–83. https://doi.org/10.1016/j.ufug.2018.01.010 (2018).Article 

    Google Scholar 
    31.Nezami, S., Khoramshahi, E., Nevalainen, O., Pölönen, I. & Honkavaara, E. Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sens. 12, 1070. https://doi.org/10.3390/rs12071070 (2020).ADS 
    Article 

    Google Scholar 
    32.Nevalainen, O. et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 9, 185. https://doi.org/10.3390/rs9030185 (2017).ADS 
    Article 

    Google Scholar 
    33.Raczko, E. & Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 50, 144–154. https://doi.org/10.1080/22797254.2017.1299557 (2017).Article 

    Google Scholar 
    34.Tuominen, S. et al. Assessment of classifiers and remote sensing features of hyperspectral imagery and stereo-photogrammetric point clouds for recognition of tree species in a forest area of high species diversity. Remote Sens. 10, 714. https://doi.org/10.3390/rs10050714 (2018).ADS 
    Article 

    Google Scholar 
    35.Xie, Z., Chen, Y., Lu, D., Li, G. & Chen, E. Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data. Remote Sens. 11, 164. https://doi.org/10.3390/rs11020164 (2019).ADS 
    Article 

    Google Scholar 
    36.Maxwell, A. E., Warner, T. A. & Fang, F. Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens. 39, 2784–2817. https://doi.org/10.1080/01431161.2018.1433343 (2018).ADS 
    Article 

    Google Scholar 
    37.Osco, L. P. et al. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sens. 11, 2925. https://doi.org/10.3390/rs11242925 (2019).ADS 
    Article 

    Google Scholar 
    38.Marrs, J. & Ni-Meister, W. Machine learning techniques for tree species classification using co-registered LiDAR and hyperspectral data. Remote Sens. 11, 819. https://doi.org/10.3390/rs11070819 (2019).ADS 
    Article 

    Google Scholar 
    39.Imangholiloo, M. et al. Characterizing seedling stands using leaf-off and leaf-on photogrammetric point clouds and hyperspectral imagery acquired from unmanned aerial vehicle. Forests 10, 415. https://doi.org/10.3390/f10050415 (2019).Article 

    Google Scholar 
    40.Pham, T., Yokoya, N., Bui, D., Yoshino, K. & Friess, D. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sens. 11, 230. https://doi.org/10.3390/rs11030230 (2019).ADS 
    Article 

    Google Scholar 
    41.Ma, L. et al. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogram. Remote Sens. 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015 (2019).ADS 
    Article 

    Google Scholar 
    42.Safonova, A. et al. Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned aerial vehicle images with deep learning. Remote Sens. 11, 643. https://doi.org/10.3390/rs11060643 (2019).ADS 
    Article 

    Google Scholar 
    43.Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016 (2018).Article 

    Google Scholar 
    44.Khamparia, A. & Singh, K. M. A systematic review on deep learning architectures and applications. Exp. Syst. 36, e12400. https://doi.org/10.1111/exsy.12400 (2019).Article 

    Google Scholar 
    45.Sothe, C. et al. Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data. GISci. Remote Sens. 57, 369–394. https://doi.org/10.1080/15481603.2020.1712102 (2020).Article 

    Google Scholar 
    46.Redmon, J. & Farhadi, A. Yolov3: An incremental improvement (2018). arXiv:1804.02767.47.Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal loss for dense object detection (2018). arXiv:1708.0200248.Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks (2016). arXiv:1506.0149749.Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition (2015). arXiv:1409.155650.Sylvain, J.-D., Drolet, G. & Brown, N. Mapping dead forest cover using a deep convolutional neural network and digital aerial photography. ISPRS J. Photogram. Remote Sens. 156, 14–26. https://doi.org/10.1016/j.isprsjprs.2019.07.010 (2019).ADS 
    Article 

    Google Scholar 
    51.Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M. & Carron, J. Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning. Sensors 19, 1284. https://doi.org/10.3390/s19061284 (2019).ADS 
    Article 
    PubMed Central 

    Google Scholar 
    52.Culman, M., Delalieux, S. & Tricht, K. V. Individual palm tree detection using deep learning on RGB imagery to support tree inventory. Remote Sens. 12, 3476. https://doi.org/10.3390/rs12213476 (2020).ADS 
    Article 

    Google Scholar 
    53.Aburasain, R. Y., Edirisinghe, E. A. & Albatay, A. Palm tree detection in drone images using deep convolutional neural networks: Investigating the effective use of YOLO v3. In Digital Interaction and Machine Intelligence, 21–36, https://doi.org/10.1007/978-3-030-74728-2_3 (Springer International Publishing, 2021).54.Bortolotto, I. M., Damasceno-Junior, G. A. & Pott, A. Preliminary list of native food plants from mato grosso do sul, brazil. Iheringia, Série Botânica 73, 101–116 (2018). https://doi.org/10.21826/2446-8231201873s10155.van der Hoek, Y., Solas, S. Á. & Peñuela, M. C. The palm Mauritia flexuosa, a keystone plant resource on multiple fronts. Biodiver. Conserv. 28, 539–551. https://doi.org/10.1007/s10531-018-01686-4 (2019).Article 

    Google Scholar 
    56.Agostini-Costa, T. d. S., Faria, J. P., Naves, R. V. & Vieira, R. F. Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial Plantas para o Futuro – Região Centro-Oeste (Ministério do Meio Ambiente – MMA, 2016).57.Djerriri, K., Ghabi, M., Karoui, M. S. & Adjoudj, R. Palm trees counting in remote sensing imagery using regression convolutional neural network. In IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 2627–2630 (2018). https://doi.org/10.1109/IGARSS.2018.851918858.Osco, L. P. et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogram. Remote Sens. 160, 97–106. https://doi.org/10.1016/j.isprsjprs.2019.12.010 (2020).ADS 
    Article 

    Google Scholar 
    59.Goldman, E. et al. Precise detection in densely packed scenes (2019). arXiv:1904.0085360.Holm, J. A., Miller, C. J. & Cropper, W. P. Population dynamics of the dioecious amazonian palm Mauritia flexuosa: Simulation analysis of sustainable harvesting. Biotropica 40, 550–558. https://doi.org/10.1111/j.1744-7429.2008.00412.x (2008).Article 

    Google Scholar 
    61.Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network (2017). arXiv:1612.01105 More

  • in

    Soil microbiota and microarthropod communities in oil contaminated sites in the European Subarctic

    Soil chemical propertiesThe total soil carbon and nitrogen content, pH and total petroleum hydrocarbons (TPH) in the soils of the study sites are presented in Table 1. The acidity of the soil at the UF site varied from 4.4 to 5.1, the nitrogen content varied from 0.65 to 1.45% and the carbon content varied from 20 to 45%, which is typical for soils of the taiga zone31. The acidity of the soils in sites contaminated with TPH was generally slightly higher and varied from 4.6 to 5.6 (Table 1). The nitrogen and carbon content were significantly (p  More

  • in

    Epidermal galactose spurs chytrid virulence and predicts amphibian colonization

    Batrachochytrium salamandrivorans (B. salamandrivorans) culture conditions and zoospore isolationB. salamandrivorans type strain (AMFP 13/01)8 was grown in tryptone-gelatin hydrolysate-lactose (TGhL) broth and incubated for 5−7 days at 15 °C. Zoospores were harvested by replacing the TGhL broth with distilled water. The collected water was filtered through a sterile mesh filter with pore size 10 µm (Pluristrainer, PluriSelect) to remove sporangia. Zoospore viability and mobility were confirmed using light microscopy.Salamander skin lysate binding assayBinding of B. salamandrivorans spores to the protein or carbohydrate fractions from fire salamander (Salamandra salamandra) skin was tested by treating fire salamander sloughed skin lysates enzymatically with glycoside hydrolases, followed by protein precipitation. An overview of the skin lysate binding assay is shown in Supplementary Fig. 3.To collect the sloughed skin, ten captive-bred adult fire salamanders were housed at 15 ± 1 °C on moist tissue. The sloughed skin samples were ground with liquid nitrogen into a fine powder and then homogenized, using 3 ml RadioImmunoprecipitation assay (RIPA) buffer (Sigma-Aldrich) per gram of tissue. Samples were incubated for 1 h at 4 °C, centrifuged at 27.000 × g for 10 min and the supernatant was subsequently collected. Protein concentration was determined using the PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific). The obtained skin lysate was equally divided, one part was treated with Protein Deglycosylation Mix II and two parts were kept as crude skin lysates. Protein Deglycosylation Mix II (New England BioLabs) was used to remove N-linked and O-linked glycans from glycoproteins. According to the manufacturer’s instructions, 5 µl 10× Deglycosylation Mix Buffer I and 5 µl Protein Deglycosylation Mix II were added to 40 µl skin lysate. The mixture was incubated at 37 °C for 16 h. Protein precipitation was conducted on the redundant Protein Deglycosylation Mix II treated and crude skin lysates. The precipitation was performed by slowly adding saturated ammonium sulfate solution to the skin lysates to achieve a final concentration of 75%. Samples were then centrifuged at 21.130 × g for 30 min to separate the precipitated proteins from the supernatant. The precipitated protein pellets were resuspended in 300 µl of 0.05 M carbonate−bicarbonate coating buffer (3.7 g NaHCO3, 0.64 g Na2CO3, 1 L distilled water, pH 9.6). Each skin lysate solution was adjusted to the volume of 300 µl by adding a coating buffer. One hundred µl of each skin lysate solution was coated in each well of 96-well polystyrene microtiter plates (MaxiSorpTM plate, Thermo Fisher Scientific) in three technical replicates. As controls, coating buffer (negative control) and 75% ammonium sulfate solution were also coated on the 96-well plates. After incubation at 4 °C for 24 h the coated plates were washed three times with washing buffer (0.01 M PBS-Tween 20, pH 7.4) and blocked with 1% BSA overnight at 4 °C. Plates were then again washed three times with washing buffer and three times with distilled water. One hundred µl of B. salamandrivorans zoospore suspension (1 × 107 zoospores per ml) were added in each well. Plates were incubated for 20 min at 15 °C and washed five times with distilled water to remove the unbound zoospores. Digital photographs were taken through via an inverted light microscope at 100 × magnification. Five pictures were taken for each well and zoospores in each photograph were counted in a blind fashion. Three independent repeats of the experiment were conducted (biological replicates).Carbohydrate binding assayTo further determine which carbohydrates expressed on fire salamander sloughed skin can mediate the binding of B. salamandrivorans zoospores, B. salamandrivorans binding against four carbohydrates; N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), mannose, and lactose was tested. The three monosaccharides and the disaccharide (Sigma-Aldrich) were dissolved and thereafter diluted in coating buffer to achieve a concentration of 5% (w/v). Then they were coated in triplicate wells by incubating at 4 °C for 24 h42. Plates were rinsed three times with washing buffer and blocked with 1% BSA overnight at 4 °C.Hundred μl of B. salamandrivorans zoospore suspension (1 × 107 zoospores per ml) was added in each well and incubated for 20 min at 15 °C. After washing the wells five times with distilled water to remove unbound zoospores, the plates were evaluated using a light microscope. Digital photographs were taken at 100 × magnification. Five pictures were taken for each well and zoospores in each photograph were counted in a blind fashion. Three independent repeats of the experiment were conducted (biological replicates).In this experiment the highest level of B. salamandrivorans spores binding to lactose was observed. Lactose is a dissacharide consisting of glucose and galactose. Therefore, in the following experiments galactose, glucose and their derivatives will be tested separately.Carbohydrate chemotaxis testChemotaxis of B. salamandrivorans toward free carbohydrates was tested as previously explained (Supplementary Fig. 4)12. The sugars D-Glucose (Sigma-Aldrich), D-mannose (Sigma-Aldrich), Lactose (Sigma-Aldrich), and D-galactose (Sigma-Aldrich) were tested as attractant for B. salamandrivorans. The monosaccharides instead of the amide derivatives were used in this experiment to exclude any chemotactic signalling activity of the amides. Sugars were dissolved in distilled water, filter sterilized, and tested at a 0.1 M concentration. Hematocrit capillaries (75 mm length; Hirschmann laborgeräte, Eberstadt, Germany) were filled with 60 µl carbohydrate solution, vehicle control capillaries with 60 µl sterile distilled water. To prevent leakage, the capillaries were sealed with wax plugs (Hirschmann laborgeräte, Eberstadt, Germany) at one side. Each capillary was swiped on the outside with lens paper (Kimtech Science, Kimberley Clark, Roswell, GA, USA) to remove possible attractant spillover. Capillaries were incubated in 400 µl inoculum containing 106 B. salamandrivorans zoospores in water and placed in a holder inclined about 65° upwards. The assay was incubated for 90 min at 15 °C, after which the capillaries were removed and swiped again at the outside to remove B. salamandrivorans zoospores possibly adhering on the outside. Inocula were checked for motility of the zoospores using an inverted microscope (Olympus CKX 41, Hamburg, Germany). Contents of the capillaries were collected and centrifuged for 2 min at 16.000 × g. The supernatant was removed as much as possible. The pellet was suspended in 100 µl Prepman Ultra Sample Preparation reagent (Applied Biosystems, Life Technologies Europe, Ghent, Belgium) and DNA was extracted according to the manufacturer’s guidelines. For each sample, the number of B. salamandrivorans zoospores was quantified using quantitative real-time PCR (qPCR)41, and data were analyzed using the Bio-Rad CFX manager 3.1. The primers and probe can be found in Supplementary Table 11. Within each assay, all carbohydrates and negative controls were tested at least in triplicate (technical replicates) and three independent repeats of the assay were performed (biological replicates).Carbohydrate transcriptome testRNA preparation: total RNA was isolated from B. salamandrivorans zoospores treated with different carbohydrates. Therefore, newly released zoospores (less than 2 h after induction of spore release by adding water) were harvested from 175 cm2 cell culture flasks by replacing the TGhL broth with distilled water, which was filtered using a sterile mesh filter with pore size 10 µm (Pluristrainer, PluriSelect). Six-biological replicates containing 4 × 107 zoospores were obtained. Each biological replicate consisted of a pool of spores harvested from three cell culture flasks. Per biological replicate, the spores were divided into 4 eppendorfs (107 zoospores/eppendorf) which were treated for 1 h at 15 °C with H2O (control), 50 mM (D-galactose), 50 mM (D-glucose), or 50 mM (D-mannose) (Supplementary Fig. 5). After 1 h, the zoospores were centrifuged for 5 min at 4.000 × g at 15 °C to remove the supernatant, after which RNA was extracted using the RNeasy mini kit (Qiagen)18. The RNA was treated with Turbo™ DNase (Ambion), following the manufacturer’s instructions. RNA degradation and contamination were monitored on 1% agarose gels. The RNA purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). Finally, the RNA integrity and quantitation were assessed using the RNA Nano 6000 assay kit of the Bioanalyzer 2100 system (Agilent Technologie, CA, USA).Library preparation for transcriptome sequencing: Whole-transcriptome sequencing libraries were constructed and sequenced on the Illumina HiSeq platform (Novogen, China). A total amount of 1 μg RNA per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated using NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) following the manufacturer’s recommendations and index codes were added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X). First-strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3′ ends of DNA fragments, NEBNext Adaptor with hairpin loop structure was ligated to prepare for hybridization. In order to select cDNA fragments of preferentially 150−200 bp in length, the library fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37 °C for 15 min followed by 5 min at 95 °C before PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers, and Index (X) Primer. At last, PCR products were purified (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 system.Clustering and sequencing: The clustering of the index-coded samples was performed on a cBot Cluster Generation System using PE Cluster Kit cBot-HS (Illumina) according to the manufacturer’s instructions. After cluster generation, the library preparations were sequenced on an Illumina platform and paired-end reads were generated.Quality analysis, mapping, and assembly: Raw data (raw reads) of FASTQ format were first processed through fastp (version 0.20.0). In this step, clean data (clean reads) were obtained by removing reads containing adapter and poly-N sequences and reads with low quality from raw data. At the same time, Q20, Q30, and GC content of the clean data were calculated (Supplementary Table 12). All the downstream analyses were based on the clean data with high quality. Reference genome and gene model annotation files were downloaded from genome website browser (NCBI/UCSC/Ensembl) directly. Paired-end clean reads were mapped to the B. salamandrivorans reference genome using HISAT2 (version 2.0.5) software18. Featurecounts (version 1.5.0-p3) were used to count the read numbers mapped to each gene, including known and novel genes (Supplementary Table 13). And then RPKM (reads per kilobase per million) of each gene was calculated based on the length of the gene and reads count mapped to this gene.Gene expression, differential expression, enrichment, and coexpression- analysis: Differential expression analysis was performed using the DESeq2 R package43. The resulting P-values were adjusted using the Benjamini and Hochberg’s approach for controlling the false discovery rate (FDR). Genes with an adjusted P-value < 0.05 found by DESeq2 were assigned as differentially expressed. Protein domains were annotated with PFAM version 27 and 33 and KEGG domains, Gene Ontology (GO) enrichment analysis of differentially expressed genes was implemented by the clusterProfiler R package44 and dcGOR R package45. GO terms with corrected P-value less than 0.05 were considered significantly enriched by differential expressed genes. ClusterProfiler R package44 was also used to test the statistical enrichment of differentially expressed genes in KEGG pathways.Detection of protease activityThe influence of carboydrate exposure on protease activity of B. salamandrivorans zoospores was assessed. Therefore, zoospores were harvested from 175 cm2 cell culture flasks by replacing the TGhL broth with distilled water, which was filtered using a sterile mesh filter with pore size 10 µm (Pluristrainer, PluriSelect). A pool containing approximately 5 × 107 zoospores/ ml was obtained. 200 µl of the spore suspension (107 spores) was added to eppendorfs containing 200 µl H2O (H2O; n = 3), 200 µl 100 mM D-Glucose (Glc; n = 3), 200 µl 100 mM D-mannose (Man; n = 3), 200 µl 100 mM D-galactose (Gal; n = 3), or as a control, 200 µl H2O containing protease inhibitor mix (P8215, Sigma-Aldrich) (PI; n = 3). After 1.5 h at 15 °C, the zoospores were centrifuged for 5 min at 4.000 × g at 15 °C and the supernatant was collected. Protease activity in the supernatant was analyzed using the Pierce Fluorescent Protease Assay Kit (Thermo Fisher Scientific), according to the manufacturer’s instructions. Three independent repeats of the experiment were performed (biological replicates).Identification of B. salamandrivorans lectin genesPotential candidates of carbohydrate-binding molecules (CBMs) were identified in the B. salamandrivorans (AMFP) genome listed in the NCBI database (Bioproject PRJNA311566).B. salamandrivorans (AMFP 13/01) coding regions from the single annotated genome present on NCBI database (Bioproject PRJNA311566) were used to single out potential lectin genes of interest that could serve as genes of carbohydrate-binding proteins. The lectin candidates were identified with BLASTp (BLAST + 2.9.0) over the FungiDB database (constituting 199 candidates, database accessed 1st March 2018) using the stringent e-value cutoff of 1e−50 to avoid spurious hits46,47.From these, five candidates that referred to lectins and carbohydrate-binding were manually selected using the NCBI CDD (v3.16) conserved domain software with default settings48.Expression of two of these genes (BSLG_00833 and BSLG_02674) was confirmed by a previous mRNA expression analysis (Bioproject PRJNA311566)18.AnimalsThe animal experiments were performed following the European law and with the approval of the ethical committee of the Faculty of Veterinary Medicine (Ghent University EC) (EC2015/86). Only captive bred animals were used. Fire salamander larvae belonging to different life stages49 were used in a B. salamandrivorans infection trial.For lectin-histochemical staining, skin samples were collected from amphibian species Salamandra salamandra (n = 10), Ichthyosaura alpestris (n = 12), Lissotriton helveticus (n = 13), Pleurodeles waltl (n = 11), Lissotriton boscai (n = 3), Alytes obstetricans (n = 10), Cynops pyrrhogaster (n = 3), Triturus anatolicus (n = 3), Triturus marmoratus (n = 3), Calotriton asper (n = 10), Bombina variegata (n = 5), Rana temporaria (n = 10), Epidalea calamita (n = 5), Pelobates fuscus (n = 5) and Salamandra lanzai (n = 3). Tail or toe clips, ventral and dorsal skin samples were collected from animals that were euthanized with natrium pentobarbital 20% (KELA). The collected samples were immediately fixed in Bouin’s solution for 24 h.Mucosome samples were collected by bathing animals in HPLC-grade water for 1 h from 21 amphibian species (different animals as the ones used for the tissueclips), namely Lissotriton helveticus (n = 3), Pleurodeles waltl (n = 3), Lissotriton boscai (n = 3), Triturus anatolicus (n = 3), Triturus marmoratus (n = 3), Cynops pyrrhogaster (n = 3), Ichthyosaura alpestris (n = 3), Salamandra salamandra (n = 3), Lyciasalamandera helverseni (n = 3), Speleomantes strinatii (n = 2), Paramesotriton hongkongensis (n = 2), Plethodon glutinosus (n = 2), Chioglossa lusitanica (n = 3), Pachyhynobius shangchengensis (n = 3), Calotriton asper (n = 3), Salamandra algira (n = 3), Salamandra lanzai (n = 2), Alytes obstetricans (n = 3), Bombina variegata (n = 2), Epidalea calamita (n = 3) and Pelobates fuscus (n = 3).Exposure of fire salamander larvae and metamorphs to B. salamandrivorans Twenty-two early-stage and 26 late-stage larvae49,50 were inoculated with 1.5 × 105 B. salamandrivorans spores per ml water during 24 h. Ten days after the inoculation all the early-stage and sixteen late-stage larvae were euthanized. The two hind legs were analyzed by qPCR to detect the B. salamandrivorans GE load. A tail clip was stained with fluorescein-labelled RCA I (see below). Ten late-stage larvae were further kept until five weeks after metamorphosis.Six one-week-old fire salamander metamorphs were inoculated with 1 ml of water containing 1.5 × 105 spores for 24 h. The animals were euthanized 10 days after inoculation. The two hind legs were analyzed by qPCR to detect the B. salamandrivorans GE load. A tail clip was stained with fluorescein labelled RCA I (see below).Lectin-histochemical stainingFluorescein labelled RCA I (Ricinus communis agglutinin I) (Vector Laboratories) and Con A (Concanavalin A) has been used to detect the expression of galactose and mannose or glucose in the epidermis of amphibians38.After 24 h fixation in Bouin’s medium (Sigma-Aldrich), samples were washed first with tap water until the water ran colourless, then washed for 24 h in 70% ethanol saturated with lithium carbonate (Sigma-Aldrich) to remove picric acid. Tissues were then dehydrated in a graded ethanol series, cleared in xylene, embedded in paraffin, and sectioned in 4−6 µm slices. Before lectin staining, the sections were deparaffinized in xylene and hydrated in a series of ethyl alcohols. For better presenting the carbohydrate antigens, we performed antigen retrieval by submerging slides in citrate buffer (10 mM citric acid, pH 6.0) and heat treating in microwave (850 W for 3.5 min plus 450 W for 10 min). The slides were rinsed with PBS (0.01 M, pH 7.4) and immersed in 1% BSA (Sigma-Aldrich) for 15 min, to prevent non-specific lectin binding. Subsequently, the sections were incubated with either lectin RCA I (15 µg/ml) or lectin Con A (5 µg/ml) for 30 min. Lectins were diluted with lectin binding buffer (10 mM Hepes, 0.15 M NaCl, pH 7.5). As a negative control, lectin RCA I was mixed with 200 mM galactose, and lectin Con A was mixed with 200 mM mannose + 200 mM glucose, before incubating with skin sections to inhibit lectin binding. For positive control, a slide of fire salamander ventral skin sample for RCA staining, and midewife toad ventral skin sample for Con A staining, was included in each experiment. The slides were then washed in PBS, and cell nuclei were stained with 10 µg/ml Hoechst 33342 Solution (Invitrogen). Coverslips were mounted with ProlongTM Gold Antifade Reagent (Invitrogen). Staining results were observed using a Leica fluorescence microscope under 10× magnification, with a 450−490 nm BP excitation filter for lectin staining and a 355−425 nm BP excitation filter for Hoechst staining. Staining pictures were taken using Leica Application Suite (LAS) X software. The lectin staining intensities were classified as intense (3), strong (2), weak (1), or negative (0) staining (Supplementary Fig. 6). Experimental positive and negative controls were defined as intense (3) and negative (0) stained, respectively, and other slides were then evaluated in comparison to the set parameters. Hoechst staining results were paired with corresponding lectin staining results, making it easier to discern the tissue structure from the dark background. The fluorescent intensities were scored by three reviewers, respectively scoring the same dataset of pictures blinded three separate times, and the mean value was taken as the final result.Free galactose, mannose, and total carbohydrates in amphibian mucosomeMucus was collected from 21 amphibian species (see above). The animal body surface and volume of bathing water were calculated as follows: surface area of anuran species in cm2 = 9.9* (mass in g)^(0.56), surface area of urodelan species in cm2 = 8.42* (mass in g)^(0.694), and the quantity of HPLC-grade water to add to both anuran and urodelan species was determined by dividing the surface area by 4), and animals were bathed in respective amounts of HPLC-grade water for 1 h40,51. Animal washes were collected and concentrated by SpeedVac Vacuum Concentrators (Thermo Fisher Scientific) to 100 µl. The quantities of free galactose, mannose, and total carbohydrates in 100 µl of concentrated animal wash were measured using the Galactose Assay Kit (Abcam), Mannose ELISA Kit (Aviva Systems Biology), and Total Carbohydrates Assay Kit (Abcam), as per instructions. Concentrations of free galactose, mannose, and total carbohydrates in animal washes were divided by animal body surface to get the final results of sugar concentrations per square centimetre of the body surface.Statistical analysisStatistical analyses of fire salamander skin lysate binding assay, carbohydrate-binding assay, chemotaxis assay, and protease activity assay were performed using R version 4.0.3. To account for the experimental design, Generalized Linear Mixed Models (GLMM, R library lme452) were used, specifying a nested random effect whereby technical replicates are nested within biological replicates. Count data were modelled first using a Poisson distribution, but as significant overdispersion was present in the data, a negative binomial error structure was implemented. For the protease activity assay, data do not represent counts and a log transformation on the raw values were used to ensure normality of model residuals (Shapiro-Wilk W  > 0.95) allowing a Gaussian error structure (i.e., a Linear Mixed Model (LMM). To test for differences between categories, the (G)LMMs were directly fed to the glht function of the R library multcomp53, setting up contrasts for Tukey’s all-pair comparisons, resulting in Bonferroni-corrected p-values adjusted for multiple testing. Statistical analyses of the larvae infection trial were performed in R version 4.0.0, with tidyverse54 version 1.3.0, MASS55 version 7.3-51.6, VGAM56 version 1.1-3, DHARMa57 version 0.3.1 and glmmTMB58 version 1.0.2.1. Infection loads of larvae and metamorphs were compared, using the Wilcoxon rank sum test, formula Chytrid GE load ~ larvae vs metamorph status, from the stats package. The correlation between larvae Ricinus communis agglutinin (RCA) scoring (1 = weak staining, 2 = strong staining, 3 = intense staining) and infection load was performed using the glm() function on log-transformed genomic equivalents with formula log10(B. salamandrivorans load in Genomic equivalents)~ RCA score, treating RCA score as an ordered factor with guassian distribution. As non-transformed chytrid loads showed zero-inflation and overdispersion, we also fit a generalized linear model with negative binomial distribution (GE load ~ RCA score) with RCA score as an ordered factor, using glmmTMB with a zero-inflation model (~ RCA score), which showed a comparable positive correlation between RCA score and GE load (conditional model coefficient = 5.67, p = 0.003, zero-inflation model coefficient = −2.21, p = 0.016). Residuals and chi-square test indicated the negative binomial model was not a significant improvement and so the simpler generalized linear model on transformed data was included. RCA scoring and larval stage prediction probabilities in Fig. 4c were generated by polr(RCA score ~ life stage) from MASS. Model fit and appropriateness was tested using Chisq test (p = 0.003), the model fit compared favourably to a more complex multinomial logit model and a model fit based on 70% of the data predicted 70−75% of remaining data (when data repeatedly sampled with different seeds, with the final model fit to all data).The regression and correlation analyses of different amphibian species were performed in SPSS (IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY, USA). Correlations of RCA scores with B. salamandrivorans infection peak loads, mortality rates, and percentage of free galactose were calculated by two-tailed Point-Biserial Correlation (p  More

  • in

    The Māori meeting house that’s also a research lab

    WHERE I WORK
    04 October 2021

    The Māori meeting house that’s also a research lab

    Ocean Mercier researches how Indigenous knowledge and Western science can help resolve environmental issues.

    James Mitchell Crow

    0

    James Mitchell Crow

    James Mitchell Crow is a freelance writer in Melbourne, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Ocean Mercier is an associate professor at the Victoria University of Wellington, Aotearoa, New Zealand.Credit: Chevron Hassett for Nature

    The wharenui behind me in the photograph is in the heart of Victoria University of Wellington, where I lead the school of Māori studies. The detailed carvings, paintings and weavings are a library of traditional knowledge and understanding. The tongues poking from the carved faces on the meeting house might look fierce, but the Māori primarily had an oral culture, and the tongue symbolizes knowledge. The bigger the tongue, the more history, narrative and knowledge there is.I am Māori, and descend from the Ngāti Porou tribe. I research the nexus of Māori knowledge and Western science, and how we can draw the best from both knowledge systems to resolve environmental issues.In 2016, the town of Havelock North suffered a disease outbreak caused by livestock faeces seeping into groundwater. We aim to prevent a recurrence through a better understanding of groundwater and springs. Before the affected area began to be drained for agriculture in the 1870s, it was swampland, and Māori people travelled on the waterways. We might find written reports on spring flow going back 70 years, but Māori knowledge can go back nearly 1,000 years. We are looking at ways to access the knowledge captured in carvings and oral histories — mainly by talking to people who could point out features such as where they swam as a child or gathered eels or cress — to tell us where water once flowed.Another project looks at marine heatwaves, including changes in ocean currents due to climate change. Māori ancestors journeyed across these seas. There is knowledge of ocean currents there, if we can unlock it.In the geometric panels in the photograph, the white triangular ‘teeth’ symbolize strength though unity. I think of Māori knowledge as helping to constrain the scientific data so that they can make better predictions. We want to get to a place where the wider research community realizes that we can’t solve these climate problems with one knowledge system alone.

    Nature 598, 228 (2021)
    doi: https://doi.org/10.1038/d41586-021-02697-y

    Related Articles

    Tapping local knowledge to save a Papua New Guinea forest

    To look after these birds is to ‘fall in love’ with them

    Should we steer clear of the winner-takes-all approach?

    Subjects

    Careers

    Ecology

    Lab life

    Latest on:

    Careers

    Academia’s ableist culture laid bare
    Career Feature 04 OCT 21

    How local communities helped polar scientists during the pandemic
    Career Q&A 01 OCT 21

    Starting up in science: an agonizing search for cash confronts two labs
    News Feature 29 SEP 21

    Ecology

    Illegal mining in the Amazon hits record high amid Indigenous protests
    News 30 SEP 21

    Why stem cells might save the northern white rhino
    Outlook 29 SEP 21

    Fine-root traits in the global spectrum of plant form and function
    Article 29 SEP 21

    Lab life

    Academia’s ableist culture laid bare
    Career Feature 04 OCT 21

    Starting up in science: an agonizing search for cash confronts two labs
    News Feature 29 SEP 21

    Starting up in science: two labs face the pandemic and another shock
    News Feature 29 SEP 21

    Jobs

    Postdoc fellow

    Johns Hopkins University School of Medicine (JHUSOM), JHU
    Baltimore, United States

    Entrepreneurial-minded chemist (m/f/d) wanted for tech transfer project!

    Karlsruhe Institute of Technology (KIT)
    Karlsruhe, Germany

    Leaders Promoting Top World-Class Research in Materials Science

    National Institute for Materials Science (NIMS)
    Tsukuba, Japan

    Tenure Track Position for a Scientist or Working Group Leader on “Soil Erosion & Landscape Functioning” (m/f/d)

    Leibniz Centre for Agricultural Landscape Research (ZALF)
    Müncheberg, Germany More

  • in

    Specialization of a mobile, apex predator affects trophic coupling among adjacent habitats

    1.Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Rosenblatt, A. E. & Heithaus, M. R. Does variation in movement tactics and trophic interactions among American alligators create habitat linkages?. J. Anim. Ecol. 80, 786–798 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Pringle, R. M. & Fox-Dobbs, K. Coupling of canopy and understory food webs by ground-dwelling predators. Ecol. Lett. 11, 1328–1337 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).Article 

    Google Scholar 
    5.Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269. https://doi.org/10.1038/nature04887 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Schindler, D. E. & Scheuerell, M. D. Habitat coupling in lake ecosystems. Oikos 98, 177–189 (2002).Article 

    Google Scholar 
    9.Matich, P., Heithaus, M. R. & Layman, C. A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Conway-Cranos, L. et al. Stable isotopes and oceanographic modeling reveal spatial and trophic connectivity among terrestrial, estuarine, and marine environments. Mar. Ecol. Prog. Ser. 533, 15–28 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Dias, E., Morais, P., Cotter, A. M., Antunes, C. & Hoffman, J. C. Estuarine consumers utilize marine, estuarine and terrestrial organic matter and provide connectivity among these food webs. Mar. Ecol. Prog. Ser. 554, 21–34 (2016).ADS 
    Article 

    Google Scholar 
    12.Hobson, K. A., Ambrose, W. G. Jr. & Renaud, P. E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: Insights from δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 128, 1–10 (1995).ADS 
    Article 

    Google Scholar 
    13.Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Allgeier, J. E. et al. Individual behavior drives ecosystem function and the impacts of harvest. Sci. Adv. 6, eaax8329 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.McPeek, M. A. Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. Am. Nat. 148, S124–S138 (1996).Article 

    Google Scholar 
    16.Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Rossman, S. et al. Individual specialization in the foraging habits of female bottlenose dolphins living in a trophically diverse and habitat rich estuary. Oecologia 178, 415–425 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Rossman, S. et al. Foraging habits in a generalist predator: Sex and age influence habitat selection and resource use among bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 31, 155–168 (2015).CAS 
    Article 

    Google Scholar 
    21.Sargeant, B. L. & Mann, J. Developmental evidence for foraging traditions in wild bottlenose dolphins. Anim. Behav. 78, 715–721 (2009).Article 

    Google Scholar 
    22.Araújo, M. S. & Gonzaga, M. O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 61, 1855–1863 (2007).Article 

    Google Scholar 
    23.Silva, M. A. et al. Ranging patterns of bottlenose dolphins living in oceanic waters: Implications for population structure. Mar. Biol. 156, 179–192 (2008).Article 

    Google Scholar 
    24.Tobeña, M. et al. Inter-island movements of common bottlenose dolphins Tursiops truncatus among the Canary Islands: Online catalogues and implications for conservation and management. Afr. J. Mar. Sci. 36, 137–141 (2014).Article 

    Google Scholar 
    25.Wells, R. S. & Scott, M. D. Encyclopedia of Marine Mammals 249–255 (Elsevier, 2009).Book 

    Google Scholar 
    26.Wells, R. S. et al. Ranging patterns of common bottlenose dolphins Tursiops truncatus in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 159–180 (2017).Article 

    Google Scholar 
    27.Zolman, E. S. Residence patterns of bottlenose dolphins (Tursiops truncatus) in the Stono River estuary, Charleston County, South Carolina, USA. Mar. Mamm. Sci. 18, 879–892 (2002).Article 

    Google Scholar 
    28.Wilson, R. M. et al. Niche differentiation and prey selectivity among common bottlenose dolphins (Tursiops truncatus) sighted in St. George Sound, Gulf of Mexico. Front. Mar. Sci. 4, 235 (2017).Article 

    Google Scholar 
    29.Wells, R. S. Primates and Cetaceans 149–172 (Springer, 2014).Book 

    Google Scholar 
    30.Urian, K. W., Hofmann, S., Wells, R. S. & Read, A. J. Fine-scale population structure of bottlenose dolphins (Tursiops truncatus) in Tampa Bay, Florida. Mar. Mamm. Sci. 25, 619–638 (2009).Article 

    Google Scholar 
    31.Wilson, R., Nelson, J., Balmer, B., Nowacek, D. & Chanton, J. Stable isotope variation in the northern Gulf of Mexico constrains bottlenose dolphin (Tursiops truncatus) foraging ranges. Mar. Biol. 160, 2967–2980 (2013).Article 

    Google Scholar 
    32.Mullin, K. D. et al. Density, abundance, survival, and ranging patterns of common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound following the Deepwater Horizon oil spill. PLoS ONE 12, e0186265 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Di Giacomo, A. B. & Ott, P. H. Long-term site fidelity and residency patterns of bottlenose dolphins (Tursiops truncatus) in the Tramandaí Estuary, southern Brazil. Latin Am. J. Aquat. Mamm. 11, 155–161 (2017).Article 

    Google Scholar 
    34.Bailey, H. & Thompson, P. Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging. J. Anim. Ecol. 75, 456–465 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Torres, L. G. & Read, A. J. Where to catch a fish? The influence of foraging tactics on the ecology of bottlenose dolphins (Tursiops truncatus) in Florida Bay, Florida. Mar. Mamm. Sci. 25, 797–815 (2009).Article 

    Google Scholar 
    36.Berens McCabe, E. J., Gannon, D. P., Barros, N. B. & Wells, R. S. Prey selection by resident common bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. Mar. Biol. 157, 931–942 (2010).Article 

    Google Scholar 
    37.Jaureguizar, A. J., Ruarte, C. & Guerrero, R. A. Distribution of age-classes of striped weakfish (Cynoscion guatucupa) along an estuarine–marine gradient: Correlations with the environmental parameters. Estuar. Coast. Shelf Sci. 67, 82–92 (2006).ADS 
    Article 

    Google Scholar 
    38.Antonio, E. S. et al. Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient. Estuar. Coast. Shelf Sci. 112, 86–97 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Cloyed, C. S. & Eason, P. K. Different ecological conditions support individual specialization in closely related, ecologically similar species. Evol. Ecol. 30, 379–400 (2016).Article 

    Google Scholar 
    40.Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & Dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Wissel, B., Gaçe, A. & Fry, B. Tracing river influences on phytoplankton dynamics in two Louisiana estuaries. Ecology 86, 2751–2762 (2005).Article 

    Google Scholar 
    42.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    43.Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25, 264–271 (2002).Article 

    Google Scholar 
    44.Barratclough, A. et al. Health assessments of common bottlenose dolphins (Tursiops truncatus): Past, present, and potential conservation applications. Front. Vet. Sci. 6, 444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Wells, R. S. et al. Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth 1, 246–254 (2004).Article 

    Google Scholar 
    46.Hohn, A. et al. Assigning stranded bottlenose dolphins to source stocks using stable isotope ratios following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 235–252 (2017).Article 

    Google Scholar 
    47.Sinclair, C. et al. Remote biopsy field sampling procedures for cetaceans used during the Natural Resource Damage Assessment of the MSC252 Deepwater Horizon Oil Spill. (2015).48.Hansen, L. J. et al. Geographic variation in polychorinated biphenyl and organochlorine pesticide concentrations in the blubber of bottlenose dolphins from the US Atlantic coast. Sci. Total Environ. 319, 147–172 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Giménez, J., Ramírez, F., Almunia, J., Forero, M. G. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Biol. Ecol. 475, 54–61 (2016).Article 
    CAS 

    Google Scholar 
    50.Thomas, S. M. & Crowther, T. W. Predicting rates of isotopic turnover across the animal kingdom: A synthesis of existing data. J. Anim. Ecol. 84, 861–870 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Cloyed, C. et al. Interaction of dietary and habitat niche breadth influences cetacean vulnerability to environmental disturbance. Ecosphere 12, e03759 (2021).Article 

    Google Scholar 
    53.Sweeting, C., Polunin, N. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Cloyed, C. S., DaCosta, K. P., Hodanbosi, M. R. & Carmichael, R. H. The effects of lipid extraction on δ13C and δ15N values and use of lipid-correction models across tissues, taxa and trophic groups. Methods Ecol. Evol. 11, 751–762 (2020).Article 

    Google Scholar 
    55.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).Article 

    Google Scholar 
    57.Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).Article 

    Google Scholar 
    58.Team, R. C. R: A language and environment for statistical computing. (2013).59.Lusseau, D. et al. Quantifying the influence of sociality on population structure in bottlenose dolphins. J. Anim. Ecol. 75, 14–24 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Ingram, S. N. & Rogan, E. Identifying critical areas and habitat preferences of bottlenose dolphins Tursiops truncatus. Mar. Ecol. Prog. Ser. 244, 247–255 (2002).ADS 
    Article 

    Google Scholar 
    61.Balmer, B. et al. Extended movements of common bottlenose dolphins (Tursiops truncatus) along the northern Gulf of Mexico’s central coast. Gulf Mexico Sci. 33, 8 (2016).Article 

    Google Scholar 
    62.Bearzi, G., Bonizzoni, S. & Gonzalvo, J. Mid-distance movements of common bottlenose dolphins in the coastal waters of Greece. J. Ethol. 29, 369–374 (2011).Article 

    Google Scholar 
    63.Balmer, B. et al. Ranging patterns, spatial overlap, and association with dolphin morbillivirus exposure in common bottlenose dolphins (Tursiops truncatus) along the Georgia, USA coast. Ecol. Evol. 8, 12890–12904. https://doi.org/10.1002/ece3.4727 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Rossi-Santos, M. R., Wedekin, L. L. & Monteiro-Filho, E. L. Residence and site fidelity of Sotalia guianensis in the Caravelas River Estuary, eastern Brazil. J. Mar. Biol. Assoc. UK 87, 207 (2007).Article 

    Google Scholar 
    65.Simcharoen, A. et al. Female tiger Panthera tigris home range size and prey abundance: Important metrics for management. Oryx 48, 370–377 (2014).Article 

    Google Scholar 
    66.Kouba, M. et al. Home range size of Tengmalm’s owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12, e0177314 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J. & Sims, D. W. Foraging success of biological Lévy flights recorded in situ. Proc. Natl. Acad. Sci. USA. 109, 7169–7174 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article 

    Google Scholar 
    69.Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MaCleod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    70.de la Morinière, E. C. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: Stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246, 279–289 (2003).ADS 
    Article 

    Google Scholar 
    71.Ward-Paige, C. A., Britten, G. L., Bethea, D. M. & Carlson, J. K. Characterizing and predicting essential habitat features for juvenile coastal sharks. Mar. Ecol. 36, 419–431 (2015).ADS 
    Article 

    Google Scholar 
    72.Rogers, K. M. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar. Pollut. Bull. 46, 821–827 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Lee, S. Carbon dynamics of Deep Bay, eastern Pearl River estuary, China. II: Trophic relationship based on carbon-and nitrogen-stable isotopes. Mar. Ecol. Progress Ser. 205, 1–10 (2000).ADS 
    Article 

    Google Scholar 
    74.Grady, J. R. Properties of sea grass and sand flat sediments from the intertidal zone of St. Andrew Bay, Florida. Estuaries 4, 335 (1981).Article 

    Google Scholar 
    75.Poulakis, G. R., Blewett, D. A. & Mitchell, M. E. The effects of season and proximity to fringing mangroves on seagrass-associated fish communities in Charlotte Harbor, Florida. Gulf Mexico Sci. 21, 3 (2003).Article 

    Google Scholar 
    76.Borrell, A., Vighi, M., Genov, T., Giovos, I. & Gonzalvo, J. Feeding ecology of the highly threatened common bottlenose dolphin of the Gulf of Ambracia, Greece, through stable isotope analysis. Mar. Mamm. Sci. 37, 98–110 (2021).Article 

    Google Scholar 
    77.Gibbs, S. E., Harcourt, R. G. & Kemper, C. M. Niche differentiation of bottlenose dolphin species in South Australia revealed by stable isotopes and stomach contents. Wildl. Res. 38, 261–270 (2011).CAS 
    Article 

    Google Scholar 
    78.Lenes, J. M. & Heil, C. A. A historical analysis of the potential nutrient supply from the N2 fixing marine cyanobacterium Trichodesmium spp. to Karenia brevis blooms in the eastern Gulf of Mexico. J. Plankton Res. 32, 1421–1431 (2010).CAS 
    Article 

    Google Scholar 
    79.Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. Trichodesmium–a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37, 286–302 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Barros, N. B. & Odell, D. K. In The Bottlenose Dolphin (eds Leatherwood, S. & Reeves, R. R.) Ch. 16, 309–328 (Academic Press, 1990).81.Lane, S. M. et al. Reproductive outcome and survival of common bottlenose dolphins sampled in Barataria Bay, Louisiana, USA, following the Deepwater Horizon oil spill. Proc. R. Soc. B Biol. Sci. 282, 20151944 (2015).Article 
    CAS 

    Google Scholar 
    82.Smith, C. R. et al. Slow recovery of Barataria Bay dolphin health following the Deepwater Horizon oil spill (2013–2014), with evidence of persistent lung disease and impaired stress response. Endanger. Species Res. 33, 127–142 (2017).Article 

    Google Scholar 
    83.McDonald, T. L. et al. Survival, density, and abundance of common bottlenose dolphins in Barataria Bay (USA) following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 193–209 (2017).ADS 
    Article 

    Google Scholar 
    84.Trustees, D. N. Deepwater Horizon oil spill: final programmatic damage assessment and restoration plant (PDARP) and final programmatic environmental impact statement (PEIS). (2016).85.Carmichael, R. H., Graham, W. M., Aven, A., Worthy, G. & Howden, S. Were multiple stressors a ‘perfect storm’ for northern Gulf of Mexico bottlenose dolphins (Tursiops truncatus) in 2011?. PLoS ONE 7, e41155 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Booth, C. & Thomas, L. In Oceans. 179–192 (Multidisciplinary Digital Publishing Institute).87.Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Rossman, S. et al. Retrospective analysis of bottlenose dolphin foraging: A legacy of anthropogenic ecosystem disturbance. Mar. Mamm. Sci. 29, 705–718 (2013).CAS 

    Google Scholar 
    89.Schwacke, L. H. et al. Quantifying injury to common bottlenose dolphins from the Deepwater Horizon oil spill using an age-, sex-and class-structured population model. Endanger. Species Res. 33, 265–279 (2017).Article 

    Google Scholar 
    90.McCann, K. S., Rasmussen, J. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Schwacke, L. H. et al. Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the deepwater horizon oil spill. Environ. Sci. Technol. 48, 93–103 (2013).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    92.Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuar. Coasts 38, 401–414 (2015).Article 

    Google Scholar 
    93.Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2015).Article 

    Google Scholar 
    94.Kenworthy, M. D. et al. Movement ecology of a mobile predatory fish reveals limited habitat linkages within a temperate estuarine seascape. Can. J. Fish. Aquat. Sci. 75, 1990–1998 (2018).CAS 
    Article 

    Google Scholar 
    95.Fitzgerald, D. M., Kulp, M., Penland, S., Flocks, J. & Kindinger, J. Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River Delta. Sedimentology 51, 1157–1178 (2004).ADS 
    Article 

    Google Scholar 
    96.Habib, E. et al. Assessing effects of data limitations on salinity forecasting in Barataria basin, Louisiana, with a Bayesian analysis. J. Coast. Res. 2007, 749–763 (2007).Article 

    Google Scholar 
    97.Eleuterius, C. K. Geographical definition of Mississippi Sound. Gulf Caribb. Res. 6, 179–181 (1978).
    Google Scholar 
    98.Lucas, K. L. & Carter, G. A. Decadal changes in habitat-type coverage on Horn Island, Mississippi, USA. J. Coast. Res. 26, 1142–1148 (2010).Article 

    Google Scholar 
    99.Ichiye, T. & Jones, M. L. On the hydrography of the St. Andrew Bay system, Florida 1. Limnol. Oceanogr. 6, 302–311 (1961).ADS 
    Article 

    Google Scholar 
    100.Morgan, S. G. Plasticity in reproductive timing by crabs in adjacent tidal regimes. Mar. Ecol. Prog. Ser. 139, 105–118 (1996).ADS 
    Article 

    Google Scholar 
    101.Livingston, R. et al. Modelling oyster population response to variation in freshwater input. Estuar. Coast. Shelf Sci. 50, 655–672 (2000).ADS 
    Article 

    Google Scholar 
    102.Twichell, D. et al. Geologic controls on the recent evolution of oyster reefs in Apalachicola Bay and St. George Sound, Florida. Estuar. Coast. Shelf Sci. 88, 385–394 (2010).ADS 
    Article 

    Google Scholar 
    103.Chen, Z., Hu, C., Conmy, R. N., Muller-Karger, F. & Swarzenski, P. Colored dissolved organic matter in Tampa Bay, Florida. Mar. Chem. 104, 98–109 (2007).CAS 
    Article 

    Google Scholar 
    104.Julian, P. & Estevez, E. D. In Proceedings of the Tampa Bay Area Scientific Information Symposium, BASIS 5: Using Our Knowledge to Shape Our Future. 27–33.105.Adams, A. J. & Blewett, D. A. Spatial patterns of estuarine habitat type use and temporal patterns in abundance of juvenile permit, Trachinotus falcatus, in Charlotte Harbor, Florida. Gulf Caribb. Res. 16, 129–139 (2004).Article 

    Google Scholar 
    106.Kahle, D., Wickham, H. & Kahle, M. D. Package ‘ggmap’. (2019). More

  • in

    Mongolian pine forest decline by the combinatory effect of European woodwasp and plant pathogenic fungi

    1.Yin, D. C., Deng, X., Ilan, C. & Song, R. Q. Physiological Responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus luteus and Trichoderma virens. Curr. Microbiol. 69, 334–342 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Yin, D. C., Song, R. Q., Qi, J. Y. & Deng, X. Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition. J. For. Res. 29, 1775–1788 (2018).Article 

    Google Scholar 
    3.Saiyaremu, H., Xun, D., Song, X. S. & Song, R. Q. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests 10, 758–773 (2019).Article 

    Google Scholar 
    4.Ju, H. B. The Research of Micro-ecological Control Shoot Blight of Pinus sylvestris var. mongolica (Northeast Forestry University, 2005).
    Google Scholar 
    5.Tang, X. Screening of Antagonistic Bacteria against Sphaeropsis sapinea and Mechanism of Antagomism (Nanjing Forestry University, 2017).
    Google Scholar 
    6.Talbot, P. H. B. The Sirex-Amylostereum-Pinus association. Annu. Rev. Phytopathol. 15, 41–54 (1977).Article 

    Google Scholar 
    7.Wermelinger, B. & Thomsen, I. M. The woodwasp Sirex noctilio and its associated fungus Amylostereum areolatum in Europe. In The Sirex woodwasp and Its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest (eds Slippers, B. et al.) 65–80 (Springer-Verlag, 2012).Chapter 

    Google Scholar 
    8.Spradbery, J. P. & Kirk, A. A. Experimental studies on the responses of European siricid woodwasps to host trees. Ann. Appl. Biol. 98, 179–185 (1981).Article 

    Google Scholar 
    9.Hurley, B. P., Slippers, B. & Wingfield, M. J. A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere. Agric. For. Entomol. 9, 159–171 (2007).Article 

    Google Scholar 
    10.Villacide, J. M. & Corley, J. C. Ecology of the woodwasp sirex noctilio: Tackling the challenge of successful pest management. Int. J. Pest Manag. 58, 249–256 (2012).Article 

    Google Scholar 
    11.Batista, E. S. P., Redak, R. A., Busoli, A. C., Camargo, M. B. & Allison, J. D. Trapping for Sirex woodwasp in Brazilian pine plantations: Lure, trap type and height of deployment. J. Insect. Behav. 31, 210–221 (2018).Article 

    Google Scholar 
    12.Li, D. P. et al. Detection and identification of the invasive Sirex noctilio (Hymenoptera: Siricidae) fungal symbiont, Amylostereum areolatum (Russulales: Amylostereacea), in China and the stimulating effect of insect venom on laccase production by A. areolatum YQL03. J. Econ. Entomol. 108, 1136–1147 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sun, X. T., Tao, J., Ren, L. L., Shi, J. & Luo, Y. Q. Identification of Sirex noctilio (Hymenoptera: Siricidae) using a species-specific cytochrome C. oxidase subunit I PCR assay. J. Econ. Entomol. 109, 1424–1430 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Thompson, B. M., Grebenok, R. J., Behmer, S. T. & Gruner, D. S. Microbial symbionts shape the sterol profile of the xylem-feeding woodwasp Sirex noctilio. J. Chem. Ecol. 39, 129–139 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Thompson, B. M., Bodaer, J., Mcewen, C. & Gruner, D. S. Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann. Entomol. Soc. Am. 107, 453–460 (2014).Article 

    Google Scholar 
    16.Savluchinske Feio, S. et al. Antimicrobial activity of methyl cis -7-oxo deisopropyldehydroabietate on Botrytis cinerea and Lophodermium seditiosum: ultrastructural observations by transmission electron microscopy. J. Appl. Microbiol. 17, 765–771 (2002).Article 

    Google Scholar 
    17.Hiroyuki, S., Dai, H. & Yuichi, Y. Species composition and distribution of, Coleosporium, species on the needles of, Pinus densiflora, at a semi-natural vegetation succession site in central Japan. Mycoscience 59, 424–432 (2018).Article 

    Google Scholar 
    18.Li, P. F., Hui, E. X., Zhang, X. M. & Liu, Z. F. Pathogen of the Needle Blight of Pinus sylvestris var. mongolican. J. Northeast For. Univ. 25, 34–37 (1997).
    Google Scholar 
    19.Kaneko, S. S. Nuclear behavior during Basidiospore germination in Cronartium quercuum f. sp. fusiforme. Mycologia 88, 892–896 (1996).Article 

    Google Scholar 
    20.Juha, K., Ritva, H., Tuomas, K. & Jarkko, H. Five plant families support natural sporulation of Cronartium ribicola and C. flaccidum in Finland. Eur. J. Plant Pathol. 149, 367–383 (2017).Article 

    Google Scholar 
    21.Anees, M. et al. In situ impact of the antagonistic fungal strain, Trichoderma gamsii T30 on the plant pathogenic fungus, Rhizoctonia solani in soil. Pol. J. Microbiol. 21, 211–216 (2019).Article 

    Google Scholar 
    22.Tiziana, P. et al. Dispersal and propagule pressure of botryosphaeriaceae species in a declining oak stand is affected by insect vectors. Forests 8, 288–239 (2017).Article 

    Google Scholar 
    23.Manzanos, T., Aragones, A. & Iturritxa, E. Genotypic diversity and distribution of Sphaeropsis sapinea within Pinus radiata trees from northern Spain. For. Pathol. 49, 1709 (2019).
    Google Scholar 
    24.Bukamp, J., Langer, G. J. & Langer, E. J. Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany. Mycol. Progr. 9, 2 (2020).
    Google Scholar 
    25.Halifu, S., Deng, X., Song, X. S. & Song, R. Q. Effects of two trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var mongolica annual seedlings. Forests 10, 758 (2019).Article 

    Google Scholar 
    26.Adamson, K., Klavina, D., Drenkhan, R., Gaitnieks, T. & Hanso, M. Diplodia sapinea is colonizing the native scots pine (Pinus sylvestris) in the northern Baltics. Eur. J. Plant Pathol. 143, 343–350 (2015).Article 

    Google Scholar 
    27.Maresi, G., Luchi, N. & Pinzani, P. Detection of Diplodia pinea in asymptomatic pine shoots and its relation to the normalized insolation index. For. Pathol. 37, 272–280 (2007).Article 

    Google Scholar 
    28.Margarita, G.; Sianna, Hlebarska.; A review of Sphaeropsis sapinea occurrence on Pinus species in Bulgaria. 2016.29.Stanosz, G. R., Smith, D. R. & Guthmiller, M. A. Persistence of Sphaeropsis sapinea on or in asymptomatic shoots of red and Jack pines. Mycologia 89, 525–530 (1997).Article 

    Google Scholar 
    30.Song, X. D., Liu, G. R., Chen, J. Y., Xu, G. J. & Li, S. H. Studies the pathogenicity of Sphaeropsis sapinea. Sci. Silvae Sin. 38, 89–94 (2002).CAS 

    Google Scholar 
    31.Foelker, C. J., Parry, D. & Fierke, M. K. Biotic resistance and the spatiotemporal distribution of an invading woodwasp Sirex noctilio. Biol. Invas. https://doi.org/10.1007/s10530-018-1673-8 (2018).Article 

    Google Scholar 
    32.Yousuf, F. et al. Bark beetle (Ips grandicollis) disruption of woodwasp (Sirex noctilio) biocontrol: Direct and indirect mechanisms. For. Ecol. Manag. 323, 98–104 (2014).Article 

    Google Scholar 
    33.Vasiliauskas, R. & Stenlid, J. Vegetative compatibility groups of Amylostereum areolatum and A. chailletii from Sweden and Lithuania. Mycol. Res. 103, 824–829 (1999).Article 

    Google Scholar 
    34.Thomsen, M. & Koch, J. Somatic compatibility in Amylostereum areolatum and A. chailletii as aconsequence of symbiosis with Siricid woodwasps. Mycol. Res. 103, 817–823 (1999).Article 

    Google Scholar 
    35.Slippers, B., Wingfield, M. J., Coutinho, T. A. & Wingfield, B. D. Population structure and possible origin of Amylostereum areolatum in South Africa. Plant Pathol. 50, 206–210 (2001).Article 

    Google Scholar 
    36.Zylstra, K. E., Dodds, K. J., Francese, J. A. & Victor, M. Sirex noctilio in North America: The effect of stem-injection timing on the attractiveness and suitability of trap trees. Agric. For. Entomol. 12, 243–250 (2010).
    Google Scholar 
    37.Katarzyna, W., Piotr, R. & Turnau, K. The diversity of endophytic fungi in Verbascum lychnitis from industrial areas. Symbiosis 64(3), 139–147 (2014).Article 

    Google Scholar 
    38.Wang, Y. & Wu, X. Q. Characteristics differentiation of Sphaeropsis sapinea isolates. J. Nanjing Fore. Univ. 4, 6–10 (2005).
    Google Scholar 
    39.Lu, M., Wingfield, M. J., Gillette, N. E. & Sun, J. H. Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytol. 187, 859–866 (2010).PubMed 
    Article 

    Google Scholar 
    40.Yousuf, F. G., Gurr, M., Carnegie, A. J., Bedding, R. A. & Bashford, R. The bark beetle, Ips grandicollis disrupts biological control of the woodwasp, Sirex noctilio, via fungal symbiont interactions. Fems Microbiol. Ecol. 88, 38–47 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Bailey, B. A. et al. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol. Control 46, 24–35 (2008).Article 

    Google Scholar 
    42.Wang, Y., Wu, X. M., Zhu, Y. P., Zhang, M. & Wang, S. L. Inhibition effects and mechanisms of the endophytic fungus Chaetomium globosum L18 from Curcuma wenyujin. Acta Ecol. Sin. 32, 2040–2046 (2012).Article 

    Google Scholar 
    43.Wang, L. X., Ren, L. L., Liu, X. B., Shi, J. & Luo, Y. Q. Effects of endophytic fungi in Mongolian pine on the selection behavior of woodwasp (Sirex noctilio) and the growth of its fungal symbiont. Pest Manag. Sci. 75, 492–505 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Zeng, F. Y. et al. Studies on the mycoflora of Pinus thunbergii infected by Bursaphelenchus xylophilus. J. For. Sci. Res. 19, 537–540 (2006).
    Google Scholar 
    45.Wang, L. X., Ren, L. L., Shi, J., Liu, X. B. & You, Q. L. Variety of endophytic fungi associated with conifers in mixed conifer forests invaded by Sirex noctilio. Sci. Silvae Sinicae. 53, 81–89 (2017).
    Google Scholar 
    46.Jam, A. S. & Fotouhifar, K. B. Diversity of endophytic fungi of common yew (Taxus baccatal) in Iran. Mycol. Prog. 16, 247–256 (2017).Article 

    Google Scholar 
    47.Jin, L. C. et al. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS ONE 10, e0118204 (2015).Article 
    CAS 

    Google Scholar 
    48.Ryan, K., Moncalvo, J. M., Groot, P. D. & Smith, S. M. Interactions between the fungal symbiont of Sirex noctilio (Hymenoptera: Siricidae) and two bark beetle-vectored fungi. Can. Entomol. 143, 224–235 (2011).Article 

    Google Scholar 
    49.Palmer, M. A., Stewart, E. L. & Wingfield, M. J. Variation among isolates of Sphaeropsis sapinea in the north central United states. Phytophathology. 77, 944–948 (1987).Article 

    Google Scholar 
    50.Blodgett, J. T., Bonello, P. & Stanosz, G. R. An effective medium for isolating Sphaeropsis sapinea from asymptomatic pines. For. Pathol. 33, 395–404 (2003).Article 

    Google Scholar 
    51.Zhou, X. H. Study on groups of fungi on boles of Pinus sylvestris var. mongolica. J. Anhui Agric. Sci. 39, 2784–2785 (2011).
    Google Scholar 
    52.Maresi, G., Luchi, N. & Pinzani, P. Detection of Diplodia pinea in asymptomatic pine shoots and its relation to the normalized insolation index. For. Pathol 37, 272–280 (2007).Article 

    Google Scholar 
    53.Wang, L. X. et al. The mycobiota of Pinus sylvestris var. mongolica trunk invaded by Sirex noctilio. Mycosystema 36, 444–453 (2016).CAS 

    Google Scholar 
    54.Santamaría, J. & Bayman, P. Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb. Ecol. 50, 1–8 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Claudia, P. et al. Plant pathogenic fungi associated with Coraebus florentinus (Coleoptera: Buprestidae) attacks in declining oak forests. Forests 10, 488 (2019).Article 

    Google Scholar 
    56.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).
    Google Scholar 
    57.Petrini, O., Stone, J. K. & Carroll, F. E. Endophytic fungi in evergreen shrubs in western Oregon: A preliminary study. Can. J. Bot. 60, 789–796 (1982).Article 

    Google Scholar 
    58.Wang, Y. & Guo, L. D. A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Can. J. Bot. 85, 911–917 (2007).Article 

    Google Scholar 
    59.Arita, H. T., Christen, A., Rodríguez, P. & Soberón, J. The presence–absence matrix reloaded: The use and interpretation of range-diversity plots. Glob. Ecol. Biogeogr. 21, 282–292 (2012).Article 

    Google Scholar 
    60.Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Jaccard, P. The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912).Article 

    Google Scholar 
    62.Alhanout, K., Brunel, J. M., Ranque, S. & Rolain, J. M. In vitro antifungal activity of aminosterols against moulds isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 65, 1307–1309 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Chen, X. L., Li, J. F., Zhang, L. L., Zhang, J. F. & Wang, A. Biocontrol efficacy and phylogenetic tree analysis of a new Bionectria ochroleuca Strain. Biotechnol. Bull. 5, 184–189 (2014).
    Google Scholar 
    64.Samson, R. A., Houbraken, J. & Thrane, U. Food and Indoor Fungi (CBS-KNAW Fungal Biodiversity Centre, 2010).
    Google Scholar 
    65.Larena, I. et al. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol. Control. 32, 305–310 (2005).Article 

    Google Scholar 
    66.Martinez, C. P., De Geus, M., Lauwereys, G. & Matthyssens, C. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356, 615–618 (1992).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Wahl, A. The effect of Sirex spp. woodwasps and their fungal associates on Alabama forest health: competitiveness of Amylostereum spp. fungi against Leptographium spp. fungi. Thesis. Auburn University, Auburn, AL. 2017.68.Li, D. & Zhou, D. Q. Preliminary analysis of ecological distribution of wood-rotting fungi in liming township of Lijiang Laojun mountain. J. Southwest For. Univ. 30, 47–50 (2010).
    Google Scholar 
    69.Heydeck, P. & Dahms, C. Trieberkrankungen an Waldbäumen im Brennpunkt der forstlichen Phytopathologie. Eberswalder Forstl Schriftenreihe. 49, 47–55 (2012).
    Google Scholar 
    70.Arzanlou, M., Narmani, A., Moshari, S., Khodaei, S. & Babai-Ahari, A. Truncatella angustata associated with grapevine trunk disease in northern Iran. Arch. Fr Pflanzenschutz. 46, 1168–1181 (2013).Article 

    Google Scholar 
    71.Foelker, C. J. Beneath the bark: Associations among Sirex noctilio development, bluestain fungi, and pine host species in North America. Ecol. Entomol. 41, 676–684 (2016).Article 

    Google Scholar  More

  • in

    Replicated, urban-driven exposure to metallic trace elements in two passerines

    1.Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).Article 
    CAS 

    Google Scholar 
    2.Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. U.S.A. 114, 8951–8956 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160029 (2017).Article 

    Google Scholar 
    4.Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18 (2009).Article 

    Google Scholar 
    5.Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).PubMed 
    Article 

    Google Scholar 
    6.Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).PubMed 
    Article 

    Google Scholar 
    7.McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    8.Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).PubMed 
    Article 

    Google Scholar 
    9.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    10.Salmón, P., Watson, H., Nord, A. & Isaksson, C. Effects of the urban environment on oxidative stress in early life: Insights from a cross-fostering experiment. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy099 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chatelain, M., Drobniak, S. M. & Szulkin, M. The association between stressors and telomeres in non-human vertebrates: A meta-analysis. Ecol. Lett. 23, 381–398 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61, 373–408 (2015).Article 

    Google Scholar 
    13.Isaksson, C. Impact of urbanization on birds. In Bird Species (ed. Tietze, D. T.) 235–257 (Springer, 2018).Chapter 

    Google Scholar 
    14.Ouyang, J. Q. et al. A new framework for urban ecology: An integration of proximate and ultimate responses to anthropogenic change. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy110 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Meillère, A. et al. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total Environ. 566–567, 93–101 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    16.Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Santangelo, J. S. et al. Urban environments as a framework to study parallel evolution. In Urban Evolutionary Biology (eds Szulkin, M. et al.) 36–53 (Oxford University Press, 2020).Chapter 

    Google Scholar 
    18.Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).PubMed 
    Article 

    Google Scholar 
    19.Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z. & Dominoni, D. How to quantify urbanisation when testing for urban evolution? In Urban Evolutionary Biology (eds Szulkin, M. et al.) (Oxford University Press, 2020).Chapter 

    Google Scholar 
    20.McDonnell, M. J. & Pickett, S. T. A. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71, 1232–1237 (1990).Article 

    Google Scholar 
    21.Bai, X. et al. Linking urbanization and the environment: Conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215–240 (2017).Article 

    Google Scholar 
    22.Boyd, R. S. Heavy metal pollutants and chemical ecology: Exploring new frontiers. J. Chem. Ecol. 36, 46–58 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Dauwe, T., Janssens, E., Pinxten, R. & Eens, M. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient. Environ. Pollut. 136, 243–251 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Eeva, T., Ahola, M. & Lehikoinen, E. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ. Pollut. 157, 3126–3131 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Stauffer, J., Panda, B., Eeva, T., Rainio, M. & Ilmonen, P. Telomere damage and redox status alterations in free-living passerines exposed to metals. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.09.131 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Fritsch, C., Jankowiak, Ł & Wysocki, D. Exposure to Pb impairs breeding success and is associated with longer lifespan in urban European blackbirds. Sci. Rep. 9, 486 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Nriagu, J. O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279, 409–411 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Duan, J. & Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 74, 93–101 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Celik, E., Durmus, A., Adizel, O. & Nergiz Uyar, H. A bibliometric analysis: What do we know about metals(loids) accumulation in wild birds? Environ. Sci. Pollut. Res. 28, 10302–10334 (2021).CAS 
    Article 

    Google Scholar 
    30.Bichet, C. et al. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS ONE 8, e53866 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Gragnaniello, S. et al. Sparrows as possible heavy-metal biomonitors of polluted environments. Bull. Environ. Contam. Toxicol. 66, 719–726 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hofer, C., Gallagher, F. J. & Holzapfel, C. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site. Environ. Pollut. 158, 1207–1213 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Nam, D.-H. & Lee, D.-P. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci. Total Environ. 357, 288–295 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Roux, K. E. & Marra, P. P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch. Environ. Contam. Toxicol. 53, 261–268 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Scheifler, R. et al. Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci. Total Environ. 371, 197–205 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Manjula, M., Mohanraj, R. & Devi, M. P. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ. Monit. Assess. 187, 267 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    37.Zarrintab, M. & Mirzaei, R. Tissue distribution and oral exposure risk assessment of heavy metals in an urban bird: Magpie from Central Iran. Environ. Sci. Pollut. Res. 25, 17118–17127 (2018).CAS 
    Article 

    Google Scholar 
    38.Binkowski, ŁJ. & Meissner, W. Levels of metals in blood samples from Mallards (Anas platyrhynchos) from urban areas in Poland. Environ. Pollut. 178, 336–342 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Orłowski, G. et al. Residues of chromium, nickel, cadmium and lead in rook Corvus frugilegus eggshells from urban and rural areas of Poland. Sci. Total Environ. 490, 1057–1064 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    40.Kekkonen, J., Hanski, I. K., Väisänen, R. A. & Brommer, J. E. Levels of heavy metals in house sparrows (Passer domesticus) from urban and rural habitats of southern Finland. Ornis Fennica 89, 91 (2012).
    Google Scholar 
    41.Jaspers, V. L. B., Covaci, A., Herzke, D., Eulaers, I. & Eens, M. Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. TrAC Trends Anal. Chem. https://doi.org/10.1016/j.trac.2019.05.019 (2019).Article 

    Google Scholar 
    42.Dijkstra, L. & Poelman, H. Cities in Europe: The new OECD-EC definition. Reg. Focus 16, 1–3 (2012).
    Google Scholar 
    43.Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).
    Google Scholar 
    44.Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 1994).
    Google Scholar 
    45.Greenwood, P. J., Harvey, P. H. & Perrins, C. M. The role of dispersal in the great tit (Parus major): The causes, consequences and heritability of natal dispersal. J. Anim. Ecol. 48, 123 (1979).Article 

    Google Scholar 
    46.Harvey, P. H., Greenwood, P. J. & Perrins, C. M. Breeding area fidelity of great tits (Parus major). J. Anim. Ecol. 48, 305 (1979).Article 

    Google Scholar 
    47.Ortego, J., García-Navas, V., Ferrer, E. S. & Sanz, J. J. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit, Cyanistes caeruleus. Anim. Behav. 82, 131–137 (2011).Article 

    Google Scholar 
    48.Tufto, J., Ringsby, T., Dhondt, A. A., Adriaensen, F. & Matthysen, E. A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am. Nat. 165, E13–E26 (2005).PubMed 
    Article 

    Google Scholar 
    49.Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14, 3–11 (2021).PubMed 
    Article 

    Google Scholar 
    50.Moll, R. J. et al. What does urbanization actually mean? A framework for urban metrics in wildlife research. J. Appl. Ecol. 56, 1289–1300 (2019).Article 

    Google Scholar 
    51.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).52.Lee, L. & Helsel, D. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput. Geosci. 31, 1241–1248 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Salgado, C. M., Azevedo, C., Proença, H., Vieira, S. M. Noise versus outliers. In Secondary Analysis of Electronic Health Records, 163–183 (ed MIT Critical Data) (Springer, 2016).Chapter 

    Google Scholar 
    54.Betts, M. M. The food of titmice in Oak Woodland. J. Anim. Ecol. 24, 282 (1955).Article 

    Google Scholar 
    55.Newton, I. & Brockie, K. The Migration Ecology of Birds (Elsevier/Acad. Press, 2008).
    Google Scholar 
    56.Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).Article 

    Google Scholar 
    57.Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics Vol. 81 (D. Reidel, 1986).MATH 

    Google Scholar 
    58.Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    59.Grömping, U. Relative importance for linear regression in R : The package relaimpo. J. Stat. Softw. https://doi.org/10.18637/jss.v017.i01 (2006).Article 

    Google Scholar 
    60.Pacyna, E. G. et al. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci. Total Environ. 370, 147–156 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Frantz, A. et al. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ. Pollut. 168, 23–28 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Eens, M., Pinxten, R., Verheyen, R. F., Blust, R. & Bervoets, L. Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol. Environ. Saf. 44, 81–85 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Indic. 1, 227–234 (2002).CAS 
    Article 

    Google Scholar 
    64.Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ. Toxicol. Chem. 20, 2815–2820 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Burger, J. Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ. Contam. Toxicol. 5, 203–311 (1993).
    Google Scholar 
    66.Chatelain, M., Gasparini, J., Jacquin, L. & Frantz, A. The adaptive function of melanin-based plumage coloration to trace metals. Biol. Lett. 10, 20140164–20140164 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bańbura, M. et al. Egg size variation in blue tits Cyanistes caeruleus and great tits Parus major in relation to habitat differences in snail abundance. Acta Ornithol. 45, 121–129 (2010).Article 

    Google Scholar 
    68.Scheuhammer, A. M. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ. Pollut. 94, 337–343 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Dauwe, T., Snoeijs, T., Bervoets, L., Blust, R. & Eens, M. Calcium availability influences lead accumulation in a passerine bird. Anim. Biol. 56, 289–298 (2006).Article 

    Google Scholar 
    70.Snoeijs, T. et al. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch. Environ. Pollut. 134, 123–132 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.McCabe, E. B. Age and sensitivity to lead toxicity: A review. Environ. Health Perspect. 29, 29–33 (1979).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Chatelain, M., Gasparini, J. & Frantz, A. Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob. Change Biol. 22, 2380 (2016).ADS 
    Article 

    Google Scholar 
    73.Chatelain, M., Gasparini, J. & Frantz, A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology. https://doi.org/10.1007/s10646-016-1610-5 (2016).Article 
    PubMed 

    Google Scholar 
    74.Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. https://doi.org/10.1111/jav.00857 (2015).Article 

    Google Scholar 
    75.Chatelain, M., Pessato, A., Frantz, A., Gasparini, J. & Leclaire, S. Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. Oikos. https://doi.org/10.1111/oik.04262 (2017).Article 

    Google Scholar 
    76.Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. https://doi.org/10.1101/038141 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Koivula, M. J. & Eeva, T. Metal-related oxidative stress in birds. Environ. Pollut. 158, 2359–2370 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Korashy, H. M. et al. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environ. Pollut. 221, 64–74 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Ghalambor, C. K., McKAY, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    81.Garcia, C. M., Suárez-Rodríguez, M. & López-Rull, I. Becoming citizens: Avian adaptations to urban life. In Ecology and Conservation of Birds in Urban Environments (eds Murgui, E. & Hedblom, M.) 91–112 (Springer, 2017).Chapter 

    Google Scholar 
    82.Goiran, C., Bustamante, P. & Shine, R. Industrial Melanism in the Seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Obukhova, N. Polymorphism and phene geography of the blue rock pigeon in Europe. Russ. J. Genet. 43, 492–501 (2007).CAS 
    Article 

    Google Scholar 
    84.Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Gomes, W. R. et al. Polymorphisms of genes related to metabolism of lead (Pb) are associated with the metal body burden and with biomarkers of oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836, 42–46 (2018).PubMed 
    Article 

    Google Scholar 
    86.Sekovanić, A., Jurasović, J. & Piasek, M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arch. Ind. Hyg. Toxicol. 71, 27–47 (2020).
    Google Scholar  More