More stories

  • in

    Uncertainty analysis of model inputs in riverine water temperature simulations

    In this study, the HFLUX model was coupled with the SCEM-UA algorithm for analyzing the uncertainties of the model inputs. The specific procedures started with selecting the inputs of the HFLUX model. With the linked HFLUX and SCEM-UA model and implementation of an iteration scheme, the uncertainty of each of the selected inputs was obtained based on the ranges (minimum and maximum values) of the input data/parameters and the Latin hypercube sampling. The simulations were then compared against the observed data to evaluate the performance of the SCEM-UA algorithm. These steps are depicted in Fig. 1.Figure 1Flowchart for the uncertainty analysis.Full size imageRiver water temperatures simulated by the HFLUX modelRiver water temperature affects the water quality and the ecosystem health, and hence control of river water temperature is important to mitigation of its adverse effects1. The HFLUX model was used to simulate the streamflow temperatures at different locations and times. The model is highly flexible in terms of choosing the solution methods for solving the governing equations and selecting the energy budget terms such as shortwave solar radiation, latent heat flux, and sensible heat transfer flux. The model input data include the initial spatial and temporal temperature conditions, stream geometry data, discharge data, and meteorological data8. The water balance and energy balance equations are respectively given by8:$$frac{partial A}{{partial t}} + frac{partial Q}{{partial x}} = mathop qnolimits_{L}$$
    (1)
    $$frac{{partial left( {Amathop Tnolimits_{w} } right)}}{partial t} + frac{{partial left( {Qmathop Tnolimits_{w} } right)}}{partial x} = mathop qnolimits_{L} mathop Tnolimits_{L} + R$$
    (2)
    $$R = frac{{Bmathop varphi nolimits_{total} }}{{mathop rho nolimits_{w} mathop Cnolimits_{w} }}$$
    (3)
    where A is the cross section area of the stream (m2), x is the distance along the stream (m), t is the time (s), Q is the discharge of the stream (m3/s), qL is the lateral inflow per unit stream length (m2/s), Tw is the stream temperature ((^circ C)), TL is the temperature of the lateral inflow ((^circ C)), R is the energy flux (source or sink) per unit stream length ((^circ C) m2/s), B is the width of the stream (m), (mathop varphi nolimits_{total}) is the total energy flux to the stream per surface area (W/m2), (mathop rho nolimits_{w}) is the density of water (kg/m3), and (mathop Cnolimits_{w}) is the specific heat of water (J/kg (^circ C)). Equation (3) is based on a thermal datum of 0 (^circ C) and the impact on the absolute value of the advective heat flux term. In Eq. (2), if qL is negative, the first term on the right-hand side of the equation becomes a loss of qLTw. Also, dispersive heat transport that is omitted in Eq. 2 is negligible when the longitudinal change in water temperature is small in comparison to the temporal changes8.SCEM-UA algorithmThe SCEM-UA algorithm provides posterior distribution functions for the model parameters and input data by generating an initial sample from the parameter space. First, the indicators of n, q, and s that are respectively dimension (the number of investigate inputs), number of complexes (the population to be divided), and population (the number of sample points) are determined for the algorithm. Then, the algorithm searches the sampling points in the feasible space and sorts the points according to the density. The algorithm determines the sequence and complexes based on those points. The sequence is the first q points of the population and complexes are a collection of m points from the population. Note that m = s/q. In the next step, the points of each complex are sorted based on the density, which can be mathematically expressed as20:$$left{ {begin{array}{*{20}c} {mathop alpha nolimits^{k} le T,,,,,,,,,mathop theta nolimits^{t + 1} = Nleft( {mathop theta nolimits^{t} ,,mathop Cnolimits_{n}^{2} mathop Sigma nolimits^{k} } right)} \ {mathop alpha nolimits^{k} > T,,,,,,,,mathop theta nolimits^{t + 1} = Nleft( {mathop mu nolimits^{k} ,,mathop Cnolimits_{n}^{2} mathop Sigma nolimits^{k} } right)} \ end{array} } right.$$
    (4)
    where k = 1,2,…,q, α is the ratio of the mean posterior density of the m points of complexes to the mean posterior density of the last m generated points of sequences, (theta) is the points of complexes, ({c}_{n}=frac{2.4}{sqrt{n}}) , (T={10}^{6}), (mu) is the mean, and ∑ denotes the covariance. To investigate the new points created by the algorithm, the points of complexes are replaced by20:$$left{ {begin{array}{*{20}l} {Omega ge Zquad replace,best,member,of,mathop Cnolimits^{k} ,with,mathop theta nolimits^{t + 1} } \ {Omega < Zquad mathop theta nolimits^{t + 1} = mathop theta nolimits^{t} ,,,,,,,,,,,,,,,,,,,,,} \ end{array} } right.$$ (5) where (mathop Cnolimits^{k}) is the Kth complex, Z is drawn from the uniform distribution in the range of 0–1, and Ω is calculated by20:$$Omega = frac{{Pleft( {left. {mathop theta nolimits^{t + 1} } right|y} right)}}{{Pleft( {left. {mathop theta nolimits^{t} } right|y} right)}}$$ (6) where (Pleft( {left. {mathop theta nolimits^{t + 1} } right|y} right)) and (Pleft( {left. {mathop theta nolimits^{t} } right|y} right)) are the posterior probability distributions for (mathop theta nolimits^{t + 1}) and (mathop theta nolimits^{t}), respectively. Then, the algorithm examines the following condition for each complex. If it is rejected, the algorithm replaces the worst member ({c}^{k})(the point with the lowest density) with ({theta }^{t+1}) 20.$$mathop Gamma nolimits^{k} le T,,and,,Pleft( {{{mathop theta nolimits^{t + 1} } mathord{left/ {vphantom {{mathop theta nolimits^{t + 1} } y}} right. kern-nulldelimiterspace} y}} right) < ,Pleft( {{{mathop Cnolimits_{m}^{k} } mathord{left/ {vphantom {{mathop Cnolimits_{m}^{k} } y}} right. kern-nulldelimiterspace} y}} right)$$ (7) where ({Gamma }^{k}) is the ratio of the posterior density of the best (the point with the highest density) to the posterior density of the worst member of ({c}^{k}). The last step is to examine (beta) and L. Note that (beta) = 1 and L = m/10. If (beta < L), (beta = beta + 1) and the algorithm returns to sort complex points. Otherwise, the algorithm examines the Gelman and Rubin convergence6, and eventually provides the posterior distribution functions20. The value of the Gelman and Rubin convergence should be less than 1.2. The Gelman and Rubin convergence is examined by:$$R = sqrt {frac{g - 1}{g} + frac{q + 1}{{q.g}}frac{B}{W}}$$ (8) where g is the number of iterations within each sequence, B is the variance between the q sequence means, and W is the average of the q within-sequence variances for the parameter under consideration20.Study AREAMeadowbrook Creek was selected to test the methods proposed in this study8. The creek flows through the City of Syracuse in New York. Thus, this catchment consists of high residential and industrial land covers, which contribute runoff to the main channel. The creek is about 4 km long. A portion of this creek (475 m long) was selected for the modeling for a period of June 13–19, 2012 in this study. The upstream boundary condition in the HFLUX model was set based on the water temperature of the creek observed at the upstream station8. The uncertainty of the model inputs was examined at three selected points as shown in Fig. 2. Note that the input values at these three points had greater relative changes than the changes at other locations, which provided the possibility to improve the evaluation of the algorithm performance. In addition, these three locations had the same sampling of the selected input data. During the simulation period, the streamflow velocity varied within a range of 0.06–0.63 (m/s). The daily temperature changed between 8.9 and 28.2 °C. The relative humidity, used to calculate the total energy flux to the stream per surface area, changed from 36 to 93%. The creek bed mainly consisted of clay, cobbles, sand, and gravel materials. The basic statistics of the data/variables used in the HFLUX model are presented in Table 1. Figure 2 shows the study area, the creek, and the three selected points for analysis.Figure 2Study area and the locations of three evaluation sections (the gray enlarged map shows the State of New York), the map in this Figure is created by Google Earth 7.0.2.8415 (https://google.com/earth/versions).Full size imageTable 1 Basic statistics of the data/variables used in the HFLUX model.Full size tableEthical approvalAll authors accept all ethical approvals.Consent to participateAll authors consent to participate.Consent to publishAll authors consent to publish. More

  • in

    Rapid transmission of respiratory infections within but not between mountain gorilla groups

    1.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science https://doi.org/10.1126/science.aax3100 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. https://doi.org/10.1016/S0001-706X(00)00179-0 (2001).Article 
    PubMed 

    Google Scholar 
    3.Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. https://doi.org/10.1111/brv.12009 (2013).Article 
    PubMed 

    Google Scholar 
    4.Magouras, I. et al. Emerging zoonotic diseases: Should we rethink the animal–human interface?. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.582743 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.American Veterinary Medical Association. One Health: A New Professional Imperative. One Health Initiative Task Force: Final Report. (2008).6.VandeWoude, S. et al. Parallel pandemics illustrate the need for One Health solutions. EcoEvoRxiv (2021).7.Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).Article 

    Google Scholar 
    8.Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-020518-115628 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature https://doi.org/10.1038/nature09442 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Keele, B. F. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science (80-). 313, 523–526 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Calvignac-Spencer, S., Leendertz, S. A. J., Gillespie, T. R. & Leendertz, F. H. Wild great apes as sentinels and sources of infectious disease. Clin. Microbiol. Infect. https://doi.org/10.1111/j.1469-0691.2012.03816.x (2012).Article 
    PubMed 

    Google Scholar 
    12.Ryan, S. J. & Walsh, P. D. Consequences of non-intervention for infectious disease in African great apes. PLoS One 6, e29030 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Walsh, P. D. et al. Catastrophic ape decline in western equatorial Africa. Nature 422, 611–614 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Thompson, M. E. et al. Risk factors for respiratory illness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). R. Soc. Open Sci. https://doi.org/10.1098/rsos.180840 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Williams, J. M. et al. Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am. J. Primatol. https://doi.org/10.1002/ajp.20573 (2008).Article 
    PubMed 

    Google Scholar 
    17.Negrey, J. D. et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. https://doi.org/10.1080/22221751.2018.1563456 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Scully, E. J. et al. Lethal respiratory disease associated with human rhinovirus C in wild Chimpanzees, Uganda, 2013. Emerg. Infect. Dis. https://doi.org/10.3201/eid2402.170778 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00228.x (2009).Article 

    Google Scholar 
    20.Capps, B. & Lederman, Z. One health, vaccines and ebola: The opportunities for shared benefits. J. Agric. Environ. Ethics 28, 1011–1032 (2015).Article 

    Google Scholar 
    21.Leendertz, S. A. J. et al. Ebola in great apes—current knowledge, possibilities for vaccination, and implications for conservation and human health. Mamm. Rev. https://doi.org/10.1111/mam.12082 (2017).Article 

    Google Scholar 
    22.Bull, C. M., Godfrey, S. S. & Gordon, D. M. Social networks and the spread of Salmonella in a sleepy lizard population. Mol. Ecol. 21, 4386–4392 (2012).CAS 
    Article 

    Google Scholar 
    23.Vanderwaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12137 (2014).Article 
    PubMed 

    Google Scholar 
    24.Silk, M. J. et al. Using social network measures in wildlife disease ecology, epidemiology, and management. Bioscience 67, 245–257 (2017).Article 

    Google Scholar 
    25.Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 370, 1–12 (2015).Article 

    Google Scholar 
    26.Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Perspect. Infect. Dis. 2011, 676949 (2011).Article 

    Google Scholar 
    27.Rushmore, J. et al. Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk. J. Anim. Ecol. 82, 976–986 (2013).Article 

    Google Scholar 
    28.Sandel, A. A. et al. Social network predicts exposure to respiratory infection in a wild chimpanzee group. EcoHealth https://doi.org/10.1007/s10393-020-01507-7 (2021).Article 
    PubMed Central 

    Google Scholar 
    29.Rushmore, J. et al. Network-based vaccination improves prospects for disease control in wild chimpanzees. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0349 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Sah, P., Leu, S. T., Cross, P. C., Hudson, P. J. & Bansal, S. Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proc. Natl. Acad. Sci. 114, 4165–4170 (2017).CAS 
    Article 

    Google Scholar 
    31.Robbins, M. M. et al. Extreme conservation leads to recovery of the virunga mountain gorillas. PLoS One https://doi.org/10.1371/journal.pone.0019788 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Granjon, A. C. et al. Estimating abundance and growth rates in a wild mountain gorilla population. Anim. Conserv. https://doi.org/10.1111/acv.12559 (2020).Article 

    Google Scholar 
    33.Weber, A., Kalema-Zikusoka, G. & Stevens, N. J. Lack of rule-adherence during mountain gorilla tourism encounters in Bwindi Impenetrable National Park, Uganda, places gorillas at risk from human disease. Front. Public Health. https://doi.org/10.3389/fpubh.2020.00001 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Woodford, M. H., Butynski, T. M. & Karesh, W. B. Habituating the great apes: The disease risks. Oryx 36, 153–160 (2002).Article 

    Google Scholar 
    35.Spelman, L. H. et al. Respiratory disease in mountain gorillas (gorilla beringei beringei) in rwanda, 1990–2010: Outbreaks, clinical course, and medical management. J. Zoo Wildl. Med. https://doi.org/10.1638/2013-0014R.1 (2013).Article 
    PubMed 

    Google Scholar 
    36.Nutter, F. B., Whittier, C., Cranfield, M. R. & Lowenstine, L. J. Examining causes of death for mountain gorillas (Gorilla beringei beringei and G.b. undecided) from 1968–2004: An aid to conservation programs. In Proceedings of the Wildlife Disease Association International Conference. June 26-July 1, 2005, Cairns, Australia 200–201 (2005).37.Palacios, G. et al. Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emerg. Infect. Dis. https://doi.org/10.3201/eid1704.100883 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Mazet, J. A. K. et al. Human respiratory syncytial virus detected in Mountain Gorilla respiratory outbreaks. EcoHealth https://doi.org/10.1007/s10393-020-01506-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Szentiks, C. A., Köndgen, S., Silinski, S., Speck, S. & Leendertz, F. H. Lethal pneumonia in a captive juvenile chimpanzee (Pan troglodytes) due to human-transmitted human respiratory syncytial virus (HRSV) and infection with Streptococcus pneumoniae. J. Med. Primatol. https://doi.org/10.1111/j.1600-0684.2009.00346.x (2009).Article 
    PubMed 

    Google Scholar 
    40.Grützmacher, K. S. et al. Codetection of respiratory syncytial virus in habituated wild western lowland gorillas and humans during a respiratory disease outbreak. EcoHealth https://doi.org/10.1007/s10393-016-1144-6 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Gryseels, S. et al. Risk of human-to-wildlife transmission of SARS-CoV-2. Mamm. Rev. https://doi.org/10.1111/mam.12225 (2021).Article 

    Google Scholar 
    42.Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S. & Higham, J. P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. https://doi.org/10.1038/s42003-020-01370-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2010146117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Caillaud, D. et al. Violent encounters between social units hinder the growth of a high-density mountain gorilla population. Sci. Adv. https://doi.org/10.1126/SCIADV.ABA0724 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Caillaud, D. et al. Gorilla susceptibility to Ebola virus: The cost of sociality. Curr. Biol. 16, 489–491 (2006).Article 

    Google Scholar 
    46.Reagan, K. J., McGeady, M. L. & Crowell, R. L. Persistence of human rhinovirus infectivity under diverse environmental conditions. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.41.3.618-620.1981 (1981).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Danon, L. et al. Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011, 1–28 (2011).Article 

    Google Scholar 
    48.Salazar, M. F. M., Waldner, C., Stookey, J. & Bollinger, T. K. Infectious disease and grouping patterns in mule deer. PLoS One https://doi.org/10.1371/journal.pone.0150830 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. https://doi.org/10.1016/j.cub.2013.09.011 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.VanderWaal, K. L., Enns, E. A., Picasso, C., Packer, C. & Craft, M. E. Evaluating empirical contact networks as potential transmission pathways for infectious diseases. J. R. Soc. Interface https://doi.org/10.1098/rsif.2016.0166 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Lambert, L. & Culley, F. J. Innate immunity to respiratory infection in early life. Front. Immunol. https://doi.org/10.3389/fimmu.2017.01570 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Jackson, G. G. et al. Susceptibility and immunity to common upper respiratory viral infections—the common cold. Ann. Intern. Med. https://doi.org/10.7326/0003-4819-53-4-719 (1960).Article 
    PubMed 

    Google Scholar 
    53.Kurvers, R. H. J. M., Krause, J., Croft, D. P., Wilson, A. D. M. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2014.04.002 (2014).Article 
    PubMed 

    Google Scholar 
    54.Casimir, M. J. An analysis of gorilla nesting sites of the Mt. Kahuzi Region (Zaire). Folia Primatol. 32, 290–308 (1979).Article 

    Google Scholar 
    55.van Hamme, G., Svensson, M. S., Morcatty, T. Q., Nekaris, K.A.-I. & Nijman, V. Keep your distance: Using social media to evaluate the risk of disease transmission in gorilla ecotourism. People Nat. https://doi.org/10.1002/pan3.10187 (2021).Article 

    Google Scholar 
    56.Leendertz, F. H. & Kalema-Zikusoka, G. Vaccinate in biodiversity hotspots to protect people and wildlife from each other. Nature https://doi.org/10.1038/d41586-021-00690-z (2021).Article 
    PubMed 

    Google Scholar 
    57.Porter, A. et al. Behavioral responses around conspecific corpses in adult eastern gorillas (Gorilla beringei spp.). PeerJ https://doi.org/10.7717/peerj.6655 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Albers, P. C. H. & De Vries, H. Elo-rating as a tool in the sequential estimation of dominance strengths. Anim. Behav. https://doi.org/10.1006/anbe.2000.1571 (2001).Article 

    Google Scholar 
    59.Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. https://doi.org/10.1016/j.anbehav.2011.07.016 (2011).Article 

    Google Scholar 
    60.Neumann, C. & Lars, K. EloRating: Animal dominance hierarchies by Elo rating. R Package Version 0.43. https://rdrr.io/cran/EloRating/ (2014).61.Wright, E. et al. Male body size, dominance rank and strategic use of aggression in a group-living mammal. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.03.011 (2019).Article 

    Google Scholar 
    62.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695(5), 1–9 (2006).
    Google Scholar 
    63.Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4′. R Package Version 0.2-6. https://CRAN.R-project.org/package=gamm4 (2020).64.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    65.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    66.VanderWaal, K. L. k-test. GitHub Repository. https://github.com/kvanderwaal/k-test (2017).67.Calenge, C. The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2006.03.017 (2006).Article 

    Google Scholar  More

  • in

    Wild meat consumption in tropical forests spares a significant carbon footprint from the livestock production sector

    1.Nasi, R., Taber, A. & van Vliet, N. Empty forests, empty stomachs? Wild meat and livelihoods in the Congo and Amazon Basins. Int. For. Rev. 13, 355–368. https://doi.org/10.1505/146554811798293872 (2011).Article 

    Google Scholar 
    2.van Vliet, N. “Bushmear crisis” and “Cultural imperialism” in wildlife management? Taking value orientations into account for a more sustainable and culturally acceptable wildmeat sector. Front. Ecol. Evol. 6, 112. https://doi.org/10.3389/fevo.2018.00112 (2018).ADS 
    Article 

    Google Scholar 
    3.Nunes, A. V., Peres, C. A., Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179. https://doi.org/10.1016/j.biocon.2019.05.010 (2019).Article 

    Google Scholar 
    4.Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. PNAS 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    5.Brodie, J. F. Carbon costs and bushmeat benefits of hunting in tropical forests. Ecol. Econ. 152, 22–26. https://doi.org/10.1016/j.ecolecon.2018.05.028 (2018).Article 

    Google Scholar 
    6.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015. https://doi.org/10.1093/aob/mcl066 (2007).Article 
    PubMed 

    Google Scholar 
    7.Bunker, D. E. et al. Species loss and aboveground carbon storage in a tropical forest. Science 310, 1029–1031. https://doi.org/10.1126/science.1117682 (2005).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Harrison, R. D. et al. Consequences of defaunation for a tropica tree community. Ecol. Lett. 16, 687–694. https://doi.org/10.1111/ele.12102 (2013).Article 
    PubMed 

    Google Scholar 
    9.Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105. https://doi.org/10.1126/sciadv.1501105 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    10.Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. Ecol. Soc. 20, 22 (2015).Article 

    Google Scholar 
    11.Goelden, C. D. et al. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. PNAS 108, 19653–19656. https://doi.org/10.1073/pnas.1112586108 (2011).ADS 
    Article 

    Google Scholar 
    12.Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    13.Peres, C. A. Conservation in sustainable-use tropical forest reserves. Conserv. Biol. 25(1124–1129), 2011. https://doi.org/10.1111/j.1523-1739.2011.01770.x (2011).Article 

    Google Scholar 
    14.Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185. https://doi.org/10.1111/j.1523-1739.2007.00759.x (2007).Article 
    PubMed 

    Google Scholar 
    15.Constantino, P. A. L. et al. Indigenous collaborative research for wildlife management in Amazonia: The case of the Kaxinawá, Acre, Brazil. Biol. Conserv. 141, 2718–2729. https://doi.org/10.1016/j.biocon.2008.08.008 (2008).Article 

    Google Scholar 
    16.Weinbaum, K. Z., Brashares, J. S., Golden, C. D. & Getz, W. M. Searching for sustainability: Are assessments of wildlife harvests behind the times?. Ecol. Lett. 16, 99–111. https://doi.org/10.1111/ele.12008 (2013).Article 
    PubMed 

    Google Scholar 
    17.Novaro, A. J., Redford, K. H. & Bodmer, R. E. Effect of hunting in source-sink systems in the Neotropics. Conserv. Biol. 14, 713–721. https://doi.org/10.1046/j.1523-1739.2000.98452.x (2000).Article 

    Google Scholar 
    18.Constantino, P. A. C., Benchimol, M. & Antunes, A. P. Designing indigenous lands in Amazonia: Securing indigenous rights and wildlife conservation through hunting management. Land Use Policy 77, 652–660. https://doi.org/10.1016/j.landusepol.2018.06.016 (2018).Article 

    Google Scholar 
    19.Kaimowitz, D. & Angelsen, A. Will livestock intensification help save Latin America’s tropical forests?. J. Sustain. For. 27, 6–24. https://doi.org/10.1080/10549810802225168 (2008).Article 

    Google Scholar 
    20.Curtis, P. G., Slat, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    21.De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004. https://doi.org/10.1088/1748-9326/10/12/124004 (2015).ADS 
    Article 

    Google Scholar 
    22.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).ADS 
    Article 

    Google Scholar 
    23.Herrero, M. et al. Livestock and the environment—What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).Article 

    Google Scholar 
    24.Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561. https://doi.org/10.6084/m9.figshare.12248735 (2021).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Steinfeld, H. et al. Livestock’s Long Shadow (FAO, 2006).
    Google Scholar 
    26.United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) (2019).27.IPCC Climate Change 2014: Synthesis Report (eds. Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).28.Wolf, C., Ripple, W. J., Levi, T. & Peres, C. A. Eating plants and planting forests for the climate. Glob. Chang. Biol. 25, 3995–3995. https://doi.org/10.1111/gcb.14835 (2019).ADS 
    Article 
    PubMed 

    Google Scholar 
    29.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609 (2011).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    30.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821. https://doi.org/10.1126/sciadv.1600821 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Maxwell, S. L. et al. Degradation and forgone removals increase the carbon imáct of intact forest loss by 626%. Sci. Adv. 5, eaax2546. https://doi.org/10.1126/sciadv.aax2546 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. PNAS 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Angelsen, A. et al. Environmental income and rural livelihoods: A global-comparative analysis. World Dev. 64, 12–28. https://doi.org/10.1016/j.worlddev.2014.03.006 (2010).Article 

    Google Scholar 
    34.UNFCCC. Adoption of the Paris Agreement-Draft Decision-/CP.21 (United Nations Framework Convention on Climate Change, 2015).
    Google Scholar 
    35.Hinsley, A., Entwistle, A. & Pio, D. V. Does the long-term success of REDD+ also depend on biodiversity?. Oryx 49, 216–221. https://doi.org/10.1017/S0030605314000507 (2015).Article 

    Google Scholar 
    36.Krause, T. & Nielsen, M. R. Not seeing the forest for the trees: The oversight of defaunation in REDD+ and global forest governance. Forests 10, 344. https://doi.org/10.3390/f10040344 (2019).Article 

    Google Scholar 
    37.Nardoto, G. B. et al. Frozen chicken for wild fish: Nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am. J. Hum. Biol. 23, 642–650. https://doi.org/10.1002/ajhb.21192 (2011).Article 
    PubMed 

    Google Scholar 
    38.Farrel, D. The Role of Poultry in Human Nutrition. Poultry Development Review (FAO, 2013).
    Google Scholar 
    39.Poulsen, J. R., Clark, C. J. & Mavah, G. Wildlife management in a logging concession in Northern Congo: Can livelihoods be maintained through sustainable hunting? In Bushmeat and Livelihoods (eds Davies, G. & Brown, D.) 140–157 (Blackwell Publishing, 2007).
    Google Scholar 
    40.Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the Southwestern Amazon. Behv. Ecol. Sociobiol. 73, 26. https://doi.org/10.1007/s00265-018-2628-x (2019).Article 

    Google Scholar 
    41.WHO/FAO/UNU Protein and Amino Acid Requirements in Human Nutrition; Report of a joint WHO/FAO/UNU Expert Consultation, WHO Tech Rep Ser no. 935 (WHO, 2007).42.FAO. FAOSTAT Agri-Environmental Indicators, Emissions Intensities. http://www.fao.org/faostat/en/#data/EI (2019).43.Opio, C. et al. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment (Food and Agriculture Organization of the United Nations (FAO), 2013).
    Google Scholar 
    44.Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992. https://doi.org/10.1126/science.aaq0216 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    45.ICAO. International Civil Aviation Organization. https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx (2016).46.Searchinger, T. D. et al. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253. https://doi.org/10.1038/s41586-018-0757-z (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    47.Ministério do Meio Ambiente (MMA). Programa áreas protegidas da Amazônia ARPA-Fase II (2010).48.Arensberg, W. W. Critical Ecosystem Partnership Fund Mid-Term Review (Critical Ecosystem Partnership Fund, 2003).49.Sistema Integrado de Planejamento e Orçamento (SIOP). Cadastro de Ações. Apoio à conservação Ambiental e à Erradicação da Extrema Pobreza Bolsa Verde (Secretaria de Orçamento Federal, Ministério do Planejamento, Orçamento e Gestão, 2014).50.World Bank. State and Trends of Carbon Pricing (World Bank, 2020). https://doi.org/10.1596/978-1-4648-1586-7.51.NASA (National Aeronautics and Space Administration). NASA Administrator Statement on Moon to Mars Initiative, fy 2021 Budget. https://www.nasa.gov/press-release/nasa-administrator-statement-on-moon-to-mars-initiative-fy-2021-budget.52.Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505. https://doi.org/10.1046/j.1523-1739.2001.01089.x (2001).Article 

    Google Scholar 
    53.Griscom, B. W. et al. Natural climate solutions. PNAS 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    54.Reid, H., Faulkner, L. & Weiser, A. in IIED Climate Change Working Paper (eds. Fisher, S. & Reid, H.) 3–67 (2013).55.Munang, R., Andrews, J., Alverson, K. & Mebratu, D. Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ.: Sci. Policy Sustain. Dev. 56, 18–24. https://doi.org/10.1080/00139157.2014.861676 (2013).Article 

    Google Scholar 
    56.Woroniecki, S. Enabling environments? Examining social co-benefits of ecosystem-based adaptation to climate change in Sri Lanka. Sustainability 11, 772. https://doi.org/10.3390/su11030772 (2019).Article 

    Google Scholar 
    57.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 375, 20190120. https://doi.org/10.1098/rstb.2019.0120 (2020).Article 

    Google Scholar 
    58.Wilkie, D. S., Wieland, M. & Poulsen, J. R. Unsustainable vs. sustainable hunting for food in Gabon: Modeling short- and long- term gains and losses. Front. Ecol. Evol. 7, 357. https://doi.org/10.3389/fevo.2019.00357 (2019).Article 

    Google Scholar 
    59.Booth, H. et al. Assessing the impact of regulations on the use and trade of wildlife: An operational framework, with a case study on manta rays. Glob. Ecol. Conserv. 22, e00953 (2020).Article 

    Google Scholar 
    60.Dickman, A. et al. Trophy hunting bans imperil biodiversity. Science 365(6456), 874. https://doi.org/10.1126/science.aaz0735 (2019).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    61.Marrocoli, S. et al. Using wildlife indicators to facilitate wildlife monitoring in hunter-self monitoring schemes. Ecol. Indic. 105, 254–263. https://doi.org/10.1016/j.ecolind.2019.05.050 (2019).Article 

    Google Scholar 
    62.van Vliet, N. et al. Frameworks regulating hunting for meat in tropical countries leave the sectos in the limbo. Front. Ecol. Evol. 7, 1–7. https://doi.org/10.3389/fevo.2019.00280 (2019).Article 

    Google Scholar 
    63.Ronchail, J. et al. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic oceans. Int. J. Climatol. 22, 1663–1686. https://doi.org/10.1002/joc.815 (2002).Article 

    Google Scholar 
    64.CSC. Climate Change Scenarios for the Congo Basin (Climate Service Centre Report No. 11, 2013).65.Akkermans, T., Thiery, W. & Lipzig, N. P. M. V. The regional climate impact of a realistic future deforestation scenario in the Congo Basin. J. Clim. 27, 2714–2734. https://doi.org/10.1175/JCLI-D-D13-00361.1 (2014).ADS 
    Article 

    Google Scholar 
    66.Siebert, A. Hydroclimate extrems in Africa: Variability, observations and modeled projectios. Geography 8, 351–367. https://doi.org/10.1111/gec3.12136 (2014).Article 

    Google Scholar 
    67.Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012 (2012).ADS 
    Article 

    Google Scholar 
    68.Hansen, M. C. et al. High- resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    69.Mayaux, P. et al. Tropical forest cover change in the 1990s and options for future monitoring. Philos. Trans. R. Soc. B 360, 373–384. https://doi.org/10.1098/rstb.2004.1590 (2005).Article 

    Google Scholar 
    70.Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. Soc. A 369, 137–160. https://doi.org/10.1098/rsta.2010.0238 (2011).ADS 
    Article 

    Google Scholar 
    71.Nkem, J., Idinoba, M., Brockhaus, M., Kalame, F. & Tas, A. Adaptation to Climate Change in Africa: Synergies with Biodiversity and Forest (CIFOR, 2008).
    Google Scholar 
    72.Ganzhorn, J. U., Lowry, P. P., Schatz, G. E. & Sommer, S. The biodiversity of Madagascar: One of the world’s hottest hotspots on its way out. Oryx 35, 346–348. https://doi.org/10.1046/j.1365-3008.2001.00201.x (2001).Article 

    Google Scholar 
    73.Kingdon, J. East African Mammals Vol. IIIA (Academic Press, 1977).
    Google Scholar 
    74.Dunning, J. B. CRC Handbook of Avian Body Masses 2nd edn. (CRC, 2008).
    Google Scholar 
    75.Rushton, J. et al. How important is bushmeat consumption in South America: Now and in the future?. Odi Wildl. Policy Brief. 11, 1–4 (2005).
    Google Scholar 
    76.Redford, K. H. & Robinson, J. G. The game of choice: Patterns of Indian and colonist hunting in the Neotropics. Am. Anthropol. 89, 650–667. https://doi.org/10.1525/aa.1987.89.3.02a00070 (1987).Article 

    Google Scholar 
    77.Ojasti, J. Wildlife Utilization in Latin America: Current Situation and Prospects for Sustainable Management (FAO, 1996).
    Google Scholar 
    78.Wilson, E. D., Fisher, K. H. & Garcia, P. A. Principles of Nutrition (Wiley, 1979).
    Google Scholar 
    79.Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation (2014).80.Soriano-Santos, J. in Handbook of Poultry Science and Technology (ed. Guerrero-Lagarreta, I.) 467–489 (2009).81.Eggleston, H. S. et al. (eds) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (IPCC, 2006).
    Google Scholar 
    82.Carbon Pricing Leadership Coalition (CPLC). Report of the High-Level Commission on Carbon Prices (World Bank Group, 2017).
    Google Scholar 
    83.Annual Report. Ending Poverty, Investing in Opportunity (World Bank Group, 2019).
    Google Scholar 
    84.Avitabile, M. V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420. https://doi.org/10.1111/gcb.13139 (2016).ADS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Drowning carbon sinks?

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia

    Study sitesWe conducted this study in three protected areas in Sabah, Malaysian Borneo: Danum Valley Conservation Area (DVCA), the Lower Kinabatangan Wildlife Sanctuary (LKWS), and Tabin Wildlife Reserve (TWR) (Fig. 4). The minimum and maximum daily temperatures and annual precipitation among the three study sites did not differ significantly (annual temperature: 22–33 ℃, annual precipitation 2400–3100 mm; Mitchell37; Matsuda et al.39; South East Asia Rainforest Research Partnership Unpublished data. https://www.searrp.org/) although there is no recent precise climate data of TWR.Figure 4Location of the three study sites in Borneo.Full size imageThe DVCA (4° 50′–5° 05′ N, 117° 30′–117° 48′ E) is a Class I Protection Forest Reserve established by the Sabah state government in 1996 and managed by the Sabah Foundation (Yayasan Sabah Group) covering 438 km2. Approximately 90% of the area is comprised of mature lowland evergreen dipterocarp forests34. The study area is an old-growth forest surrounding the Borneo Rainforest Lodge (5° 01′ N, 117° 44′ E), a tourist lodging facility.The LKWS (5° 10′–5° 50′ N, 117° 40′–118° 30′ E), is located along the Kinabatangan River, which is the longest river flowing to the east coast, reaching 560 km inland and with a catchment area of 16,800 km2. Designated as a wildlife sanctuary and gazetted in 2005, the LKWS consists of ten forest blocks totaling 270 km2, comprised of seasonal and tidal swamp forests, permanent freshwater swamps, mangrove forests, and lowland dipterocarp forests35,36. The southern area of the Menanggul River is extensively covered by secondary forest. However, the northern area has been deforested for oil palm (Elaeis guineensis) plantations, except for a protected zone along the river. The TWR (5° 05′–5° 22′ N, 118° 30′–118° 55′ E) is located approximately 50 km northeast of Lahad Datu, eastern Sabah, and covers approximately 1225 km2.The TWR is exclusively surrounded by large oil palm plantations. Most parts of the TWR were heavily logged in the 1970s and the 1980s, leaving mainly regenerating mixed dipterocarp tropical rainforests dominated by pioneer species such as Neolamarckia cadamba and Macaranga bancana37,38. The study area was near the Sabah Wildlife Department base camp located on the western boundary of the TWR (5° 11′ N, 118° 30′ E). The study area includes heavily logged secondary forests and a small patchy old forest (0.74 km2).Data collectionWe set up 15, 30, and 28 infrared-triggered sensor cameras (Bushnell, Trophy Cam TM) in the DVCA (July 2010–August 2011 and May 2014–December 2016), LKWS (July 2010–December 2014) and TWR (May 2010–June 2012), respectively. As a result, the cumulative number of camera operation days in DVCA, LKWS, and TWR were 14,134, 18,265, and 4980, for a total of 37,379 days. Although it was impossible to record the animals during certain months because of adverse weather conditions, such as heavy rain, flooding, battery failure, other malfunctions mainly caused by insects nesting inside the cameras, or logistical problems, the cameras remained continuously activated. Due to these reasons, camera operating days differed among the cameras in each site. In this study, we used photos of animals, and we did not handle animals directly. All cameras were placed at heights of 30–50 cm above the forest floor and were tied to tree trunks using fabric belts to reduce damage to the trees.Because the terrain and level of regulations to conduct this study differed by the study site, we employed different layouts of camera stations at each study site. In the DVCA, T. K. and three trained assistants placed 15 cameras along six forest trails totaling 9000 m, which were established and maintained by the tourist lodging facility. Because it was prohibited to establish new trails and to place cameras at sites where tourism activity would be disturbed in the study area; therefore, the trails that were longer than 1 km and relatively easily accessible were selected as camera locations to maintain consistency of trail characteristics. Cameras were placed on each trail at 50 m intervals, alternating right and left to avoid bias of photo-capture frequency caused by terrain differences. Each station was at least 25 m away from each other on the different trails (Fig. 5a). The operating days differed among the 15 cameras, i.e., mean = 942.2; SD = 152.0; range = 682–1229.Figure 5Maps of camera locations at each study site. (a) Trails and camera stations at DVCA; (b1) trails and camera stations and (b2) trail locations at LKWS; (c) a trail and camera stations at TWR.Full size imageIn the LKWS, I. M. and two trained assistants had planned to install 30 cameras, but a maximum of only 27 cameras were in operation during the study period in the LKWS, probably owing to malfunctions caused by high humidity and rain in the tropical rainforest. All cameras were placed on the trails in the riverine forest along the Menanggul River. As part of a project on the primates of the riverine forests along the Menanggul River and to assist their observation and tracking in the swampy habitat in the LKWS39, trails 200–500 m long and 1 m wide were established at 500 m intervals on both sides of the river. Of the 16 trails, we selected ten trails that were all 500 m long and placed three cameras at the points from the riverbank to the inland forest in each trail, that is, 10 m, 250 m and 500 m from the riverbank (Fig. 5b1); cameras were set up 50 m away from the trails (Fig. 5b2). Consequently, the number of operating days differed among 30 cameras, i.e., mean = 608.8; SD = 531.4; range = 28–1315.In the TWR, M. N. and A. M placed 28 and three cameras on camera stations created by overlaying a 750 × 500 m grid in May and August 2010, respectively. Cameras were placed at each grid point at 250 m intervals (Fig. 5c). The operating days differed significantly among the 28 cameras, that is, mean = 177.9; SD = 123.2; range = 26–539.Temporal activity analysisWe defined non-independent photo capture events as consecutive photos of the same or different individuals of the same species taken within a 30-min interval and removed these photos from the analysis. We plotted the activity patterns of each species using a von Mises kernel40,41 using the package activity42 in R version 4.0.243. We estimated the activity level of animals with more than ten independent photo-capture events as indicated in the previous studies26,44. For our analysis, we pooled the images from all study sites if the photo number of a species was less than 10 in any study locations. If that was not the case, we used the package activity42 to compare species activity levels across the three research sites using a Wald test with Bonferroni correction for multiple pairwise comparisons. When there were significant differences, we separately estimated activity levels by the study sites. When there were no significant differences among the sites, we pooled the photo numbers to estimate activity levels.We divided a day into three periods: nighttime (19:00–04:59 h local time (GMT + 8)); daytime (07:00–16:59 h); and twilight (05:00–06:59 h and 17:00–18:59 h). During the study period, twilight hours essentially corresponded to 1 h between sunset and sunrise, at 5:54–6:25 and 17:50–18:25 in DVCA, 5:51–6:23 and 17:47–18:25 in LKWS, and 5:50–6:21 and 17:46–18:22 in TWR (data from https://www.timeanddate.com). After converting the time data of each photo-capture event into radians, we fitted a circular kernel density distribution estimated by 10,000 bootstrap resampling to radian time data, and we estimated the percentage of active time in each period. We then categorized the activity patterns of photo-captured carnivore species into four categories: nocturnal (active at night); crepuscular (active during twilight periods); diurnal (active during daytime); and cathemeral (active in all periods). We defined the activity pattern of the species as showing a statistically higher proportion of photo-captures at nighttime, daytime, and twilight periods than at other periods, such as nocturnal, diurnal, and crepuscular, respectively. When photo-capture proportions showed no differences among the three periods, we defined the activity pattern as cathemeral. For species with substantial sample size (50  More

  • in

    An evaluation of multi-species empirical tree mortality algorithms for dynamic vegetation modelling

    1.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55. https://doi.org/10.1890/Es15-00203.1 (2015).Article 

    Google Scholar 
    2.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).Article 

    Google Scholar 
    3.Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3, 30–36 (2013).ADS 
    Article 

    Google Scholar 
    4.Taccoen, A. et al. Background mortality drivers of European tree species: climate change matters. Proc R Soc B-Biol Sci 286, 1–10. https://doi.org/10.1098/rspb.2019.0386 (2019).Article 

    Google Scholar 
    5.Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28. https://doi.org/10.1111/nph.15048 (2018).Article 
    PubMed 

    Google Scholar 
    6.Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol., 1–13. https://doi.org/10.1016/j.tree.2021.02. (2021).7.McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 200, 304–321. https://doi.org/10.1111/nph.12465 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Keane, R. E. et al. Tree mortality in gap models: application to climate change. Clim. Change 51, 509–540. https://doi.org/10.1023/A:1012539409854 (2001).Article 

    Google Scholar 
    9.Bircher, N., Cailleret, M. & Bugmann, H. The agony of choice: different empirical mortality models lead to sharply different future forest dynamics. Ecol. Appl. 25, 1303–1318. https://doi.org/10.1890/14-1462.1 (2015).Article 
    PubMed 

    Google Scholar 
    10.Bugmann, H. et al. Tree mortality submodels drive long term forest dynamics: an assessment across 15 models from the stand to the global scale. Ecosphere 10, 1–22. https://doi.org/10.1002/ecs2.2616 (2019).Article 

    Google Scholar 
    11.Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci USA 111, 3280–3285. https://doi.org/10.1073/pnas.1222477110 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Lines, E. R., Coomes, D. A. & Purves, D. W. Influences of forest structure, climate and species composition on tree mortality across the Eastern US. PLoS ONE 5, 1–12. https://doi.org/10.1371/journal.pone.0013212 (2010).CAS 
    Article 

    Google Scholar 
    13.Purves, D. & Pacala, S. Predictive models of forest dynamics. Science 320, 1452–1453. https://doi.org/10.1126/science.1155359 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Cailleret, M., Bircher, N., Hartig, F., Hülsmann, L. & Bugmann, H. Bayesian calibration of a growth-dependent tree mortality model to simulate the dynamics of European temperate forests. Ecol. Appl. 30, 1–17. https://doi.org/10.1002/eap.2021 (2020).Article 

    Google Scholar 
    15.Rowland, L., Martinez-Vilalta, J. & Mencuccini, M. Hard times for high expectations from hydraulics: predicting drought-induced forest mortality at landscape scales remains a challenge. New Phytol. 230, 1685–1687. https://doi.org/10.1111/nph.17317 (2021).Article 
    PubMed 

    Google Scholar 
    16.Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690. https://doi.org/10.1111/gcb.13535 (2017).ADS 
    Article 

    Google Scholar 
    17.Bigler, C. & Bugmann, H. Growth-dependent tree mortality models based on tree rings. Can. J. For. Res. 33, 210–221. https://doi.org/10.1139/X02-180 (2003).Article 

    Google Scholar 
    18.Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28, 522–540. https://doi.org/10.1002/eap.1668 (2018).Article 
    PubMed 

    Google Scholar 
    19.Weiskittel, A. R., Hann, D. W., Kershaw, J. A. & Vanclay, J. K. in Forest Growth and Yield Modeling Ch. 8, 139–155 (Wiley, 2011).20.Holzwarth, F., Kahl, A., Bauhus, J. & Wirth, C. Many ways to die – partitioning tree mortality dynamics in a near-natural mixed deciduous forest. J. Ecol. 101, 220–230. https://doi.org/10.1111/1365-2745.12015 (2013).Article 

    Google Scholar 
    21.Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333. https://doi.org/10.1007/s10342-005-0085-3 (2005).Article 

    Google Scholar 
    22.Thrippleton, T., Hülsmann, L., Cailleret, M. & Bugmann, H. Projecting forest dynamics across Europe: potentials and pitfalls of empirical mortality algorithms. Ecosystems 23, 188–203. https://doi.org/10.1007/s10021-019-00397-3 (2020).Article 

    Google Scholar 
    23.Adams, H. D. et al. Empirical and process-based approaches to climate-induced forest mortality models. Front Plant Sci 4, 1–5. https://doi.org/10.3389/fpls.2013.00438 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Archambeau, J. et al. Similar patterns of background mortality across Europe are mostly driven by drought in European beech and a combination of drought and competition in Scots pine. Agric. For. Meteorol. 280, 1–12. https://doi.org/10.1016/j.agrformet.2019.107772 (2020).Article 

    Google Scholar 
    25.Luo, Y. & Chen, H. Y. H. Competition, species interaction and ageing control tree mortality in boreal forests. J. Ecol. 99, 1470–1480. https://doi.org/10.1111/j.1365-2745.2011.01882.x (2011).Article 

    Google Scholar 
    26.Brzeziecki, B. & Kienast, F. Classifying the life-history strategies of trees on the basis of the grimian model. For. Ecol. Manage. 69, 167–187. https://doi.org/10.1016/0378-1127(94)90227-5 (1994).Article 

    Google Scholar 
    27.Valladares, F. & Niinemets, U. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506 (2008).Article 

    Google Scholar 
    28.Kobe, R. K. & Coates, K. D. Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia. Can. J. For. Res. 27, 227–236. https://doi.org/10.1139/x96-182 (1997).Article 

    Google Scholar 
    29.Wyckoff, P. H. & Clark, J. S. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90, 604–615. https://doi.org/10.1046/j.1365-2745.2002.00691.x (2002).Article 

    Google Scholar 
    30.Anderegg, L. D. L. & HilleRisLambers, J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Glob. Change Biol. 22, 1029–1045. https://doi.org/10.1111/gcb.13148 (2016).ADS 
    Article 

    Google Scholar 
    31.Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352. https://doi.org/10.1111/gcb.13160 (2016).ADS 
    Article 

    Google Scholar 
    32.Etzold, S. et al. One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front Plant Sci 10, 1–19. https://doi.org/10.3389/fpls.2019.00307 (2019).Article 

    Google Scholar 
    33.Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103. https://doi.org/10.1016/j.baae.2020.04.003 (2020).Article 

    Google Scholar 
    34.Vanoni, M., Cailleret, M., Hülsmann, L., Bugmann, H. & Bigler, C. How do tree mortality models from combined tree-ring and inventory data affect projections of forest succession?. For. Ecol. Manage. 433, 606–617. https://doi.org/10.1016/j.foreco.2018.11.042 (2019).Article 

    Google Scholar 
    35.Huber, N., Bugmann, H. & Lafond, V. Capturing ecological processes in dynamic forest models: why there is no silver bullet to cope with complexity. Ecosphere 11, 1–34. https://doi.org/10.1002/ecs2.3109 (2020).Article 

    Google Scholar 
    36.Bugmann, H. A simplified forest model to study species composition along climate gradients. Ecology 77, 2055–2074. https://doi.org/10.2307/2265700 (1996).Article 

    Google Scholar 
    37.Hülsmann, L., Bugmann, H. & Brang, P. How to predict tree death from inventory data – lessons from a systematic assessment of European tree mortality models. Can. J. For. Res. 47, 890–900. https://doi.org/10.1139/cjfr-2016-0224 (2017).Article 

    Google Scholar 
    38.Eid, T. & Tuhus, E. Models for individual tree mortality in Norway. For. Ecol. Manag. 154, 69–84. https://doi.org/10.1016/S0378-1127(00)00634-4 (2001).Article 

    Google Scholar 
    39.Monserud, R. A. & Sterba, H. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manag. 113, 109–123. https://doi.org/10.1016/S0378-1127(98)00419-8 (1999).Article 

    Google Scholar 
    40.Dursky, J. Modellierung der Absterbeprozesse in Rein- und Mischbeständen aus Fichte und Buche. Allg. Forst- u. Jagdztg. 168, 131–134 (1997).
    Google Scholar 
    41.Trasobares, A., Pukkala, T. & Muna, J. Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann. For. Sci. 61, 9–24, doi:https://doi.org/10.1051/forset:2003080 (2004).42.Crecente-Campo, F., Soares, P., Tome, M. & Dieguez-Aranda, U. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. For. Ecol. Manage. 260, 1965–1974. https://doi.org/10.1016/j.foreco.2010.08.044 (2010).Article 

    Google Scholar 
    43.Palahi, M., Pukkala, T., Miina, J. & Montero, G. Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann. For. Sci. 60, 1–10, https://doi.org/10.1051/forest:2002068 (2003).44.Bravo-Oviedo, A., Sterba, H., del Rio, M. & Bravo, F. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P-sylvestris L. For. Ecol. Manag. 222, 88–98, doi:https://doi.org/10.1016/j.foreco.2005.10.016 (2006).45.Fridman, J. & Ståhl, G. A three-step approach for modelling tree mortality in Swedish forests. Scand. J. For. Res. 16, 455–466. https://doi.org/10.1080/02827580152632856 (2001).Article 

    Google Scholar 
    46.Wunder, J. et al. Growth-mortality relationships as indicators of life-history strategies: a comparison of nine tree species in unmanaged European forests. Oikos 117, 815–828. https://doi.org/10.1111/j.0030-1299.2008.16371.x (2008).Article 

    Google Scholar 
    47.Das, A., Battles, J., Stephenson, N. L. & van Mantgem, P. J. The contribution of competition to tree mortality in old-growth coniferous forests. For. Ecol. Manage. 261, 1203–1213. https://doi.org/10.1016/j.foreco.2010.12.035 (2011).Article 

    Google Scholar 
    48.Bigler, C. & Bugmann, H. Predicting the time of tree death using dendrochronological data. Ecol. Appl. 14, 902–914. https://doi.org/10.1890/03-5011 (2004).Article 

    Google Scholar 
    49.Larocque, G. R., Archambault, L. & Delisle, C. Development of the gap model ZELIG-CFS to predict the dynamics of North American mixed forest types with complex structures. Ecol. Model. 222, 2570–2583. https://doi.org/10.1016/j.ecolmodel.2010.08.035 (2011).Article 

    Google Scholar 
    50.Timofeeva, G. et al. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiol. 37, 1028–1041. https://doi.org/10.1093/treephys/tpx041 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23, 4788–4797. https://doi.org/10.1111/gcb.13724 (2017).ADS 
    Article 

    Google Scholar 
    52.Levesque, M. et al. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Change Biol. 19, 3184–3199. https://doi.org/10.1111/gcb.12268 (2013).ADS 
    Article 

    Google Scholar 
    53.Rigling, A. et al. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Change Biol. 19, 229–240. https://doi.org/10.1111/gcb.12038 (2013).ADS 
    Article 

    Google Scholar 
    54.Eyvindson, K., Repo, A. & Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. Forest Policy Econ 92, 119–127. https://doi.org/10.1016/j.forpol.2018.04.009 (2018).Article 

    Google Scholar 
    55.Mina, M. et al. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 54, 389–401. https://doi.org/10.1111/1365-2664.12772 (2017).Article 

    Google Scholar 
    56.Thom, D., Rammer, W. & Seidl, R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 87, 665–684. https://doi.org/10.1002/ecm.1272 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Blattert, C., Lemm, R., Thees, O., Lexer, M. J. & Hanewinkel, M. Management of ecosystem services in mountain forests: review of indicators and value functions for model based multi-criteria decision analysis. Ecol Indic 79, 391–409. https://doi.org/10.1016/j.ecolind.2017.04.025 (2017).Article 

    Google Scholar 
    58.Haeler, E. et al. Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest. Landscape Ecol. 36, 89–104. https://doi.org/10.1007/s10980-020-01115-4 (2021).Article 

    Google Scholar 
    59.Das, A. J., Stephenson, N. L. & Davis, K. P. Why do trees die? Characterizing the drivers of background tree mortality. Ecology 97, 2616–2627. https://doi.org/10.1002/ecy.1497 (2016).Article 
    PubMed 

    Google Scholar 
    60.Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556. https://doi.org/10.2307/1310665 (1987).Article 

    Google Scholar 
    61.Huber, N., Bugmann, H. & Lafond, V. Global sensitivity analysis of a dynamic vegetation model: model sensitivity depends on successional time, climate and competitive interactions. Ecol. Model. 368, 377–390. https://doi.org/10.1016/j.ecolmodel.2017.12.013 (2018).Article 

    Google Scholar 
    62.Portier, J. et al. “Latent reserves”: a hidden treasure in National Forest Inventories. J. Ecol. 109, 369–383. https://doi.org/10.1111/1365-2745.13487 (2021).Article 

    Google Scholar 
    63.Kunstler, G. et al. Demographic performance of European tree species at their hot and cold climatic edges. J. Ecol. 109, 1041–1054. https://doi.org/10.1111/1365-2745.13533 (2021).Article 

    Google Scholar 
    64.Gutierrez, A. G., Snell, R. S. & Bugmann, H. Using a dynamic forest model to predict tree species distributions. Glob. Ecol. Biogeogr. 25, 347–358. https://doi.org/10.1111/geb.12421 (2016).Article 

    Google Scholar 
    65.Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872. https://doi.org/10.2307/2258570 (1972).Article 

    Google Scholar 
    66.Bugmann, H. A review of forest gap models. Clim. Change 51, 259–305. https://doi.org/10.1023/A:1012525626267 (2001).Article 

    Google Scholar 
    67.Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22. https://doi.org/10.2307/2256497 (1947).Article 

    Google Scholar 
    68.Shugart, H. H. & Smith, T. M. A review of forest patch models and their application to global change research. Clim. Change 34, 131–153. https://doi.org/10.1007/BF00224626 (1996).ADS 
    Article 

    Google Scholar 
    69.Monserud, R. A. Simulation of forest tree mortality. Forest Science 22, 438–444. https://doi.org/10.1093/forestscience/22.4.438 (1976).Article 

    Google Scholar 
    70.IPCC. Climate Change 2014: Impacts, adaptation, and vulnerability, Pt A: global and sectoral aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Pt A: Global and Sectoral Aspects, 1-1131, doi:https://doi.org/10.1017/CBO9781107415379 (2014).71.Manusch, C., Bugmann, H., Heiri, C. & Wolf, A. Tree mortality in dynamic vegetation models: a key feature for accurately simulating forest properties. Ecol. Model. 243, 101–111. https://doi.org/10.1016/j.ecolmodel.2012.06.008 (2012).Article 

    Google Scholar 
    72.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Spatiotemporal origin of soil water taken up by vegetation

    1.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by Northern ecosystems since 1960. Science 341, 1085–1089 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Schlesinger, W. H. & Jasechko, S. Agricultural and forest meteorology transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).ADS 
    Article 

    Google Scholar 
    5.Dawson, T. E. & Pate, J. S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107, 13–20 (1996).ADS 
    Article 

    Google Scholar 
    6.Voltas, J., Devon, L., Maria Regina, C. & Juan Pedro, F. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis. New Phytol. 208, 1031–1041 (2015).Article 

    Google Scholar 
    7.Grossiord, C. et al. Prolonged warming and drought modify belowground interactions for water among coexisting plants. Tree Physiol. 39, 55–63 (2018).Article 

    Google Scholar 
    8.Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Querejeta, J. I., Estrada-Medina, H., Allen, M. F. & Jiménez-Osornio, J. J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152, 26–36 (2007).ADS 
    Article 

    Google Scholar 
    10.Evaristo, J. & McDonnell, J. J. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis. Sci Rep. 7, 44110 (2017).ADS 
    Article 

    Google Scholar 
    11.Barbeta, A. & Peñuelas, J. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Sci Rep. 7, 10580 (2017).ADS 
    Article 

    Google Scholar 
    12.Jobbágy, E. G., Nosetto, M. D., Villagra, P. E. & Jackson, R. B. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol. Appl. 21, 678–694 (2011).Article 

    Google Scholar 
    13.Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Ellsworth, P. Z. & Sternberg, L. S. L. Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 551, 538–551 (2015).Article 

    Google Scholar 
    15.Sohel, S. Spatial and Temporal Variation of Sources of Water Across Multiple Tropical Rainforest Trees. PhD thesis, Univ. Queensland (2019).16.Williams, D. G. & Ehleringer, J. R. Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol. Monogr. 70, 517–537 (2000).
    Google Scholar 
    17.Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R., T. W. & Goldsmith, G. R. Seasonal origins of soil water used by trees. Hydrol. Earth Syst. Sci. 23, 1199–1210 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    18.David, T. S. et al. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol. 27, 793–803 (2007).CAS 
    Article 

    Google Scholar 
    19.Zencich, S. J., Froend, R. H., Turner, J. V. & Gailitis, V. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131, 8–19 (2002).ADS 
    Article 

    Google Scholar 
    20.Naumburg, E., Mata-Gonzalez, R., Hunter, R. G. & Martin, D. W. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation. Environ. Manage. 35, 726–740 (2005).Article 

    Google Scholar 
    21.Snyder, K. A. & Williams, D. G. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric. For. Meteorol. 105, 227–240 (2000).ADS 
    Article 

    Google Scholar 
    22.Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263 (2006).ADS 
    Article 

    Google Scholar 
    23.Eleringer J. R. & Dawson T. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 1073–1082 (1992).24.Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H. & Tu, K. P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507–559 (2002).Article 

    Google Scholar 
    25.Rothfuss, Y. & Javaux, M. Reviews and syntheses: isotopic approaches to quantify root water uptake: a review and comparison of methods. Biogeosciences 14, 2199–2224 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Orlowski, N. et al. Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water. Hydrol. Earth Syst. Sci. 22, 3619–3637 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Chen, Y. et al. Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proc. Natl Acad. Sci. USA 117, 33345–33350 (2021).ADS 
    Article 

    Google Scholar 
    28.Pastorello, G., Trotta, C., Canfora, E. & Al., E. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    29.Zhao, Y. & Wang, L. Plant water use strategy in response to spatial and temporal variation in precipitation patterns in China: a stable isotope analysis. Forests 9, 1–21 (2018).
    Google Scholar 
    30.Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res. Atmos. 117, (2012).31.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).ADS 
    Article 

    Google Scholar  More

  • in

    Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe

    1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484–1241484 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Treves, A. & Karanth, K. U. Human–carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article 

    Google Scholar 
    3.Linnell, J. D. C. & Boitani, L. Building biological realism into wolf management policy: The development of the population approach in Europe. Hystrix Ital. J. Mammal. 23, 80–91 (2011).
    Google Scholar 
    4.Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).Article 

    Google Scholar 
    5.Breitenmoser-Würsten, C., Vandel, J.-M., Zimmermann, F. & Breitenmoser, U. Demography of lynx Lynx lynx in the Jura Mountains. Wildl. Biol. 13, 381–392 (2007).Article 

    Google Scholar 
    6.Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.O’Connell, A., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses. (Springer Tokyo, 2011).8.Noss, A. J. et al. A Camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in Bolivian Dry Forests. Tapir Cons. 12, 9 (2003).
    Google Scholar 
    9.Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 11 (1998).Article 

    Google Scholar 
    10.Satter, C. B., Augustine, B. C., Harmsen, B. J., Foster, R. J. & Kelly, M. J. Sex‐specific population dynamics of ocelots in Belize using open population spatial capture–recapture. Ecosphere 10, e02792 (2019).Article 

    Google Scholar 
    11.Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38, 148–154 (2004).Article 

    Google Scholar 
    12.Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture. (Elsevier, 2014).
    Google Scholar 
    14.Chandler, R. B. & Clark, J. D. Spatially explicit integrated population models. Methods Ecol. Evol. 5, 1351–1360 (2014).Article 

    Google Scholar 
    15.Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe (EuropeanCommission, 2013).16.Magg, N. et al. Habitat availability is not limiting the distribution of the Bohemian–Bavarian lynx Lynx lynx population. Oryx 50, 742–752 (2016).Article 

    Google Scholar 
    17.Müller, J. et al. Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biol. Conserv. 177, 210–217 (2014).Article 

    Google Scholar 
    18.Bull, J. K. et al. The effect of reintroductions on the genetic variability in Eurasian lynx populations: The cases of Bohemian–Bavarian and Vosges–Palatinian populations. Conserv. Genet. 17, 1229–1234 (2016).Article 

    Google Scholar 
    19.Walston, J. et al. Bringing the tiger back from the brink—The six percent solution. PLoS Biol. 8, e1000485 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Schmidt, K., Jędrzejewski, W. & Okarma, H. Spatial organization and social relations in the Eurasian lynx population in Bialowieza Primeval Forest, Poland. Acta Theriol. (Warsz.) 42, 289–312 (1997).Article 

    Google Scholar 
    21.Bunnefeld, N., Linnell, J. D. C., Odden, J., van Duijn, M. A. J. & Andersen, R. Risk taking by Eurasian lynx (Lynx lynx) in a human-dominated landscape: Effects of sex and reproductive status. J. Zool. 270, 31–39 (2006).
    Google Scholar 
    22.Gaillard, J.-M., Nilsen, E. B., Odden, J., Andrén, H. & Linnell, J. D. C. One size fits all: Eurasian lynx females share a common optimal litter size. J. Anim. Ecol. 83, 107–115 (2014).PubMed 
    Article 

    Google Scholar 
    23.Nilsen, E. B., Linnell, J. D. C., Odden, J., Samelius, G. & Andrén, H. Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx). Acta Theriol. (Warsz.) 57, 217–223 (2012).Article 

    Google Scholar 
    24.O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139 (2003).Article 

    Google Scholar 
    25.Cailleret, M., Heurich, M. & Bugmann, H. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 328, 179–192 (2014).Article 

    Google Scholar 
    26.Heurich, M. et al. Country, cover or protection: What shapes the distribution of red deer and roe deer in the Bohemian Forest Ecosystem?. PLoS ONE 10, e0120960 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.van Beeck Calkoen, S. T. S. et al. The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. For. Ecol. Manag. 451, 117483 (2019).Article 

    Google Scholar 
    28.Wölfl, M. et al. Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriol. 46, 181–194 (2001).Article 

    Google Scholar 
    29.Mináriková, T. et al. Lynx monitoring report for Bohemian–Bavarian–Austrian lynx population for lynx year 2017 (INTERREG Central Europe, 2019).30.Weingarth, K. et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture–recapture techniques in a German national park. Anim. Biodivers. Conserv. 35, 197–207 (2012).Article 

    Google Scholar 
    31.Belotti, E. et al. Patterns of lynx predation at the interface between protected areas and multi-use landscapes in Central Europe. PLoS ONE 10, e0138139 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).Article 

    Google Scholar 
    33.Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Natal dispersal of Eurasian lynx ( Lynx lynx ) in Switzerland. J. Zool. 267, 381 (2005).Article 

    Google Scholar 
    34.Andrén, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).Article 

    Google Scholar 
    35.Gimenez, O. et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 9, 11707–11715 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pesenti, E. & Zimmermann, F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 94, 73–81 (2013).Article 

    Google Scholar 
    37.Weingarth, K. et al. Hide and seek: Extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 24, 2935–2952 (2015).Article 

    Google Scholar 
    38.Pollock, K. H. A capture–recapture design robust to unequal probability of capture. J. Wildl. Manag. 46, 752 (1982).Article 

    Google Scholar 
    39.Augustine, B. benaug/OpenPopSCR. (2019). https://github.com/benaug/OpenPopSCR.40.Ergon, T. & Gardner, B. Separating mortality and emigration: Modelling space use, dispersal and survival with robust-design spatial capture–recapture data. Methods Ecol. Evol. 5, 1327–1336 (2014).Article 

    Google Scholar 
    41.Schaub, M. & Royle, J. A. Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol. Evol. 5, 1316–1326 (2014).Article 

    Google Scholar 
    42.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2005).
    Google Scholar 
    43.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    44.Efford, M. secr 4.1—Spatially explicit capture–recapture in R. (2019). https://cran.microsoft.com/snapshot/2019-12-24/web/packages/secr/vignettes/secr-overview.pdf.45.Burnham, K. P. & Overton, W. S. Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936 (1979).Article 

    Google Scholar 
    46.Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    47.O’Brien, T. G. Abundance, density and relative abundance: A conceptual framework. In Camera Traps in Animal Ecology (eds O’Connell, A. F. et al.) 71–96 (Springer Japan, 2011). https://doi.org/10.1007/978-4-431-99495-4_6.Chapter 

    Google Scholar 
    48.Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, 2016).
    Google Scholar 
    49.Augustine, B. C. et al. Sex-specific population dynamics and demography of capercaillie (Tetrao urogallus L.) in a patchy environment. Popul. Ecol. 62, 80–90 (2020).Article 

    Google Scholar 
    50.Duľa, M. et al. Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range. Sci. Rep. 11, 9236 (2021).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    51.Avgan, B., Zimmermann, F., Güntert, M., Arıkan, F. & Breitenmoser, U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildl. Biol. 20, 217–221 (2014).Article 

    Google Scholar 
    52.Mengüllüoğlu, D., Ambarlı, H., Berger, A. & Hofer, H. Foraging ecology of Eurasian lynx populations in southwest Asia: Conservation implications for a diet specialist. Ecol. Evol. 8, 9451–9463 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Heurich, M. et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, e114143 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    54.Jedrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus). Ecography 19, 122–138 (1996).Article 

    Google Scholar 
    55.Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. & Karanth, K. U. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 8, 10336–10344 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    57.Engleder, T. et al. First breeding record of a 1-year-old female Eurasian lynx. Eur. J. Wildl. Res. 65, 17 (2019).Article 

    Google Scholar 
    58.Heurich, M. et al. Selective predation of a stalking predator on ungulate prey. PLoS ONE 11, e0158449 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Andrén, H. & Liberg, O. Large impact of Eurasian lynx predation on roe deer population dynamics. PLoS ONE 10, e0120570 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Elmhagen, B. & Rushton, S. P. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?. Ecol. Lett. 10, 197–206 (2007).PubMed 
    Article 

    Google Scholar 
    61.Wikenros, C. et al. Fear or food—Abundance of red fox in relation to occurrence of lynx and wolf. Sci. Rep. 7, 9059 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    62.Helldin, J. O., Liberg, O. & Glöersen, G. Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden? Frequency and population effects. J. Zool. 270, 657–663 (2006).Article 

    Google Scholar 
    63.Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution—Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).Article 

    Google Scholar 
    64.Linnell, J. D. C., Kaczensky, P., Wotschikowsky, U., Lescureux, N. & Boitani, L. Framing the relationship between people and nature in the context of European conservation: Relationship between people and nature. Conserv. Biol. 29, 978–985 (2015).PubMed 
    Article 

    Google Scholar  More